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Abstract

Recent advances in synthetic biology have enabled the construction of non-native metabolic
pathways for production of next-generation biofuels in microbes. One such biofuel is the
jet-fuel precursor α-pinene, which can be processed into high-energy pinene dimers. How-
ever, accumulation of toxic biofuels in the growth medium limits the possible fuel yield.
Overexpression of transporter proteins such as efflux pumps can increase tolerance to bio-
fuels by pumping them out of the cell, thus improving fuel yields. However, too many efflux
pumps can compromise the cell as well, creating a trade-off between biofuel toxicity and
pump toxicity. In this work we improve the conditions of this trade-off in order to increase
pinene tolerance in E. coli. We do so by constructing strains incorporating multiple efflux
pumps from a variety of organisms and then testing them for tolerance in growth assay ex-
periments. Previous research has suggested that certain combinations of efflux pumps can
confer additional tolerance compared to the individual pumps themselves. However, the
functional form of the combination of the tolerance provided by each pump and the toxicity
due to their simultaneous activity is unknown. Using differential equations, we developed
a growth model incorporating the trade-offs between toxicity of α-pinene and efflux pump
activity to describe the dynamics of bacterial growth under these conditions. By analyz-
ing biofuel toxicity and the effects of each efflux pump independently through a series of
experiments and mathematical models, we propose a functional form for their combined
effect on growth rate. We model the mean exponential growth rate as a function of pump
induction and biofuel concentration and compare these results to experimental data. We
also apply this technique to modeling toxicity of ionic liquids, a class of corrosive salts that
has emerged as and effective chemical for pretreatment of biofuel production feedstock. We
compare a model for a variety of ionic liquid responsive efflux pump controllers to that of
an IPTG inducible controller and show agreement with experimental data, supporting the
model’s utility to test control schemes before conducting experiments. The overall goal of
this project is to use modeling to guide design of tolerance mechanisms to improve overall
biofuel yield.
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Chapter 1

Introduction

Literature review and introduction to concepts and modeling
technique.

1.1 Background

Biofuel has sparked interest worldwide as an alternative source of transportation fuel

that shows potential to provide a drop-in liquid alternative to modern petroleum products

(13). Due to rising oil prices and political turmoil, nations are seeking a more sustainable

fuel source that can provide them with the ability to produce their own fuel domestically

while reducing the environmental impact of gasoline production. The ideal fuel must be

highly energy dense and have minimal corrosive effect when burned in a modern combustion

engine.

First generation biofuels, such as ethanol and biodiesel are already widely used, but

they were selected mainly for convenience rather than their properties as fuels. The energy

content of ethanol is only about 70% that of gasoline and it draws in moisture from the

air at a higher rate, which increases corrosion in engines (13). Next generation biofuels are

currently more costly to produce than ethanol but they can have higher energy content,

1



1.1. BACKGROUND

less corrosion, and higher octane numbers (resistance to knocking in spark-ignition engines).

Isoprenoids are a class of biofuels that have favorable qualities due to branches and rings in

the hydrocarbon chain that makes up their chemical structure (13). In this work we focus

on the biofuel precursor α-pinene, a high energy content isoprenoid that can be processed

into pinene dimers and used as a Jet-fuel replacement (7). Throughout this body of work

we will refer to α-pinene and pinene interchangably.

Biofuel is produced by fermentation of feedstock made from a crop with high sugar

content, usually cornflour in the US and sugarcane in Brazil. This competing land use issue

presents a major limitation on biofuel production. However, waste cellulosic plant material

from harvesting crops can be used as a fuel source, but this requires more effort to process

into a fermentable sugar (4). The biomass must be processed into an easily digestible

material for microbes. This can be achieved through a variety of mechanical and chemical

processes such as milling and dissolution in strong acids, bases, alkanes or salts (10). Ionic

liquids are strong salts that are liquid phase at room temperature. They have emerged as

a viable solvent for pretreatment of biomass due to their chemical stability, which makes

it possible to extract and reuse them after pretreatment (10). However, it is difficult to

extract 100% of the ionic liquids that were originally used since they become homogenized

with the feedstock.

In a microbial biofuel production process, bioengineered microbes are grown inside a re-

actor in a solution that is rich in cellulose-derived sugar (glucose and pentose). The chemical

energy contained in the feedstock is converted by the microbe to a different molecular form

through a metabolic pathway, where the end product is the desired biofuel. Accumulation

of this biofuel in the cell’s environment can be toxic (5). Figure 1.1 shows the toxicity of

pinene to Escherichia coli (E. coli) when added extracellularly. When the growth medium

becomes rich in fuel, fuel molecules penetrate diffusively and bind to the lipid bilayer of

the cell membrane, affecting membrane fluidity and impairing functions such as transport

2



1.1. BACKGROUND

of vital but functionally unrelated compounds (15). Also, residual quantities of ionic liquid

can make it into the reactor and inhibit microbial growth, limiting fuel yield (6). Thus, it is

desirable to engineer strains that are tolerant to the biofuel product as well as pretreatment

chemicals.

0 100 200 300 400 500 600 700 800 900
0

0.5

1

1.5
Pinene Toxicity to E. coli

Time (min.)

O
D

60
0

 

 

0% Pinene
2% Pinene
4% Pinene
6% Pinene

Figure 1.1: Pinene toxicity. Effect of increasing α-pinene concentration on growth of wildtype E.
coli BW25113.

Efflux pumps are transporter proteins found in many cells and organisms that play

a major role in the export of toxic compounds (11). There are numerous efflux pump

genes in E. coli that target and transport a wide variety of molecules (11). Here, we

focus on members of the resistance/nodulation/cell division (RND) family of efflux pumps.

While many efflux pumps transport toxins through the inner membrane, RND efflux pumps

transport a wide variety of biofuels and other antimicrobial chemicals across the inner and

outer membranes using the electrochemical gradient across the membrane (12). It has been

suggested that expression of multiple efflux pumps simultaneously can confer additional

tolerance compared to the individual pumps (8). Due to the modularity enabled by modern

synthetic biology techniques, the DNA for the metabolic pathway of particular fuels can be

extracted from one organism and expressed heterologously in a host organism (1). In one

3



1.1. BACKGROUND

example, researchers constructed a production and efflux pathway in E. coli for the biofuel,

limonene, using genes from 5 different organisms (3). The genes were assembled on plasmids

and transformed into E. coli. An important conclusion from this study is that pumps that

increase tolerance to the fuel can also increase yield. This was demonstrated by showing

that an E. coli strain with a heterologous efflux pump from Alcanivorax borkumensis was

able to produce significantly more limonene than a control strain without the pump.

The main efflux pump in E. coli is the AcrAB-TolC system, a tripartite protein complex

that spans the inner and outer cell membrane and exports numerous chemicals such as

antibiotics, solvents, detergents and dyes (12). AcrB is the inner membrane protein that is

responsible for substrate recognition and export of toxic molecules. AcrA is the periplasmic

linker that forms a connection to TolC, which is the outer membrane channel. TolC is the

major outer membrane protein in E. coli, it works with a wide variety of inner membrane

and periplasmic linker systems to transport everything from toxins to proteins (16).

Although efflux pumps provide an advantage in toxic environments, overexpression can

compromise the cell membrane as well as consume metabolic energy that would otherwise be

devoted to growth and replication processes, creating a trade-off scenario where expression

must be finely balanced with toxicity of the environment to achieve optimum growth con-

ditions (2). Figure 1.2 shows the toxicity of expressing the non-native efflux pump Pp 3456

from Pseudomonas putida in E. coli.
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Figure 1.2: Toxicity of overexpression of the efflux pump Pp 3456 in E. coli. Pump protein genes
are induced by IPTG.

1.2 Purpose

The objective of this thesis is to understand the trade-offs between toxicity (biofuel, pump,

ionic liquid) and tolerance provided by efflux pumps. This was achieved through mathemat-

ical modeling and experiments investigating the of one and two efflux pumps in a controlled

manner in order to understand how the tolerance and pump toxicity of the individual pumps

and inhibitors combine. Efflux pumps were selected for their tolerance properties demon-

strated in Dunlop et al. 2011 (3). Combinations of individual pumps were constructed

and tested in E. coli. Mathematical models were developed and used to model the growth

dynamics. Simulations are compared to experimental results and used to guide subsequent

experiments with the goal of predicting modularity of efflux pumps based on individual

pump data. This information will contribute to the long-term goal of improving fuel yields

to make biofuels a more economically viable product.
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1.3 Modeling Strategy

Bacterial growth is a complex process. Here we consider growth from a macro per-

spective where the total cellular mass increases with time based on the available nutrients.

A bacterial growth curve generally consists of a lag phase, an exponential growth phase

and a stationary growth phase, at which the cell density is considered steady-state. Jacques

Monod proposed an empirical model for modeling bacterial growth in 1942 which he revised

in 1949 (9). Monod’s model (Eqn. 1.1 & 1.2) was the first growth model to introduce the

concept of a limiting nutrient, which provides an elegant conversion of the growth substrate

to biomass.

Ṅ = µmaxN
S

KS + S
(1.1)

N is the cell mass concentration, µmax is the maximum growth rate, and S is the sub-

strate concentration. Ks represents the half-saturation constant for the growth rate. Monod

also found that the rate of nutrient consumption was opposite in sign and proportional to

the growth rate. This leads to the equation for rate of change of limiting nutrient (Eqn.

1.2), where γ represents the growth yield.

Ṡ = − 1
γ
µmaxN

S

KS + S
(1.2)

In order to simulate inhibition of growth in the model, we modified the Monod model

to include growth inhibition due to biofuel-specific effects. Equation 1.3 shows the modified

form such that the growth rate decreases as the concentration of the inhibitory compound in-

creases. The inhibition term is a ratio equal to 1 in the absence of the inhibitory compound,

Ci = 0 g/L, and approaches zero as Ci approaches infinity, representing total inhibition.

The inhibitor exponent, h, determines the curvature of the final cell density as a function of
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the inhibitor concentration. Kc is the half-inhibition constant because when Ci = Kc, the

inhibition ratio equals 0.5. Multiple inhibition terms can be included, each one representing

an inhibitory compound such as a biofuel, ionic liquid, or pump protein.

Ṅ = µmaxN
S

KS + S

1
1 + ( Ci

Kc
)h

(1.3)

The rate of efflux pump protein production, in other words transcription and translation

of pump genes, depends on the type of genetic control governing their expression. Pump

genes are always expressed at the basal level, αp0, which depends on the particular gene

and promoter. By selecting an appropriate promoter region for the pump gene, protein

production can be activated at a static rate based on the concentration of an inducer

molecule (Eqn. 1.4), or proteins can be controlled dynamically by the concentration of the

inhibitor itself (2) (Eqn. 1.5) or any other metabolic compound for which a transcription

factor is known. In Equation 1.5, αp is the rate constant of protein production, and γI sets

the expression threshold. Also, pump proteins degrade at the rate, β, proportional to their

concentration.

Ṗ = αP 0 + αp − βP (1.4)

Ṗ = αP 0 + αp
Ci

Ci + γp
− βP (1.5)

P represents the pump protein concentration in the intracellular domain.The model

accounts for passive diffusion of the toxic compound through the cell membrane. Taking

the entire growth environment as the control volume,Vr, we can divide this control volume

into two spaces: the intracellular volume Vi and the extracellular volume Ve. We assume

that the total mass, mr, of the toxic compound in the environment is constant (Eqn. 1.6).

We also know that mass is equal to concentration multiplied by volume, we can use this to

solve for the extracellular concentration as a function of the total, intra- and extracellular

7
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volumes and intracellular concentration (Eqn. 1.7).

mr = mi +me (1.6)

Ie = CrVr − CiVi

Ve
(1.7)

Cell mass was assumed to be 10−12g, and cell volume was assumed to be 10−15L (14).

This balance rule is incorporated into the model upstream of the differential equations

so that it is recalculated at each time-step with the other state variables. The inhibitory

compounds diffuse passively through the cell membranes at a rate dependent on the gradient

of concentrations on either side of the membrane (Eqn. 1.8).

dCi

dt
= αc0

Ve

Vi
(Ce − Ci) − CiαcP (1.8)

The gradient is multiplied by a rate constant and the change in concentration due to

mass flux is accounted for by the volume ratio between the intracellular and extracellular

environments. Inhibitory compounds are also actively transported out of the intracellular

environment at a rate proportional to the efflux pump concentration. We assume the

inhibitor only impacts growth when in the intracellular environment, therefore the pumps

provide an advantage by transporting the compounds out of the cell. As an example, Figure

3 shows simulated growth curves and the toxicity profile for a range of hypothetical inhibitor

concentrations. The dimensionless quantity N/γKs is plotted in order to show a typical

growth curve while maintaining generality for all units and measures of bacterial population

density. No efflux pumps are active in this simulation.
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Chapter 2

Trade-offs in Improving Biofuel Toler-

ance Using Combinations of Efflux Pumps

The following chapter contains materials under review for publication.

2.1 Introduction

Microbial production of next-generation biofuels has the potential to provide drop-in alter-

natives to liquid petroleum products including gasolines, diesels, and jet fuels (21). Aviation

fuels, in particular, represent an area where biofuels are especially important. In contrast to

other transportation markets that have alternative renewable technologies (e.g. gasoline vs.

electric vehicles), aviation requires liquid fuels that are energy dense, work at low temper-

atures, and are not prohibitively expensive. Terpenes are naturally occurring compounds

in plant biochemistry that have the potential to serve as next-generation jet fuels. Several

studies have engineered pathways for terpene production in microbial hosts (1, 24, 32). Re-

cently, pinene has been synthesized as a jet fuel replacement (1, 24). Pinene dimers have a

similar heating value and energy density to the tactical jet fuel JP-10 and can be readily

synthesized from α-pinene by chemical catalysis (24, 13).
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2.1. INTRODUCTION

Although they hold great promise as renewable jet fuels, end product inhibition is a

critical factor in the microbial synthesis of monoterpenes (24, 2). Therefore, as biofuel

production improves, it will be necessary to also improve host tolerance. As the intracellular

concentration of biofuel increases, the protective barrier provided by the cell membrane is

weakened and membrane permeability and fluidity increase from the breakdown of the

tightly packed lipid bilayer. As a result, cellular machinery and energy can be released

across the membrane in the form of ions, ATP, RNA, and proteins. This impacts electro-

chemical energy gradients such as the proton motive force that normally provide the driving

force for essential transport processes (7, 26).

Microbes have evolved a wide variety of mechanisms to combat the effects of solvent

toxicity (20, 22). These include alteration in the membrane phospholipid composition for

reduced permeability, active extrusion by efflux pumps, and heat shock protein assistance

in the refolding of unraveled proteins (7, 20). Here, we focus on the transport of solvents

by efflux pumps. Several previous studies have demonstrated that expression of pumps

can improve biofuel production (6, 9, 28). There is evidence that combinations of efflux

pumps can confer additional tolerance compared to expression of either pump individually

(16). Notably, bacteria have evolved to have multiple parallel efflux pump systems. In P.

putida DOT-T1E, toluene tolerance is achieved by three solvent resistant pumps, collectively

known as the toluene tolerance genes (ttg), which work in concert to improve tolerance (23).

Here, we asked whether simultaneous heterologous expression of non-native efflux pumps in

E. coli could enhance pinene tolerance relative to a wildtype control and strains containing

individual pumps.

Overexpression of efflux pumps can be detrimental to growth, due to an overloading

of membrane insertion machinery and changes in membrane composition (20, 29). This

creates a trade-off between pump toxicity and biofuel toxicity where moderate, but not

high, expression is necessary to achieve optimal growth (5, 12). Similar trade-offs have
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been observed with efflux pumps in antibiotic resistance(30). With combinations of pumps

there are multiple sources of pump toxicity, but also potential combinatorial benefits from

reduced biofuel toxicity. Balancing these competing factors has the potential to introduce

a complex fitness landscape. In addition, testing combinations of pumps under different

induction conditions with different levels of biofuel quickly results in a large set of conditions

requiring experimental characterization. Here, we show experimentally that a simple model

of toxicities is sufficient to predict how two pumps act in concert, greatly reducing the

number of validation experiments required.

In this study, we used four efflux pumps that are known to improve tolerance to α-pinene

(6). Here, we refer to the pumps by the gene numbers of the inner membrane component,

however we note that each pump is composed of multiple genes (Methods). Pp 3456 is

native to Pseudomonas putida KT2440, Maqu 3494 and Maqu 0582 are from Marinobacter

aquaeolei, and Abo 0964 is from Alcanivorax borkumensis SK2. P. putida is a soil bacterium

with known solvent tolerance properties (19), M. aquaeolei is a hydrocarbon degrader that

was isolated from the head of an offshore oil well (14, 27), and A. borkumensis is known

to dominate hydrocarbon-rich marine environments like those near natural oil seepages or

oil spills (25, 31). When tested individually in a strain of E. coli lacking the major native

solvent-tolerance pump, all four pumps were shown to improve pinene tolerance (6). In the

present study, we comprehensively characterized the biofuel and pump toxicities for each

pump individually and then combined pumps, repeating tolerance experiments. Using the

single pump experimental data, we fit a mathematical model describing the cell growth.

From the single pump data we were able to accurately predict the fitness landscape with

multiple pumps using the mathematical model. This result shows excellent agreement with

all tested combinations of pump induction and biofuel levels. Importantly, this suggests that

a small number of experiments may be sufficient to predict combinatorial effects between

pumps.
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2.2 Results and discussion

In order to quantify the benefit of efflux pump expression and the toxicity of each pump,

we performed growth assays with a gradient of pinene concentrations and different levels

of pump induction (Methods). Because we were interested in testing how combinations of

pumps impacted growth, we used a two plasmid system in all experiments. Using E. coli

BW25113 as a host, we cotransformed cells with compatible medium copy (p15A origin)

and low copy (SC101 origin) plasmids (Methods). As a negative control, we expressed red

fluorescent protein (rfp) and compared this to expression of each efflux pump, individually

or in combination. For concise notation, we refer to the medium copy plasmid (p15A) as A

and the low copy plasmid (SC101) as S. For example, A-rfp/S-rfp is the negative control,

expressing no non-native efflux pumps, and A-Maqu 3494/S-rfp is a single pump strain,

with Maqu 3494 expressed from the medium copy plasmid.

In the wildtype strain, we observed a severe growth impact with 0.5% and 1% pinene

(Fig. 2.1a). Although the pinene levels tested here are well above those produced in

engineered strains at present (e.g. 0.004%, or 32 mg/L in E. coli (24)), improving tolerance

can increase yields even when the biofuels being produced are well below toxic levels (6).

We next expressed Maqu 3494 under the control of the lacUV5 promoter and induced

cultures with 10 µM IPTG, resulting in low-to-moderate induction of the pump. The strain

harboring the pump was able to partially restore growth in the presence of 0.5% and 1%

pinene (Fig. 2.1b). Next, we measured the impact of pump toxicity by adjusting the level

of IPTG induction in the absence of pinene. Figure 2.1c shows the effect of Maqu 3494

overexpression on growth. As the inducer concentration is increased, the cells grow more

slowly. These data show the independent effects of biofuel and pump toxicity, suggesting a

trade-off when optimizing efflux pump expression.

To interpret the combined effects of these two phenomena, we used the experimental
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Figure 2.1: Costs and benefits of efflux pump expression. (a) IPTG-induced expression of the nega-
tive control, E. coli BW25113 with plasmids A-rfp/S-rfp, exhibits pinene toxicity. (b) Induction of
a single pump strain A-Maqu 3494/S-rfp with 10 µM IPTG improves pinene tolerance. (c) Over-
expression of Maqu 3494 (strain A-Maqu 3494/S-rfp) by IPTG induction inhibits growth. For (a-c)
error bars are the standard error of three biological replicates. (d) Simulation results showing the cost
and benefit of Maqu 3494 expression in an environment containing 0.5% pinene. At low induction,
biofuel toxicity is substantial, while at high induction pump toxicity dominates. The total toxicity is
minimized at an intermediate level. Biofuel and pump toxicities are normalized by their maximum
values. (e) Experimental data showing biomass after 12 hours of growth with 0.5% pinene for the
strain A-Maqu 3494/S-rfp as a function of IPTG concentration. For (a-c, e) error bars are the
standard error of three biological replicates.

data from A-Maqu 3494/S-rfp to fit a mathematical model describing cell growth, biofuel,

and pump toxicity (Methods). The model is based on the Monod growth equation (17),

with modifications to account for biofuel and pump toxicity. We ran simulations for a range

of inducer concentrations at a fixed pinene concentration and recorded the intracellular

pinene and the final pump concentrations (Fig. 2.1d). The combined impact of biofuel and

pump toxicity shows a clear minimum near 10µM IPTG, suggesting that an intermediate

induction level will maximize cell growth. We validated this experimentally by growing

cells in the presence of 1% pinene with varying levels of IPTG induction (Fig. 2.1e). As

predicted by the model, growth in the presence of pinene is maximized at an intermediate

induction level. These data highlight the trade-off between biofuel and pump toxicity for a

strain with heterologous expression of a single efflux pump.
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Next, we comprehensively characterized biofuel and pump toxicity for four efflux pumps.

We chose three pinene and four IPTG concentrations ranging from zero to complete inhi-

bition and induction respectively, for a total of twelve biofuel-inducer pairs. We performed

growth assays using four single-pump strains: A-Pp 3456/S-rfp, A-Maqu 3494/S-rfp, A-

rfp/S-Maqu 0582, and A-rfp/S-Abo 0964. In all cases, efflux pump expression is under

control of the lacUV5 promoter and induced by IPTG. Recall that 0.5% pinene completely

inhibits growth in the wildtype strain. Thus, the experiments with Pp 3456 and Maqu 3494

show improvements in pinene tolerance at low and moderate levels of induction (Fig. 2.2a-

b). In addition, the effect of pump toxicity is visible in these strains, with higher levels of

IPTG corresponding to a reduced growth rate. In contrast, the Maqu 0582 and Abo 0964

data show weak improvements in pinene tolerance and, although the pumps are toxic, as

evidenced by a reduced growth rate in the absence of pinene and IPTG, further induction

does not have a dramatic effect on growth (Fig. 2.2c-d). We selected these strains initially

based on their improvement of pinene tolerance in a previous study (6), however differences

between the strains and plasmids likely account for the reduced pump performance here.

Overall, these experiments map the fitness landscapes for four individual efflux pumps un-

der different biofuel and induction conditions, revealing trade-offs in pump expression and

tolerance.

Given our data set on growth rates for biofuel and inducer pairs, we next asked whether

our mathematical model could capture the fitness landscape to help predict and interpret

trade-offs in pump expression. Using the experimental data, we first modeled the impact

of pinene toxicity (Methods and Supplementary Information). The parameters were deter-

mined using data from the wildtype strain, A-rfp/S-rfp, and were then held constant across

all subsequent simulations. Next, we used the data from each individual pump to fit the pa-

rameters associated with pump toxicity and biofuel export. The modeled fitness landscapes

capture the features observed in the experimental data, including the interplay between
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Figure 2.2: Fitness landscapes resulting from heterologous expression of single efflux pumps for a
range of pinene and IPTG concentrations. Black dots represent the experimentally measured mean
growth rate in exponential phase at each set of conditions. The colored surfaces show the same
metric from simulated growth curves, as predicted by the mathematical model. Fitness landscapes
are shown for four single-pump strains: (a) A-Pp 3456/S-rfp, (b) A-Maqu 3494/S-rfp, (c) A-rfp/S-
Maqu 0582, and (d) A-rfp/S-Abo 0964. Error bars for the experimental data are shown in Fig. 2.5a
and error metrics are listed in Table 2.1.

biofuel and pump toxicities for the four distinct pumps (Fig. 2.2a-d). Our modeling results

are significant because they indicate that it may be possible to measure only a subset of

data points in a fitness landscape, rather than exhaustively mapping all combinations. In

addition, the model of individual pumps can be used to produce testable predictions about

what happens when pumps are used in combination.

Using the pumps we characterized individually, we next constructed strains harbor-

ing two heterlogously expressed efflux pumps. We tested A-Pp 3456/S-Maqu 0582 and
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A-Maqu 3494/S-Abo 0964 with different combinations of pinene and IPTG (Fig. 2.3a-b).

Although Maqu 0582 acting alone showed little increase in pinene tolerance, the strain with

both Pp 3456 and Maqu 0582 exhibited an increase in growth rate in the presence of pinene.

This effect is especially noticeable at the 1% pinene concentration, where the combination

of pumps outperforms the single pump strains. These results suggest that combinations of

pumps, even including those that show limited benefit when expressed individually, may be

able to improve tolerance. In principle, pumps from different sources could work together

as chimeras using, for example, inner membrane and periplasmic proteins from one pump

and outer membrane proteins from another. Previous studies have shown examples of efflux

pumps that can function in this modular fashion (6, 8).

Using the model with parameters determined from the single pump strain, we were able

to accurately predict the shape of the fitness landscape for both combinations of pumps (Fig.

2.3a-b). To achieve this, we used the growth rate for the strain with no pinene or IPTG

to set the relative position of the fitness landscape, but otherwise changed no parameters

(Methods). In other words, the parameters determined using the single pump strains, in

combination with measurements from a single condition of the double pump strains, were

sufficient to accurately predict the entire fitness landscape for many different biofuel and

pinene combinations.

In addition to the growth rate predictions, the model can also generate predictions of

growth curve data. Here, we present data for the no pump, one pump, and two pump

conditions for Pp 3456 and Maqu 0582, showing that, in all cases, the model is able to

accurately represent the experimental data. Again, the modeling predictions from the two

pump system are based on single pump measurements. Such a model guided approach has

the potential to drastically reduce the number of experimental measurements necessary to

optimize biofuel tolerance.

After our success at capturing the effects of dual heterologous pump expression, we asked
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Figure 2.3: Fitness landscapes and growth curves resulting from simultaneous heterologous expression
of two efflux pumps. Growth rate in exponential phase as a function of pinene and IPTG for strains
with two pumps: (a) A-Pp 3456/S-Maqu 0582 and (b) A-Maqu 3494/S-Abo 0964. Black dots show
experimental data; colored surface map is the modeling prediction. For error bars and analysis see
Fig. 2.5b, Table 2.1. (c) Experimental growth curves for no pump, single pump, and double pump
strains with 0 µm IPTG. Error bars show standard error for three replicates. (d) Mathematical
modeling predictions for the same conditions as in (c).

whether the model could be used as a tool to predict the fitness landscape of a novel pump

combination. To test this, we constructed A-Maqu 0582/S-Pp 3456 and A-Abo 0964/S-

20



2.2. RESULTS AND DISCUSSION

Maqu 3494. We measured the baseline growth under 0% pinene and 0 µM IPTG and

then switched the pump expression rates to account for the plasmid copy number swap,

leaving all other aspects of the model and its parameters unchanged. We then performed

growth assays with a subset of the pinene and IPTG conditions. The model shows good

agreement with the experimental data (Fig. 2.4a-b), further confirming our ability to predict

combinatorial pump effects. Notably, both the model and the experimental data show the

superior pinene tolerance of the A-Maqu 0582/S-Pp 3456 strain (Fig. 2.4a) over the A-

Abo 0964/S-Maqu 3494 strain (Fig. 2.4b). This is visible in the experimental data at 0.5%

pinene, where 10 µM IPTG induction of the pumps leads to improved growth over the A-

Abo 0964/S-Maqu 3494 strain. This is a non-trivial prediction, as the combined effects of

the pumps without any pinene or IPTG would have suggested that this strain was inferior.

We also tested A-Pp 3456/S-Maqu 3494. Individually, both pumps produced increases in

pinene tolerance (Fig. 2.2a-b). When combined, pump toxicity is substantial, though the

strain retains improved pinene tolerance relative to the A-rfp/S-rfp control (Fig. 2.4c).

a b
 

 1
 

1

c

1

Figure 2.4: Experimental data and model predictions of fitness landscapes for pump combina-
tions with swapped plasmid backbones. (a) A-Maqu 0582/S-Pp 3456, (b) A-Abo 0964/S-Maqu 3494
and (c) A-Pp 3456/S-Maqu 3494. Black dots show experimental data for a subset of the pinene
and IPTG conditions. The surface shows modeling predictions. Note that although the baseline
growth rate for the A-Abo 0964/S-Maqu 3494 combination is higher, A-Maqu 0582/S-Pp 3456 and
A-Pp 3456/S-Maqu 3494 both achieve a higher growth rate at 0.5% pinene, 10 µM IPTG. The model
predicts this trend to extend to higher biofuel and inducer concentrations. For error bars and analysis
see Fig. 2.5c, Table 2.1.

This work provides a method for selecting efflux pumps for use in combination to improve

biofuel tolerance of a host organism. By first testing single pump performance, selecting
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pumps that work well with the native biofuel tolerance machinery, and then using the

model to predict the performance of their combinations, it is possible to greatly reduce the

number of experiments required to optimize the biofuel tolerance of a strain. Our model

assumes that pump toxicity is multiplicative, which is a good approximation for the cases

we tested, however even in cases where this is not valid, the model can suggest a subset

of experiments to perform. A limitation of our approach is that it is necessary to measure

the performance of the strain at one condition (without pinene or IPTG) in order to set

the baseline growth rate. We found that some pump combinations were highly toxic even

with only basal pump expression (Fig. 2.4c). In the future, improved models that capture

synergistic or antagonistic effects in the absence of biofuel would be useful. For example,

further experiments characterizing how heterologous pumps interact, and also potential

interactions with native E. coli efflux pumps like AcrAB-TolC could further improve the

model.

Optimization of pumps and their expression systems may further improve biofuel toler-

ance. For simplicity, we used a single inducer for both pumps, but in principle the pumps

can be controlled independently. Further optimization using distinct inducible promoters is

likely to better match the best induction levels for each pump. Although we used inducible

promoters for this work, several recent studies have demonstrated that biosensor-based feed-

back can optimize growth by minimizing toxicity (3, 33). This approach can be combined

with preliminary screens based on the methods presented here. In addition, the pumps

used here have not been optimized for expression in E. coli; codon optimization, directed

evolution, or other strategies could serve to further improve tolerance (9). The ability to

accurately predict how combinations of tolerance mechanisms work together based on a

small subset of experimental measurements has the potential to dramatically reduce the

effort associated with engineering biofuel tolerance, leading to improved biofuel production

strains.
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2.3 Methods

2.3.1 Bacterial Growth Conditions

Cultures were grown in Luria Broth (LB) medium supplemented with 30 µg/ml kanamycin

and 35 µg/ml chloramphenicol at 37C with 200 rpm orbital shaking. Overnight cultures

were inoculated from a single colony. Pre-cultures were prepared by diluting overnight

cultures 1:100 in selective LB medium and were grown for two hours. Pre-cultures were

then diluted back to an optical density of approximately 0.2, IPTG was added to achieve

concentrations of 0, 10, 100, or 1000 µM, and the cultures were transferred to a 48-well

plate (total volume per well of 500 µl). α-pinene (Sigma) was added directly to the wells

at concentrations of 0, 0.5, or 1% v/v. We note that pinene is insoluble in the growth

medium and remains in a thin layer on the surface of the well. Plates were sealed with

membranes to limit evaporation (Thermo Scientific AB-0580). Optical density readings

and rfp fluorescence measurements (Supplementary Information) were taken at ten minute

intervals in a BioTek Synergy H1 hybrid plate reader. All experiments were performed in

triplicate.

2.3.2 Plasmids and Strains

We used plasmid vectors pBbA5k and pBbS5c from the BglBrick library (15). The rfp plas-

mids from this library were used as controls. Efflux pumps were obtained from the library

developed in (15). The pumps used here include all genes on the operon, which includes

the inner membrane protein and periplasmic linker for Pp 3456 and Maqu 3494, and the

inner membrane, periplasmic, and outer membrane proteins for Maqu 0582 and Abo 0964.

The NCBI accession number for the inner membrane protein from Pp 3456 is NP 745594,

Maqu 3494 is YP 960752, Maqu 0582 is YP 957870, and Abo 0964 is YP 692684. In the
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original library, the efflux pumps are on the pBbA5k vector. To make pBbS5c variants,

we amplified the efflux pump genes using PCR and cloned them into the pBbS5c vector,

replacing rfp with the coding sequences associated with all pump components, as listed in

(15). Plasmids were constructed using the Gibson assembly method (11). pBbA5k and

pBbS5c plasmids were co-transformed into E. coli BW25113 and isolated on LB plates with

kanamycin (30 µg/ml) and chloramphenicol (35 µg/ml). For experiments, plasmids were

freshly co-transformed and then used for replicate experiments.

2.3.3 Growth Rate and Toxicity Calculations

Optical density data at 600nm from the plate reader experiments was converted to biomass

(g/L) using an approximation of 1 g/L = 0.95 OD for exponential phase E. coli (18). In

order to eliminate single spurious data points to allow for derivative calculations, growth

curves were preprocessed using a moving average filter with a window of five data points.

In each window, the maximum and minimum of the subset were eliminated and the mean

value of the remaining three points was calculated. Growth curve derivatives were calculated

from the filtered data by taking the difference between the data points adjacent to each

point and dividing by the two time intervals between them. The mean of the growth rate

data in exponential phase, which we defined as 1-4 hours, was used as the metric to assess

the growth rate of the culture at each set of IPTG and pinene concentrations for both the

experimental and simulated data (the sensitivity of the results to the selection of this time

window is given in Table 2.2. Biofuel toxicity and pump toxicity (Fig. 2.1d) were quantified

as the intracellular biofuel or pump protein concentration after 100 hours of simulation time.

These values were normalized by the biofuel or pump protein concentration corresponding

to complete inhibition.
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2.3.4 Mathematical Model

A system of ordinary differential equations was used to model the rate of change of biomass

N , growth substrate S, efflux pump on the medium copy plasmid P1 and low copy plasmid

P2, and intracellular pinene concentration Ci. Cell growth (Eqn. 2.1) and substrate

consumption (Eqn. 2.2) were modeled using a modified form of the Monod equation (17),

as in (10).

Ṅ = µmaxN
S

Ks + S

1
1 + ( Ci

Kc
)h

1
1 + ( P1

Kp1
)hp1

1
1 + ( P2

Kp2
)hp2

(2.1)

Ṡ = − 1
γ
µmaxN

S

Ks + S
(2.2)

For single pump strains, the maximum growth rate µmax, growth yield γ, and half-

saturation constant Ks, were adjusted to fit the toxicity profile specific to that pump (Sup-

plementary Information). For new pump combinations, these baseline growth parameters

were set based on the growth observed in the absence of both pinene and IPTG. The

half-inhibition constant for pinene Kc, and the Hill coefficient h, were fit to the data for

mean exponential growth rate as a function of pinene concentration for the wildtype strain

(A-rfp/S-rfp from Fig. 2.1a) (Fig. 2.6. The half-maximum inhibition constants for efflux

pumps, Kp1 and Kp2, and the corresponding Hill coefficients, hp1 and hp2, were set to

match the mean exponential growth rates of strains expressing the appropriate pump at

the selected IPTG induction levels (Fig. 2.7). For pump combinations, we set the baseline

growth parameters µmax, γ, and Ks based on the growth observed in the absence of both

pinene and IPTG; all other parameters are the same as those determined from the single

pump experiments. Further details on model parameters and their selection is available in

Supplementary Information.
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Pump expression (Eqn. 2.3-2.4) was modeled using the formula for chemically inducible

expression from (5), with a maximum expression rate of αp1/2 and threshold γI . These

expression constants, along with basal expression rates αp01/2 were attained from normalized

rfp expression data for each of the plasmids (Fig. 2.9). β is the pump protein degradation

rate.

Ṗ1 = αp01 + αp1
I

I + γI
− βP1 (2.3)

Ṗ2 = αp02 + αp2
I

I + γI
− βP2 (2.4)

To model intracellular pinene concentration, a biofuel mass balance was incorporated to

ensure that while mass could pass between the intracellular and extracellular domains, the

total mass of pinene in the entire domain was constant. Passive diffusion of pinene through

the cell membrane and export by efflux pumps was modeled by Eqn. 2.5, as in (10), where

Ci and Ce are the intra and extracellular pinene concentrations.

Ċi = αc0
Ve

Vi
(Ce − Ci) − Ci(αc1P1 + αc2P2) (2.5)

The gradient of biofuel concentration across the cell membrane drives diffusion (4),

and the concentration change is accounted for by the ratio between the intracellular and

extracellular volumes (Vi and Ve) and the membrane permeability constant αc0. The rate

of export of biofuel due to efflux pumps depends on the intracellular pinene concentration,

the pump protein concentration, and the rate of export of each pump αc1/2, which were set

to match experimental data for each individual pump. All model constants are listed in

Supplementary Information (Tables 2.3 and 2.4).
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Eq. 2.1 uses the pump concentrations to improve growth through a reduction in toxic-

ity. Note that higher pump levels do not necessarily correspond to improved growth. For

instance, a pump might be toxic, but not provide tolerance improvements.

All simulations were performed in MATLAB (MathWorks) using the ode23s solver.
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cal ŇopportunitrophÓ. Applied and environmental microbiology, 77(8), 2763-2771.
(2011).

[28] Teixeira, M. C., Godinho, C. P., Cabrito, T. R., Mira, N. P., and Sá-Correia, I..
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2.4 Supplementary Information

2.4.1 Supplementary Tables

Table 2.1: Error between model and experimental data. The error is defined as the absolute value of
the difference between the model and the mean of the experimental data. Statistics were taken over
all experimental data points: 12 conditions for those strains shown in Figs. 2-3 and 4 conditions for
Fig. 4 strains.

Strain Mean Error Maximum Error Sum of Squares
(g/L/h) (g/L/h) (g/L/h)2

A-Pp 3456 / S-rfp 0.027 0.060 0.013
A-Maqu 3494 / S-rfp 0.036 0.071 0.021
A-rfp / S-Maqu 0582 0.014 0.034 0.004
A-rfp / S-Abo 0964 0.014 0.077 0.007

A-Pp 3456 / S-Maqu 0582 0.023 0.051 0.009
A-Maqu 3494 / S-Abo 0964 0.022 0.061 0.010
A-Maqu 0582 / S-Pp 3456 0.028 0.059 0.005

A-Abo 0964 / S-Maqu 3494 0.031 0.066 0.008
A-Pp 3456 / S-Maqu 3494 0.025 0.053 0.004

Table 2.2: Error as a function of the time window over which the growth rate is calculated. The
error is defined as in Table 2.1. The strain data used for these calculations is from A-Pp 3456 /
S-Maqu 0582.

Time Window Mean Error Maximum Error Sum of Squares
(g/L/h) (g/L/h) (g/L/h)2

1-4 hours 0.023 0.051 0.009
2-5 hours 0.049 0.102 0.041
0-3 hours 0.060 0.137 0.065
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Table 2.3: Model Constants

Symbol Units Description Value
Kc % v/v Biofuel toxicity half-inhibition 0.25
h Dimensionless Biofuel toxicity exponent 2.0
αc0 1/h Membrane permeability constant 0.001
Vc L Approx. vol. of a cell (1) 1 × 10−15

mc g Mass of a cell (2) 9.5 × 10−13

αp01 protein concentration/h med. copy basal expression rate 0.092
αp1 protein concentration/h med. copy maximum expression rate 0.79
αp02 protein concentration/h low copy basal expression rate 0.056
αp2 protein concentration/h low copy maximum expression rate 0.21
γI mM IPTG Inducer threshold 0.014
β 1/h Pump protein degradation rate 1.0
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Table 2.4: Strain and pump dependent model parameters

Symbol Units Description Value

µmax 1/h Maximum growth rate

A-rfp, S-rfp: 3.0
A-Pp 3456, S-rfp: 3.0

A-rfp, S-Maqu 0582: 3.5
A-Maqu 3494, S-rfp: 3.0
A-rfp, S-Abo 0964: 3.5

A-Pp 3456, S-Maqu 0582: 2.5
A-Maqu 3494, S-Abo 0964: 2.7

A-Maqu 0582, S-PP 3456: 3
A-Abo 0964, S-Maqu 3494: 2.5
A-Pp 3456, S-Maqu 3494: 3.4

Ks A.U. Affinity constant

A-rfp, S-rfp: 6.0
A-Pp 3456, S-rfp: 3.8

A-rfp, S-Maqu 0582: 6.0
A-Maqu 3494, S-rfp: 3.0
A-rfp, S-Abo 0964: 4.0

A-Pp 3456, S-Maqu 0582: 2.8
A-Maqu 3494, S-Abo 0964: 3.0
A-Maqu 0582, S-Pp 3456: 5.0

A-Abo 0964, S-Maqu 3494: 3.0
A-Pp 3456, S-Maqu 3494: 3.5

γ Dimensionless Substrate to biomass
conversion rate

A-rfp, S-rfp: 0.92
A-Pp 3456, S-rfp: 0.61

A-rfp, S-Maqu 0582: 0.6
A-Maqu 3494, S-rfp: 1.05

A-rfp, S-Abo 0964: 0.9
A-Pp 3456, S-Maqu 0582: 1.0

A-Maqu 3494, S-Abo 0964: 1.0
A-Maqu 0582, S-Pp 3456: 0.65

A-Abo 0964, S-Maqu 3494: 1.04
A-Pp 3456, S-Maqu 3494: 0.33

Kp A.U. Pump toxicity
half-inhibition constant

Pp 3456: 0.65
Maqu 3494: 0.8
Maqu 0582: 0.6
Abo 0964: 0.5

hp Dimensionless Pump toxicity exponent

Pp 3456: 4.0
Maqu 3494: 4.0
Maqu 0582: 2.0
Abo 0964: 4.0

αc 1/h Pump export rate

Pp 3456: 75
Maqu 3494: 30
Maqu 0582: 10

Abo 0964: 133
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2.4.2 Supplementary Figures
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Figure 2.5: Comparison between model predictions and experimental data with error bars. The values
listed on the x-axis are the pinene levels (%), followed by the IPTG levels (µM) (a) corresponds
with the surface plot data from Fig. 2 in the main text, (b) corresponds with Fig. 3a-b, and (c)
corresponds with Fig. 4. Error bars are standard error of three biological replicates.
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Figure 2.6: Determination of the inhibition parameters for pinene, Kc and h. The strain A-rfp/S-
rfp was grown in the presence of increasing concentrations of pinene. The values of Kc and h were
determined based on experimental data (blue). The model is shown in red. Error bars indicate
standard error over at least two replicates for each condition.
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Figure 2.7: Pump toxicity profiles for E. coli strains containing single heterologous efflux pumps, (a)
A-Pp 3456/S-rfp, (b) A-Maqu 3494/S-rfp, (c) A-rfp/S-Maqu 0582, (d) A-rfp/S-Abo 0964. The
mean growth rate during exponential phase is given as a function of IPTG concentration. The data
shown here correspond to the edges of the surfaces at 0% pinene in Figure 2 of the main text. Blue
data points and error bars represent mean and standard error of three biological replicates. Red
lines show simulation results for the range of IPTG concentrations indicated. These data determine
the model parameters Kp and hp for each individual pump, which remain the same throughout all
simulations presented in this study.
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Figure 2.8: Combined toxicity of efflux pumps. Growth curves are shown from experimental data
(top) and from the model (bottom) for strains containing single pumps (epl12 and epl56), the combi-
nation of the two pumps, and the negative control. Here, we can see how the pump toxicities from the
individual pumps combine. The combination strain is less inhibited at lower inducer concentrations
and more inhibited at higher concentrations due to the multiplication of the two pump toxicity terms,
each of which has an associated Hill coefficient. Also, we consistently observed an increasing growth
rate with increasing inducer concentration in the negative control (A-rfp/S-rfp). The cause of this
effect is unknown and we did not attempt an explanation.
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Figure 2.9: Normalized fluorescent protein data used to determine basal, αp01/2, and maximum
protein expression rates, αp1/2. Values are indicated on the graph. Subscript 1 corresponds to
the medium copy plasmid, pBbA5k, and subscript 2 indicates the low copy plasmid, pBbS5c. To
determine αp01/2 and αp1/2, rfp was measured for each individual plasmid (A-rfp and S-rfp) and the
combined plasmid strain (A-rfp/S-rfp). The ratio of the rfp measurements for single plasmid strains
was used to determine the relative values of the expression rates in the two plasmid strain for each
IPTG concentration. Fluorescence data were normalized by the maximum reading achieved by the
strain containing both plasmids at 1000 µM IPTG. Note that the sum of the heights of the individual
plasmid bars adds up to the height of the two plasmid bar since the numbers shown are rfp ratios.
These data are similar to results obtained using the same plasmids, but where only one contains rfp
(data not shown).
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Figure 2.10: Parameter sensitivity analysis. The strain used in this analysis is the two pump strain
A-Pp 3456/S-Maqu 0582 with 0.5% pinene and 10 µM IPTG. Each model parameter was first de-
creased (red) then increased (blue) by 25% of its original value. The height of each bar indicates the
percent change in the modeled mean exponential growth rate resulting from the indicated change in
each parameter.
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Chapter 3

Additional Biofuel Toxicity and Efflux

Pump Experiments

3.1 Background

In this chapter, we will describe additional experimental data assessing the effectiveness of several

efflux pumps when used with and without AcrAB-TolC.

We have tested various efflux pump genes that were identified in a previous study (1) for an

increased tolerance to α-pinene when used in combination with the native efflux pump system,

AcrAB-TolC. The wild-type strain used here is E. coli BW25113. We obtained a knockout strain

with the transporter protein AcrB deleted from the genome, this strain is referred to as E. coli

BW25113 ∆acrB (4). This deletion has been shown previously to effectively disable the whole

AcrAB-TolC system (3).

Table 3.1: Efflux pump aliases. This table lists the names used to refer to the same efflux pump.
We use both naming systems interchangeably throughout this thesis.

Pump name (Chapter 2) Alias
Pp 3456 epl12
Pp 3426 epl14

Maqu 3494 epl55
Maqu 0582 epl56
Abo 0964 epl95
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Into these two strains (BW25113 and BW25113 ∆acrB), we transformed plasmids containing

efflux pump genes. The efflux pump genes used here were originally identified in bacteria that

demonstrated an ability to survive in toxic environments. The pumps, epl12 and epl14, are from

the bacteria Pseudomonas putida KT2440, a derivative of P. putida mt-2 which was isolated from a

planted field in Japan (5). The next two pumps, epl55 and epl56, are from Marinobacter aquaeoli,

a bacteria discovered at the head of an oil producing well in Vietnam (2, 7). Lastly, epl95 comes

from Alcanivorax borkumensis SK2, a hydrocarbon degrading bacteria discovered in the North Sea

(6, 8). The two naming conventions for these pumps are described in Table 3.1, in this chapter we

will use the epl naming system. We also constructed two control strains with a fluorescent protein

gene in place of the efflux pump gene.

3.2 Results

All of the heterologous efflux pump genes were controlled by the IPTG inducible PlacUV5 promoter.

We tested these strains for tolerance to α-pinene by growing them in a solution containing 2% v/v

of α-pinene. The results of these experiments are summarized in Figure 3.1 where the final optical

density of the culture for 3 replicates is plotted on a color scale. The entire growth curves are shown

in Figure 3.2. Although the strain harboring epl12 does not grow to a high OD in 2% pinene, we see

that in the absence of pinene the strain grows faster and to a higher OD than the wildtype strain,

this is an aspect of this pump that we sought to take advantage of when used in combination with

other pumps.

We found that some pump combinations seem to cooperate with AcrB (epl56) whereas other

pumps that work well in the knockout strain (epl14) appear to be highly inhibitory to cell growth

when expressed simultaneously with acrB. The efflux pumps, epl12 and epl56 were selected for

further study due to their apparent cooperation with AcrB.

Next, we constructed strains containing all possible combinations of the three efflux pumps of

interest, AcrB, epl12, and epl56. We tested them again by growing them in an LB solution containing

either 0 or 2% α-pinene. Figure 3.3 shows the growth curves for these experiments. The results

indicate an increasing tolerance to α-pinene with an increasing number of cooperative efflux pumps.
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results from three individual replicates are shown for each strain.
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Figure 3.2: Single pump data with knockout strains. Growth curves of single pump strains with and
without acrB knocked out at 0% and 2% pinene. 10 µM IPTG was used to ensure pump activity.
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Figure 3.3: Optical density curves for E. coli strains with all possible combinations of the 3 efflux
pumps of interest. Strain information is located in the title of each set of axes, ’∆acrB’ indicates
the acrB knockout strain while ’acrB’ represents wildtype BW25113.
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In addition to the pump combinations that were presented in Chapter 2, we also tested several

others using the same two plasmid platform for pump expression. We performed growth assays

under four different sets of inducer/biofuel concentrations. The experiments were performed and

the raw data was filtered and analyzed in the same manner described in the Methods section of

Chapter 2. Figure 3.4 shows the toxicity profiles (model) for four different pump combinations

along with the four experimentally measured datapoints. Figure 3.5 shows the measured and model

generated growth curves for the data summarized in Figure 3.4.
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Figure 3.4: Toxicity profiles of four additional pump combinations tested. Black lines and dots
represent experimentally measured growth rates and colored surfaces are modeling results.
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Figure 3.5: Growth curves of four additional pump combinations tested. (Left) Experimental data,
error bars represent standard error for 3 biological replicates. (Right) Model generated growth curves
for the same conditions. In each set of figures, the left column has 0 µM IPTG and the right column
is with 10µM IPTG as indicated by the text directly above each column. The strain information is
given in the titles.

Another set of four different combinations was tested as well. In this experiment we tried com-

bining the two best individually performing pumps (epl12 and epl55), we also tried the combination

of the two pumps from M. aquaeoli (epl55 and epl56). We constructed strains with these two pump

combinations in both of the possible medium/low copy plasmid configurations for a total of four

strains. The fitness landscapes for these four strains are shown in Figure 3.6 and the experimental

and modeled growth curves are shown in Figure 3.7.
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Figure 3.6: Toxicity profiles of four additional pump combinations tested. Black lines and dots
represent experimentally measured growth rates and colored surfaces are modeling results.

48



3.2. RESULTS

Experiment Model
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Figure 3.7: Growth curves of four additional pump combinations tested. (Left) Experimental data,
error bars represent standard error for 3 biological replicates. (Right) Model generated growth curves
for the same conditions. In each set of figures, the left column has 0 µM IPTG and the right column
is with 10µM IPTG as indicated by the text directly above each column. The strain information is
given in the titles.
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and Timmis, K. N.. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-
degrading and surfactant-producing marine bacterium. International journal of systematic
bacteriology, 48(2), 339-348. (1998).

50
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3.3 Supplementary Information

3.3.1 Supplementary Tables

Table 3.2: Primers used in this study. Primers used to amplify plasmid vectors and efflux pump
genes for the construction of strains used in this study are listed here with their nucleotide sequences.
All primers were ordered from and synthesized by Thermo Fischer Scientific.

Name Description / Target Sequence
F-epl56-S5c Insert epl56 forward TTTAAGAAGGAGATATACATATG

CAGACAGAGAAGAGTTT
R-epl56-S5c Insert epl56 reverse CCTTACTCGAGTTTGGATCCGTC

AGTGTTTTCATAATCAG
R-pBbA5k-S5c Vector pBbS5c-epl56 reverse AAACTCTTCTCTGTCTGCATATG

TATATCTCCTTCTTAAA
F-PbbA5k-S5c Vector pBbS5c-epl56 forward CTGATTATGAAAACACTGACGG

ATCCAAACTCGAGTAAGG
F-seq-up Sequencing primer for pBbS5c-

epl , forward
GGCACCCCAGGCTTTAC

R-seq-dn Sequencing primer for pBbS5c-
epl56, reverse

AGAGCGTTCACCGACAAAC

F-epl12-12 Insert epl12 forward GATCTTTTAAGAAGGAGATATAC
ATATGCCTACTACCCTCTCCC

R-epl12-12 Insert epl12 reverse CCTTACTCGAGTTTGGATCCTC
AGCTTTCGCGGGGCA

F-pBbS5c-12 Vector pBbS5c-epl12 froward TGCCCCGCGAAAGCTGAGGATC
CAAACTCGAGTAAGG

R-pBbS5c-12 Vector pBbS5c-epl12 reverse GGGAGAGGGTAGTAGGCATATGT
ATATCTCCTTCTTAAAAGATC

F-epl95-95 Insert epl95 forward GATCTTTTAAGAAGGAGATATAC
ATATGTATATACTGAACCTG
ATTCA
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Table 3.2 continued...

Name Description / Target Sequence
R-epl95-95 Insert epl95 reverse CCTTACTCGAGTTTGGATCCTTA

GCGGCTGGCCACAT
F-pBbS5c-95 Vector pBbS5c-epl95 forward ATGTGGCCAGCCGCTAAGGATCC

AAACTCGAGTAAGG
R-pBbS5c-95 Vector pBbS5c-epl95 reverse TGAATCAGGTTCAGTATATACATA

TGTATATCTCCTTCTTAAAAGATC
F-epl55-55 Insert epl55 forward GATCTTTTAAGAAGGAGATATAC

ATGTGATTTCAAACAAACACCT
R-epl55-55 Insert epl55 reverse CTTACTCGAGTTTGGATCCTTA

ATCGTCAGCGGATTT
F-pBbS5c-55 Vector pBbS5c-epl55 forward AAATCCGCTGACGATTAAGGAT

CCAAACTCGAGTAAG
R-pBbS5c-55 Vector pBbS5c-epl55 reverse AGGTGTTTGTTTGAAATCACATG

TATATCTCCTTCTTAAAAGATC
R-seq-12 Reverse sequencing primer for

epl12 (Forward is same for all)
AGGGTTTCTACGCGCACTT

R-seq-55 Reverse sequencing primer for
epl55

TTGTTCTTCCACTTCATACA

R-seq-95 Reverse sequencing primer for
epl95

GAAACCGCTGCGCATAAT
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Chapter 4

Ionic Liquid Tolerance Model

Portions of this chapter were published in the journal PLoS ONE on July 1, 2014 (1).

4.1 Background

In biofuel production, residual ionic liquids leftover from feedstock pretreatment can make it into the

bioreactor, this inhibits the growth of the biofuel producing bacteria, reducing fuel yields. We will

now apply these modeling techniques to experimental data for toxicity and export of ionic liquids.

Previous studies have demonstrated that the efflux pump encoded by the gene eilA from Enterobacter

lignolyticus can reduce the toxicity of residual ionic liquids in the reactor (2). In collaboration

with researchers at the Joint Bio-Energy Institute (JBEI), we developed a mathematical model to

explain experimental findings on ionic liquid toxicity (1). Our colleagues at JBEI have studied

the effectiveness of this pump when expressed heterologously in E. coli under the control of both

dynamic and constitutive promoters. Three dynamic controllers; PmarR, PydfO, and PydfA were

designed by selecting native E. coli promoters that were active in the presence of the ionic liquid

[C2mim]Cl. These were compared to the IPTG inducible constitutive promoter, PlacUV5, as well

as a control strain with no promoter.
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4.2 Modeling Methods

Equaitons 4.1- 4.5 were used to model cell growth, pump protein concentration, and toxicity due

to ionic liquids. Each equation shows the time derivative of a state variable. N represents the

biomass concentration in the control volume, S is the substrate concentration, P is the efflux pump

concentration, and Ci is the intracellular ionic liquid concentraiton.

Ṅ = µmaxN
S

Ks + S

1
1 + ( Ci

Kc
)h

1
1 + P

Kp

(4.1)

Ṡ = − 1
γ
µmaxN

S

KS + S
(4.2)

Ṗ = αP 0 + αp − βP (4.3)

Ṗ = αP 0 + αp
Ci

Ci + γp
− βP (4.4)

Ċi = αc0Ve

Vi
(Ce − Ci) − CiαcP (4.5)

First, the parameters for growth without any ionic liquids were determined from the uninhibited

and uninduced growth curve, µmax, Ks, and γ. Figure 4.1 shows the experimental data for an

uninhibited growth curve along with the simulation results. All parameter values are listed in the

caption of the figure that they first appear in, and remain the same for all subsequent simulations

in the current section unless otherwise mentioned. All constants in this section are also given in

Table 4.1. Equation 4.1 is the modified Monod equation used to model ionic liquid inhibition and

pump toxicity.

Next, the parameters for toxicity of the ionic liquid without the efflux pumps , Kc and h, and

the toxicity of the efflux pump without any ionic liquid, Kp, were determined. Figure 4.2 shows

the endpoints of experimental growth curves over a range of ionic liquid concentrations plotted

along with the experimentally determined toxicity profile. The entire simulated growth curves along

with their experimental analogs can be seen in the supplementary section of this chapter, Fig. 2.8.

Overexpression of eilA proved to be minimally toxic (1) (Fig. 4.5). Protein levels were simulated

using Equation 4.3 for the PlacUV5 controller, and Equation 4.4 for the ionic liquid responsive

dynamic controllers. The basal and maximum expression rates,αp0 and αp, and thresholds, γp, of the

54



4.2. MODELING METHODS

controllers were set based on protein measurements taken over a range of ionic liquid concentrations

(1). For the promoterless case, αp was set to zero. β accounts for pump protein dilution due to cell

division.
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Figure 4.1: Simulated growth curve and experimental data for E. coli. Standard deviation indicated
by error bars. Parameter values: µmax = 1.71/h, Ks = 8g/L, γ = 0.041. Initial Conditions:
N0 = 0.01g/L, S0 = 10g/L glucose.
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Figure 4.2: Toxicity profile for E. coli in the presence of [C2mim]Cl without any efflux pump expres-
sion. Parameter values: Kc = 0.06g/L, h = 2.
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4.3 Results

Growth curves were modeled using the coupled set of differential equations consisting of Eqn. 4.1,

Eqn. 4.2 along with Eqn. 4.3 or 4.4 (depending on controller type), and Eqn. 4.5. The rate of passive

diffusion of ionic liquids across the membrane, αc0, and the active export rate, αc, were set to occur

on physically realistic timescales and match the growth characteristics of the experimental data.

Figure 4.3 shows the experimental results of each controller construct tested in E. coli over a range

of ionic liquid concentrations. Figure 4.4 shows the corresponding simulation results. Additional

results showing the temporal response of other state variables from this simulation can be found in

the supplementary section of this chapter, Figs. 4.7 and 4.8.
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Figure 4.3: Performance of different eilA expression strains at increasing [C2mim]Cl concentrations.
Experimental data from collaborators at JBEI. Blue: 0 mM, red: 100 mM, green: 200 mM, purple:
400 mM [C2mim]Cl.
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Figure 4.4: Modeling results comparing controllers at different [C2mim]Cl concentrations. Blue: 0
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3.5(10−6), αc = 0.75/h.
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The results indicate that the dynamic controllers perform at least as well as the IPTG inducible

controller at high [C2mim]Cl concentrations (400mM). This eliminates the need for using costly

inducers in the biofuel production process. Also, at low concentrations of ionic liquid the dynamic

controllers have an advantage because they are not expressing the pump gene unnecessarily. The

relatively simple set of differential equations used in this model is able to capture the trends ob-

served in the experimental data (Fig. 4.3 & 4.4). This means that despite the simplifications of the

system assumed in the model, it can still be a useful tool for making predictions based on limited

experimental data.
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4.4.1 Supplementary Tables
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Table 4.1: Modeling constants for IL tolerance. All modeling constants used for the simulations in
Chapter 4 are given here.

Symbol Value Description
µmax 1.7/h Maximum growth rate
h 2 Biofuel toxicity exponent, hill coefficient
γ 0.041gcells/gsubstrate Growth yield
Ks 8 g/L Growth/substrate half saturation constant
Kc 0.06 M IL toxicity half-saturation constant
Kp 3 pump toxicity half-saturation constant
αc0 3.5(10−6)/h Membrane permeability rate
αc 0.75/h-M IL export rate

αp0

PydfO’-eilA: 0.015/h
PydfA’-eilA: 0.22/h
PmarR’-eilA: .22/h
PlacUV5-eilA: .06/h

P-eilA: .014/h

Basal protein expression rate

αp

PydfO’-eilA: 0.015/h
PydfA’-eilA: 0.523/h
PmarR’-eilA: .34/h
PlacUV5-eilA: .28/h

(Maximum) protein expression rate

γc

PydfO’-eilA: 0.0075 M
PydfA’-eilA: 0.02 M
PmarR’-eilA: .02 M

Pump expression threshold

β 1/h Pump protein degradation rate
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4.4.2 Supplementary Figures
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experimentally to be minimally toxic. These are the simulation results used to determine the IL
toxicity half saturation constant and Hill coefficient. The spread between curves was set to reproduce
the experimental results in (1).
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Figure 4.7: Simulated protein concentration curves for each controller in the study. The results
shown here come from the same simulation used to produce Fig. 4.1. The basal and maximum rates
of protein production were determined from proteomics data collected at JBEI (1).
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shown here come from the same simulation used to produce Fig. 4.1 and Fig. 4.7. The legend
indicates the concentration of ionic liquid in the entire reactor. Different promoter strengths and
controller designs result in different amounts of reduction of intracellular ionic liquid.
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Conclusion

In this thesis we have used engineering principles and synthetic biology lab techniques to improve

our understanding of the function and modularity of efflux pumps in providing tolerance to biofuel

production conditions. We have used this understanding to demonstrate that certain combinations

of efflux pumps, even though they may come from completely different organisms, can demonstrate

a cooperative effect on improving biofuel tolerance. This suggests functional similarities between

efflux pumps spanning multiple species, and the potential for the different components of the RND

efflux pumps to work together. For example, perhaps the inner and trans-membrane proteins from

epl12 are able to bind to the outer membrane channel from epl56, which would account for the

cooperative effect we observed and modeled.

We have shown that a relatively simple set of differential equations can be a useful tool for

predicting the performance of efflux pumps. The model can be used to test out a variety of gene

controller designs, as we demonstrated in the chapter on ionic liquid tolerance. The model can also

be used to predict the performance of new combinations of efflux pumps. For example, we can

clearly see in Figures 2.3c-d and 2.8 how the pinene tolerance and pump toxicities from the two

pumps (epl12 & epl56) combine to improve the performance of the combination strain. Also, we

demonstrated the ability of the model to predict the performance of uncharacterized combinations

in Figure 2.4 when we were able to predict that the combination A-epl56, S-epl12 would outperform

A-epl55, S-epl95 at 0.5% pinene despite having a slower growth rate in the absence of pinene. We

have shown that deterministic modeling using differential equations is a valuable tool to be used

alongside experimental techniques to reduce the number of experiments necessary and provide some

physical and mathematical explanation of the biological system being studied.

The model described in this thesis is based on assumptions that were made to simplify the

equations. For example, we reduce the multi-step transcription and translation of efflux pump genes

into proteins and subsequent protein folding and embedding in the membrane into a single equation

modeling pump protein concentration directly. The model could be improved by accounting for RNA

production and membrane insertion. Moreover, all chemical concentrations in the model are assumed

to be uniform throughout the intracellular or extracellular domains, we are effectively modeling the

average across the entire populaiton. In actuality there would be cell to cell variations in both
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chemical concentrations and growth rate. The model could be modified to include stochasticity of

gene expression as well as individual cell growth dynamics by modeling each cell in the population

individually.

Further experiments could be conducted to extend our understanding of efflux pump interactions.

For example it would be interesting to isolate the genes for the individual components of the tripartite

pumps and try different combinations of the components from various pumps and see which are

responsible for the tolerance provided. Also, by using proteomics it would be possible to directly

measure efflux pump concentration and dynamics. More freedom of expression levels could be

provided by changing the low copy vector (pBbS5c) to a plasmid with a promoter that responds

orthogonally to another inducer (other than IPTG). Then, by running growth assay experiments

with gradients of both inducers and biofuel, the optimum expression rates of the pumps relative to

one another could be determined. Once this optimum ratio has been determined, biofuel responsive

promoters could be designed and used to control expression of each pump so that the pumps would

only be activated in the presence of biofuel.
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Rüegg, T. L., Kim, E. M., Simmons, B. A., Keasling, J. D., Singer, S. W., Lee, T. S., &
Thelen, M. P. An auto-inducible mechanism for ionic liquid resistance in microbial biofuel
production. Nature communications, 5. (2014).

Sarria, S., Wong, B., Mart́ın, H. G., Keasling, J. D., and Peralta-Yahya, P.. Microbial Synthesis
of Pinene. ACS Synthetic Biology. (2014).

Schneiker, S., dos Santos, V. A. M., Bartels, D., Bekel, T., Brecht, M., Buhrmester, J., and
Golyshin, P. N.. Genome sequence of the ubiquitous hydrocarbon-degrading marine bac-
terium Alcanivorax borkumensis. Nature biotechnology, 24(8), 997-1004.(2006).

Singer, E., Webb, E. A., Nelson, W. C., Heidelberg, J. F., Ivanova, N., Pati, A., and Edwards,
K. J.. Genomic potential of Marinobacter aquaeolei, a biogeochemical ŇopportunitrophÓ.
Applied and environmental microbiology, 77(8), 2763-2771. (2011).

Wagner, S., Baars, L., Ytterberg, a J., Klussmeier, A., Wagner, C. S., Nord, O., de Gier, J.W..
Consequences of membrane protein overexpression in Escherichia coli. Molecular & Cellular
Proteomics : MCP, 6(9), 1527-50. (2007).

Wagner, S., Klepsch, M. M., Schlegel, S., Appel, A., Draheim, R., Tarry, M., and de Gier, J. W..
Tuning Escherichia coli for membrane protein overexpression. Proceedings of the National
Academy of Sciences, 105(38), 14371-14376. (2008).

Wood, K. B., and Cluzel, P.. Trade-offs between drug toxicity and benefit in the multi-antibiotic
resistance system underlie optimal growth of E . coli. (2012).

Yakimov, M. M., Golyshin, P. N., Lang, S., Moore, E. R., Abraham, W. R., Lünsdorf, H.,
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