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Abstract

Highly structured for efficient communication, natural languages are complex systems. Un-
like in their computational cousins, functions and meanings in natural languages are relative,
frequently prescribed to symbols through unexpected social processes. Despite grammar and
definition, the presence of metaphor can leave unwitting language users “in the dark,” so to
speak. This is not problematic, but rather an important operational feature of languages,
since the lifting of meaning onto higher-order structures allows individuals to compress
descriptions of regularly-conveyed information. This compressed terminology, often only
appropriate when taken locally (in context), is beneficial in an enormous world of novel
experience. However, what is natural for a human to process can be tremendously difficult
for a computer.

When a sequence of words (a phrase) is to be taken as a unit, suppose the choice of
words in the phrase is subordinate to the choice of the phrase, i.e., there exists an inter-word
dependence owed to membership within a common phrase. This word selection process is not
one of independent selection, and so is capable of generating word-frequency distributions
that are not accessible via independent selection processes. We have shown in Ch. 2 through
analysis of thousands of English texts that empirical word-frequency distributions possess
these word-dependence anomalies, while phrase-frequency distributions do not. In doing so,
this study has also led to the development of a novel, general, and mathematical framework
for the generation of frequency data for phrases, opening up the field of mass-preserving
mesoscopic lexical analyses.

A common oversight in many studies of the generation and interpretation of language
is the assumption that separate discourses are independent. However, even when separate
texts are each produced by means of independent word selection, it is possible for their
composite distribution of words to exhibit dependence. Succinctly, different texts may use
a common word or phrase for different meanings, and so exhibit disproportionate usages
when juxtaposed. To support this theory, we have shown in Ch. 3 that the act of combining
distinct texts to form large ‘corpora’ results in word-dependence irregularities. This not
only settles a 15-year discussion, challenging the current major theory, but also highlights
an important practice necessary for successful computational analysis—the retention of
meaningful separations in language.

We must also consider how language speakers and listeners navigate such a combinato-
rially vast space for meaning. Dictionaries (or, the collective editorial communities behind
them) are smart. They know all about the lexical objects they define, but we ask about
the latent information they hold, or should hold, about related, undefined objects. Based
solely on the text as data, in Ch. 4 we build on our result in Ch. 2 and develop a model of
context defined by the structural similarities of phrases. We then apply this model to de-
fine measures of meaning in a corpus-guided experiment, computationally detecting entries
missing from a massive, collaborative online dictionary known as the Wiktionary.
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minimized in the production of p̂ from the word introduction rate, α, depicted
with black points in the upper right inset with the decay exponent µ (green
dashed line’s slope). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1Data: The complete historical romances of Georg Ebers.

viii
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each series is considered a separate text. (Right) Each word (the extremal
refinement, see Materials and Methods) in the compendium is considered a
separate text. Note that in the upper right insets, α decreases overall with
each refinement (as by definition it must), and that there appears to be an
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(gray). There, we see increased performance in the likelihood classifiers (ex-
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Chapter 1

Introduction and Literature Review

In this chapter we introduce the topic of study, the statistical mechanics of

natural lexica. Though all of the studies in this dissertation fall within this

greater physical framework, they naturally fall into three focuses, namely: (1)

the definition of phrase-generalized lexical frequencies, (2) the dependence of

lexical frequencies on mixed corpora, and (3) the definition of models of context.

Here we review this work’s predecessors, and discuss their context from earlier

in the 20th century.

1.1 Introduction

The basis for the studies contained in this dissertation is composed of several works from

early in the 20th century focusing on the topics of evolution (Yule, 1924), social prefer-

ence (Zipf, 1935, 1949; Simon, 1955), and information theory (Shannon, 1948; Mandelbrot,

1953). When focusing on the topic of natural language, debates have sparked both early on

with Zipf (1949) and Miller (1957), and Simon and Mandelbrot (Simon, 1955; Mandelbrot,

1959; Simon, 1960; Mandelbrot, 1961a; Simon, 1961b; Mandelbrot, 1961b; Simon, 1961a),

and more recently with others (Piantadosi et al., 2011b; Reilly and Kean, 2011; Piantadosi

et al., 2011a; Ferrer-i-Cancho and P., 2012; Piantadosi et al., 2013). The main body of this

chapter will discuss highlights and concerns with the more current work.

In the first section we will focus in detail on the parsing of phrases as lexical objects

and the production of frequency data (Becker, 1975; Michel et al., 2011; Ha et al., 2009;
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Lin et al., 2012), which is straightforward for words, but requires nuance when considering

phrases. In the second section we will focus on theories describing language formation and

structure (Ferrer-i-Cancho and Solé, 2001; Kwapien et al., 2010; Gerlach and Altmann, 2013;

Corominas-Murtra et al., 2014), and finally in the third, we will discuss collocation-based

context models and their applications (Church and Hanks, 1990; Smadja, 1993; Piantadosi

et al., 2011b; Garcia et al., 2012).

1.2 Higher-order lexical data

Becker, J. D., 1975. The phrasal lexicon. In: Proceedings of the 1975 Work-

shop on Theoretical Issues in Natural Language Processing. TINLAP ’75. As-

sociation for Computational Linguistics, Stroudsburg, PA, USA, pp. 60–63,

http://dx.doi.org/10.3115/980190.980212

In this work, in 1975, Joseph D. Becker asserts the existence and dominance of the phrasal

lexicon of English, hypothesizing that most utterances are produced in common social sit-

uations, where the demand of communication is not for novelty, but instead for fomulaic

language, such as idioms, cliches, and turns of phrase. He suggests further that the ma-

jority of our social language is formed by the repitition, modification, and concatenation

of previously-known phrases consisting of more than one word. In this work Becker notes

that while (at the time) no English dictionary comes close to encompassing the variety of

English phrases he discusses, he has seen phraseological dictionaries of more than 25, 000

entries, encompassing rare phrases like “knee-high to a grasshopper.” This early suggestion

of the existence of an enormous and unexplored phrasal lexicon has served as an impetus,

a base-theory for much of the work in this thesis, pointing to the determination of the

lexicon’s size as an independent way of gauging its importance (in addition to proposing

phrasal formation mechanisms that describe important structural relations).
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Ha, L. Q., Sicilia-Garcia, E. I., Ming, J., Smith, F. J., 2002. Extension of Zipf’s

law to words and phrases. In: Proceedings of the 19th International Conference

on Computational Linguistics (COLING). pp. 315–320

A first computational step to studying the phrasal lexicon as a whole came from work by

Ha et al. in 2002, and focused on word-sequence, or, N -grams data. For them and others,

N -grams were generally defined by the ‘tokens’ appearing between segments of whitespace.

While earlier work had considered N -gram frequencies, plotting them individually (Smith

and Devine, 1985), this study combined N -gram frequency distributions of varying N -

lengths to find a better conformation to Zipf’s law than by words or any N -gram length

alone. However, there are major issues with this approach, as N -grams overlap and are not

counted independently of one another. As such, the consideration of N -gram frequencies is

lacking in physical meaning, since one has no way to derive the true mass of words appearing

on “the page,” and produce an appropriate N -gram normalization for probabilistic modeling

. Furthermore, as more and more lengths are combined, the misrepresentation caused by

overlap is exacerbated, leading us to ask if there is a better way. Nevertheless, this work

serves as an important step in the acknowledgment and study of an integrated phrasal

lexicon, which has set the stage for much of the work presented in this dissertation.

Michel, J., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., Team,

T. G. B., Pickett, J. P., Hoiberg, D., Clancy, D., Norvig, P., Orwant,

J., Pinker, S., Nowak, M. A., Aiden, E. L., 2011. Quantitative analysis

of culture using millions of digitized books. Science 331 (6014), 176–182,

http://www.sciencemag.org/content/331/6014/176.abstract

An early computational step to the large-scale excavation of the phrasal lexicon has been the

production of N -gram frequency data on a massive scale by the Google machine translation

team (Google, 2006; Lin et al., 2012). This data gained wide attention in 2011, when the
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article considered here emerged, exploring the data in a temporal fashion, and making in-

ferences about cultural behavior. While their observations were widely upheld, empirically

confirming transformations of the English language (like verb regularization), these obser-

vations were made on data that we know now to be prone to issues of curation (Pechenick

et al., 2015), unduly placing scientific texts as books in the dataset, muddying the infer-

ences that researchers might wish to make from this data. Further, as with other N -gram

analyses, this work is likewise subject to the issue of word-frequency misrepresentation,

stemming from the construction of all N -gram data sets, discussed above and in the main

body of the dissertation.

Lin, Y., Michel, J., Aiden, E. L., Orwant, J., Brockman, W., Petrov,

S., 2012. Syntactic annotations for the google books ngram corpus. In:

Proceedings of the ACL 2012 System Demonstrations. ACL ’12. Associ-

ation for Computational Linguistics, Stroudsburg, PA, USA, pp. 169–174,

http://dl.acm.org/citation.cfm?id=2390470.2390499

In 2012, a second generation of N -gram data emerged from the Google team, addressing

several issues present in the original data (Google, 2006; Michel et al., 2011). Most no-

tably, the original N -gram parsing technique tokenized ‘words’ by whitespace, which is

quite reasonable as a first pass, but unfortunately includes highly non-lexical objects, such

as punctuation and all manners of markup. As such, when this algorithm was applied

in an automated fashion to millions of books and web pages, the results contained mas-

sive amounts of junk text, of little interest to researchers. The authors here improved the

methodology, not only adding syntactic annotations to the data set, but performing the

tokenization within the bounds of punctuation, eliminating much of the junk text present

in the previous versions. However, with the improvements came exacerbation of an old

issue: under the old methodology the first and last words of a text would lack some 2-gram
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membership and thereby be underrepresented in the 2-gram frequencies. Now, appearance

in many short sentences precludes words from appearance in many 2-gram scenarios, an

issue which gets magnitudinally worse for larger values of N . Despite this issue now exac-

erbated, this production made great strides toward integrating grammatical, punctuation

and boundary information into text parsing techniques, which as we will see in the main

body of the dissertation may be accomplished in a mathematically sound and physically

principled manner.

1.3 Models of vocabulary formation

Ferrer-i-Cancho, R., Solé, R. V., 2001. Two regimes in the frequency of words

and the origins of complex lexicons: Zipf’s law revisited. Journal of Quantitative

Linguistics 8 (3), 165–173

This paper first proposed the hypothesis that word vocabularies naturally decompose into

two subsets. The theory considered the existence of a kernel (core) lexicon of versatile

words, and an unlimited (non-core) lexicon for specific communication. This hypothesis

came about with the rise of computation: both the paper discussed and a concurrent article

by Montemurro (2001) first noted the existence of multiple scaling regimes in the rank-

frequency distributions of large corpora. However, while Ferrer-i-Cancho and Solé (2001)

speculated as to the reasons for the two regimes, Montemurro (2001) cautioned against the

study of this phenomena in the presence of large mixed corpora. Since then, the core/non-

core vocabulary theory has prevailed in the community, and even led to work by Gerlach

and Altmann (2013) (which we focus on more closely below) on a generative selection model

that is capable of producing the observed multiple scaling regimes.
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Kwapien, J., Drozdz, S., Orczyk, A., 2010. Linguistic complexity: English vs.

polish, text vs. corpus. Acta Physica Polonica, A. 117, 716

In 2010, Kwapien et al. continued the work of Montemurro (2001), investigating the multiple

scaling regimes present in rank-frequency word distributions. In this work the authors

studied some effects of corpus composition on the second scaling regime and were even

able to show its presence in corpora in languages other than English. There, it was found

with two corpora of comparable size that one by a mixture of authors had a more abrupt

and severe scaling break than one by a single author. While this work is brief on the

side of analytics, it approaches the rank-frequency scaling break with subtlety, guiding us

in our work to consider mixtures of texts of varying compositions and languages in our

investigation of the core language hypothesis in the main body of the dissertation.

Gerlach, M., Altmann, E. G., 2013. Stochastic model for the vocabulary growth

in natural languages. Phys. Rev. X 3, 021006

In this work, Gerlach et al. considered the early observations of Ferrer-i-Cancho and Solé

(2001) and Montemurro (2001), and produced a stochastic model based off of that of Simon

(1955) for the vocabulary growth of natural languages. The notable product of this work

is its derivation of a means for producing rank-frequency distributions with severe scalings.

While this was a huge advancement for the relevance of preferential selection as a mechanism

for the production of social data, the execution of their development was limited in its

focus on supporting the core/non-core vocabulary theory. The authors did a masterful job

integrating this theory with the preferential selection mechanism, and were able to produce

very realistic simulations, but failed to consider other physical processes (which we show

in Ch. 3 are dominant in the creation of large corpora). This work has ultimately shown

that preferential selection and decaying innovation are two very important social process,

but the field is still open and there are other mechanisms that have been proposed for the
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production of natural language vocabularies, such as the Dirichlet processes discussed by

MacKay (2002) (which utilizes both preferential selection and decaying innovation), and

the history-dependent dice process proposed by Corominas-Murtra et al. (2014), which we

review at length.

Corominas-Murtra, B., Hanel, R., Thurner, S., 2014. Understanding zipf’s

law with playing dice: history-dependent stochastic processes with collaps-

ing sample-space have power-law rank distributions. CoRR abs/1407.2775,

http://arxiv.org/abs/1407.2775

In this work, the authors propose to investigate an alternative mechanism for the generation

of Zipf’s law, and hence natural language vocabularies. Here, the authors consider the effects

of rolling dice with fewer and fewer faces in a history-dependent way, where the size of the

next die is equal to one less than the value of the previous roll. This process biases heavily

toward the lowest numbers (as every sequence terminates in a roll of 1), and so is capable of

generating heavy-tailed distributions, converging to scalings in the limit. However despite

this feature of the model and its extension by the authors, producing a wide range of scaling

exponents, we note that it comes up short on a few accounts. First, the range of scalings

produced by this model are still less severe than those observed in nature. Second, the model

does not realistically represent the class of once-appearing words known as hapax legomena,

which generally comprise half the words appearing in texts (approximately). Finally, what

is perhaps the most important limitation of this model is the fact that the scalings they

observe are not scalings of ranks. Since the authors do not rank their model output,

but instead analyze its dice-face distributions, their results are actually incomparable to

empirical rank-frequency distributions. Hence, such a process (while still quite interesting)

unfortunately informs us of little (if anything) about Zipf’s law, and the appearance of

scaling through social processes.

7
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1.4 Collocation context models

Church, K. W., Hanks, P., Mar. 1990. Word association norms, mu-

tual information, and lexicography. Comput. Linguist. 16 (1), 22–29,

http://dl.acm.org/citation.cfm?id=89086.89095

In 1990 Church and Hanks proposed an alternative measure for word association norms.

In particular they produced an asymmetric version of mutual information, which has been

widely applied and cited in the community (e.g., by Justeson and Katz 1991; Smadja 1993;

Seretan 2008; Pecina 2010; Ramisch 2014 to name a few). Not only did these authors first

propose entropic measures of frequency distributions for word association, but they also

go in to detail, exploring (and correcting for) issues of frequency conservation in marginal

probability distributions. It is good to see physical considerations like this early on, but as

we will discuss in our review of the more recent works (both below and in Ch. 4), these con-

sideration are often left out. Moreover, even when Church and Hanks accommodate for the

over-counting in their measure, they do so by assuming texts are circular—an assumption

whose approximation breaks down when small texts are considered, or when punctuation

is observed (as is done with modern N -gram data (Lin et al., 2012)).

Smadja, F., Mar. 1993. Retrieving collocations from text: Xtract. Comput. Lin-

guist. 19 (1), 143–177, http://dl.acm.org/citation.cfm?id=972450.972458

In this work the author applies the model of Church and Hanks (1990) for the purposes

of extracting collocations, whose definition they take as arbitrary and recurrent word com-

binations. They go beyond the word-word associations measured by the base model, and

use its output to extend to large collocations of more than two words. Using these rigid

forms, the author then defines and exhibits an algorithm for the identification of insertive

forms, and has notable success extracting phrasal templates, which add used to add syn-
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tactic annotations. All together, the author referred to the algorithm/tool as “Xtract,”

and while this package is no longer updated or widely used, it has served as a basis for

more current work by authors such as Seretan (2008), Pecina (2010), and Ramisch (2014),

guiding the community toward the development of general extraction techniques for large

lexical objects.

Piantadosi, S. T., Tily, H., Gibson, E., 2011b. Word lengths are optimized

for efficient communication. Proceedings of the National Academy of Sciences

108 (9), 3526, http://colala.bcs.rochester.edu/papers/PNAS-2011-Piantadosi-

1012551108.pdf

Here, the authors consider another information-theoretic measure using a context model

derived from word collocations, or N -grams. In particular, their model is an extension

from the word-transition probabilities investigated by Shannon (1948), but for higher-order

patterns of usage. As was the case with Church and Hanks (1990), the model presented by

Piantadosi et al. (2011b) is asymmetric, and only considers N -grams of a fixed N/length

at a time, which must be specified to define the model, discarding valuable information and

making the model non-general. However, the asymmetry built into their model afforded

an approximate frequency preservation when applied to the original, white space-tokenized

N -gram distributions (Google, 2006)—an approximation that breaks down when modern

N -gram data is considered (Lin et al., 2012) (which we note both here and in Ch. 4).

In application, the authors exhibit the power of their model using an entropic measure

on words, which they compare with orthographic lengths to find significant correlations.

However, as is pointed out in Ch. 4, this result has been of concern to others (Reilly and

Kean, 2011; Piantadosi et al., 2011a; Ferrer-i-Cancho and P., 2012; Piantadosi et al., 2013),

and hence is taken as guiding work for us only for its manipulation of the context model.
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Garcia, D., Garas, A., Schweitzer, F., 2012. Positive words carry less information

than negative words. EPJ Data Science 1 (1), http://dx.doi.org/10.1140/epjds3

In this article the authors apply the model and information-theoretic measure (referred

to point-wise as the Information Content (IC) of a word) produced by Piantadosi et al.

(2011b) to the Google N -grams corpus (Google, 2006), and compare its output to existing

word-sentiment norms. In their results they find a result, claimed succinctly in their title:

“Positive words carry less information than negative words.” However, despite this result we

note two concerns with the work. First, the IC-measure is strongly (inversely) associated

with word frequency, making their result an implication of the frequency-dependence of

sentiment norms, observed in other recent work (Kloumann et al., 2012; Dodds et al.,

2015). Most importantly, however, their application of the context model described by

Piantadosi et al. (2011b) makes use of a special formula, which technically only applies to

uncompressed, human readable text, and not the frequency-based N -grams. This second

point casts their results into question, and calls attention to the care needed when handling

these kinds of models.
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Chapter 2

Zipf’s law holds for phrases, not words

With Zipf’s law being originally and most famously observed for word frequency,

it is surprisingly limited in its applicability to human language, holding over

no more than three to four orders of magnitude before hitting a clear break

in scaling. Here, building on the simple observation that phrases of one or

more words comprise the most coherent units of meaning in language, we show

empirically that Zipf’s law for phrases extends over as many as nine orders of

rank magnitude. In doing so, we develop a principled and scalable statistical

mechanical method of random text partitioning, which opens up a rich frontier

of rigorous text analysis via a rank ordering of mixed length phrases.

2.1 Introduction

Over the last century, the elements of many disparate systems have been found to ap-

proximately follow Zipf’s law—that element size is inversely proportional to element size

rank (Zipf, 1935, 1949)—from city populations (Zipf, 1949; Simon, 1955; Batty, 2008), to

firm sizes (Axtell, 2001), and family names (Zanette and Manrubia, 2001). Starting with

Mandelbrot’s optimality argument (1953), and the dynamically growing, rich-get-richer

model of Simon (1955), strident debates over theoretical mechanisms leading to Zipf’s law

have continued until the present (Miller, 1957; Ferrer-i-Cancho and Elvev̊ag, 2010; D’Souza

et al., 2007; Coromina-Murtra and Solé, 2010). Persistent claims of uninteresting ran-

domness underlying Zipf’s law (Miller, 1957) have been successfully challenged (Ferrer-i-
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Cancho and Elvev̊ag, 2010), and in non-linguistic systems, good evidence supports Simon’s

model (Simon, 1955; Bornholdt and Ebel, 2001; Maillart et al., 2008) which has been found

to be the basis of scale-free networks (de Solla Price, 1976; Barabási and Albert, 1999).

For language, the vast majority of arguments have focused on the frequency of an indi-

vidual word which we suggest here is the wrong fundamental unit of analysis. Words are an

evident building block of language, and we are naturally drawn to simple counting as a pri-

mary means of analysis (the earliest examples are Biblical corcordances, dating to the 13th

Century). And while we have defined morphemes as the most basic meaningful ‘atoms’ of

language, the meaningful ‘molecules’ of language are clearly a mixture of individual words

and phrases. The identification of meaningful phrases, or multi-word expressions, in natu-

ral language poses one of the largest obstacles to accurate machine translation (Sag et al.,

2002). In reading the phrases “New York City” or “Star Wars”, we effortlessly take them

as irreducible constructions, different from the transparent sum of their parts. Indeed, it is

only with some difficulty that we actively parse highly common phrases and consider their

individuals words.

While partitioning a text into words is straightforward computationally, partitioning into

meaningful phrases would appear to require an additional level of sophistication requiring

online human analysis. But in order to contend with the increasingly imposing sizes and

rapid delivery rates of important text corpora—such as news and social media—we are

obliged to find a simple, necessarily linguistically naive, yet effective method.

A natural possibility is to in some way capitalize on N -grams, which are a now com-

mon and fast approach for parsing a text. Large scale N -gram data sets have been made

widely available for analysis, most notably through the Google Books project (Google,

2014). Unfortunately, all N -grams fail on a crucial front: in their counting they overlap,

which obscures underlying word frequencies. Consequently, and crucially, we are unable to
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properly assign rankable frequency of usage weights to N -grams combined across all values

of N .

Here, we introduce ‘random partitioning’, a method that is fast, intelligible, scalable, and

sensibly preserves word frequencies: i.e., the sum of sensibly-weighted partitioned phrases is

equal to the total number of words present. As we show, our method immediately yields the

profound basic science result that phrases of mixed lengths, as opposed to just individual

words, obey Zipf’s law, indicating the method can serve as a profitable approach to general

text analysis. To explore a lower level of language, we also partition for sub-word units, or

graphemes, by breaking words into letter sequences. In the remainder of the paper, we first

describe random partitioning and then present results for a range of texts.

2.2 Text partitioning

To begin our random partitioning process, we break a given text T into clauses, as demar-

cated by standard punctuation (other defensible schemes for obtaining clauses may also be

used), and define the length norm, `, of a given clause t (or phrase, s ∈ S) as its word count,

written `(t). We then define a partition, P, of a clause t to be a sequence of the boundaries

surrounding its words:

P : x0 < · · · < x`(t), (2.1)

and note that x0, x`(t) ∈ P for any P, as we have (a priori) the demarcation knowledge of

the clause. For example, consider the highly ambiguous text:

“Hot dog doctor!”

Forgoing punctuation and capitalization, we might attempt to break the clause down, and

interpret through the partition:
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hot dog doctor

P : x0 x1 x3

i.e., P = {x0, x1, x3}, which breaks the text into phrases, “hot” and “dog doctor”, and

assume it as reference to an attractive veterinarian (as was meant in (Cougar Town, 2013)).

However, depending on our choice, we might have found an alternative meaning:

hot dog; doctor: A daring show-off doctor.

: One offers a frankfurter to a doctor.

hot; dog doctor: An attractive veterinarian (vet).

: An overheated vet.

hot dog doctor: A frank-improving condiment.

: A frank-improving chef.

hot; dog; doctor: An attractive vet of canines.

: An overheated vet of canines.

Note in the above that we (as well as the speaker in (Cougar Town, 2013)) have allowed the

phrase “dog doctor” to carry idiomatic meaning in its non-restriction to canines, despite

the usage of the word “dog”.

Now, in an ideal scenario we might have some knowledge of the likelihood for each

boundary to be “cut” (which would produce an ‘informed’ partition method), but for now

our goal is generality, and so we proceed, assuming a uniform boundary-cutting probability,

q, across all `(t) − 1 word-word (clause-internal) boundaries of a clause, t. In general,

there are 2`(t)−1 possible partitions of t involving 1
2`(t)(`(t) + 1) potential phrases. For

each integral pair i, j with 1 ≤ i < j ≤ `(t), we note that the probability for a randomly

chosen partition of the clause t to include the (contiguous) phrase, ti···j , is determined by
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successful cutting at the ends of ti···j and failures within (e.g., x2 must not be cut to produce

“dog doctor”), accommodating for ti···j reaching one or both ends of t, i.e.,

Pq(ti···j | t) = q2−bi···j (1− q)`(s)−1 (2.2)

where bi···j is the number of the clause’s boundaries shared by ti···j and t. Allowing for a

phrase s ∈ S to have labeling equivalence to multiple contiguous regions (i.e., s = ti···j =

ti′···j′ , with i, j 6= i′, j′) within a clause e.g., “ha ha” within “ha ha ha”, we interpret the

‘expected frequency’ of s given the text by the double sum:

fq(s |T ) =
∑
t∈T

fq(s | t) =
∑
t∈T

∑
s=ti···j

Pq(ti···j | t). (2.3)

Departing from normal word counts, we may now have fq � 1, except when one partitions

for word (q = 1) or clause (q = 0) frequencies. When weighted by phrase length, the

partition frequencies of phrases from a clause sum to the total number of words originally

present in the clause:

`(t) =
∑

1≤i<j≤`(t)
`(ti···j)Pq(ti···j | t), (2.4)

which ensures that when the expected frequencies of phrases, s, are summed (with the

length norm) over the whole text:

∑
s

`(s)fq(s |T ) =
∑
t∈T

`(t)f(t), (2.5)

the underlying mass of words in the text is conserved (see SI-2 for proofs of Eqs. 2.4 and 2.5).

Said differently, phrase partition frequencies (random or otherwise) conserve word frequen-

cies through the length norm `, and so have a physically meaningful relationship to the

words on “the page.”

15



CHAPTER 2. RANDOM TEXT PARTITIONING

2.3 Statistical mechanical interpretation

Here, we focus on three natural kinds of partitions: q = 0: clauses are partitioned only

as clauses themselves; q = 1
2 : what we call ‘pure random partitioning’—all partitions of a

clause are equally likely; q = 1: clauses are partitioned into words.

In carrying out pure random partitioning (q = 1
2), which we will show has the many

desirable properties we seek, we are assuming all partitions are equally likely, reminiscent of

equipartitioning used in statistical mechanics (Goldenfeld, 1992). Extending the analogy,

we can view q = 0 as a zero temperature limit, and q = 1 as an infinite temperature one. As

an anchor for f 1
2
, we note that words that appear once within a text—hapax legomena—

will have fq ∈ {1
4 ,

1
2 , 1} (depending on clause boundaries), on the order of 1 as per standard

word partitioning.

2.4 Experiments and Results

Before we apply the random partition theory to produce our generalization of word count,

fq, we will first examine the results of applying the random partition process in a ‘one-off’

manner. We process through the clauses of a text once, cutting word-word boundaries

(and in a parallel experiment for graphemes, cutting letter-letter boundaries within words)

uniformly at random with probability q = 1
2 .

In Fig. 2.1A, we present an example ‘one-off’ partition of the first few lines of Charles

Dickens’ “Tale of Two Cities” We give example partitions at the scales of clauses (red),

pure random partition phrases (orange), words (yellow), pure random partition graphemes

(green), and letters (blue). In Fig. 2.1B, we show Zipf distributions for all five partitioning

scales. We see that clauses (q = 0) and pure random partitioning phrases (q = 1
2) both

adhere well to the pure form of f ∝ r−θ where r is rank. For clauses we find θ ' 0.78 and

for random partitioning, θ ' 0.98 (see supplementary material for measurement details and
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●

A it was the best of times it was the worst of times

it was the age of wisdom it was the age of foolishness

it was the epoch of belief

it was the epoch of incredulity

it was the season of

light it was the

se ason of d ar k

ne s s it w as th e

s p r i n g
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●
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y 
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●
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●
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● _

●

Zipf's law: 
clause: 
phrase: 
word: 
grapheme: 
letter

1
0.78
0.95
1.15
1.56

θ

Figure 2.1: A. Partition examples for the start of Charles Dickens’s “Tale of Two Cities” at five
distinct levels: clauses (red), pure random partitioning phrases (q = 1

2 , orange), words (yellow),
pure random partitioning graphemes (q = 1

2 , green), and letters (blue). The specific phrases and
graphemes shown are for one realization of pure random partitioning. B. Zipf distributions for the
five kinds of partitions along with estimates of the Zipf exponent θ when scaling is observed. No
robust scaling is observed at the letter scale. The colors match those used in panel A, and the
symbols at the start of each distribution are intended to strengthen the connection to the legend.
See Ref. (Clauset et al., 2009) and supplementary material for measurement details.

for examples of other works of literature). The quality of scaling degrades as we move down

to words and graphemes with the appearance of scaling breaks (Ferrer-i-Cancho and Solé,

2001; Gerlach and Altmann, 2013; Williams et al., 2014). Scaling vanishes entirely at the

level of letters.

Moving beyond a single work, we next summarize findings for a large collection of

texts (Project Gutenberg, 2010) in Fig. 2.2A, and compare the Zipf exponent θ for words

and pure random q = 1
2 ‘one-off’ partitioning for around 4000 works of literature. We plot

the corresponding marginal distributions in Fig. 2.2B, and see that clearly θ . 1 for q = 1
2

phrases, while for words, there is a strong positive skew with the majority of values of θ > 1.

These steep scalings for words (and graphemes), θ > 1, are not dynamically accessible for

Simon’s model (D’Souza et al., 2007).
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phrases rp: 0.74
phrases m:  0.91
words rp: 0.46
words m:  0.42
θ = 1 − α
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Figure 2.2: A. Density plot showing the
Zipf exponent θ for ‘one-off’ randomly
partitioned phrases and word Zipf dis-
tributions (q = 1 and q = 1

2 ) for around
4000 works of literature. We indicate
“Tale of Two Cities” by the red cir-
cle, and with black circles, we repre-
sent measurements for 14 other works
of literature analyzed further in the sup-
plementary material. B. Histograms of
the Zipf exponent θ for the same set
of books (marginal distributions for A).
Phrases typically exhibit θ ≤ 1 whereas
words produce unphysical θ > 1, ac-
cording to Simon’s model C. Test of
Simon’s model’s analytical connection
θ = 1 − α, where θ is the Zipf expo-
nent and α is the rate at which new
terms (e.g., graphemes, words, phrases)
are introduced throughout a text. We
estimate α as the number of different
words normalized by the total word vol-
ume. For both words and phrases, we
compute linear fits using Reduced Major
Axis (RMA) regression (Rayner, 1985)
to obtain slope m, along with the Pear-
son correlation coefficient rp. Words
(green) do not exhibit a simple linear
relationship whereas phrases do (blue),
albeit clearly below the α = 1−θ line in
black.

Leaving aside this non-physicality of Zipf distributions for words and concerns about

breaks in scaling, we recall that Simon’s model connects the rate, α, at which new terms

are introduced, to θ in a simple way: 1−α = θ (Simon, 1955). Given frequency data from a

pure Simon model, the word/phrase introduction rate is determined easily to be α = N/M ,

where N is the number of unique words/phrases, and M is the sum total of all word/phrase

frequencies. We ask how well works of literature conform to this connection in Fig. 2.2C,

and find that words (green dots) do not demonstrate any semblance of a linear relationship,
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CHAPTER 2. RANDOM TEXT PARTITIONING

whereas phrases (blue dots) exhibit a clear, if approximate, linear connection between 1−α

and θ.

Despite this linearity, we see that a pure Simon model fails to accurately predict the

phrase distribution exponent θ. This is not surprising, as when α → 0, an immediate

adherence to the rich-get-richer mechanism produces a transient behavior in which the first

few (largest-count) word varieties exist out of proportion to the eventual scaling. Because

a pure Zipf/Simon distribution preserves θ = 1 − α, we expect that a true, non-transient

power-law consistently makes the underestimate 1−N/M < θ.

Inspired by our results for one-off partitions of texts, we now consider ensembles of pure

random partitioning for larger texts. In Fig. 2.3, we show Zipf distributions of expected

partition frequency, fq, for q = 1
2 phrases for four large-scale corpora: English Wikipedia,

the New York Times (NYT), Twitter, and music lyrics (ML), coloring the main curves

according to the length of a phrase for each rank. For comparison, we also include word-level

Zipf distributions (q = 1) for each text in gray, along with the canonical Zipf distribution

(exponent θ=1) for reference.

We observe scalings for the expected frequencies of phrases that hover around θ = 1 for

over a remarkable 7–9 orders of magnitude. We note that while others have observed similar

results by simply combining frequency distributions of N -grams (Ha et al., 2002), these

approaches were unprincipled as they over-counted words. For the randomly partitioned

phrase distributions f 1
2
, the scaling ranges we observe persist down to 10−2, beyond the

hapax legomena, which occur at frequencies greater than 10−1. Such robust scaling is in

stark contrast to the very limited scaling of word frequencies (gray curves). For pure word

partitioning, q = 1, we see two highly-distinct scaling regimes exhibited by each corpus, with

shallow upper (Zipf) scalings at best extending over four orders of magnitude, and typically

only three. (In a separate work, we investigate this double scaling finding evidence that

text-mixing is the cause (2014).)
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Figure 2.3: Random partitioning distributions (q = 1
2 ) for the four large corpora: (A) Wikipedia

(2010); (B) The New York Times (1987–2007); (C) Twitter (2009); and (D) Music Lyrics (1960–
2007). Top right insets show the long tails of random partitioning distributions, and the colors
represent phrase length as indicated by the color bar. The gray curves are standard Zipf distributions
for words (q = 1), and exhibit limited scaling with clear scaling breaks. See main text and Tabs. A.1–
A.4, for example phrases.
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For all four corpora, random partitioning gives rise to a gradual interweaving of different

length phrases when moving up through rank r. Single words remain the most frequent

(purple), typically beginning to blend with two word phrases (blue) by rank r = 100. After

the appearance of phrases of length around 10–20, depending on the corpus, we see the

phrase rank distributions fall off sharply, due to long clauses that are highly unique in their

construction (upper right insets).

In Appendix A, we provide structured tables of example phrases extracted by pure

random partitioning for all four corpora (Tabs. A.1–A.4), along with complete phrase data

sets. As with standard N -grams, the texture of each corpus is quickly revealed by examining

phrases of length 3, 4, and 5. For example, the second most common phrases of length 5 for

the four corpora are routinized phrases: “the average household size was” (EW), “because

of an editing error” (NYT), “i uploaded a youtube video” (TW), and “na na na na na”

(ML). By design, random partitioning allows us to quantitatively compare and sort phrases

of different lengths. For music lyrics, “la la la la la” has an expected frequency similar to

“i don’t know why”, “just want to”, “we’ll have”, and “whatchu” (see Tab. A.4), while for

the New York Times, “the new york stock exchange” is comparable to “believed to have”

(see Tab. A.2).

2.5 Discussion

The phrases and their effective frequencies produced by our pure random partitioning

method may serve as input to a range of higher order analyses. For example, informa-

tion theoretic work may be readily carried out, context models may be built around phrase

adjacency using insertion and deletion, and specific, sentence-level partitions may be real-

ized from probabilistic partitions.

While we expect that other principled, more sophisticated approaches to partitioning

texts into rankable mixed phrases should produce Zipf’s law spanning similar or more orders
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of magnitude in rank, we believe random partitioning—through its transparency, simplicity,

and scalability—will prove to be a powerful method for exploring and understanding large-

scale texts.

To conclude, our results reaffirm Zipf’s law for language, uncovering its applicability to

a vast lexicon of phrases. Furthermore, we demonstrate that the general semantic units of

statistical linguistic analysis can and must be phrases—not words—calling for a reevaluation

and reinterpretation of past and present word-based studies in this new light.
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Chapter 3

Text mixing shapes the anatomy
of rank-frequency distributions:
A modern Zipfian mechanics for
natural language

Natural languages are full of rules and exceptions. One of the most famous

quantitative rules is Zipf’s law which states that the frequency of occurrence

of a word is approximately inversely proportional to its rank. Though this

‘law’ of ranks has been found to hold across disparate texts and forms of data,

analyses of increasingly large corpora over the last 15 years have revealed the

existence of two scaling regimes. These regimes have thus far been explained

by a hypothesis suggesting a separability of languages into core and non-core

lexica. Here, we present and defend an alternative hypothesis, that the two

scaling regimes result from the act of aggregating texts. We observe that text

mixing leads to an effective decay of word introduction, which we show provides

accurate predictions of the location and severity of breaks in scaling. Upon

examining large corpora from 10 languages in the Project Gutenberg eBooks

collection (eBooks), we find emphatic empirical support for the universality of

our claim.

24



CHAPTER 3. TEXT MIXING

3.1 Zipf’s law and (non) universality

Given some collection of distinct kinds of objects occurring with frequency f and associated

rank r according to decreasing frequency, Zipf’s law is said to be fulfilled when ranks and

frequencies are approximately inversely proportional:

f(r) ∼ r−θ, (3.1)

typically with θ ' 1. Though Zipf’s functional form has been found to be a reasonable one

for disparate forms of data, ranging from frequencies of words to sizes of cities in Zipf’s

original work (1935; 1949), its lack of total universality in application to natural languages

is now widely acknowledged (Ferrer-i-Cancho and Solé, 2001; Montemurro, 2001; Gerlach

and Altmann, 2013; Kwapien et al., 2010; Petersen et al., 2012; Williams et al., 2014).

Recently it was suggested (Ferrer-i-Cancho and Solé, 2001; Montemurro, 2001) that

large corpora exhibit two scaling regimes (delineated by some b > 0):

f(r) ∼

 r−θ, : r ≤ b

r−γ , : r > b
, (3.2)

the first being that of Zipf (θ = 1) and the second distinctly more variable (Montemurro,

2001), (though generally γ > 1). Ferrer-i-Cancho and Solé hypothesized in (2001) that these

two regimes reflected a division of natural languages into two lexical subsets—the kernel

(core) and unlimited (non-core) lexica.

We observe that in all studies finding dual scalings that the texts analyzed are of mixed

origin, that is, they are not derived from a single author, or even a single topic. Montemurro

indicated in 2001 that combining heterogeneous texts could generate effects that shield

investigators from the true underlying nature of this second scaling regime:
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To resolve the behavior of those [high rank] words we need a significant increase

in volume of data, probably exceeding the length of any conceivable single text.

Still, at the same time it is desirable to maintain as high a degree of homogeneity

in the texts as possible, in the hope of revealing a more complex phenomenology

than that simply originating from a bulk average of a wide range of disparate

sources.

With this inspiration, we focus on understanding the effects of combining texts of varying

heterogeneity—a process we refer to as “text mixing”.

3.2 Stochastic models

In the years following Zipf’s original work, various stochastic models have been proposed

for the generation of natural language vocabularies. The first of these was that proposed

by Simon (1955), and based on Yule’s model of evolution (1924). This work is a pow-

erful companion to understanding Zipf’s empirical work, and can be seen as the natural

antecedent of the rich-gets-richer models (Barabási and Albert, 1999; Krapivsky and Red-

ner, 2001) for growing networks that have interested the complex systems community over

recent years. Indeed, perhaps the most important piece we may draw from Simon’s model

is that a rich-gets-richer mechanism is a reasonable one for the growth of a vocabulary.

An important limitation of Simon’s model is that it is only capable of producing a single

scaling regime, which, as we know is an incomplete picture. Furthermore, the scalings

accessible via the Simon model were strictly less severe than the ‘universal’ θ = 1 exponent.

So, if one assumes the Simon model as truth, with a fixed word introduction rate α0,

Zipf’s exponent should be variable and necessarily less than 1, though empirically found

indistinguishable from 1, that is θ = 1− α0, with α0 � 1 (Simon, 1955).
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Recently, a modification to Simon’s model was proposed in which two types of words

could be produced—core and non-core words (Gerlach and Altmann, 2013). As a built-in

feature of the core/non-core vocabulary (CNCV) model, the size of the core set of words

was prescribed to be finite, while the non-core was allowed to expand indefinitely. Aside

from introducing two classes of words, the most important distinction of this model from

its predecessor was a rule for the decay in the rate of introduction of new words, α. Along

with producing the CNCV model they showed that when α decays as a power-law with

exponent −µ, of the number of unique words, n, the relationship between µ and the lower

rank-frequency exponent, γ, is a difference of θ, i.e.,

α(n) = α0 · n−µ ⇒ f(r) ∼ r−(θ+µ), (3.3)

with γ = θ+µ (Gerlach and Altmann, 2013). The distinction between word types provided

a means for postponing the point at which their power law decay would occur, thereby

generating two scaling regimes. We note that the severity of the second scaling was only

contingent upon the existence of a decay in the rate of introduction of new words, and that

this decay was imposed, rather than the result of the existence of two word types. We are

therefore led to find an explicit mechanism capable of producing power-law decaying word

introduction rates, and hence multiple scaling regimes.

3.3 Text mixing

As we have described, the CNCV model offers a means by which one can obtain a second

scaling. The model is, like Simon’s, framed as a model of the generation of a vocabulary.

However, we are led to question whether lower scalings are a product of vocabulary gen-

eration or an artifact of an interaction between disparate texts. Suppose a collection of

texts, C = {T1, ..., Tk}, is read sequentially, and that each has rank-frequency distribution
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Figure 3.1: (A) An idealization (black points) of a rank-frequency distribution (gray points) for
a single text1 from the English eBooks collection. Idealization is defined by a pure power law of
scaling 1−N/M (red dashed line, see Materials and Methods). (B) The mixtures of all texts (gray
points) and their idealizations (black points) from the English eBooks collection. Note that neither
mixture results in a pure power law such as Zipf’s (θ = 1, red, dashed line).

of Zipf/Simon form. Upon constructing idealized rank-frequency distributions from empir-

ical data (see Sec. 4.5), we find that their combined distribution possesses multiple scaling

regimes (see Fig. 3.1). Though each individual vocabulary might have been created without

a decay of word introduction, an overlap in the words they use has it seem as though the

appearance of new words is rarer by the time the later texts are read. If one reads the texts

repeatedly and in permuted orders, the resulting decay in the rate of word introduction

likely does not evince itself until the mean text size (mean number of unique words per

text) is reached, but certainly not before the minimum text size is reached.

Operating under this ansatz—that a text mixing-derived scaling break, b, covaries with

the mean number of unique words per text, Navg, in a corpus—we investigate thousands of

corpora defined by samples from the English eBooks database (see Sec. 4.5 for more details

on text sampling and a complete description of the eBooks database). Obtaining 1, 000

text-sample corpora from each of the 10 deciles of the text-size distribution, we regress
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Figure 3.2: (Top) For each of the 10 deciles of the
English distribution of text sizes, we measure the
parameters b, γ, Navg, and θ from 50-book sam-
ple corpora. Each cloud represents 1, 000 sample
corpora from deciles 1–10 (low-to-high from left
to right, where red to blue also indicates increas-
ing decile and fade to green or yellow indicates
increasing density). The line b = Navg is also pre-
sented (dashed line, main axis), and shows that b
increases with decile for all but the most extreme
(10th) decile. Main axes insets show parameter
variation across deciles for both b and Navg (left);
and γ and θ (right), where we note that Zipf’s
parameter, θ, is the only one that exhibits signs
of stationarity. (Bottom) Box plots providing a
more detailed look at the ten deciles of the dis-
tribution of text sizes. For clarity we have sepa-
rated the plots for deciles 1–9 from the 10th. This
highlights the extreme nature of the later deciles
(most notably the 10th), where the presence of
poorly refined texts throw off estimates of Navg,
which we also note corresponds to the roll over in
the distributions off of the b = Navg axis above.

for b (see Sec. 4.5), and record Navg to find that the two covary strongly along the line

b = Navg for all but the most extreme deciles (see main axes Fig. 3.2, which we return

to later in the discussion). We see that this relationship breaks down in the presence of

large-N texts, which upon closer inspection appear ill formed in the sense of being of mixed

origin themselves (e.g., posthumous/longitudinal compendia, dictionaries, encyclopedias,

etc...; see Sec. 4.5 and Fig. 3.6 for more details on corpus formation and internally-mixed

texts). Additionally, we see from these preliminary experiments that both of the quantities,

b and γ, do not appear as universal for a given language (see Fig. 3.2), but rather depend

quite severely on corpus composition. In fact, the only regressed parameter that presents

any signs of universality for a language is Zipf’s exponent, θ, which remains quite close

to 1. These initial results indicate that hypotheses of the locations of scaling breaks, b,
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Consider the two excerpts from Charles Dickens’ “A Tale of Two Cities”, taken as texts:

T1 : (it, was, the, best, of, times, it, was, the, worst, of, times), and
T2 : (it, was, the, age, of, wisdom, it, was, the, age, of, foolishness)

Supposing we read T1 first, the sequence of words is:

(T1, T2) : (it, was, the, best, of, times, it, was, the, worst, of, times,
it, was, the, age, of, wisdom, it, was, the, age, of, foolishness)

where we have highlighted initial (growing text) word appearances in red. The corre-
sponding sequences of values, m,nm, Nm, αm, Am and αm/Am, are then

m : (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24)
nm : (1, 2, 3, 4, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 10)
Nm : (1, 2, 3, 4, 5, 6, 6, 6, 6, 7, 7, 7, 8, 9, 10, 11, 12, 13, 13, 13, 13, 13, 13, 14)

αm : (1, 1, 1, 1, 1, 1, 6
7 ,

6
8 ,

6
9 ,

7
10 ,

7
11 ,

7
12 ,

7
13 ,

7
14 ,

7
15 ,

8
16 ,

8
17 ,

9
18 ,

9
19 ,

9
20 ,

9
21 ,

9
22 ,

9
23 ,

10
24)

Am : (1, 1, 1, 1, 1, 1, 6
7 ,

6
8 ,

6
9 ,

7
10 ,

7
11 ,

7
12 ,

8
13 ,

9
14 ,

10
15 ,

11
16 ,

12
17 ,

13
18 ,

13
19 ,

13
20 ,

13
21 ,

13
22 ,

13
23 ,

14
24)

αm
Am

: (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7
8 ,

7
9 ,

7
10 ,

8
11 ,

8
12 ,

9
13 ,

9
13 ,

9
13 ,

9
13 ,

9
13 ,

9
13 ,

10
14).

Example 3.1: A concrete example of the text mixing effect, where we consider two passages
(T1 and T2) as separate texts that are then mixed. The similarity of word use between these
excerpts provides an excellent example for understanding the differences between the growing
text, where we count new word appearances (nm) with the awareness of previous texts, and the
memoryless text, where we count word appearances (Nm) as new with each initial appearance
in each text. Note that both αm and Am are simply the quotients of nm and Nm with m
(respectively), and that their quotient (αm/Am) is equivalent to n/N , and is not equal to 1
only when texts are mixed.

corresponding to language-universal lexical-core sizes are in strong need of reevaluation, or

should be reformulated as corpus-relative.

In the following, we run text mixing experiments that measure decay in rates of word

introduction directly attributable to mixing texts to predict lower scalings in composite

distributions. As we read out texts (in some order) let m be the volume of words observed
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at any point, and nm be the number of distinct words in the volume m, which we will

refer to as the vocabulary size of the growing text. To exhibit the effects of text mixing we

contrast the vocabulary size of the growing text with the vocabulary size of the memoryless

text, Nm, where we “forget” the words read in all previous texts and continuing counting

appearances of words that were initial in their text (regardless of appearances in previous

texts). From nm and Nm we then have two proxies for the word introduction rate, one

for the growing text αm = nm/m and one for the memoryless text Am = Nm/m. We

may consider αm to be the word introduction rate of the composite (which includes mixing

effects), and Am to be the word introduction rate of the individual texts (excluding mixing

effects).

There are many conceivable mechanisms that lead to a power-law decay in the rate of

word introduction. To measure the severity of scaling breaks we do not need to know the

true values of the word introduction rates, but instead just their scalings. So, to determine

the extent to which text mixing generates word introduction decay, we isolate the portion of

the scaling that results from mixing by measuring αm/Am, the portion of word introduction

remaining after mixing texts. Note that since nm ≤ Nm, one has αm ≤ Am, and hence

αm/Am ≤ 1 for all m. Hence, this normalized rate behaves as a non-constant only when

mixing ensues, and so any decay measured via αm/Am implies the presence and is the

direct consequence of text mixing (see Example 3.1 for an intuitive understanding of all

text mixing quantities). Since αm/Am will be the only quantity used in the measurement

of word introduction decay, we relax the notation, and simply write α for αm/Am and n for

nm in what follows.

To test the effects of text mixing, we not only observe the word introduction rate α(n),

but consider its ability to predict the scalings of rank-frequency distributions. To do this, we

note that by design, the data for α(n) are aligned with f(r)—both have domain {1, ..., Ncorp}

(where Ncorp is the vocabulary size of the corpus). Further, since the theory has γ = θ+µ,
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we may also observe that α(n) · n−θ, need only be normalized

p̂(n) = α(n) · n−θ

C
, where C =

Ncorp∑
1

α(n) · n−θ (3.4)

to produce a model for the normalized rank-frequency distribution p(r) = f(r)/
∑Ncorp

1 f(r).

To determine a model’s Zipf scaling, θ, we scan the range {0.75, 0.751, ..., 1.25} and accept

the θ for which p̂ minimizes the sum of squares error

Ncorp∑
1

(log10 p(r)− log10 p̂(r))2 (3.5)

over as many as 10, 000 log-spaced ranks.

3.4 Materials and methods

In our experiments we worked with a subset of the eBooks (2010) collection. We collected

those texts which were annotated sufficiently well to allow for the removal of meta-data as

well as for the parsing of authorship, title, and language. All together, this resulted in the

inclusion of 23, 309 books from across ten languages (broken down in Tab. 3.1).

To idealize texts as discussed in Fig. 3.1 we note that a resultant rank-frequency dis-

tribution from a pure Simon model of constant word introduction rate, α0, will scale with

Zipf exponent θ = 1 − α0, such that N/M → α0 as the text grows. Therefore, for an

observed text of size N and volume M , we define the idealized Zipf/Simon exponent as

θ0 = 1−N/M , and apply θ0 to the collection of ranks, r = 1, · · · , N , as

fideal(r) =
⌊(

r

N

)−θ0

+ 1
2

⌋
, (3.6)

while preserving their word-labels from the empirical data.
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For all of the rank-frequency distributions analyzed, we regress over as many as 10, 000

log-spaced ranks (taken over the range r = 1, ..., N) to determine estimates for θ, b, and

γ. This estimation is done by applying a two-line least-squares regression, constrained by

intersection at the point of scaling break. Given data points (x, y), and a point of break,

xb, we solve for the model

ŷ =

 β1 + β2x, : x ≤ xb

β3 + β4x, : x > xb

, (3.7)

constrained by β1 +β2xb = β3 +β4xb, through standard minimization of the sum of squares

error. We compute this regression for 1, 000 log-spaced points, xb, across the middle 20–80%

of the log r domain. For given distribution we then perform these 1, 000 regressions and

accept the value b for which we have observed the smallest SSE.

To understand our text mixing results we must note that there is measurement error

for both b and Navg. As a regressed quantity, this may be expected for b, but for Navg,

the existence of measurement error is less obvious, and generally results from poor corpus

composition. The main effect stems from the fact that many texts in the eBooks data set

Nbooks Nchar Nmin Nave b Nmax Ncorp
en 19,793 46 5 5,899.3 5,849 219,990 2,836,900
fr 1,360 44 395 8,300.7 17,715 26,171 528,314
fi 505 31 1,144 8,872.6 7,761 31,623 811,742
nl 434 48 133 6,747.1 6,098 82,246 443,816
pt 375 38 203 4,675.8 10,363 17,818 246,497
de 327 30 153 7,554.9 7,259 113,089 477,274
es 223 34 406 8,735.1 15,079 29,452 237,874
it 194 29 1,083 9,388.7 13,954 29,445 258,509
sv 56 34 1,389 7,499.8 5,315 18,726 123,806
el 42 35 2,047 6,414.7 7,613 17,774 110,940

Table 3.1: Table of information concerning the data used from the eBooks database. For each
language we record the number of books (Nbooks); the number of characters (Nchar), which we take
to be the number of letters (Wikipedia Latin Alphabets, 2014; Wikipedia Greek Alphabet, 2014)
(including diacritics and ligatures); the minimum text size (Nmin); the maximum text size (Nmax);
and the total corpus size (Ncorp). For reference, we additionally record the regressed point of scaling
break, b.
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are internally mixed. The longitudinal compendia of individual authors and genres are the

most intuitive and abundant examples of internally mixed texts, and the most extreme cases

are generally reference texts, e.g., dictionaries, encyclopedias, and textbooks (see Fig. 3.2).

The major point is that when a compendium is not refined, but taken as an individual text

in a corpus, the calculation of Navg considers only a single book of large size (wrongly),

instead of many books of smaller size (correctly). Within the English data set we have

found that the large-N texts are generally of this variety and dominate the 10th decile.

Reading down the top ten N -ranking texts makes this abundantly clear:

1. Webster’s Unabridged Dictionary

2. Diccionario Ingles-Español-Tagalog

3. The Complete Project Gutenberg Works of George Meredith

4. The Anatomy of Melancholy

5. A Concise Dictionary of Middle English

6. A Pocket Dictionary

7. The Nuttall Encyclopaedia

8. The Complete PG Works of Oliver Wendell Holmes, Sr.

9. The Complete Historical Romances of Georg Ebers

10. The Complete Project Gutenberg Works of Galsworthy

Note here that among these compendia and reference texts lies a two way (Spanish/English)

dictionary whose placement in the top 10 likely results from dual word forms (English and

Spanish translations) of the majority of words that it possesses. We have explored the

impact of these under-refined and ill-formed texts in detail in Fig. 3.2, where we have found

a clear association of b with Navg along the line b = Navg that breaks down in the larger

deciles, where these strange texts occur.
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texts contained in the 10 eBooks cor-
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length, whereupon more extremal val-
ues are plotted as points designated
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We also note that Navg is subject to measurement error from overrefined texts as well,

most notably in the Portuguese data set, which has the smallest average text size, while

having the fifth largest number of books (see Tab. 3.1 and Fig. 3.3). There we note that

Portuguese presents the most significant deviation between Navg and b (b is notably more

than 120% larger than Navg), and moreover that this deviation is in the expected direction,

i.e., Navg � b. Note also that this observation is in agreement with those other languages

that have Navg � b in Tab. 3.1 (specifically Italian, Spanish, and French), where in Fig. 3.3

we see that having many low-N outliers with no high-N outliers biases the corpus-wide

measurement of Navg.

To estimate µ we perform common least squares linear regression on the log-transformed

data over the region [Navg, Ncorp], since Navg is generally the point at which mixing-derived

decay becomes clear.

Computation of α(n) involves running many realizations of the text mixing procedure,

randomizing the order in which the texts are read. To ensure that our measurements are
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accurate, we adhere to a heuristic—that the number of text mixing runs be no less than

10 ·Nbooks for the given corpus. The final values used is in our experiments are computed

as averages of the αm/Am from the more than 10 · Nbooks runs. However, we note that

αm/Am = nm/Nm, where nm ranges with rank: nm = 1, 2, 3, · · · , Ncorp. So, the only

quantities that vary across runs that are necessary to compute α(n) are the Nm. Hence

we take the average as α(nm) = nm/〈Nm〉 (where 〈Nm〉 indicates the average Nm of the

memoryless text across runs), which is in fact the harmonic mean of the α(nm) (the truest

mean for rates).

In our investigation of the different divisions of the internally mixed corpus, “The com-

plete historical romances of Georg Ebers,” we have shown how important it is to have

meaningfully defined texts to be able to produce an accurate text mixing model for a cor-

pus. An important component of this exhibition presented the extremal refinement, where

each word is treated individually as a separate text (a highly non-realistic scenario). To

conduct a text mixing experiment for such a refinement can be quite computationally tax-

ing, as this requires taking permutations of the word orders of the entire corpus. Since this

process is entirely independent of the original word orderings from the corpus, it may be

computed directly from the rank-frequency distribution via expected gap sizes. In particu-

lar, we wish to determine the average number of previously seen words appearing between

the nth and n+ 1st “new” words, given all permutations of the corpus words. Denoting this

number by Mn, we note that the average word introduction rate over this range is easily

found as αn = 1/Mn. We then define in as the total number of previously-observed words

that were not yet counted by the time the nth new word was observed, and define jn to

be the total number (out of all corpus words) that were not yet counted by the time the

nth new word was first observed (including those word types that were not yet observed).

Then, if Pn(M) is the probability that the nth and n+ 1st “new” words were separated by
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precisely M previously seen words,

Mn =
in∑

M=0
M · Pn(M)

=
in∑

M=0
M · jn − in

jn −M

M−1∏
k=0

in − k
jn − k

(3.8)

where in the last expression, the product is the probability of seeing M consecutive

previously-observed words, with the first factor being the probability that the “new” word

is seen as the M + 1st. These expressions for the Mn are iteratively computable, and in

addition, since the sums appear (empirically) to converge quickly, we find that it suffices to

take their first 1, 000 terms for added computational efficiency.

3.5 Results and discussion

To understand our results we define Nmin, Navg and Nmax as the minimum, average, and

maximum text sizes (by numbers of unique words) respectively (see Tab. 3.1). These three

values obviate four text mixing regimes:

n < Nmin; Zipf/Simon (no mixing)

Nmin ≤ n ≤ Navg; initial (minimal mixing)

Navg ≤ n ≤ Nmax; crossover (partial mixing)

n > Nmax; terminal (full mixing)

In the Zipf/Simon regime we expect the result of an unperturbed Simon model, but because

mixing is also minimal over the initial regime, we expect that behavior over the first two

regimes to more or less be consistent. Once in the crossover regime, words will on average

have appeared under the effects of text mixing and so there is the expectation that Navg

37



CHAPTER 3. TEXT MIXING

will mark the macroscopically observable change in behavior, or scaling break of the rank-

frequency distribution, i.e., we expect b ≈ Navg. Plotting the two against one another,

we have see this relationship holds across sample corpora from the well-behaved deciles of

the English distribution of text sizes (see Fig. 3.2), and breaks down in the presence of

ill-formed texts. Finally, over the terminal regime, all words will appear in the presence of

mixing, and so this regime exhibits the stabilized second scaling, characterized by the decay

parameter µ.

Our main results from text mixing, comparing the text mixing-derived model, p̂, with

the normalized empirical rank-frequency data, p, may be found for the English data set

in Fig. 3.4, and for the nine other languages studied in Fig. 3.5. For all 10 languages we

observe that the models defined by text mixing, p̂, produce excellent predictions of the

rank-frequency distributions (Main axes, Figs. 3.4 and 3.5), which is made quite clear by

plotting point-wise squared error (lower-left insets, Figs. 3.4 and 3.5). For each corpus we

see a broad range of ranks beginning not far before 102, and extending into the second

scaling where the error is quite low (disregarding the effect of the finite-size plateaux).

We also perform text mixing analysis at different scales for a single, large, and internally

mixed text from the English data set, “The complete historical romances of Georg Ebers.” It

is important to note before interpreting these results that the text itself is a compendium,

combining series’ that were each written by the author over the course of more than 30

years, writing and publishing volumes independently. With this in mind, the text offers an

important example for text mixing that helps us to understand several important details.

First, that not all texts are well formed—an individual text such as this may in and of itself

present a scaling break that has resulted from text mixing. Second, that the scaling break

of a single, large text may be understood through text mixing analysis. This second point

is more difficult to observe, as it requires an appropriate refinement of the internally-mixed

text, i.e., one must be able to break the mixed text into appropriately independent sub-
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Figure 3.4: Results for the English
corpus from the eBooks collection.
The main axes show the empirical,
normalized rank-frequency distribution
(black), p, and the text mixing model
(green points), p̂. The measured lower
and upper exponents, γ and θ, are de-
picted in the lower-right and upper-left
respectively, with triangles indicating
the measured slopes. We also present
gray boxes in the main axes to highlight
the different mixing regimes, marked
by Nchar, Nmin, Navg, and Nmax (see
Sec. 4.5 and Tab. 3.1 for complete de-
scriptions). The lower left inset shows
the squared errors (p(r)− p̂(r))2, whose
sum is minimized in the production of p̂
from the word introduction rate, α, de-
picted with black points in the upper
right inset with the decay exponent µ
(green dashed line’s slope).

texts. From our example in Fig. 3.6, we can see that the division of the text into a corpus of

28 series’ (left panel) renders a text mixing model for the empirical data with much higher

error than a division into a corpus of 143 volumes (center panel, a refinement of the series’

division). We also present text mixing results from the extremal refinement, where each

individual word is treated as a text (right panel, see Sec. 4.5 for more information on the

extremal refinement), which shows that a text can be over-refined to produce a poor text

mixing model.

It is worth noting from our results that the parameter, θ, is frequently measured to lie

outside the Simon-productive range, (0, 1). Therefore, we are left to conclude that individ-

ually, many texts are subject to internally-derived decay in word introduction rates (as is

exemplified by the Ebers text in Fig. 3.6), i.e., the underlying rank-frequency distributions

are not of pure Zipf/Simon form (as we suggest in other work (2014)), but, instead, subject

to internal mixing. Though we do not exhaustively investigate the occurrence of internally-

derived decay in the rates of word introduction across the eBooks data set, it seems quite
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Figure 3.5: The results of text mixing experiments for the nine smaller corpora analyzed. All insets,
color-coding, and labels are consistent with those from the larger, English presentation in Fig. 3.4,
whose caption possesses full descriptions of all axes and plotted data.

possible that all of the texts parsed are subject to some internal mixing effects, whether

from non-original annotation by the Project Gutenberg e-Text editors, or just the mixing

of differing components (e.g., chapters, series’, volumes, prologues, etc...). This of course
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Figure 3.6: Text mixing results for a single-author corpus. Here, α was measured for differing
refinements of the Egyptological fiction compendium/text “The complete historical romances of
Georg Ebers” into sub-texts. All insets, color-coding, and labels are consistent with those from the
English presentation in Fig. 3.4, whose caption possesses full descriptions of all axes and plotted data.
(Left) Each series is considered a separate text. (Middle) Each volume of each series is considered
a separate text. (Right) Each word (the extremal refinement, see Materials and Methods) in the
compendium is considered a separate text. Note that in the upper right insets, α decreases overall
with each refinement (as by definition it must), and that there appears to be an optimal refinement
for producing a text mixing model, likely close to the scale of volumes.

would require that these mixing effects be of low-impact in the cases generally considered

strong examples of Zipf’s law.

We also note a strange behavior (which is captured by the text mixing model) in the

English data set. There, we have found a relatively shallow lower scaling (γ ≈ 1.65), but

notice that it appears to be one of possibly two lower scalings. For English, the crossover

regime exhibits a consistently steeper scaling that dies away in the terminal regime. Though

we have no certain explanation for this behavior, part of what makes the English collection so

different from the others is the sheer number of texts (see Tab. 3.1). However, upon looking

closer at the distribution of English text sizes, we also notice that the collection possess some

extremely large-N outliers. In the largest text (which has nearly an order of magnitude more

words than any other text), approximately one tenth of all words are represented (out of

nearly 20, 000 books), which must have a profound impact on the combined rank-frequency

distribution, and hence lower scaling. Further, this large-N hypothesis is supported by
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our preliminary investigation (see Fig. 3.2) where we observed that those (large) texts in

the tenth decile not only generated scaling break points that went against the b = Navg

correspondence, but also, generated relatively shallow lower scalings, against the trend of

steepening with increasing decile. English is also well-known for its willingness to adopt

foreign words, which may lead to an increased rate of appearance of low-count loan words.

Regardless of the reasons for this difference with English, we find that text mixing captures

the shape of both lower scaling regimes, and so both are well explained by the text mixing

model.

We also take time to make note of and discuss another anomalous behavior of the rank-

frequency distributions investigated. Upon viewing a rank-frequency distribution for Zipf’s

law, one generally finds a “wobble” of the frequency data around Zipf’s scaling (regard-

less of the existence of a scaling break). We refer to the termination of this “wobble” as

the point of stabilization of the Zipf/Simon regime. Looking at the empirical data from

the ten languages, we see that this stabilization point generally appears early on the in

Zipf/Simon regime, and generally not before the first 102 ranks. Though we have no defini-

tive explanation for the existence of this anomaly, we note upon looking at the pointwise-

squared errors that the stabilization point frequently occurs near each language’s number

of characters, Nchar (depicted as a red dotted vertical line in each of the lower left insets of

Figs. 3.4, 3.5, and the center panel of 3.6). Whether the numbers of characters spawned in

the generation of primordial, character-based languages still influence the shapes of rank-

frequency distributions of descendant languages today, we cannot say for sure. However

this anomalous regime appears consistently across languages, and may potentially be of

consistent shape across the corpora of a language. If so, we might view such anomalies as

universal properties of languages, and so highlight them in the hopes of opening a broader

discussion.
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In light of the results presented, we take time to consider the validity of the core language

hypothesis. We have seen significant variation in both the location and severity of scaling

breaks both across and within languages. Upon sampling the English corpus by deciles, we

have observed that the regressed point of scaling break, b, is not stationary (see Fig. 3.2).

We take this as indication of the lack of validity of and language-universal core/non-core

hypothesis, as a core should exhibit a strong consistency of size. Moreover, languages closely

related via a common, recent ancestor should likewise exhibit this consistency, but notably

two of the languages most closely related in the study, Spanish and Portuguese, present a

large difference in b, (10, 363 for Spanish, and 15, 079 for Portuguese—see Tab. 3.1). Both of

these results seem to indicate that scaling breaks in rank-frequency distributions are likely

consequences of text and corpus composition. Hence, it may then be more reasonable to

consider a language core as a collection of words necessary for basic description, but not

overlapping in use or meaning. However, such a core lexicon would need to be determined

by native practitioners, and not necessarily to be an observable property of rank-frequency

distributions. Alternatively, one could consider a corpus-core by its collection of words

common to its texts. However, such a “common core” would be entirely dependent on the

composition of the corpus, and hence not a universal property of a language proper.

3.6 References
Barabási, A. L., Albert, R., 1999. Emergence of scaling in random networks. Science

286, 509–511.
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Chapter 4

Identifying missing dictionary entries
with frequency-conserving
context models

In an effort to better understand meaning from natural language texts, we ex-

plore methods aimed at organizing lexical objects into contexts. A number of

these methods for organization fall into a family defined by word ordering. Un-

like demographic or spatial partitions of data, these collocation models are of

special importance for their universal applicability in the presence of ordered

symbolic data (e.g., text, speech, genes, etc...). Our approach focuses on the

phrase (whether word or larger) as the primary meaning-bearing lexical unit

and object of study. To do so, we employ our previously developed framework

for generating word-conserving phrase-frequency data. Upon training our model

with the Wiktionary—an extensive, online, collaborative, and open-source dic-

tionary that contains over 100, 000 phrasal-definitions—we develop highly ef-

fective filters for the identification of meaningful, missing phrase-entries. With

our predictions we then engage the editorial community of the Wiktionary and

propose short lists of potential missing entries for definition, developing a break-

through, lexical extraction technique, and expanding our knowledge of the de-

fined English lexicon of phrases.

45



CHAPTER 4. CONTEXT MODELS

4.1 Background

Starting with the work of Shannon (1948), joint probability distributions between word-

types (denoted w ∈W ), and their groupings by appearance-orderings, or, contexts (denoted

c ∈ C), were first used for the prediction of upcoming symbols. For a word appearing in

text, Shannon’s model assigned context according to the word’s immediate antecedent. In

other words, the sequence

· · · wi−1 wi · · ·

places this occurrence of the word-type of wi in the context of wi−1 ? (uniquely defined by

the word-type of wi−1), where “?” denotes “any word”. This experiment was novel, and

when these transition probabilities were observed, he found a method for the automated

production of language that far better resembled true English text than simple adherence

to relative word frequencies.

Later, though still early on in the history of modern computational linguistics and

natural language processing, theory caught up with Shannon’s work. In 1975, Becker wrote:

My guess is that phrase-adaption and generative gap-filling are very roughly

equally important in language production, as measured in processing time spent

on each, or in constituents arising from each. One way of making such an

intuitive estimate is simply to listen to what people actually say when they

speak. An independent way of gauging the importance of the phrasal lexicon is

to determine its size.

Since then, with the rise of computation and increasing availability of electronic text, there

have been numerous extensions of Shannon’s context model. These models have gener-

ally been information-theoretic applications as well, mainly used to predict word associa-

tions (Church and Hanks, 1990) and to extract multi-word expressions (MWEs) (Smadja,
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1993). This latter topic has been one of extreme importance for the computational linguis-

tics community (Ramisch, 2014) and has seen many approaches aside from the information-

theoretic, including use of part-of-speech taggers (Justeson and Katz, 1995) and use of

syntactic parsers (Seretan, 2008). However, almost all of these methods have the common

issue of scalability (Pecina, 2010), making them difficult to use for the extraction of phrases

of more than two words.

Information-theoretic extensions of Shannon’s context model have also been used by Pi-

antadosi et al. (2011b) to extend the work of Zipf (1935), using an entropic derivation called

the Information Content (IC):

I(w) = −
∑
c∈C

P (c | w) logP (w | c) (4.1)

and measuring its associations to word lengths. Though there have been concerns over some

of the conclusions reached in this work (Reilly and Kean, 2011; Piantadosi et al., 2011a;

Ferrer-i-Cancho and P., 2012; Piantadosi et al., 2013), Shannon’s model was somewhat

generalized, and applied to 3-gram, 4-gram and 5-gram context models to predict word

lengths. This model was also used by Garcia et al. (2012) to assess the relationship between

sentiment (valence) norms and IC measurements of words. However their application of the

formula

I(w) = − 1
f(w)

f(w)∑
i=1

logP (w | ci), (4.2)

to N -grams data was wholly incorrect, as this special representation applies only to corpus-

level data, i.e., uncompressed, human readable text, and not the frequency-based N -grams.

In addition to the above considerations, there is also the issue of word frequency con-

servation, which is exacerbated by the Piantadosi et al. extension of Shannon’s model. To

be precise, for a joint distribution of words and contexts that is physically related to the
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appearance of words on “the page”, there should be conservation in the marginal frequencies:

f(w) =
∑
c∈C

f(w, c), (4.3)

much like that discussed by Church and Hanks (1990). This property is not upheld using

any true, sliding-window N -gram data (e.g., Google 2006; Michel et al. 2011; Lin et al. 2012).

To see this, we recall that for both of Garcia et al. (2012) and Piantadosi et al. (2011b), a

word’s N -gram context was defined by its immediate N − 1 antecedents. However, by this

formulation we note that the first word of a page appears as last in no 2-gram, the second

appears as last in no 3-gram, and so on.

These word frequency misrepresentations may seem to be of little importance at the

text or page level, but since the methods for large-scale N -gram parsing have adopted the

practice of stopping at sentence and clause boundaries (Lin et al., 2012), word frequency

misrepresentations (like those discussed above) have become very significant. In the new

format, 40% of the words in a sentence or clause of length five have no 3-gram context (the

first two). As such, when these context models are applied to modern N -gram data, they

are incapable of accurately representing the frequencies of words expressed. We also note

that despite the advances in processing made in the construction of the current Google N -

grams corpus (Lin et al., 2012), other issues have been found, namely regarding the source

texts taken (Pechenick et al., 2015).

We also note that there exist many other methods for grouping occurrences of lexical

units to produce informative context models. As early as 1992, Resnik showed class cat-

egorizations of words (e.g., verbs and nouns) could be used to produce informative joint

probability distributions. In recent work, Montemurro and Zanette (2010) used joint dis-

tributions of words and arbitrary equal-length parts of texts to entropically quantify the

semantic information encoded in written language. Texts tagged with metadata like gen-

era (Dodds and Danforth, 2009), time (Dodds et al., 2011), location (Mitchell et al., 2013),
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and language (Dodds et al., 2015), have rendered straightforward and clear examples of the

power in a (word-frequency conserving) joint probability mass function, at shedding light

on social phenomena by relating words to classes. Though metadata approaches to context

are informative, with their power there is simultaneously a loss of applicability (metadata

is frequently not present), as well as a loss of bio-communicative relevance (humans are

capable of inferring social information from text in isolation).

4.2 Frequency-conserving context models

In previous work (2014) we developed a scalable and general framework for generating

frequency data for N -grams, called random text partitioning. Since a phrase-frequency

distribution, S, is balanced with regard to its underlying word-frequency distribution, W ,

∑
w∈W

f(w) =
∑
s∈S

`(s)f(s) (4.4)

phrase `(si···j) = 1 `(si···j) = 2 `(si···j) = 3 `(si···j) = 4 · · ·
w1 ? - - - · · ·

w1 w2 ? w2 ? ? - - · · ·
w1 ? · · ·

w1 w2 w3 ? w2 w3 ? ? w3 ? ? ? - · · ·
w1 ? w3 w1 ? ? · · ·
w1 w2 ? · · ·

w1 w2 w3 w4 ? w2 w3 w4 ? ? w3 w4 ? ? ? w4 ? ? ? ? · · ·
w1 ? w3 w4 w1 ? ? w4 w1 ? ? ? · · ·
w1 w2 ? w4 w1 w2 ? ? · · ·
w1 w2 w3 ? · · ·

...
...

...
...

... . . .

Table 4.1: A table showing the expansion of context lists for longer and longer phrases. We define the
internal contexts of phrases by the removal of individual sub-phrases. These contexts are represented
as phrases with words replaced by ?’s. Any phrases whose word-types match after analogous sub-
phrase removals share the matching context. Here, the columns are labeled 1–4 by sub-phrase
length.
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(where ` denotes the phrase-length norm) it is easy to produce a symmetric generalization

of Shannon’s model that integrates all phrase/N -gram lengths and all word placement/re-

moval points. To do so, we define W and S to be the sets of words and (text-partitioned)

phrases from a text respectively, and let C be the collection of all single word-removal

patterns from the phrases of S. A joint frequency, f(w, c), is then defined by the parti-

tion frequency of the phrase that is formed when c and w are composed. In particular, if

w composed with c renders s, we then set f(w, c) = f(s), which produces a context model

on the words whose marginal frequencies preserve their original frequencies from “the page.”

In particular we refer to this, or such a model for phrases, as an ‘external context model,’

since the relations are produced by structure external to the semantic unit.

It is good to see the external word-context generalization emerge, but our interest ac-

tually lies in the development of a context model for the phrases themselves. To do so, we

define the ‘internal contexts’ of a phrase by the patterns generated through the removal

of sub-phrases. To be precise, for a phrase s, and a sub-phrase si···j ranging over words i

through j, we define the context

ci···j = w1 · · · wi−1 ? · · · ? wj+1 · · · w`(s) (4.5)

to be the collection of same-length phrases whose analogous word removal (i through j)

renders the same pattern (when word-types are considered). We present the contexts of

generalized phrases of lengths 1–4 in Tab. 4.1, as described above. Looking at the table,

it becomes clear that these contexts are actually a mathematical formalization of the gen-

erative gap filling proposed by Becker (1975), which was semi-formalized by the phrasal

templates discussed at length by Smadja (1993). Between our formulation and that of

Smadja, the main difference of definition lies in our restriction to contiguous word sequence

(i.e., sub-phrase) removals, as is necessitated by the mechanics of the secondary partition

process, which defines the context lists.
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The weighting of the contexts for a phrase is accomplished simultaneously with their

definition through a secondary partition process describing the inner-contextual modes of

interpretation for the phrase. The process is as follows. In an effort to relate an observed

phrase to other known phrases, the observer selectively ignores a sub-phrase of the original

phrase. To retain generality, we do this by considering the random partitions of the original

phrase, and then assume that a sub-phrase is ignored from a partition with probability

proportional to its length, to preserve word (and hence phrase) frequencies. The conditional

probabilities of inner context are then:

P (ci···j | s) = P (ignore si···j given a partition of s)

= P (ignore si···j given si···j is partitioned from s)P (si···j is partitioned from s).

(4.6)

Utilizing the partition probability and our assumption, we note from our work in 2014 that

`(s) =
∑

1≤i<j≤`(s)
`(si···j)Pq(si···j | s), (4.7)

which ensures through defining

P (ci···j | s) = `(si···j)
`(s) Pq(si···j | s), (4.8)

the production of a valid, phrase-frequency preserving context model:

∑
c∈C

f(c, s) =
∑

i<j≤`(s)
P (ci···j | s)f(s)

=f(s)
∑

1≤i<j≤`(s)

`(si···j)
`(s) Pq(si···j | s) = f(s),

(4.9)
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which preserves the underlying frequency distribution of phrases. Note here that beyond

this point in the document we will used the normalized form,

P (c, s) = f(c, s)∑
s∈S

∑
c∈C

f(c, s) , (4.10)

for convenience in the derivation of expectations in the next section.

4.3 Likelihood of dictionary definition

In this section we exhibit the power of the internal context model through a lexicographic

application, deriving a measure of meaning and definition for phrases with empirical phrase-

definition data taken from a collaborative open-access dictionary (Wiktionary, 2014) (see

Sec. 4.5 for more information on our data and the Wiktionary). With the rankings that

this measure derives, we will go on to propose phrases for definition with the editorial

community of the Wiktionary in an ongoing live experiment, discussed in Sec. 4.4.

To begin, we define the dictionary indicator, D, to be a binary norm on phrases, taking

value 1 when a phrase appears in the dictionary, (i.e., has definition) and taking value 0

when a phrase is unreferenced. The dictionary indicator tells us when a phrase has reference

in the dictionary, and in principle can be replaced with other indicator norms, for other

purposes. Moving forward, we note an intuitive description of the distribution average:

D(S) =
∑
t∈S

D(t)P (t) = P (randomly drawing a defined phrase from S),
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and go on to derive an alternative expansion through application of the context model:

D(S) =
∑
t∈S

D(t)P (t) =
∑
t∈S

D(t)P (t)
∑
c∈C

P (c | t)
∑
s∈S

P (s | c)

=
∑
c∈C

P (c)
∑
t∈S

D(t)P (t | c)
∑
s∈S

P (s | c)

=
∑
c∈C

P (c)
∑
s∈S

P (s | c)
∑
t∈S

D(t)P (t | c)

=
∑
s∈S

P (s)
∑
c∈C

P (c | s)
∑
t∈S

D(t)P (t | c)

=
∑
s∈S

P (s)
∑
c∈C

P (c | s)D(c | S).

(4.11)

In the last line we then interpret:

D(C | s) =
∑
c∈C

P (c | s)D(c | S), (4.12)

to be the likelihood (analogous to the IC equation presented here as equation 4.1) that a

phrase, which is randomly drawn from a context of s, to have definition in the dictionary. To

be precise, we say D(C | s) is the likelihood of dictionary definition of the context model C,

given the phrase s. When only one c ∈ C is considered, we say D(c | S) =
∑
t∈S D(t)P (t | c)

is the likelihood of dictionary definition of the context c, given S. Numerically, we note

that the distribution-level values, D(C | s), “extend” the dictionary over all S, smoothing

out the binary data to the full lexicon (uniquely for phrases of more than one word, which

have no interesting space-defined internal structure) through the relations of the model.

In other words, though D(C | s) 6= 0 may now only indicate the possibility of a phrase

having definition, it is still a strong indicator, and most importantly, may be applied to

never-before-seen expressions.
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? ? ?

? ? contrary

in ? ? on ? ?

D = 1D = 0

D = 0.5

? the contrary
in ? contrary

in the ? on the ?
on ? contrary

in the contrary (D = 0) on the contrary (D = 1) Figure 4.1: An example showing
the sharing of contexts by
similar phrases. Suppose our
text consists of the two phrases,
“in the contrary” and “on the
contrary”, and that each occurs
once, and that the latter has
definition (D = 1) while the
former does not. In this event,
we see that the three shared con-
texts: “? ? ?”, “? ? contrary”,
and “? the contrary”, present
elevated likelihood (D) values,
indicating that the phrase
“in the contrary” may have
meaning and be worthy of
definition.

4.4 Predicting missing dictionary entries

Starting with the work of Sinclair et al. (1987) (though the idea was proposed more than

10 years earlier by Becker (1975)), lexicographers have been building dictionaries based

on language as it is spoken and written, including idiomatic, slang-filled, and grammatical

expressions (e.g., Collins English Cobuild Dictionary; Wiktionary; The Urban Dictionary;

The Online Slang Dictionary). These dictionaries have proven highly-effective for non-

primary language learners, who may not be privy to cultural metaphors. In this spirit, we

utilize the context model derived above to discover phrases that are undefined, but which

may be in need of definition for their similarity to other, defined phrases. We do this in a

corpus-based way, using the definition likelihood D(C | s) as a secondary filter to frequency.

The process is in general quite straightforward, and first requires a ranking of phrases by

frequency of occurrence, f(s). Upon taking the first s1, ..., sN frequency-ranked phrases

(N = 100, 000, for our experiments), we reorder the list according to the values D(C | s)

(descending). The top of such a double-sorted list then includes phrases that are both

frequent and similar to defined phrases.
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With our double-sorted lists we then record those phrases having no definition or dic-

tionary reference, but which are at the top. These phrases are quite often meaningful (as

we have found experimentally, see below) despite their lack of definition, and as such we

propose this method for the automated generation of short lists for editorial investigation

of definition.

4.5 Materials and methods

For its breadth, open-source nature, and large editorial community, we utilize dictionary

data from the Wiktionary (2014) (a Wiki-based open content dictionary) to build the

dictionary-indicator norm, setting D(s) = 1 if a phrase s has reference or redirect. We

also note that the minimum information necessary for a phrase to be included in the Wik-

tionary, is a language, part of speech, and meaning.

We apply our filter for missing entry detection to several large corpora from a wide scope

of content. These corpora are: twenty years (1987–2007) of New York Times (NYT) arti-

cles (Sandhaus, 2008), approximately 4% of a year’s (2009) tweets from twitter, music lyrics

from thousands of songs and authors (Lyrics, 1960–2007) (Dodds and Danforth, 2009), com-

plete Wikipedia articles (2010), and a Project Gutenberg eBooks collection (eBooks) (2010)

of more than 30, 000 public-domain texts. We note that these are all unsorted texts, and

that Twitter, eBooks, Lyrics, and to an extent, Wikipedia are mixtures of many languages

(though majority English). We only attempt missing entry prediction for phrase lengths

(2–5), for their inclusion in other major collocation corpora (Lin et al., 2012), as well as

their having the most data in the dictionary. We also note that all text processed is taken

lower-case.

To understand our results, we perform a 10-fold cross-validation on the frequency and

likelihood filters. This is executed by random splitting the Wiktionary’s list of defined

phrases into 10 equal-length pieces, and then performing 10 parallel experiments. In each
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of these experiments we determine the likelihood values, D(C | s), by a distinct 9
10 ’s of

the data. We then order the union set of the 1
10 -withheld and the Wiktionary-undefined

phrases by their likelihood (and frequency) values descending, and accept some top segment

of the list, or, ‘short list’, coding them as positive by the experiment. For such a short list,

we then record the true positive rates, i.e., portion of all 1
10 -withheld truly-defined phrases

we coded positive, the false positive rates, i.e., portion of all truly-undefined phrases we

coded positive, and the number of entries discovered. Upon performing these experiments,

the average of the ten trials is taken for each of the three parameters, for a number of

short list lengths (scanning 1, 000 log-spaced lengths), and plotted as a receiver operating

characteristic (ROC) curve (see Figs. 4.2–B.4). We also note that each is also presented with

its area under curve (AUC), which measures the accuracy of the expanding-list classifier as

a whole.

4.6 Results and discussion

Before observing output from our model we take the time to perform a cross-validation (10-

fold), and compare our context filter to a sort by frequency alone. From this we have found

that our likelihood filter renders missing entries much more efficiently than by frequency

(see Tab. 4.2, and Figs. 4.2–B.4), already discovering missing entries from short lists of as

little as twenty (see the insets of Figs. 4.2–B.4 as well as Tabs. 4.2, 4.3, and B.1–B.4). As

such we adhere to this standard, and only publish short lists of 20 predictions per corpus

per phrase lengths 2–5. In parallel, we also present phrase frequency-generated short-lists

for comparison.

In addition to listing them in the appendices, we have presented the results of our

experiment from across the 5 large, disparate corpora on the Wiktionary in a pilot program,
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where we are tracking the success of the filters 1. Looking at the lexical tables, where defined

phrases are highlighted in red, we can see that many of the predictions by the likelihood

filter (especially those obtained from the Twitter corpus) have already been defined in the

Wiktionary following our recommendation (as of February 19th 2015) since we accessed its

data in September of 2014 Wiktionary (2014). We also summarize these results from the

live experiment in Tab. 4.2.

Looking at the lexical tables more closely, we note that all corpora present highly id-

iomatic expressions under the likelihood filter, many of which are variants of existing id-
1Track the potential missing entries that we have proposed: https://en.wiktionary.org/wiki/User:

Jakerylandwilliams/Potential_missing_entries

Corpus 2-gram 3-gram 4-gram 5-gram

C
ro

ss
-v

al

Twitter 4.22 (0.40) 1.11 (0.30) 0.90 (0.10) 1.49 (0)
NYT 4.97 (0.30) 0.36 (0.50) 0.59 (0.10) 1.60 (0)
Lyrics 3.52 (0.50) 1.76 (0.40) 0.78 (0) 0.48 (0)

Wikipedia 5.06 (0.20) 0.46 (0.80) 1.94 (0.20) 1.54 (0)
eBooks 3.64 (0.30) 1.86 (0.30) 0.59 (0.60) 0.90 (0.10)
Corpus 2-gram 3-gram 4-gram 5-gram

L
iv

e
ex

p.

Twitter 6(0) 4 (0) 5 (0) 5 (0)
NYT 5 (0) 0 (0) 2 (0) 1 (0)
Lyrics 3 (0) 1 (0) 3 (0) 1 (0)

Wikipedia 0 (0) 1 (0) 1 (0) 2 (0)
eBooks 2 (0) 1 (0) 3 (0) 6 (1)

Table 4.2: Summarizing our results from the cross-validation procedure (Above), we present the
mean numbers of missing entries discovered when 20 guesses were made for N -grams/phrases of
lengths 2, 3, 4, and 5, each. For each of the 5 large corpora (see Materials and Methods) we make
predictions according our likelihood filter, and according to frequency (in parentheses) as a baseline.
When considering the 2-grams (for which the most definition information exists), short lists of 20
rendered up to 25% correct predictions on average by the definition likelihood, as opposed to the
frequency ranking, by which no more than 2.5% could be expected. We also summarize the results
to-date from the live experiment (Below) (updated February 19, 2015), and present the numbers
of missing entries correctly discovered on the Wiktionary (i.e., reference added since July 1, 2014,
when the dictionary’s data was accessed) by the 20-phrase shortlists produced in our experiments
for both the likelihood and frequency (in parentheses) filters. Here we see that all of the corpora
analyzed were generative of phrases, with Twitter far and away being the most productive, and the
reference corpus Wikipedia the least so.
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Figure 4.2: With data taken from the Twitter corpus, we present (10-fold) cross-validation results
for the filtration procedures. For each of the lengths 2, 3, 4, and 5, we show the ROC curves
(Main Axes), comparing true and false positive rates for both the likelihood filters (black), and
for the frequency filters (gray). There, we see increased performance in the likelihood classifiers
(except possibly for length 5), which is reflected in the AUCs (where an AUC of 1 indicates a perfect
classifier). We also monitor the average number of missing entries discovered as a function of the
number of entries proposed (Insets), for each length. There, the horizontal dotted lines indicate
the average numbers of missing entries discovered for both the likelihood filters (black) and for the
frequency filters (gray) when short lists of 20 phrases were taken (red dotted vertical lines). From
this we see an indication that even the 5-gram likelihood filter is effective at detecting missing entries
in short lists, while the frequency filter is not.
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iomatic phrases that will likely be granted inclusion into the dictionary through redirects

or alternative-forms listings. To name a few, the Twitter (Tab. 4.3), Times (Tab. B.1), and

Lyrics (Tab. B.2) corpora consistently predict large families derived from phrases like “at

rank 2-gram 3-gram 4-gram 5-gram

de
fin

it
io

n
lik

el
ih

oo
d

1 buenos noches knock it out in the same time actions speak louder then words
2 north york walk of fame on the same boat no sleep for the wicked
3 last few piece of mind about the same time every once and a while
4 holy hell seo-search engine optimization around the same time to the middle of nowhere
5 good am puta q pariu at da same time come to think about it
6 going away who the heck wat are you doing dont let the bedbugs bite
7 right up take it out wtf are you doing you get what i mean
8 go sox fim de mundo why are you doing you see what i mean
9 going well note to all hell are you doing you know who i mean
10 due out in the moment better late then never no rest for the weary
11 last bit note to myself here i go again as long as i know
12 go far check it here every now and again as soon as i know
13 right out check it at what were you doing going out on a limb
14 fuck am check it http was it just me give a person a fish
15 holy god check it now here we are again at a lost for words
16 rainy morning check it outhttp keeping an eye out de una vez por todas
17 picked out why the heck what in the butt onew kids on the block
18 south coast memo to self de vez em qdo twice in a blue moon
19 every few reminder to self giving it a try just what the dr ordered
20 picking out how the heck pain in my ass as far as we know

rank 2-gram 3-gram 4-gram 5-gram

fr
eq

ue
nc

y

1 in the new blog post i just took the i favorited a youtube video
2 i just i just took e meu resultado foi i uploaded a youtube video
3 of the live on http other people at http just joined a video chat
4 on the i want to check this video out fiddling with my blog post
5 i love i need to just joined a video joined a video chat with
6 i have i have a a day using http i rated a youtube video
7 i think quiz and got on my way to i just voted for http
8 to be thanks for the favorited a youtube video this site just gave me
9 i was what about you i favorited a youtube add a #twibbon to your
10 if you i think i free online adult dating the best way to get
11 at the i have to a video chat with just changed my twitter background
12 have a looking forward to uploaded a youtube video a video chat at http
13 to get acabo de completar i uploaded a youtube photos on facebook in the
14 this is i love it video chat at http check it out at http
15 and i a youtube video what do you think own video chat at http
16 but i to go to i am going to s channel on youtube http
17 are you of the day if you want to and won in #mobsterworld http
18 it is what’ll you get i wish i could live stickam stream at http
19 i need my daily twittascope just got back from on facebook in the album
20 it was if you want thanks for the rt added myself to the http

Table 4.3: With data taken from the Twitter corpus, we present the top 20 unreferenced phrases
considered for definition (in the live experiment) from each of the 2, 3, 4, and 5-gram likelihood
filters (Above), and frequency filters (Below). From this corpus we note the juxtaposition of highly
idiomatic expressions by the likelihood filter (like “holy hell”), with the domination of the frequency
filters by semi-automated content. The phrase “holy hell” is an example of the model’s success with
this corpus, as it achieved definition (February 8th, 2015) concurrently with the preparation of this
manuscript (several months after the Wiktionary’s data was accessed in July, 2014).
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the same time”, and “you know what i mean”, while the eBooks and Wikipedia corpora

predict families derived from phrases like “on the other hand”, and “at the same time”. In

general we see no such structure or predictive power emerge from the frequency filter.

We also observe that from those corpora which are less pure of English context (namely,

the eBooks, Lyrics, and Twitter corpora), extra-English expressions have crept in. This

highlights an important feature of the likelihood filter—it does not intrinsically rely on

the syntax or grammar of the language to which it is applied, beyond the extent to which

syntax and grammar effect the shapes of collocations. For example, the eBooks predict

(see Tab. B.4) the undefined French phrase “tu ne sais pas”, or “you do not know”, which

is a syntactic variant of the English-Wiktionary defined French, “je ne sais pas”, meaning

“i do not know”. Seeing this, we note that it would be straightforward to construct a

likelihood filter with a language indicator norm to create an alternative framework for

language identification.

There are also a fair number of phrases predicted by the likelihood filter which in fact

are spelling errors, typos, and grammatical errors. In terms of the context model, these

erroneous forms are quite near to those defined in the dictionary, and so rise in the short

lists generated from the less-well edited corpora, e.g., “actions speak louder then words” in

the Twitter corpus. This then seems to indicate the potential for the likelihood filter to be

integrated into auto-correct algorithms, and further points to the possibility of constructing

syntactic indicator norms of phrases, making estimations of tenses and parts of speech

(whose data is also available from the Wiktionary) possible through application of the model

in precisely the same manner presented in Sec. 4.3. Regardless of the future applications, we

have developed and presented a novel, powerful, and scalable MWE extraction technique.
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Chapter 5

Conclusion

Over the course of the work presented here we have accomplished several important

tasks that will guide future research. In Ch. 2 our study resulted in the development of a

general and scalable framework for producing frequency data for intermediate-sized lexical

objects, which has already enabled us (in Ch. 4) to define a context model that conserves

word frequencies, and use it effectively to detect missing entries from an online dictionary

and extend our knowledge of the greater English lexicon of phrases. Beyond this, there is

still much to be explored with random text partitioning—we have not even quantified the

effects of temperature (q) on rank-frequency scalings. Additionally, the value apparent with

random text partitioning leads us to consider how we might define other, informed methods

for text partitioning.

In Ch. 3 we showed how large corpora are affected by their composition, and in doing

so we clarified a discussion of 15 years regarding an empirical phenomenon of unknown

origin. While our result has contended the core/non-core language hypothesis (Ferrer-

i-Cancho and Solé, 2001), we connected the highly insightful analysis from some of its

proponents (Gerlach and Altmann, 2013) to empirical data, confirming a mathematical

connection between word dependences and rank-frequency scalings. Understanding this

connection has large implications for future theory, as it directs us to look for and test

other mechanisms that lead to the dependence of word appearance, like the subordinate

selection process we have discussed in the abstract and approached lightly in Ch. 2. A

clear next step then is to begin modeling subordinate selection as a stochastic process,

and measure an empirical analog (much as we have done with text mixing) to determine
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its relevance on language production. Beyond the implications of text mixing for future

theory, applying its analysis (Eq. 3.8) to social data on twitter has already shown us that

automatons have highly constrained vocabularies that are distinguishable, (a property we

are leveraging in other work (Clark et al., 2015), separating automatons from human users

on Twitter).

Finally, while the work in Ch. 4 was an application of our results from Ch. 2, the context

model we have proposed and its application to the dictionary indicator norm have cleared

a path toward applications that will be highly valuable in the natural language processing

industry. In much the same manner as we have in Ch. 4, we can construct norms for

tense, part of speech, and language, which could be applied to auto-correct and machine

translation tasks. Furthermore, since the model is general with norms, we will be able to

apply it in future work to non-binary norms such as valence (Bradley and Lang, 1999),

with which we have already seen considerable success at detecting large events with social

media (Dodds et al., 2011). We could then build a phrase-based ‘story finder’ with access

to context-informed sentiment norms for an unlimited vocabulary of phrases, and create an

early warning system for large-scale social events.

65



Bibliography

Axtell, R., 2001. Zipf distribution of U.S. firm sizes. Science 293 (5536), 1818–1820.
Barabási, A. L., Albert, R., 1999. Emergence of scaling in random networks. Science

286, 509–511.
Batty, M., 2008. The size, scale, and shape of cities. Science Magazine 319 (5864), 769–

771.
Becker, J. D., 1975. The phrasal lexicon. In: Proceedings of the 1975 Work-

shop on Theoretical Issues in Natural Language Processing. TINLAP ’75. As-
sociation for Computational Linguistics, Stroudsburg, PA, USA, pp. 60–63,
http://dx.doi.org/10.3115/980190.980212.

Bornholdt, S., Ebel, H., 2001. World Wide Web scaling exponent from Simon’s 1955
model. Phys. Rev. E 64, 035104(R).

Bradley, M. M., Lang, P. J., 1999. Affective norms for english words (anew): Stimuli,
instruction manual and affective ratings. Technical report c-1, University of Florida,
Gainesville, FL.

Church, K. W., Hanks, P., Mar. 1990. Word association norms, mu-
tual information, and lexicography. Comput. Linguist. 16 (1), 22–29,
http://dl.acm.org/citation.cfm?id=89086.89095.

Clark, E. M., Williams, J. R., Danforth, C. M., Dodds, P. S., Jones, C. A., 2015. Humans
can’t hide on the cyber linguistic frontier of the twittersphere.

Clauset, A., Shalizi, C. R., Newman, M. E. J., 2009. Power-law distributions in empirical
data. SIAM Review 51, 661–703.

Collins English Cobuild Dictionary, 2015. http://www.collinsdictionary.com/dictionary/
english-cobuild-learners.
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Appendix A

Random text partitions

A.1 Materials and methods

To obtain the results in Fig. 2.2, we utilize the maximum likelihood estimation (MLE)

procedure developed by Clauset et al. (2009). In applying this procedure to clause and

phrases distributions, several quantities are generally considered:

• θ̂: Zipf exponent estimate.

• xmin: upper cutoff in rank r determined by MLE procedure.

• D: Kolmogorov-Smirnov (KS) statistic.

• p-value determined by the MLE procedure (note that higher is better in that the null

hypothesis is more favored).

• 1− α: Estimate of Zipf exponent θ̂ based on the Simon (1955) model where α is the

introduction rate of new terms. We estimate α as the number of unique terms (N)

divided by the total number of terms (M).

which we report for 14 famous works of literature in SI-3.

In Fig. 2.2C we measure covariation between regressed values of θ̂ and the Simon model

prediction 1 − α. Since both are subject to measurement error (θ̂ is a regressed quan-

tity and α is only coarsely approximated by N/M), we adhere to Reduced Major Axis

regression (Rayner, 1985), which produces equivalent results upon interchanging x and y

variables, and hence guarantees that no information is assumed or lost when we place θ̂ as

the x-variable).
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Random text partitions

To produce the rank-frequency distributions in Fig. 2.3 and words in tables S1–S4, we

apply the random partition process to several large corpora from a wide scope of con-

tent. These corpora are: twenty years of New York Times articles (Sandhaus, 2008), ap-

proximately 4% of a year’s tweets (Twitter, 2009), music lyrics from thousands of songs

and authors (Dodds and Danforth, 2009), and a collection of complete Wikipedia arti-

cles (Wikipedia, 2010). In Fig. 2.2 we also use a subset of more than 4, 000 books from the

Project Gutenberg eBooks collection (Project Gutenberg, 2010) of public-domain texts.
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Random text partitions

A.2 Proof of fq word conservation

In the body of this document we claim that the random partition frequencies of the phrases

within a text T conserve the text’s underlying mass of words, MT . This claim relies on the

fact that the partition frequencies of phrase-segments, ti···j , emerging from a single clause,

t, preserve its word mass, `(t). We represented this by the summation presented (Eq. 2.4)

in the body of this document, which is equivalent to, fq(S | t)ES [`(s) | t], i.e., the total

number of words represented by the frequency of appearance of all phrases generated by

the q-partition:

f(S | t) · ES [`(s) | t] =
∑
s∈S

`(s)fq(s | t)

=
∑
s∈S

∑
s=ti···j

`(ti···j)Pq(ti···j | t)

=
∑

1≤i<j≤`(t)
`(ti···j)Pq(ti···j | t),

(A.1)

which we now denote by M(S | t) for brevity. For convenience, we now let n = `(t) denote

the clause’s length and observe that for each phrase-length k < n there are two single-

boundary phrases having partition probability q(1 − q)k−1, and n − k − 1 no-boundary

phrases having partition probability q2(1 − q)k−1. The contribution to the above sum by

all k-length phrases is then given by

2kq(1− q)k−1 + (n− k − 1)kq2(1− q)k−1. (A.2)
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Upon noting the frequency of the single phrase (equal to the clause t) whose length is n,

(1− q)n−1, we consider the sum over all k ≤ n,

M(S | t) = (1− q)n−1

+ [2q + nq2]
n−1∑
k=1

k(1− q)k−1

− q2
n−1∑
k=1

k(k + 1)(1− q)k−1,

(A.3)

which we will show equals n. We now define the quantity x = 1− q (the probability that a

space remains intact), and in these terms find the sum to be:

M(S | t) = nxn−1

+
[
2(1− x) + n(1− x)2

] n−1∑
k=1

kxk−1

− (1− x)2
n−1∑
k=1

k(k + 1)xk−1.

(A.4)

This framing through x affords a nice representation in terms of the generating function

f(x) = 1− xn+1

1− x , (A.5)

which allows us to express the summations through derivatives of f(x):

n−1∑
k=1

kxk−1 = f ′(x)− nxn−1, and

n−1∑
k=1

k(k + 1)xk−1 = f ′′(x),
(A.6)
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to find

M(S | t) = nxn−1

+
[
2(1− x) + n(1− x)2

]
(f ′(x)− nxn−1)

− (1− x)2f ′′(x).

(A.7)

Substitution of the second derivative term

f ′′(x)(1− x) = 2f ′(x)− n(n+ 1)xn−1 (A.8)

then produces the reduced form:

M(S | t) = n[f ′(x)(1− x)2

− (nxn+1 − (n+ 1)xn)],
(A.9)

into which we substitute the first derivative term

f ′(x)(1− x)2 = 1 + nxn+1 − (n+ 1)xn, (A.10)

to render

M(S | t) = n[1+nxn+1 − (n+ 1)xn

− (nxn+1 − (n+ 1)xn)] = n,

(A.11)

which proves Eq. 2.4. Putting this together into a sum over all clauses, we see proof of

Eq. 2.5 naturally follows:

∑
s∈S

`(s)fq(s | T ) =
∑
t∈T

∑
s∈S

`(s)fq(s | t)

=
∑
t∈T

M(S | t) =
∑
t∈T

`(t).
(A.12)
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A.3 Parameters for well-known texts

Below are tables showing fits of Zipf’s exponent, θ̂, for 14 famous works of literature, along

with details of the maximum likelihood estimation (MLE) procedure developed by Clauset

et al. (2009). The quantities used in these table are described in SI-1, Materials and

Methods.

A.3.1 A Tale of Two Cities

level θ̂ xmin D p-value 1− α

clause 0.783 3 0.0124 0.961 0.176

phrase 0.951 3 0.00742 0.772 0.603

word 1.15 4 0.0077 0.811 0.925

grapheme 1.56 4 0.0146 0.359 0.986

A.3.2 Moby Dick

level θ̂ xmin D p-value 1− α

clause 0.296 1 0.0192 0 0.154

phrase 0.902 3 0.0132 0.0626 0.576

word 1.05 7 0.00986 0.61 0.912

grapheme 1.42 13 0.0109 0.953 0.986
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A.3.3 Great Expectations

level θ̂ xmin D p-value 1− α

clause 0.301 1 0.0199 0 0.186

phrase 0.995 5 0.0164 0.225 0.622

word 1.21 4 0.00943 0.526 0.938

grapheme 1.66 3 0.0147 0.181 0.988

A.3.4 Pride and Prejudice

level θ̂ xmin D p-value 1− α

clause 1 3 0.0204 0.911 0.172

phrase 0.983 3 0.0148 0.149 0.617

word 1.11 18 0.0201 0.662 0.947

grapheme 1.43 24 0.0226 0.698 0.989

A.3.5 Adventures of Huckleberry Finn

level θ̂ xmin D p-value 1− α

clause 0.881 4 0.0192 0.977 0.197

phrase 0.98 3 0.0119 0.385 0.625

word 1.47 1 0.0183 0.83 0.94

grapheme 1.66 6 0.0239 0.203 0.987
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A.3.6 Alice’s Adventures in Wonderland

level θ̂ xmin D p-value 1− α

clause 0.707 2 0.0198 0.711 0.191

phrase 0.906 2 0.0108 0.687 0.555

word 1.14 6 0.0353 0.105 0.899

grapheme 1.19 49 0.0338 0.972 0.975

A.3.7 The Adventures of Tom Sawyer

level θ̂ xmin D p-value 1− α

clause 0.321 1 0.0208 0 0.188

phrase 1.01 6 0.0173 0.826 0.555

word 1.12 3 0.0162 0.108 0.893

grapheme 1.51 4 0.0134 0.683 0.978

A.3.8 The Adventures of Sherlock Holmes

level θ̂ xmin D p-value 1− α

clause 0.308 1 0.0231 0 0.191

phrase 0.952 4 0.0093 0.892 0.586

word 1.09 9 0.0144 0.733 0.921

grapheme 1.44 12 0.0191 0.663 0.983
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A.3.9 Leaves of Grass

level θ̂ xmin D p-value 1− α

clause 0.486 2 0.00768 0.783 0.0717

phrase 0.865 3 0.00971 0.463 0.543

word 1.01 6 0.0095 0.78 0.886

grapheme 1.39 7 0.0131 0.692 0.981

A.3.10 Ulysses

level θ̂ xmin D p-value 1− α

clause 0.34 1 0.0192 0 0.193

phrase 0.912 4 0.0062 0.854 0.551

word 1.05 5 0.00773 0.515 0.887

grapheme 1.48 4 0.00874 0.61 0.983

A.3.11 Frankenstein; Or, The Modern Prometheus

level θ̂ xmin D p-value 1− α

clause 0.257 1 0.0121 0 0.0741

phrase 0.834 2 0.0085 0.55 0.532

word 1.04 5 0.0215 0.057 0.906

grapheme 1.31 12 0.019 0.682 0.982
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A.3.12 Wuthering Heights

level θ̂ xmin D p-value 1− α

clause 0.927 3 0.0217 0.751 0.178

phrase 0.952 7 0.0104 0.978 0.581

word 1.06 10 0.0163 0.533 0.917

grapheme 1.54 5 0.0165 0.345 0.984

A.3.13 Sense and Sensibility

level θ̂ xmin D p-value 1− α

clause 0.274 1 0.0176 0 0.142

phrase 0.982 3 0.00945 0.611 0.614

word 1.12 20 0.017 0.907 0.946

grapheme 1.41 28 0.0264 0.584 0.989

A.3.14 Oliver Twist

level θ̂ xmin D p-value 1− α

clause 0.93 3 0.0152 0.808 0.242

phrase 0.962 3 0.00945 0.439 0.622

word 1.13 8 0.0118 0.695 0.931

grapheme 1.52 7 0.0153 0.521 0.987
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A.4 Phrase frequency tables

The following tables contain selected phrases extracted by random partitioning for the

four corpora examined in the main text. We provide complete phrase lists in csv format

along with other material online at:

http://www.uvm.edu/storylab/share/papers/williams2014a/.
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rank order=1 order=2 order=3 order=4 order=5
1 the (21763834.00) of the (1332433.25) one of the (42955.88) in the united states (8425.91) years of age or older (3363.23)
2 in (9935182.25) in the (1095178.50) as well as (41878.69) at the age of (5873.75) the average household size was (1669.62)
3 and (9708982.00) to the (443282.25) the united states (37460.25) a member of the (5534.50) were married couples living together (1662.12)
4 of (9015261.00) and the (404687.00) part of the (23948.69) under the age of (5287.88) from two or more races (1530.73)
5 a (6458405.25) on the (335456.00) at the time (17591.44) the end of the (5013.12) at the end of the (1512.25)
6 to (5890435.75) at the (308288.50) the age of (17212.81) at the end of (4780.31) the median income for a (1251.14)
7 was (3290575.00) for the (282949.75) the end of (16135.31) as well as the (3805.84) the result of the debate (1123.98)
8 is (3203926.00) he was (276889.75) according to the (16111.19) at the same time (3609.44) of it is land and (863.06)
9 he (2583977.75) it is (246804.50) may refer to (15914.88) years of age or (3375.91) the racial makeup of the (854.42)
10 on (2577531.25) with the (233894.38) member of the (15805.50) of age or older (3364.88) has a total area of (847.59)
11 as (2520721.50) as a (230830.62) the university of (15243.00) the population density was (3354.00) the per capita income for (841.80)
12 for (2409743.75) it was (209433.25) a number of (14994.00) the median age was (3332.41) and the average family size (838.66)
13 with (2107098.50) from the (202985.38) in the early (14390.50) as of the census (3325.94) and the median income for (832.59)
14 by (2010245.50) the first (177129.12) as a result (14356.69) households out of which (3290.84) the average family size was (831.62)
15 it (1960890.50) as the (172026.62) a member of (13692.75) one of the most (2952.97) had a median income of (831.28)
16 from (1688878.50) was a (153285.75) in the united (13589.25) people per square mile (2875.00) of all households were made (830.97)
17 that (1616682.00) in a (152800.25) he was a (13201.88) at the university of (2866.38) at an average density of (830.95)
18 s (1588172.00) to be (142233.38) of the population (13129.81) was one of the (2728.66) males had a median income (830.89)
19 at (1574302.50) one of (128960.50) in order to (12507.44) for the first time (2684.28) housing units at an average (829.80)
20 his (1461713.50) during the (128190.62) was born in (11809.50) the result of the (2675.75) made up of individuals and (829.12)
21 this (1187743.00) of a (126613.62) end of the (11779.88) has a population of (2658.84) had children under the age (828.27)
22 an (1121850.50) with a (120564.38) in the late (11641.56) on the other hand (2654.81) someone living alone who was (827.98)
23 are (965128.75) and a (117848.38) also known as (11477.12) as part of the (2650.53) income for a family was (825.89)
24 or (962634.50) such as (116356.12) in addition to (11229.75) of those under age (2626.69) had someone living alone who (825.33)
25 were (894722.00) united states (107440.38) it is a (11059.50) during world war ii (2600.66) householder with no husband present (823.45)
26 also (771224.25) as well (105543.38) world war ii (11018.56) of the united states (2591.84) had a female householder with (816.72)
27 be (736999.75) th century (102688.62) such as the (10948.00) the median income for (2504.88) population was spread out with (813.75)
28 has (711456.75) was the (102566.25) the result was (10670.12) as a result of (2403.53) this is a list of (784.14)
29 after (699095.75) that the (98832.00) most of the (10051.62) he was born in (2381.19) were below the poverty line (761.86)
30 however (689592.50) and was (93389.38) as part of (9636.19) to the united states (2366.12) the united states census bureau (743.83)
31 who (678548.00) there were (88907.25) he was the (9630.62) in new york city (2292.53) of the population were below (735.98)
32 they (674922.00) after the (86291.12) due to the (9612.06) in the summer of (2204.88) according to the united states (734.53)
33 one (657238.50) new york (84445.25) some of the (9501.06) at the time of (2114.16) was a member of the (711.28)
34 she (628094.25) citation needed (83924.50) at the end (9428.75) the rest of the (2013.94) result of the debate was (692.72)
35 had (625329.50) he is (82930.25) a population of (9329.19) in the united kingdom (1997.19) hispanic or latino of any (671.59)
36 first (581708.50) there are (81538.25) it is the (9142.31) as well as a (1862.66) at the time of the (643.62)
37 their (565228.50) and in (79643.25) there is a (9116.25) of the population were (1848.16) he was a member of (640.23)
38 there (563650.50) part of (79108.00) new york city (8808.00) the result was delete (1845.00) it has a population of (583.19)
39 when (554108.75) for a (78926.88) years of age (8519.56) as one of the (1833.75) national register of historic places (571.44)
40 new (542938.25) to a (75288.88) members of the (8365.31) a total area of (1827.31) it had a population of (562.61)
41 i (541554.00) the united (73217.62) of the year (8232.00) was a member of (1718.38) this list is intended to (554.30)
42 its (540743.50) has been (72469.62) the city of (8122.94) below the poverty line (1715.28) it does not imply that (553.88)
43 may (501345.50) according to (71437.38) this is a (8075.19) the racial makeup of (1708.22) interest in adding the link (553.47)
44 have (501019.00) of his (71418.38) was the first (7792.12) the per capita income (1692.88) below a full report on (552.31)
45 th (499317.50) for example (67477.38) was one of (7664.56) the average household size (1691.25) or that the involved accounts (550.88)
46 her (490852.25) the new (66748.88) in the world (7551.44) married couples living together (1681.62) accounts are spamming the link (550.88)
47 years (472193.25) and is (65799.75) in the first (7480.19) a median income of (1677.53) the external link gets used (549.97)
48 m (470841.75) the same (65643.25) in new york (7475.44) and the average family (1677.31) the village has a population (541.09)
49 all (448565.75) the city (64700.38) the united kingdom (7361.56) average household size was (1670.56) village has a population of (538.23)
50 other (443913.00) this is (61094.62) in the u (7321.44) median income for a (1668.47) of the debate was delete (470.31)
100 under (265543.75) who was (39346.88) at the same (5320.88) in adding the link (1106.97) does not imply that involved (275.44)
150 because (181436.25) and he (30431.00) in the town (4118.00) for a household in (831.50) household in the town was (172.14)
200 games (136824.00) who had (26478.88) the poverty line (3444.69) at the start of (677.09) like some other vfd subpages (128.88)
250 still (114752.25) the american (22596.00) the soviet union (3232.75) is located on the (551.88) the united states department of (103.78)
300 great (98223.75) the uk (19042.25) in the region (2778.00) a municipality in the (491.28) in the first round of (91.98)
350 court (84906.00) in late (16349.38) name of the (2500.62) afds for this article (422.00) an archive of the discussion (84.06)
400 further (75941.25) and are (14785.12) the government of (2289.19) one of the oldest (383.66) income for the village was (78.66)
450 does (68667.00) size was (13455.25) as early as (2140.56) the origin of the (343.66) township has a total area (71.88)
500 wrote (60868.25) less than (12458.00) according to a (1982.56) in the development of (320.78) can be seen in the (66.02)
600 hit (51657.00) place in (10748.25) also refer to (1758.62) the new york city (280.81) of the new york times (56.72)
700 ground (44973.75) he took (9618.50) of the show (1622.31) he studied at the (252.50) archive of an rfd nomination (49.69)
800 lower (39646.75) the canadian (8583.50) so that the (1498.31) in the fourth quarter (226.56) of the church of england (44.61)
900 fall (34990.25) republic of (7820.88) of the french (1378.50) played college football at (210.66) peerage of the united kingdom (41.45)
1000 ad (31756.75) with other (7171.38) united states navy (1246.62) city has a total (197.91) fis nordic world ski championships (39.11)
1500 garden (21653.75) from which (5251.62) throughout the world (916.56) at the outbreak of (154.88) it is found in europe (30.12)
2000 ben (16336.25) the need (4203.12) of the oldest (753.75) also part of the (125.28) as a result of their (24.70)
2500 band’s (12613.25) formed the (3456.62) a small village (640.88) it was performed in (107.12) the first game of the (21.09)
3000 modified (10278.00) of information (2951.50) season in the (562.62) was entered into the (93.94) the second single from the (18.69)
3500 md (8490.25) system is (2609.38) the highest point (501.00) as late as the (84.00) he became chairman of the (16.84)
4000 mythology (7228.25) water and (2340.88) team for the (455.06) he served with the (77.25) the most important of these (15.38)
4500 joan (6291.25) in singapore (2118.25) to the french (416.31) majority of the population (71.12) in burgundy in north-central france (14.12)
5000 politically (5492.50) cold war (1922.25) has an area (386.50) old at the time (65.78) station went on the air (13.20)
6000 ignored (4359.25) be given (1641.62) national association of (334.69) claimed to be the (57.66) the population has grown at (11.66)
7000 lexington (3519.25) and perhaps (1437.00) for two weeks (297.25) there may be a (51.59) the university of new brunswick (10.50)
8000 blackburn (2945.50) much larger (1281.50) cities in the (268.31) advanced to the final (46.97) of the church of st (9.58)
9000 eighteenth (2495.75) the ride (1156.88) with the american (244.19) used to determine the (42.91) whom he had two children (8.86)
10000 validity (2140.00) bit of (1053.75) birth to a (224.81) of the songs on (39.78) the new york court of (8.23)
15000 topical (1181.00) of alcohol (726.62) the australian national (162.31) continued to serve as (29.50) over the next three seasons (6.17)
20000 timeslot (765.75) history is (556.75) queen elizabeth i (127.94) he was also chairman (23.97) unsuccessful candidate for election in (5.03)
25000 wheatley (545.50) the peruvian (451.38) and a friend (107.12) and asks him to (20.25) during the making of the (4.31)
30000 epithelial (411.50) can change (376.50) it difficult for (92.19) from george washington university (17.69) during the two world wars (3.78)
35000 awakes (324.25) footage from (324.50) the march of (81.12) with this surname include (15.75) was the eldest child of (3.38)
40000 ruck (262.75) marion county (283.88) over the area (72.56) please give a reliable (14.25) the immigration and nationality act (3.06)
45000 verbandsliga (218.50) a sculpture (252.88) his father worked (65.56) so in order to (13.06) in new york during the (2.83)
50000 imageshack (185.25) break with (227.12) fire at the (59.88) departed new york on (12.06) and his family lived in (2.61)
60000 partito (140.50) injured his (188.62) for economic development (51.19) were only able to (10.50) the permanent court of arbitration (2.30)
70000 akatsuki (110.50) ships had (160.88) on the sky (44.88) as an actress in (9.34) was first known as the (2.05)
80000 salley (89.75) various characters (140.12) stanford university and (39.94) there is some overlap (8.41) the northeast end of the (1.86)
90000 huila (74.75) the sodium (123.88) though in a (36.06) during the following decade (7.69) the australian national rugby league (1.70)
100000 leaven (63.75) the condemned (110.88) other two were (32.88) closely linked with the (7.06) already at the age of (1.58)

Table A.1: Example phrases for English Wikipedia extracted by random partitioning.
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rank order=1 order=2 order=3 order=4 order=5
1 the (19034045.00) of the (922676.50) the united states (48226.25) in the united states (7162.22) at the end of the (599.03)
2 a (8722183.25) in the (778571.88) one of the (34160.31) at the same time (5127.59) because of an editing error (556.81)
3 and (8175499.25) he said (506762.62) in new york (32747.94) for the first time (3893.78) the new york stock exchange (514.61)
4 of (7463223.50) to the (321805.25) the new york (19706.31) the new york times (3282.12) for the first time in (481.62)
5 to (7094522.25) and the (312622.62) as well as (19019.81) in new york city (3036.69) he is survived by his (478.02)
6 in (6553996.25) for the (275765.75) new york city (17266.12) at the end of (2664.31) is survived by his wife (454.94)
7 that (3251408.00) at the (266174.25) a lot of (14997.94) the end of the (2560.50) an initial public offering of (400.08)
8 for (2849787.25) new york (234356.50) some of the (12923.62) a spokesman for the (2556.88) by the end of the (391.30)
9 he (2720690.75) in a (228202.25) part of the (12009.06) at the university of (2224.84) the end of the year (354.31)
10 is (2668672.00) to be (182396.25) of new york (11626.38) one of the most (2167.66) the securities and exchange commission (340.56)
11 it (2252598.00) with the (180261.50) president of the (10928.75) of the united states (2105.25) for the first time since (328.12)
12 but (2134976.50) that the (179624.88) the end of (10895.50) a member of the (2028.19) for students and the elderly (298.50)
13 on (2102270.50) it is (171736.38) there is a (10682.38) the rest of the (1907.81) beloved wife of the late (292.89)
14 with (2090580.50) from the (165015.00) director of the (10320.38) at the age of (1877.81) he said in an interview (287.44)
15 at (2042863.25) of a (161459.62) it was a (10318.81) to the united states (1832.50) the dow jones industrial average (276.14)
16 as (1808659.75) she said (160297.25) as a result (10075.00) in lieu of flowers (1794.28) the executive director of the (270.16)
17 i (1626505.00) by the (159916.25) according to the (10053.56) executive director of the (1718.41) tonight and tomorrow night at (253.62)
18 by (1573509.50) it was (159603.00) in the last (9828.88) the united states and (1653.31) in the last two years (243.44)
19 his (1418411.25) as a (146938.88) the white house (9593.25) is one of the (1549.75) in the new york times (240.67)
20 from (1397015.25) he was (146862.00) in the united (9578.31) of the new york (1541.53) in the last few years (235.52)
21 who (1317491.75) is a (142374.75) the university of (9083.88) by the end of (1524.62) in the united states and (229.91)
22 an (1253617.50) with a (135244.50) there is no (9027.81) as well as the (1447.84) in the middle of the (228.61)
23 are (1179629.75) and a (126899.75) it is a (8987.25) the chairman of the (1339.56) there are a lot of (222.73)
24 they (1177411.75) but the (120749.75) the first time (8735.56) he is survived by (1330.34) at the university of california (222.31)
25 not (1163949.50) one of (118009.62) in the first (8607.00) the new york city (1322.84) the federal bureau of investigation (221.33)
26 be (1140990.25) for a (113570.88) a spokesman for (8528.75) in a telephone interview (1289.75) the museum of modern art (220.48)
27 this (1017793.00) the new (107764.88) at the time (8300.88) at a news conference (1162.12) of the new york times (214.25)
28 which (985107.50) the first (105144.75) out of the (8246.56) in the new york (1153.72) graduated from the university of (210.23)
29 or (927178.00) united states (103164.62) in the past (8010.69) for the most part (1147.06) the food and drug administration (207.61)
30 new (892914.75) as the (100548.38) to be a (7877.38) a son of mr (1144.06) but at the same time (201.62)
31 had (865149.00) is the (95388.62) this is a (7856.44) a spokeswoman for the (1103.06) as a result of the (200.59)
32 one (826293.50) will be (94356.50) for the first (7789.44) as a result of (1066.22) the metropolitan museum of art (200.20)
33 about (820268.00) to a (92111.75) in an interview (7685.56) a lot of people (1060.12) the university of california at (193.88)
34 she (799892.00) the united (91259.75) he said he (7576.50) a few years ago (1047.81) years old and lived in (193.58)
35 s (796792.25) there is (83281.62) the number of (7551.12) of new york city (1034.91) for the new york times (189.27)
36 we (781654.50) th street (81072.25) of the new (7016.19) new york stock exchange (1024.41) received a master’s degree in (179.23)
37 when (752716.25) for example (74955.88) the same time (6904.50) at a time when (1023.19) a memorial service will be (179.17)
38 will (704428.00) according to (70748.12) it was the (6859.56) the director of the (1007.72) new york and new jersey (176.58)
39 there (700976.25) would be (70553.75) it would be (6843.44) survived by his wife (998.25) president and chief executive of (175.53)
40 their (699595.50) of his (70529.62) in the world (6814.81) as part of the (986.62) president and chief operating officer (172.33)
41 p (687358.75) this is (69945.38) it is not (6789.88) in the middle of (970.16) at the time of the (167.44)
42 were (676437.25) there are (69653.25) in recent years (6653.56) and the united states (956.59) the rest of the world (165.12)
43 years (672249.00) that he (69545.88) in the early (6652.31) from the university of (916.47) th street and amsterdam avenue (164.03)
44 would (664100.25) he is (69104.00) in addition to (6584.25) i don’t want to (901.09) the end of the day (156.91)
45 you (616708.00) they are (68165.50) the united nations (6541.31) in addition to the (897.94) the united states court of (155.62)
46 its (611930.00) years ago (66357.25) at the same (6344.44) the first time in (897.12) for more than a decade (151.02)
47 if (608648.75) when the (65028.62) but it is (6272.62) in an effort to (888.00) this film is rated r (149.75)
48 her (571742.75) in his (62736.00) at the end (6264.12) as well as a (883.31) spoke on condition of anonymity (148.44)
49 all (568749.50) who is (62527.25) i don’t think (6247.25) in the first half (883.22) court of appeals for the (148.30)
50 been (552982.75) and mr (61636.88) i don’t know (6171.06) president and chief executive (882.94) in the last five years (147.31)
100 here (259618.25) to have (44901.62) executive director of (4271.94) in the middle east (614.88) he graduated from the university (111.53)
150 st (168117.75) trying to (32876.25) and chief executive (3384.31) tens of thousands of (498.16) the virus that causes aids (92.28)
200 information (133141.25) kind of (26368.75) not going to (2943.56) the heart of the (425.56) secretary of state george p (79.97)
250 young (108081.25) where he (21971.38) a long time (2503.81) the first half of (387.38) came to the united states (69.20)
300 enough (93902.75) he did (19303.00) vice president for (2282.38) for a total of (347.19) salt and pepper to taste (63.61)
350 county (79788.75) to pay (17182.75) declined to comment (2116.62) time on the market (315.03) the new york city opera (58.09)
400 tax (72699.25) the west (15687.75) would like to (1993.69) salt and freshly ground (288.91) in state supreme court in (53.38)
450 became (65631.00) to come (14304.75) to more than (1884.75) the vast majority of (272.25) who is in charge of (49.69)
500 doing (59774.25) the soviet (13439.88) to build a (1787.25) he said it was (257.59) at the university of wisconsin (47.52)
600 quarter (51948.25) a more (11832.00) would be the (1569.44) new york city police (231.50) the good news is that (42.91)
700 someone (44616.75) in november (10500.62) a part of (1436.62) state supreme court in (211.69) he is also survived by (39.03)
800 weekend (39540.00) get a (9667.62) in a new (1314.62) they don’t want to (194.69) in the next five years (36.31)
900 plays (35724.50) given the (8871.62) but for the (1227.50) the last several years (184.69) that he not be identified (33.95)
1000 ask (32280.00) to show (8172.12) they would be (1141.31) those of us who (174.66) upper east side of manhattan (31.92)
1500 reduce (21437.25) in late (5853.50) who heads the (872.69) of the same name (135.16) i don’t know what to (24.73)
2000 seventh (15906.00) and up (4597.88) ought to be (721.38) will continue to be (111.94) the democratic congressional campaign committee (20.64)
2500 expansion (12556.75) why the (3791.38) of the biggest (621.31) of the iraq war (97.66) in the second half and (17.94)
3000 importance (10172.50) and get (3287.00) believed to have (545.69) in front of his (86.75) a good place to start (16.02)
3500 andy (8297.75) idea that (2869.38) he has made (492.75) it is unclear how (78.78) of the foreign relations committee (14.52)
4000 assessment (7023.75) due to (2576.38) of the report (453.06) original moldings and detail (72.62) there’s no question about it (13.31)
4500 rye (6046.50) which may (2336.75) which he was (417.50) the second and third (67.31) the book review last year (12.30)
5000 officiated (5247.00) ceremony at (2147.50) affected by the (387.06) to a multiyear contract (62.81) the first day of school (11.50)
6000 distinctive (4090.00) while others (1826.88) economist at the (340.38) to pay more than (55.56) we are unable to acknowledge (10.25)
7000 racist (3296.75) day for (1604.50) the number to (305.81) trinity college in hartford (50.03) it is a question of (9.31)
8000 cracked (2726.75) long term (1428.25) and i hope (278.56) the results have been (45.59) filed in state supreme court (8.56)
9000 shrine (2306.25) three and (1294.75) throughout the state (256.19) in the last seven (41.94) the company went public in (7.92)
10000 handel’s (1978.75) new generation (1181.38) of the home (236.62) that the police had (39.03) if there is such a (7.41)
15000 forgo (1063.50) states supreme (818.12) there are fewer (175.75) its way through the (29.50) of economics at the university (5.64)
20000 fujitsu (666.75) come at (627.62) a room with (140.88) the history of american (24.12) that donations be made to (4.62)
25000 refrained (456.50) north fork (508.38) to explain to (118.50) and mayor david n (20.56) that the soviet union would (3.97)
30000 tree’ (335.25) to disarm (427.50) going for it (102.44) the best they can (18.12) a former republican senator from (3.52)
35000 afrikaans (256.00) close and (367.12) out of character (90.56) end zone for a (16.22) the east and the west (3.17)
40000 rushers (201.75) by louis (321.62) a maze of (81.19) it also plans to (14.75) and does not want to (2.89)
45000 andrews’s (162.25) after hitting (285.50) sit in a (73.88) the new law will (13.50) he said the white house (2.67)
50000 hearne (133.00) candidate is (256.88) eastern european countries (67.81) confirmed that he had (12.53) it was the first victory (2.48)
60000 inxs (94.50) accounting standards (213.50) to use for (58.38) of people in this (11.00) and this was one of (2.19)
70000 airships (69.75) compensation and (181.75) doing enough to (51.31) as if it could (9.81) until the end of world (1.97)
80000 wei-sender (53.75) dairy farmers (157.50) he had missed (45.88) new jersey attorney general (8.88) game in the eighth inning (1.78)
90000 willan’s (42.75) table tennis (138.88) and special events (41.50) this is a town (8.12) pleaded not guilty to all (1.64)
100000 prosecutable (35.00) caught with (124.00) you are ready (37.88) i can’t say enough (7.50) the end of the new (1.53)

Table A.2: Example phrases for the New York Times extracted by random partitioning.
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Random text partitions

rank order=1 order=2 order=3 order=4 order=5
1 http (14482019.75) in the (196458.75) new blog post (34056.56) i just took the (5910.19) i favorited a youtube video (1839.47)
2 com (6428552.75) i am (157031.25) check it out (18386.69) e meu resultado foi (5061.88) i uploaded a youtube video (1453.28)
3 i (6227774.25) i just (141596.00) i love you (15578.25) other people at http (3254.81) just joined a video chat (1185.88)
4 ly (5320341.75) of the (140377.62) i just took (15341.56) check this video out (3243.06) fiddling with my blog post (917.62)
5 the (5180235.50) on the (137894.88) live on http (14544.62) just joined a video (2371.72) joined a video chat with (813.86)
6 bit (5140992.75) i love (137768.62) i want to (13955.88) a day using http (2061.75) i rated a youtube video (642.88)
7 a (5044536.50) i have (136816.38) i need to (12812.56) on my way to (2006.66) i just voted for http (582.91)
8 to (4183208.25) going to (121491.12) i have a (12131.88) favorited a youtube video (1842.59) this site just gave me (581.73)
9 o (2747181.50) i think (120492.75) quiz and got (11955.56) i favorited a youtube (1839.59) add a #twibbon to your (472.08)
10 rt (2735865.00) to the (105588.38) thanks for the (11796.62) free online adult dating (1659.81) the best way to get (454.42)
11 and (2671876.00) to be (103771.38) what about you (10897.31) a video chat with (1628.81) just changed my twitter background (444.41)
12 tinyurl (2630837.25) i was (92118.25) i think i (10602.31) uploaded a youtube video (1461.91) a video chat at http (375.84)
13 you (2594872.75) if you (89098.88) i have to (10443.56) i uploaded a youtube (1453.50) photos on facebook in the (356.89)
14 is (2589257.50) at the (85136.38) how are you (9339.94) video chat at http (1435.12) check it out at http (351.31)
15 in (2278977.00) i know (81260.50) looking forward to (9084.25) what do you think (1435.09) own video chat at http (341.72)
16 it (2209243.75) have a (81252.50) acabo de completar (9008.31) i am going to (1398.34) s channel on youtube http (304.75)
17 me (2049880.50) to get (79410.75) i love it (8357.44) if you want to (1359.84) and won in #mobsterworld http (293.28)
18 d (2017195.75) this is (78757.50) a youtube video (8342.50) i wish i could (1356.75) live stickam stream at http (289.97)
19 my (1967677.25) and i (78420.62) to go to (8035.69) just got back from (1344.84) on facebook in the album (289.03)
20 of (1925590.25) but i (77363.75) of the day (8032.19) at the same time (1310.53) added myself to the http (275.00)
21 on (1888067.25) are you (76166.25) what’ll you get (7927.12) thanks for the rt (1302.22) just added myself to the (274.16)
22 bitly (1814009.75) it is (73377.25) my daily twittascope (7900.69) channel on youtube http (1284.31) alot of followers using http (251.34)
23 s (1644797.75) i need (71952.50) if you want (7526.38) have a great day (1262.06) has just done a job (235.92)
24 n (1528713.00) it was (70856.62) going to be (7514.31) joined a video chat (1186.28) of followers check out http (232.44)
25 lol (1514066.50) is a (68456.88) i don’t know (7512.19) is going to be (1167.62) i love you so much (228.77)
26 p (1439044.75) i want (67746.75) i wish i (7496.06) trying to figure out (1145.16) if you want to get (225.47)
27 that (1325029.75) i don’t (67579.62) is going to (7426.94) thanks for the follow (1090.50) hey i just got alot (202.48)
28 at (1297915.75) i can (67569.12) going to bed (7393.75) to your avatar now (1077.56) mb and the humidity is (202.31)
29 just (1260488.00) to go (67275.00) one of the (7351.12) what are you doing (1069.03) more followers go to http (201.09)
30 u (1232849.00) just voted (66498.25) a lot of (7075.44) can’t wait to see (1031.53) make your own video chat (200.94)
31 de (1217523.25) thank you (65912.62) i feel like (7008.06) com twitter directory under (1011.69) you should check this site (199.98)
32 lt (1189756.75) want to (64412.75) i just got (6909.56) check it out http (1004.12) site out if you want (197.48)
33 this (1086481.00) listening to (63914.62) i need a (6752.81) i have no idea (947.03) where the wild things are (197.03)
34 e (1076997.00) in a (63833.88) in the morning (6713.38) add a #twibbon to (944.44) o luansantanaevc liga para voc (190.50)
35 so (1069598.50) right now (63056.50) on my way (6635.31) with my blog post (933.28) joined a video chat at (186.12)
36 www (1061481.75) to do (61255.25) let me know (6630.00) i don’t want to (929.91) getting ready to go to (186.09)
37 no (1042255.25) have to (59581.12) just took the (6078.25) fiddling with my blog (924.09) keep up the good work (183.22)
38 gt (974932.50) is the (58904.38) meu resultado foi (6037.75) i need to get (893.50) gets you tons of followers (181.47)
39 t (973331.25) on my (58570.00) can’t wait to (5670.00) i want to go (865.00) i just become a member (178.52)
40 with (964515.25) you are (57962.88) to be a (5662.25) just got home from (861.56) am i the only one (174.88)
41 but (962587.00) do you (57464.62) just woke up (5596.50) thank you so much (855.88) let me know if you (174.84)
42 im (961024.75) at http (56957.25) i just voted (5560.06) the rest of the (851.44) if you trying to get (173.91)
43 now (942129.00) i got (56806.25) what do you (5274.19) going to be a (848.88) on my way to the (173.20)
44 do (940366.75) need to (56329.25) just joined a (5162.19) the best way to (831.09) your own video chat at (170.86)
45 m (935591.50) vote too (56158.62) i am so (5077.88) i wish i was (817.91) at the end of the (163.81)
46 have (870991.75) the best (55650.75) e meu resultado (5062.62) the end of the (789.47) on my way to work (163.31)
47 be (868701.00) try it (52316.88) in the world (4978.25) check out this site (787.66) trying to figure out how (163.19)
48 twitpic (836558.50) will be (51355.38) happy new year (4964.62) i can’t wait to (784.03) looking forward to your tweets (158.67)
49 up (816280.25) i will (50980.00) getting ready to (4894.19) i am listening to (760.44) this is going to be (154.58)
50 what (809227.00) took the (50614.88) getting ready for (4842.00) to go to bed (757.81) i want to go to (154.06)
100 know (434311.75) on twitter (35430.38) go to the (3525.19) of followers using http (517.44) sign up free and get (102.12)
150 come (265721.25) good night (25500.38) to see you (2833.94) boa noite a todos (420.22) don’t know what to do (87.19)
200 watch (195026.50) i mean (20696.62) are you doing (2347.06) more for gemini http (358.44) the end of the world (65.86)
250 music (154807.00) of it (18114.25) at the end (2019.00) a lot of people (310.47) you know you want to (58.53)
300 soon (131072.75) get the (15471.12) out of my (1846.62) all of a sudden (281.06) us has given loan amount (52.56)
350 tell (113651.00) i saw (13997.00) to get the (1718.12) i miss you too (259.38) has been updated on nicedealz (48.59)
400 id (98939.25) at a (12575.50) to make it (1603.75) a member of this (236.84) now playing on smooth sounds (44.88)
450 gotta (85315.75) i might (11760.38) what happened to (1474.69) how to make money (223.25) i love him so much (42.11)
500 ne (76840.25) able to (10855.50) on the radio (1385.44) calling it a night (209.53) a day it work great (39.33)
600 care (63429.75) my hair (9497.50) to hear that (1256.88) what do you want (191.09) learn the trick discovered by (34.69)
700 once (52620.75) as the (8335.25) first day of (1133.31) thanks for the #followfriday (177.00) i just snapped a new (31.94)
800 final (45764.00) me out (7537.88) day at work (1047.62) going to bed early (159.59) only a matter of time (29.42)
900 search (40726.00) what u (6958.75) all is well (957.31) that would be a (148.81) need to go to the (27.66)
1000 jackson (37068.25) next year (6506.38) be on the (906.00) know what that means (139.56) you want more followers check (26.00)
1500 program (24182.75) but then (4861.50) when you are (689.25) is supposed to be (106.97) just woke up from my (20.38)
2000 jones (17577.75) reminds me (3908.38) not the only (576.38) to see you in (88.22) made me laugh out loud (16.84)
2500 pengen (13684.50) playing with (3222.12) not sure i (495.19) i feel for you (76.06) my friend made this great (14.50)
3000 host (11228.75) a person (2784.50) they are the (435.19) long way to go (67.12) get in the way of (12.94)
3500 ghost (9481.00) when a (2445.00) there was no (386.44) hope it gets better (60.88) so sorry for your loss (11.73)
4000 chi (8112.25) this a (2158.62) and if i (350.12) this minute was presented (55.94) home for rent in houston (10.75)
4500 attempt (7138.25) no homo (1952.12) to do what (322.62) i sound like a (52.03) want to take a nap (9.97)
5000 strength (6254.00) wanna get (1783.00) i can just (298.00) u know what i (48.66) or however you spell it (9.33)
6000 andr (4908.00) off your (1514.00) don’t know where (259.31) best of luck to (43.06) im going to take a (8.25)
7000 jeremy (3970.00) a world (1312.62) of things to (231.00) will there be a (38.56) medical and nursing staff wanted (7.44)
8000 domestic (3314.75) em out (1177.38) just voted demi (208.12) what not to wear (35.31) get more great followers at (6.81)
9000 aje (2837.00) so wrong (1060.62) yes you do (190.75) you have a link (32.59) it just me or are (6.31)
10000 fase (2468.50) now following (966.38) will be available (175.81) to be in bed (30.25) longs to be romantically entangled (5.91)
15000 lagunya (1421.00) head off (662.12) know each other (127.38) will do my best (22.84) it was good seeing you (4.47)
20000 bts (946.00) lovin the (502.75) is in need (101.44) we should meet up (18.56) a little bit of both (3.70)
25000 grandino (690.00) more photos (407.75) in the light (84.62) join our site for (15.72) going to see where the (3.19)
30000 treysongz (536.50) jus had (342.38) in this week (73.31) a break from work (13.81) this is a great site (2.80)
35000 helluva (438.00) some guys (295.38) too hot for (64.69) would like to share (12.34) i am so sorry i (2.50)
40000 woots (368.00) very scary (259.12) don’t get mad (57.94) have to stay in (11.16) how bad can it be (2.28)
45000 combi (315.00) red dwarf (230.75) hard is it (52.69) see some of you (10.22) we are working on the (2.09)
50000 rfd (274.25) recession proof (208.00) little help from (48.25) giving it a try (9.44) to your sign today can (1.95)
60000 wwwstickamjp (217.00) video converter (173.25) i woulda been (41.50) want to say i (8.22) a long time ago i (1.72)
70000 casbah (180.00) wonderful evening (148.12) holidays to all (36.31) vu all over again (7.31) don’t have enough on my (1.55)
80000 coolman (151.00) via de (129.62) min to get (32.38) i thought of u (6.59) but i can’t take it (1.41)
90000 caius (123.25) a share (115.00) that’s just sad (29.31) lady gaga or beyonce (6.03) my body wants to be (1.28)
100000 aliena (102.50) class right (103.25) eating a bowl (26.75) i can’t imagine that (5.56) never do much of anything (1.19)

Table A.3: Example phrases for Twitter extracted by random partitioning.
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Random text partitions

rank order=1 order=2 order=3 order=4 order=5
1 i (668838.75) in the (28174.25) i love you (2556.75) la la la la (514.06) la la la la la (184.89)
2 you (600813.50) and i (25040.88) i don’t know (2094.00) i don’t want to (315.31) na na na na na (93.98)
3 the (576318.50) i know (17993.00) i want to (1750.06) na na na na (281.78) on and on and on (48.28)
4 and (440698.25) you know (16977.75) la la la (1449.50) in love with you (237.28) i want you to know (47.70)
5 to (330196.75) i don’t (16237.12) i want you (1229.00) i want you to (227.75) you know what i mean (45.64)
6 me (305085.75) on the (14977.12) you and me (1159.00) i don’t know what (201.38) don’t know what to do (45.22)
7 a (301126.50) if you (13856.62) i don’t want (1105.88) i don’t know why (187.59) oh oh oh oh oh (40.80)
8 it (219505.25) to me (13048.50) i know you (1086.00) oh oh oh oh (181.59) da da da da da (40.41)
9 my (205611.00) to the (12940.75) i need you (1065.12) i want to be (172.69) do do do do do (40.02)
10 in (203916.25) to be (12614.00) and i know (1051.62) know what to do (144.06) one more chance at love (35.66)
11 that (150464.50) i can (12372.12) i don’t wanna (914.00) what can i do (141.41) i don’t want to be (35.38)
12 of (149402.75) and the (11679.88) i got a (904.25) yeah yeah yeah yeah (138.19) in the middle of the (34.66)
13 on (143576.50) but i (11512.50) i know that (903.00) you don’t have to (137.38) i don’t give a fuck (33.81)
14 your (135024.00) of the (11239.88) you know i (902.69) i close my eyes (130.31) yeah yeah yeah yeah yeah (33.05)
15 but (132235.00) i can’t (10372.88) i can see (872.62) you want me to (129.19) i don’t know what to (32.39)
16 all (124985.50) for you (10147.75) and i don’t (844.81) you make me feel (128.31) all i want is you (31.78)
17 so (121375.75) when i (10046.38) in your eyes (844.06) i just want to (128.00) you know i love you (26.88)
18 no (116877.00) come on (9924.25) i don’t care (832.06) da da da da (123.78) the middle of the night (26.73)
19 we (113865.25) you can (9686.00) and if you (825.94) if you want to (123.06) the rest of my life (26.34)
20 is (113375.25) i got (9577.88) the way you (824.94) come back to me (121.56) no no no no no (26.11)
21 for (108828.50) in my (9473.12) all the time (817.62) in the middle of (119.16) at the end of the (25.30)
22 oh (107477.25) all the (9467.25) na na na (790.38) and i don’t know (118.72) i wanna be with you (22.77)
23 be (107432.75) i want (9396.50) don’t you know (766.62) let me tell you (117.66) all i wanna do is (22.44)
24 love (104438.50) that i (9190.88) this is the (766.25) give it to me (111.97) no matter what i do (22.41)
25 it’s (99026.75) i am (9141.88) can’t you see (761.19) you are the one (111.94) the way you love me (21.42)
26 now (95016.75) and you (9048.75) you love me (753.44) do do do do (111.28) no matter what you do (21.36)
27 don’t (94956.00) i was (9028.12) oh oh oh (749.56) i love you so (111.16) what you do to me (20.83)
28 yeah (92807.00) tell me (8783.50) i wanna be (744.50) all i want is (109.81) when i close my eyes (20.31)
29 when (91600.75) like a (8614.12) you know that (714.38) how does it feel (109.69) and i don’t know why (20.09)
30 with (90323.75) the way (8512.38) you want to (709.62) know what i mean (109.12) let me be the one (19.86)
31 what (90190.50) to you (8289.50) you don’t know (707.62) no no no no (104.03) the end of the day (18.64)
32 this (90120.00) when you (8157.62) in my heart (693.69) to be with you (100.81) in the name of love (18.50)
33 know (89600.00) if i (7941.50) you and i (691.50) i don’t wanna be (97.50) lemme see you drip sweat (18.00)
34 like (84259.00) in a (7893.38) you make me (675.19) and on and on (96.47) i like the way you (17.91)
35 just (83346.75) my heart (7882.88) if you want (663.81) the end of the (94.66) it’s been a long time (17.89)
36 baby (83182.75) for me (7880.50) yeah yeah yeah (662.38) i wish i could (93.09) till the end of time (17.67)
37 do (81926.00) this is (7754.62) don’t want to (654.62) don’t give a fuck (92.94) i wish that i could (17.61)
38 up (81529.00) for the (7570.88) want to be (624.56) can you feel it (91.88) if you want me to (17.47)
39 if (74941.25) let me (7539.25) in my life (622.44) the way i feel (91.00) see it in your eyes (17.20)
40 chorus (72833.00) with you (7482.62) if i could (619.25) i don’t know how (90.47) no matter what they say (16.78)
41 can (67057.50) i need (7424.62) you know what (615.06) gon play with it (90.00) and i don’t know what (16.73)
42 down (66636.75) with me (7386.00) what you want (605.19) you know that i (89.84) let me hear you say (16.70)
43 get (63408.50) you are (7208.25) i used to (604.88) at the end of (89.38) i look into your eyes (16.70)
44 time (62579.50) i wanna (7083.00) on and on (595.94) can you hear me (89.06) i love the way you (16.64)
45 out (62562.50) what you (6949.00) i see you (592.88) want you to know (88.38) and i don’t want to (16.45)
46 go (62101.75) love you (6900.38) in the sky (587.75) out of my mind (86.62) when i think of you (16.38)
47 quot (61793.50) the world (6774.62) in the air (584.06) i need to know (86.56) i look in your eyes (16.31)
48 got (60347.00) do you (6733.50) what to do (577.12) all i wanna do (84.03) the end of the world (16.16)
49 one (59306.50) from the (6679.88) all night long (558.19) on the other side (83.88) when the sun goes down (16.11)
50 see (58662.50) want to (6649.88) i know i (557.00) do you love me (83.72) still in love with you (16.02)
100 that’s (28709.75) in love (4324.38) i just want (441.88) that you love me (61.00) you want me to do (11.83)
150 always (17981.50) i won’t (3225.00) make me feel (369.31) take a look at (51.09) the end of the line (9.78)
200 en (13668.25) without you (2692.50) for you to (308.31) you make me wanna (43.81) that’s the way it goes (8.77)
250 side (10606.00) when i’m (2280.75) who i am (277.81) the rest of my (39.50) the way that you do (7.88)
300 words (8896.00) so long (2050.12) on the wall (254.81) open up your eyes (36.66) i want to see you (7.23)
350 coming (7424.50) have a (1815.25) no one else (236.19) get out of my (34.09) makes the world go round (6.59)
400 ground (6669.25) that’s the (1645.12) that’s what i (218.94) i don’t want no (31.16) tell me what you need (6.22)
450 death (5688.75) then you (1506.12) come back to (206.38) don’t mean a thing (29.25) hey hey hey hey hey (5.81)
500 slow (5006.25) i try (1382.25) just want to (194.12) goes on and on (27.84) my my my my my (5.44)
600 cut (3808.00) here i (1196.62) i see your (172.44) me like you do (25.44) hey ladies drop it down (5.00)
700 grow (3091.25) love with (1066.25) in the game (158.62) in front of you (23.47) don’t know if i can (4.61)
800 shut (2569.75) my hands (969.25) not the same (145.62) you broke my heart (21.91) it’s been so long since (4.30)
900 doo (2167.75) i tell (879.75) yes i am (134.25) me what you want (20.78) you were the only one (4.06)
1000 seven (1898.75) s a (802.88) it was the (126.00) all that i want (19.69) just the way it is (3.88)
1500 food (1140.25) am the (562.75) a whole lot (95.38) i wanna thank you (15.59) mean a thing to me (3.20)
2000 fields (776.75) caught up (434.12) give me love (79.25) got nothing to say (13.09) a shoulder to cry on (2.78)
2500 vie (575.50) saturday night (352.00) yes you are (68.12) know that you can (11.62) was it good for you (2.48)
3000 compromise (451.00) of things (295.38) all about the (60.12) is how we do (10.34) right round like a record (2.27)
3500 couch (363.00) the white (254.50) think you can (53.75) joy to the world (9.38) your love would be untrue (2.08)
4000 pu (301.25) they see (223.75) i can fly (49.00) if i don’t get (8.69) he was the only one (1.94)
4500 collect (254.75) we’ll have (197.62) you said you’d (44.81) give it all to (8.09) you that we won’t stop (1.81)
5000 product (219.25) you drive (179.12) want to hold (41.25) wanna get with you (7.59) cut me down to size (1.72)
6000 whatchu (169.50) where you’re (149.50) take a breath (35.94) your eyes on me (6.78) round the ole oak tree (1.56)
7000 battered (135.25) a plane (128.62) right here in (32.00) i wish i may (6.19) move on down the line (1.44)
8000 verloren (111.25) step out (111.88) of all that (29.00) we can make love (5.69) bow wow wow yippie yo (1.33)
9000 nt (93.25) fuck what (99.12) be waiting for (26.44) who the fuck are (5.25) to warm a lonely night (1.25)
10000 honda (79.75) you should’ve (88.38) that what you (24.38) like a loaded gun (4.88) ain’t that what you said (1.19)
15000 fuma (43.75) little angel (57.50) i wouldn’t mind (17.44) it’s better this way (3.75) on christmas day in the (0.94)
20000 cooper (28.50) the undertow (42.00) the wrong place (13.69) since she left me (3.09) and let it all go (0.80)
25000 fishy (20.25) a major (32.88) for one last (11.38) and maybe you can (2.66) no matter how far away (0.70)
30000 illtown (15.25) alright baby (27.00) you should try (9.75) it take to make (2.34) t want french fried potatoes (0.62)
35000 ndelo (12.00) loud enough (22.62) never give it (8.56) i came to bring (2.12) what you gave to me (0.58)
40000 rees (9.75) view mirror (19.50) to me a (7.62) things i’m gonna do (1.94) love is out the door (0.53)
45000 metaphoric (8.00) your concern (17.12) roll roll roll (6.88) gotta say too much (1.75) non ci sono solo io (0.50)
50000 memorizing (6.75) the cancer (15.25) on the eyes (6.25) lay on the floor (1.62) set the floor on fire (0.48)
60000 ajai (5.00) an’ then (12.38) keep my eye (5.31) give up on yourself (1.44) right here next to you (0.44)
70000 aleiki (4.00) cats be (10.38) no more runnin’ (4.62) there’s only one god (1.31) gates of the seven seals (0.38)
80000 saatanan (3.25) blijf ik (8.88) we’ll show them (4.12) skies from now on (1.19) we don’t even have to (0.38)
90000 sauber (2.75) yo tell (7.75) time you say (3.69) it comes to that (1.09) ooh when you walk by (0.34)
100000 mosques (2.25) believe anymore (6.88) seemed so right (3.38) but if i leave (1.00) van de kille stemmen die (0.31)

Table A.4: Example phrases for Music Lyrics extracted by random partitioning.
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Context models

B.1.1 The New York Times
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Figure B.1: With data taken from the NYT corpus, we present (10-fold) cross-validation results
for the filtration procedures. For each of the lengths 2, 3, 4, and 5, we show the ROC curves
(Main Axes), comparing true and false positive rates for both the likelihood filters (black), and
for the frequency filters (gray). There, we see increased performance in the likelihood classifiers
(except possibly for length 5), which is reflected in the AUCs (where an AUC of 1 indicates a perfect
classifier). We also monitor the average number of missing entries discovered as a function of the
number of entries proposed (Insets), for each length. There, the horizontal dotted lines indicate
the average numbers of missing entries discovered for both the likelihood filters (black) and for the
frequency filters (gray) when short lists of 20 phrases were taken (red dotted vertical lines). From
this we see an indication that even the 5-gram likelihood filter is effective at detecting missing entries
in short lists, while the frequency filter is not.
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Context models

B.1.2 Music Lyrics

False positive

Tr
ue

 p
os

iti
ve

0
0.
2

0.
4

0.
6

0.
8

1

Length 2

AUC
0.788
0.594

0 20 40

0
2

4
6

Entries proposed

E
nt

rie
s 

di
sc

ov
er

ed

Length 3

AUC
0.775
0.656

0 10 30

0.
5

1.
5

2.
5

Entries proposed

E
nt

rie
s 

di
sc

ov
er

ed

0
0.
2

0.
4

0.
6

0.
8

1

0 0.2 0.4 0.6 0.8 1

Length 4

AUC
0.76
0.699

0 10 30

0.
0

0.
4

0.
8

Entries proposed

E
nt

rie
s 

di
sc

ov
er

ed

0 0.2 0.4 0.6 0.8 1

Length 5

AUC
0.735
0.739

0 20 40

0.
0

0.
4

0.
8

Entries proposed

E
nt

rie
s 

di
sc

ov
er

ed

Figure B.2: With data taken from the Lyrics corpus, we present (10-fold) cross-validation results
for the filtration procedures. For each of the lengths 2, 3, 4, and 5, we show the ROC curves
(Main Axes), comparing true and false positive rates for both the likelihood filters (black), and
for the frequency filters (gray). There, we see increased performance in the likelihood classifiers,
which is reflected in the AUCs (where an AUC of 1 indicates a perfect classifier). We also monitor
the average number of missing entries discovered as a function of the number of entries proposed
(Insets), for each length. There, the horizontal dotted lines indicate the average numbers of missing
entries discovered for both the likelihood filters (black) and for the frequency filters (gray), when
short lists of 20 phrases were taken (red dotted vertical lines). Here we can see that it may have
been advantageous to construct a slightly longer 3 and 4-gram lists.
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Context models

B.1.3 English Wikipedia
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Figure B.3: With data taken from the Wikipedia corpus, we present (10-fold) cross-validation results
for the filtration procedures. For each of the lengths 2, 3, 4, and 5, we show the ROC curves (Main
Axes), comparing true and false positive rates for both the likelihood filters (black), and for the
frequency filters (gray). There, we see increased performance in the likelihood classifiers, which is
reflected in the AUCs (where an AUC of 1 indicates a perfect classifier). We also monitor the average
number of missing entries discovered as a function of the number of entries proposed (Insets), for
each length. There, the horizontal dotted lines indicate the average numbers of missing entries
discovered for both the likelihood filters (black) and for the frequency filters (gray) when short
lists of 20 phrases were taken (red dotted vertical lines). Here we can see that it may have been
advantageous to construct a slightly longer 3 and 4-gram lists.
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Context models

B.1.4 Project Gutenberg eBooks
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Figure B.4: With data taken from the eBooks corpus, we present (10-fold) cross-validation results
for the filtration procedures. For each of the lengths 2, 3, 4, and 5, we show the ROC curves (Main
Axes), comparing true and false positive rates for both the likelihood filters (black), and for the
frequency filters (gray). There, we see increased performance in the likelihood classifiers, which is
reflected in the AUCs (where an AUC of 1 indicates a perfect classifier). We also monitor the average
number of missing entries discovered as a function of the number of entries proposed (Insets), for
each length. There, the horizontal dotted lines indicate the average numbers of missing entries
discovered for both the likelihood filters (black) and for the frequency filters (gray) when short lists
of 20 phrases were taken (red dotted vertical lines). Here we can see that the power of the 4-gram
model does not show itself until longer lists are considered.
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Context models

B.2.1 The New York Times

rank 2-gram 3-gram 4-gram 5-gram
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fin
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1 prime example as united states in the same time when push came to shove
2 going well in united states about the same time nat. ocean. and atm. admin.
3 south jersey by united states around the same time all’s well that ends well’
4 north jersey eastern united states during the same time you see what i mean
5 united front first united states roughly the same time so far as i know
6 go well a united states return to a boil take it or leave it’
7 gulf states to united states every now and again gone so far as to
8 united germany for united states at the very time love it or leave it
9 dining out senior united states nowhere to be seen as far as we’re concerned
10 north brunswick of united states for the long run as bad as it gets
11 go far from united states over the long run as far as he’s concerned
12 going away is a result why are you doing days of wine and roses’
13 there all and united states in the last minute as far as we know
14 picked out with united states to the last minute state of the county address
15 go all that united states until the last minute state of the state address
16 this same two united states remains to be done state of the city address
17 civil court its united states turn of the screw just a matter of time
18 good example assistant united states turn of the last be a matter of time
19 this instance but united states turn of the millennium for the grace of god
20 how am western united states once upon a mattress short end of the market

rank 2-gram 3-gram 4-gram 5-gram

fr
eq

ue
nc

y

1 of the one of the in the united states at the end of the
2 in the in new york for the first time because of an editing error
3 he said the new york the new york times the new york stock exchange
4 and the some of the in new york city for the first time in
5 for the part of the at the end of he is survived by his
6 at the of new york the end of the is survived by his wife
7 in a president of the a spokesman for the an initial public offering of
8 to be the end of at the university of by the end of the
9 with the there is a one of the most the end of the year
10 that the director of the of the united states the securities and exchange commission
11 it is it was a a member of the for the first time since
12 from the according to the the rest of the for students and the elderly
13 she said in the last at the age of beloved wife of the late
14 by the the white house to the united states he said in an interview
15 it was in the united in lieu of flowers the dow jones industrial average
16 as a the university of executive director of the the executive director of the
17 he was there is no the united states and tonight and tomorrow night at
18 is a it is a is one of the in the last two years
19 with a the first time of the new york in the new york times
20 and a in the first by the end of in the last few years

Table B.1: With data taken from the NYT corpus, we present the top 20 unreferenced phrases con-
sidered for definition (in the live experiment) from each of the 2, 3, 4, and 5-gram likelihood filters
(Above), and frequency filters (Below). From this corpus we note the juxtaposition of highly
idiomatic expressions by the likelihood filter (like “united front”), with the domination of the fre-
quency filters by structural elements of rigid content (e.g., the obituaries). The phrase “united front”
is an example of the model’s success with this corpus, as it’s coverage in a Wikipedia article began
in 2006, describing the general Marxist tactic extensively. We also note that we have abbreviated
“national oceanographic and atmospheric administration” (Above), for brevity.
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B.2.2 Music Lyrics

rank 2-gram 3-gram 4-gram 5-gram

de
fin

it
io
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d

1 uh ha now or later one of a million when push come to shove
2 come aboard change of mind made up your mind come hell of high water
3 strung up over and done every now and again you see what i mean
4 fuck am forth and forth make up my mind you know that i mean
5 iced up in and down son of the gun until death do us part
6 merry little now and ever cry me a river-er that’s a matter of fact
7 get much off the air have a good day it’s a matter of fact
8 da same on and go on way or another what goes around comes back
9 messed around check it check for the long run you reap what you sew
10 old same stay the fuck feet on solid ground to the middle of nowhere
11 used it set the mood feet on the floor actions speak louder than lies
12 uh yeah night to day between you and i u know what i mean
13 uh on day and every what in the hell ya know what i mean
14 fall around meant to stay why are you doing you’ll know what i mean
15 come one in love you you don’t think so you’d know what i mean
16 out much upon the shelf for better or for y’all know what i mean
17 last few up and over once upon a dream baby know what i mean
18 used for check this shit over and forever again like it or leave it
19 number on to the brink knock-knock-knockin’ on heaven’s door i know what i mean
20 come prepared on the dark once upon a lifetime ain’t no place like home

rank 2-gram 3-gram 4-gram 5-gram

fr
eq

ue
nc

y

1 in the i want to la la la la la la la la la
2 and i la la la i don’t want to na na na na na
3 i don’t i want you na na na na on and on and on
4 on the you and me in love with you i want you to know
5 if you i don’t want i want you to don’t know what to do
6 to me i know you i don’t know what oh oh oh oh oh
7 to be i need you i don’t know why da da da da da
8 i can and i know oh oh oh oh do do do do do
9 and the i don’t wanna i want to be one more chance at love
10 but i i got a know what to do i don’t want to be
11 of the i know that what can i do in the middle of the
12 i can’t you know i yeah yeah yeah yeah i don’t give a fuck
13 for you i can see you don’t have to yeah yeah yeah yeah yeah
14 when i and i don’t i close my eyes i don’t know what to
15 you can in your eyes you want me to all i want is you
16 i got and if you you make me feel you know i love you
17 in my the way you i just want to the middle of the night
18 all the na na na da da da da the rest of my life
19 i want don’t you know if you want to no no no no no
20 that i this is the come back to me at the end of the

Table B.2: With data taken from the Lyrics corpus, we present the top 20 unreferenced phrases
considered for definition (in the live experiment) from each of the 2, 3, 4, and 5-gram likelihood
filters (Above), and frequency filters (Below). From this corpus we note the juxtaposition of
highly idiomatic expressions by the likelihood filter (like “iced up”), with the domination of the
frequency filters by various onomatopoeiae. The phrase “iced up” is an example of the model’s
success with this corpus, having had definition in the Urban Dictionary since 2003, indicating that
one is “covered in diamonds”. Further, though this phrase does have a variant that is defined in
the Wiktionary (as early as 2011)—“iced out”—we note that the reference is also made in the
Urban Dictionary (as early as 2004), where the phrase has distinguished meaning for one that is so
bedecked—ostentatiously.
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B.2.3 English Wikipedia

rank 2-gram 3-gram 4-gram 5-gram
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1 new addition in respect to in the other hand the republic of the congo
2 african states as united states people’s republic of poland so far as i know
3 less well was a result people’s republic of korea going as far as to
4 south end walk of fame in the same time gone so far as to
5 dominican order central united states the republic of congo went as far as to
6 united front in united states at this same time goes as far as to
7 same-sex couples eastern united states at that same time the federal republic of yugoslavia
8 baltic states first united states approximately the same time state of the nation address
9 to york a united states about the same time as far as we know
10 new kingdom under united states around the same time just a matter of time
11 east carolina to united states during the same time due to the belief that
12 due east of united states roughly the same time as far as i’m aware
13 united church southern united states ho chi minh trail due to the fact it
14 quarter mile southeastern united states lesser general public license due to the fact he
15 end date southwestern united states in the last minute due to the fact the
16 so well and united states on the right hand as a matter of course
17 olympic medalist th united states on the left hand as a matter of policy
18 at york western united states once upon a mattress as a matter of principle
19 go go for united states o caetano do sul or something to that effect
20 teutonic order former united states turn of the screw as fate would have it

rank 2-gram 3-gram 4-gram 5-gram

fr
eq
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y

1 of the one of the in the united states years of age or older
2 in the part of the at the age of the average household size was
3 and the the age of a member of the were married couples living together
4 on the the end of under the age of from two or more races
5 at the according to the the end of the at the end of the
6 for the may refer to at the end of the median income for a
7 he was member of the as well as the the result of the debate
8 it is the university of years of age or of it is land and
9 with the in the early of age or older the racial makeup of the
10 as a a member of the population density was has a total area of
11 it was in the united the median age was the per capita income for
12 from the he was a as of the census and the average family size
13 the first of the population households out of which and the median income for
14 as the was born in one of the most the average family size was
15 was a end of the people per square mile had a median income of
16 in a in the late at the university of of all households were made
17 to be in addition to was one of the at an average density of
18 one of it is a for the first time males had a median income
19 during the such as the the result of the housing units at an average
20 with a the result was has a population of made up of individuals and

Table B.3: With data taken from the Wikipedia corpus, we present the top 20 unreferenced phrases
considered for definition (in the live experiment) from each of the 2, 3, 4, and 5-gram likelihood
filters (Above), and frequency filters (Below). From this corpus we note the juxtaposition of highly
idiomatic expressions by the likelihood filter (like “same-sex couples”), with the domination of the
frequency filters by highly-descriptive structural text from the presentations of demographic and
numeric data. The phrase “same-sex couples” is an example of the model’s success with this corpus,
and appears largely because of the existence distinct phrases “same-sex marriage” and “married
couples” with definition in the Wiktionary.
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B.2.4 Project Gutenberg eBooks

rank 2-gram 3-gram 4-gram 5-gram
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1 go if by and bye i ask your pardon handsome is that handsome does
2 come if purchasing power equivalent i crave your pardon for the grace of god
3 able man of the contrary with the other hand be that as it might
4 at york quite the contrary upon the other hand be that as it will
5 going well of united states about the same time up hill and down hill
6 there once so well as and the same time come to think about it
7 go well at a rate every now and again is no place like home
8 so am point of fact tu ne sais pas for the love of me
9 go all as you please quarter of an inch so far as i’m concerned
10 picked out so soon as quarter of an ounce you know whom i mean
11 very same it a rule quarter of an hour’s you know who i mean
12 come all so to bed qu’il ne fallait pas upon the face of it
13 look well of a hurry to the expense of you understand what i mean
14 there all at the rate be the last time you see what i mean
15 how am such a hurry and the last time by the grace of heaven
16 going away just the way was the last time by the grace of the
17 going forth it all means is the last time don’t know what i mean
18 get much you don’t know so help me heaven be this as it may
19 why am greater or less make up my mind in a way of speaking
20 this same have no means at the heels of or something to that effect

rank 2-gram 3-gram 4-gram 5-gram

fr
eq
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y

1 of the one of the for the first time at the end of the
2 and the it was a at the end of and at the same time
3 it was there was a of the united states the other side of the
4 on the out of the the end of the on the part of the
5 it is it is a the rest of the distributed proofreading team at http
6 to be i do not one of the most on the other side of
7 he was it is not on the other side at the foot of the
8 at the and it was for a long time percent of vote by party
9 for the it would be it seems to me at the head of the
10 with the he did not it would have been as a matter of course
11 he had there was no as well as the on the morning of the
12 by the and in the i am going to for the first time in
13 he said that he was as soon as the it seems to me that
14 in a it was not i should like to president of the united states
15 with a it was the as a matter of at the bottom of the
16 and i that he had on the part of i should like to know
17 that the there is no the middle of the but at the same time
18 of his that it was the head of the at the time of the
19 i have he had been at the head of had it not been for
20 and he but it was the edge of the at the end of a

Table B.4: With data taken from the eBooks corpus, we present the top 20 unreferenced phrases
considered for definition (in the live experiment) from each of the 2, 3, 4, and 5-gram likelihood
filters (Above), and frequency filters (Below). From this corpus we note the juxtaposition of
many highly idiomatic expresisons by the likelihood filter, with the domination of the frequency
filters by highly-structural text. Here, since the texts are all within the public domain, we see that
this much-less modern corpus is without the innovation present in the other, but that the likelihood
filter does still extract many unreferenced variants of Wiktionary-defined idiomatic forms.
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