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Table 5-1 (SD1) All age data associated with Quaternary deposits at the BNWR 
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Table 5-2 (SD2) Dinoflagellate species list for Miocene units under BNWR	
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CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH 

6.1. Summary of Findings 

By defining the geologic framework underlying east-central Chesapeake Bay and 

sampling for a variety of age and climate proxies, I have provided information that 

informs resource managers as they plan for adaptation to future sea-level rise. The 

>28,000 acre Blackwater National Wildlife Refuge (BNWR) was established with the 

goal of maintaining and enhancing productive habitat for a healthy diversity of wildlife 

species.  This goal remains, even in the face of accelerated sea level rise in the 

Chesapeake Bay region (Snay et al., 2007; Boon et al., 2010).  My research suggests that 

the BNWR and the tens of thousands of acres of adjacent protected lands occupy a 

geomorphic surface that derives from a paleo-estuarine environment that existed during 

marine isotope stage 3.  The implications of this age, spelled out in Chapter 2, indicate 

continued subsidence of the land surface for the foreseeable future, regardless of any 

climate amelioration strategies put into action by policy-makers and legislators.   

How then, in that light, should coastal resources in the BNWR and neighboring 

lands be managed? The range of potential sea level rise outlined in Chapter 2 indicates 

rates of sea level rise that outpace rates of marsh accretion (Cahoon and Guntenspergen, 

2010).  As for anywhere else, the two major responses that can be implemented at the 

BNWR are mitigation and adaptation, or most effectively a combination of the two.  

Mitigation is possible at global to regional scales, with global options including the 

reduction of greenhouse gas emissions via climate policy (IPCC, 2013).  While these 
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reductions would not stabilize the sea level itself, they can stabilize the rate at which sea 

level rises and potentially reduce it (Nicholls, 2010).  This is especially pertinent to 

regions like the BNWR because wetland loss is driven more by the rate of sea-level rise 

than the amount of rise itself.  Much of the marsh in the BNWR appears to have surface 

elevation below their ideal growing conditions, which means rapid conversion of marsh 

to open water can be expected to continue without reduction in greenhouse gas emission 

(Kirwan and Guntenspergen, 2012).   

Local-to-regional mitigation is less straight-forward.  Geo-engineering proposals 

have been offered by the U.S. Army Corps of Engineers to artificially build up portions 

of marsh in the BNWR using dredge spoil to force marshes to accrete more quickly than 

the sea is rising.  This technique has been tested at Poplar Island, north of the study site 

(http://www.mgs.md.gov/coastal_geology/pierp.html), and to a lesser extent in 3 small 

areas within the BNWR.  Though there were signs of improvement, they were localized 

and vastly out of scale with the regional challenges and associated budgets of scaling up 

to the Blackwater NWR and beyond. 

Given that the changes to the climate already put into motion cannot be reversed 

in the near future (Zickfield et al., 2013) and the suggestion in Chapter 2 that land 

subsidence is projected to continue long into the future due to the effects of GIA, 

adaptation remains the best proactive alternative for managers at the BNWR. Managers 

are currently developing adaptation plans using green infrastructure in the form of inland 

migration corridors for the persistence of key habitat.  This requires careful planning that 
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takes many different inter-related variables into account such as habitat requirements of 

endangered species, locations of road networks, land use/land cover of potential marsh 

locations, and soils suitability to wetland establishment.  In addition, it takes coordination 

between state and federal agencies and the cooperation of neighboring entities that may 

not share the same vision of preservation.  To date, there is no directional bias in corridor 

planning, and plans currently consider acquisition of several tracts of land near the 

southern end of the refuge where elevations are not as suitable to long-term habitat 

persistence.  Based on sea level inundation models (Larsen et al., 2004), any marsh that 

migrates to these fragmented areas will be highly susceptible to storm surges, which are 

projected to increase along US coasts (Tebaldi et al., 2012). My recommendation is thus 

to continue with migration corridor planning, but to focus efforts on the region north of 

the current footprint of the refuge, particularly above the scarp that I identified in Chapter 

2, where migration has the most successful outlook beyond 2100 when sea level is likely 

to be ~0.5 to 1.0 m higher than today. 

Several important findings from this research were made possible through the 

application of geochronology to a well-defined geologic framework:  

• Optically stimulated luminescence methods significantly improve 

understanding of the Late Pleistocene stratigraphy and geologic 

evolution of the field area.  By developing a system for sampling from 

sediment cores collected from a hollow-stem auger rig system, I had the 

unique opportunity to constrain ages of the surficial geology in 3 
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dimensions with much higher resolution than has ever been done in the 

mid-Atlantic coastal plain setting.  The results challenge long-held 

assumptions regarding relative sea-level history of the region and imply 

continued subsidence of the land surface from glacio-isostatic 

adjustment in the coming centuries.   

• My use of cosmogenic nuclide burial dating similarly challenges old 

assumptions regarding the development of the Delmarva Peninsula 

landscape.  Previously, the only methods available for dating major 

paleochannel fill deposits were uranium-series, applied to shell-

encrusting corals, and amino acid racemization techniques applied to 

well-preserved shells.  Corals are very rare in the Chesapeake Bay 

stratigraphy, and amino acid racemization techniques, while providing 

relative chronologies, remain poorly calibrated and depend on 

quantifying environmental parameters like thermal history that are 

extremely difficult to constrain (Wehmiller, 2013).  The isochron burial 

ages presented in chapters 2, 3, 4 and 5 thus represent a significant 

improvement over previous understanding of ages of major 

paleochannels, and help contextualize major fill units in the Chesapeake 

Bay and Delmarva Peninsula subsurface with the Pliocene gravels that 

form the spine of the Delmarva Peninsula. 

• From cosmogenic burial ages, we can calculate the concentrations of 
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10Be present in sediment source areas at the time sediment was deposited 

in the BNWR.  This provides a measure of relative landscape stability 

through time, as more stable landscapes accumulate higher 

concentrations of 10Be, whereas 10Be is stripped more readily and 

frequently from less stable landscapes.  The ages and concentrations 

presented in chapter 4 suggest that denudation in the Susquehanna River 

watershed doubled when glacial-interglacial climate fluctuations were 

established, and remained relatively stable since then.  

• My application of radiocarbon dating to the Holocene stratigraphy at the 

Blackwater NWR improves understanding of the development of tidal 

marsh that is the focus of preservation efforts today.  Two major 

lithologies are present in the Holocene stratigraphy, a lower, massive silt 

sequence, and an upper fibrous peat.  The peat represents accreted marsh 

deposits, which apparently began to accumulate during the last 

millennium, based on a limiting age at the top of the silt sequence.  

Radiocarbon ages produced from within the peat indicate modern ages, 

suggesting that the marsh is a very young feature.   

• The pollen analyses that I accomplished for the upper portion of the 

Blackwater NWR provides additional criteria for correlation of 

subsurface depositional units and a robust proxy for climate through 

time.  This analysis shows that the latest Pleistocene estuarine deposits, 
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dated to marine isotope stage 3, were indeed deposited when climate 

was cooler than present.  This finding supports the interpretation that 

relative sea level was much higher than previously thought during this 

time due to significant land motion driven by glacio-isostatic 

adjustment. 

 

6.2. Suggestions for future research 

 Reliable geochronology is central to the findings in this dissertation, and wider 

application of the methods herein to the coastal plain setting will improve our 

understanding of the timing and nature of Pleistocene cut-fill sequences that characterize 

Chesapeake Bay evolution.  Specifically, my work reveals opportunities for wider 

application of OSL and cosmogenic nuclides that could significantly improve correlation 

of Pleistocene sequences along the western and eastern shorelines of the Delmarva 

Peninsula, the western shore and tributaries of Chesapeake Bay, and North Carolina 

coastal areas.   

 My application of OSL dating techniques to surficial deposits in the study area 

provide important constraints on the landscape evolution, as it has in similar settings in 

North Carolina (Parham et al., 2013) and Virginia (Scott et al., 2010), but the perception 

of OSL methods in the research community would benefit from additional cross-

calibration with other dating methods. Recent attempts to verify OSL results against other 

dating methods, such as amino acid racemization and u-series, were successful in the 
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mid-Atlantic coastal plain (Parham et al., 2013).  But in some instances, the methods 

disagree (J. Wehmiller, pers. commun.), leaving skeptics within the research community 

of OSL applications in the coastal plain.  Similar responses resulted from previous 

advancements in geochronology; disagreement between uranium-series and amino-acid 

racemization dating methods spurred considerable argument for decades (e.g. Cronin et 

al., 1981; Mixon et al., 1982; Szabo, 1985; Wehmiller et al., 1988).  This was resolved by 

carefully re-evaluating existing data, producing new samples for cross-calibration, and 

ultimately erecting a new interpretation of the relative sea-level history of the region 

(Wehmiller et al., 2004).  So too must OSL be systematically checked against other 

methods, not only to test results of the method but also to improve understanding of the 

problems that OSL geochronology addresses, which often have societal implications (see 

Chapter 2).   

 Additionally, the OSL ages produced in this study and their implications 

regarding the glacial forebulge dynamics in the mid-Atlantic could be further tested by 

completing transects up and down the western and eastern coasts of the Delmarva 

Peninsula. Not only could this help validate existing OSL chronologies in the region, but 

it could also reveal any spatial patterns in age-elevation relationships of correlated 

surfaces to verify whether OSL-dated deposits conform to the shape of the forebulge 

determined by both radiocarbon-dated Holocene deposits and by tide gauge observations 

(Engelhart et al., 2009).  As yet, there are not enough regional OSL ages to test spatial 

trends in the elevation of MIS 3-aged deposits.  Such a study could significantly improve 
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our understanding of the magnitude of relative sea level change at the local and regional 

scales. 

 Furthermore, the stratigraphy beneath Chesapeake Bay and the Delmarva 

Peninsula present an unprecedented opportunity to redefine Plio-Pleistocene landscape 

evolution using cosmogenic nuclides in ways that have never before been possible.  The 

uplands both west of the Chesapeake Bay and on the Delmarva Peninsula include major 

Plio-Pleistocene gravel sheets of the paleo-Potomac, Susquehanna, and Hudson-Delaware 

drainage systems (Hack, 1955; Schlee, 1957; Owens and Denny, 1979; Owens and 

Minard, 1979).  These gravels make up the northern spine of the Delmarva Peninsula, 

and thus the earliest closure of the Chesapeake Bay, so dating these gravels using 

isochron burial techniques could definitively constrain the earliest evolution of this 

landscape and provide important information on paleo-Hudson-Delaware river system 

and source area.    

The logical next step, then, would be to apply isochron dating methods to 

progressively younger, well-known Susquehanna River paleochannels that are spatially 

constrained by the aforementioned gravel sheets.  I already show here that the range of 

26Al and 10Be isotope concentrations in Susquehanna River gravels are appropriate for 

isochron dating, and the method is ideal for dating several other channels whose locations 

are well constrained both via seismic studies (e.g. Colman and Mixon, 1988; Colman et 

al., 1990; Oertel and Foyle, 1995) and by scores of borehole data.  This work could: 

• Systematically reconstruct cycles of cutting and filling of the 
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Susquehanna River, building upon the work I completed in Chapter 4, to 

provide detailed information on the response of the largest estuary in 

North America to major cycles of sea level change. 

• Provide the framework from which to construct very long paleoclimate 

records for the mid-Atlantic region via pollen analyses on materials 

overlying dated gravels.  This could potentially extend the largest 

existing paleoclimate record for the region, which at present does not 

exceed ~115 ka (Litwin et al., 2013).   

• Allow for significantly improved correlation between channel deposits 

in the Chesapeake stratigraphy and their onshore counterparts.  Previous 

correlation between these deposits (Pazzaglia and Gardner, 1993) has 

been used in part to argue against long-held geomorphic models 

pertaining to landscape evolution in the region (Davis, 1899) and 

identify physical evidence for flexural uplift.  More precisely 

constraining relative ages of channel deposits and their correlative 

fluvial terraces may improve estimates of flexural uplift rates for a better 

parsing out of vertical land surface motion active on the landscapes both 

west and east of Chesapeake Bay. 

• Provide unparalleled means of documenting changes in landscape 

processes that occurred at the Plio-Pleistocene transition via analysis of 

cosmogenic nuclide concentrations.  Recent attempts to infer these 



 

180 

changes (e.g. Hidy et al., 2014) lack the long, complete records of 

Pliocene and Pleistocene sections that are widely available near the 

surface in the mid-Atlantic coastal plain.   

In addition to isochrons, which strictly use in situ 10Be, I also see great utility in 

applying meteoric 10Be in the field area and beyond.  My research shows that mid-

Atlantic marshes are relatively young features of the landscape, being established within 

the past millennium. Research in northern Atlantic marshes suggests that these features 

are merely relicts from colonial (Thorson et al., 1998) to 18th century (Kirwan et al., 

2011) land use practices, and that high sediment yields from land clearing enabled rapid 

marsh accretion.  This research suggests that as marshes degrade in locations such as 

these today, they are actually returning to a natural state, so attempts to “restore” them 

are feeble attempts at fighting nature.  While the story is likely more complex in 

expansive mid-Atlantic marshes, they record very similar Holocene stratigraphic 

sequences, and meteoric 10Be profiles produced near the mouths of 3 Chesapeake Bay 

tributaries indeed show a clear spike from land clearance, or “legacy sediments” (Valette-

Silver et al., 1986).  Presumably, these 10Be-enriched sediments stripped from the 

landscape were distributed into Chesapeake Bay marshes. I suggest producing meteoric 

10Be profiles on select sites within the Chesapeake Marshlands Wildlife Refuge Complex 

to see where the 10Be spike is located in the marsh profile.  If it is near the base of the 

fibrous, peaty unit that forms a continuum with active marsh, it may suggest that marsh 

establishment benefited greatly from anthropogenic sediment inputs that have 
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significantly diminished since that time. Because so much work is focused on the health 

of Chesapeake Bay and its marshes, it is prudent to ensure that we are indeed protecting a 

natural landscape feature and not a relict of up-catchment anthropogenic land use.  

The work completed in this dissertation, and the research proposed in this chapter, 

as well as many other geologic research efforts in the region would also benefit greatly 

from a resurgence in land-based seismic studies.  In 1994, Genau and others ran a short 

seismic line in the northwestern portion of my field area and uncovered important details 

about major Susquehanna River paleochannels that significantly guided my work.  While 

seismic reflection and refraction studies have been used more recently to address much 

older and deeper questions pertaining to the Chesapeake Bay Impact Crater (Catchings et 

al., 2008), to my knowledge no such work has been completed to improve mapping and 

correlation of more recent map units. Drilling has nearly exclusively been the means of 

accessing the subsurface for Delmarva research in recent years.  While it is common 

procedure to accompany geophysical profiling with borehole data for ground-truthing, 

the inverse should also be true to some extent, because drilling alone is too costly and 

drill sites are geographically isolated.   

Finally, the research presented in the previous chapters and the suggestions 

offered in this chapter highlight the potential of the Chesapeake Bay stratigraphy to help 

understand details of landscape evolution at a variety of timescales, but Chesapeake Bay 

is but one of several major coastal plain estuaries with great potential.  Because all 

coastal plain estuaries are geologically young features that all originated during the sea-
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level rise that has continued since the last glacial retreat, other major coastal plain 

estuaries such as the Thames River estuary in England, Ems River estuary in Germany, 

the Seine River estuary in France, the Si-Kiang River estuary in Hong Kong, and the 

Murray River estuary in Australia among others could provide an excellent opportunity to 

compare the response of landscapes to Pleistocene climate forcing.  While these estuaries 

share general geomorphic domains (drowned river valleys crossing low-relief coastal 

plain; Bokuneiwicz, 1995), they represent a gradient of climatic and tectonic conditions 

and a broad range in proximity to formerly active ice sheets, and could provide grounds 

for comparing relative sea-level forcing over long timescales if their preserved sediments 

were constrained in space and time.  Using Chesapeake Bay as a reference, these coastal 

features potentially preserve multi-million year, direct records of terrestrial and near-

shore processes at a range of timescales.  Such analysis offers a unique opportunity to 

address Plio-Pleistocene, terrestrial and marine landscape evolution around the globe. 
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