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Figure 3.13: Oriented CT scans of specimen post-experiment
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Figure 3.14: Cross-section CT scan showing etching dissolution at a) 1/4 length b) 2/4 length (0/4
= upstream face, 4/4 = downstream face)
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CHAPTER 4

CONCLUSION

4.1 'THESIS SUMMARY

Geothermal energy represents a viable alternative to traditional fossil fuels. Shallow and
deep geothermal energies have the potential to revolutionize indoor climate control and
large scale electricity production, respectively. The key to both shallow and deep geother-
mal resource sustainability lies in increasing and maintaining performance. For shallow
geothermal applications, this involves deepening our understanding of the thermal inter-
action between energy piles and surrounding soils. For deep geothermal applications, this
involves deepening our understanding of rock-water interactions and permeability /fracture
aperture evolution. This thesis attempted to add to the body of knowledge in the areas of

shallow and deep geothermal energy.

The performance of energy piles with respect to construction specifications was investi-
gated in this research (Chapter 2). The investigation involved the construction, calibration,
and validation of a full-scale model. Construction and calibration of the model were both
performed using available data extracted from an experimental group of energy piles located

in Colorado Springs, CO. The intensive calibration resulted in a model that accurately ap-
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proximated temperatures to within 3.6% of the field data (Sec. 2.10). Following calibration,
the model was parameterized with respect to construction specifications (concrete cover,
shank distance, and pile spacing). A performance metric was used to compare combinations
of parameters (heat rejected - W/m). This allowed the study to quantify the performance
increase/decrease with respect to construction specifications. Ultimately these combina~
tions were optimized (Fig. 2.10). Results from the parameterization exercise validated the
model and enabled the inspection of energy pile cross-sectional temperature/thermal strain
distributions (Sec. 2.11.3). Cross-sectional thermal strain was demonstrated to vary across
the core and around the perimeter of the energy piles. Based on the results from this study,
it is clear that the performance on an energy pile depends strongly on the heat exchanger
layout. An even heat exchanger layout is associated with a more even temperature/thermal
strain distribution and a higher performance, while uneven heat exchanger layouts result in

lower performance and varied cross-sectional thermal strain distribution.

The evolution of granite fracture apertures at EGS conditions was investigated in this
research (Chapter 3). An experimental methodology addressed the combined hydro-thermo-
mechanical-chemical processes that exist within EGS. The developed methodology is best
described as a steady-state flow-through column-like experiment on an artificially fractured
granite rock (Sec. 3.4). After the methodology was tested, modified, and improved, a
full-length experiment was performed. Pore-pressure observations recorded during the full-
length experiment indicated a decreasing fracture aperture and permeability (Sec. 3.5.2).
In combination with ICP-MS results and CT scans, these results support the hypothesis:
fracture surface asperities prop the fracture open and dissolve in the presence of deionized

water resulting in decreased fracture aperture.
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4.2 FUTURE WORK

This thesis introduced ways to investigate both shallow and deep geothermal energy sus-
tainability. Both studies presented here could be expanded upon in many different ways.
The calibrated model used for the parametric investigation of energy piles could be adapted
for several relevant studies. Similarly, the experimental methodology used for the investiga-
tion of fracture aperture analysis within EGS could be modified to study more sustainable

working fluids.

The calibrated model used for the parametric investigation of energy piles can be mod-
ified for two relevant studies. The study presented within this thesis showed the variable
temperature/strain distribution within an energy pile during a Thermal Response Test
(Chapter 2). Future studies should adapt this model to investigate the evolution of the
cross-sectional strain due to cyclic loadings (between heat rejection and heat extraction).
In order to perform these studies, the model boundary conditions would need to be mod-
ified. Namely, the variable inlet temperature would need to be adjusted to represent true
cyclic loading. These studies may yield additional insight for the estimation of thermal
stress and strain using field measured observations. Another relevant study should inves-
tigate long-term behavior of energy piles (50+ years). In order to accurately investigate
long-term energy pile behavior using the model presented in this thesis, not only would
the model boundary conditions need to be drastically modified, but the mesh and solver
would also require fine tuning. The variable temperature subsurface temperature boundary
condition is currently variable with depth, but for the proposed investigation it would need
to be variable with time as well. The inlet temperature would need to represent a true
energy pile. This means the inlet temperature would need to be a function of the atmo-

spheric temperature. In the case of a functional inlet temperature, the energy pile would
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only be activated when necessary. In order to model this behavior, flow rate would need to
be turned on and off periodically. Time-dependent modeling does not cater to this type of
periodic boundary condition (especially for fluid flow), and thus requires significant com-
putational time and resources. It may be prudent to investigate alternative ways to model
the long-term pile behavior at reduced computational cost. Perhaps adjusting a different
model parameter could achieve the same effect as adjusting fluid flow (e.g. heat exchanger
thermal conductivity may need to be adjusted from 0.2 - 0 W/(m k) to ‘turn the pile off’).
Or it may be necessary to build and calibrate a two dimensional model to the model used

for this thesis.

The experimental methodology used for the investigation of fracture aperture analysis
within EGS should first be further validated, and second it should be modified to study more
sustainable working fluids. The results discussed within this thesis provided insight into the
evolution of fracture aperture within Enhanced Geothermal Systems. Although the results
and analyses support the hypothesis, they are not conclusive due to questionable aperture
behavior at extended experimental times (300 hours+). Therefore, a replicate experiment
should be performed to determine whether this behavior is a result of the water-rock in-
teractions (specifically the development of etching on the fracture surface), and not due to
possible experimental error. Following a replicate, the results should support or contradict
the original experiment. At that point, a follow up investigation should be developed to
study the interactions of salts on the dissolution of quartz and feldspar minerals. This study
should stem from existing studies performed on the effect of salt presence on mineral disso-
lution rates and kinetics Dove (1999); Dove and Nix (1994); Gautier et al. (1994); Worley

(1994).
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