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Abstract 
 

The primary aim of this study was to investigate whether the joint action of the 
parasympathetic (PNS) and sympathetic nervous system (SNS) influenced three distinct 
indicators of child adjustment. Although evidence suggests that patterns of reactivity in 
the PNS and SNS each contribute to adjustment in youth, a paucity of work has examined 
the interaction between the two systems. Moreover, much of the research on children’s 
autonomic reactivity has overly relied on variable-centered analytic approaches, which 
aim to predict variance and assume homogeneity in the relations between predictors and 
outcome. This project also incorporated a person-centered approach to systematically 
identify individual differences in the interrelation between PNS and SNS reactivity and to 
classify children into homogeneous autonomic reactivity groups. The person-centered 
results were then applied to variable-centered analyses to examine how adjustment varied 
across homogeneous autonomic reactivity groups. Thus, the goal of this study was to 
apply both variable-centered and person-centered analyses to investigate whether 
children’s autonomic reactivity was related to child adjustment.  
 Children (N = 64, 8-10 years, M = 9.06, SD = 0.81) and one parent completed a 
psychophysiological laboratory assessment at Wave 1 during which each child’s 
respiratory sinus arrhythmia reactivity (RSAR; an index of PNS reactivity) and skin 
conductance level reactivity (SCLR; an index of SNS reactivity) was assessed in response 
to a mirror tracing challenge task. At both Wave 1 and Wave 2, each parent reported on 
their child’s internalizing symptoms, externalizing symptoms, and social competence.  

The variable-centered analyses revealed that, consistent with hypotheses, the two-
way RSAR x SCLR interaction was significant predicting internalizing symptoms at 
Time 1 and at Time 2. In both cases, RSA withdrawal was associated with fewer 
internalizing symptoms when coupled with low SCLR. When coupled with high SCLR, 
RSA withdrawal was associated with more internalizing symptoms at Time 1; however, 
RSAR was unrelated to Time 2 internalizing when coupled with high SCLR. In addition, 
SCLR was associated with more social competence and (marginally) fewer externalizing 
problems over time. The person-centered analyses (i.e., a model-based cluster analysis) 
identified two distinct clusters based on children’s RSAR and SCLR. Children in Cluster 
1 showed slight RSA withdrawal combined with SCL activation (modest reciprocal SNS 
activation) and exhibited marginally more internalizing and less social competence, as 
compared to children in Cluster 2 who, as a group, showed heightened RSAR (either 
withdrawal or augmentation) and SNS activation. When a 3-cluster model was examined, 
results indicated that children who showed modest reciprocal SNS activation (Cluster 1) 
showed marginally more internalizing symptoms then children who showed strong 
reciprocal SNS activation (Cluster 2A) and marginally less social competence then 
children who showed coactivation (Cluster 2B).  
 This study offers important evidence that person-centered analyses can identify 
differences in autonomic reactivity that are relevant to children’s adjustment. Cluster 
analysis identified only two (i.e., reciprocal SNS activation, coactivation) of the four 
autonomic profiles assumed to be represented in simple slope analyses in previous work. 
Thus, incorporating person-centered techniques in future research is an important and 
likely fruitful approach to investigating how autonomic reactivity contributes to child 
development.  
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Introduction 

Adjustment difficulties in childhood represent a prevalent issue; estimates suggest 

that psychiatric disorders occur in 19.5% of 9-10 year old children, with serious 

emotional and behavioral problems occurring at rates of 4.6% and 5.7%, respectively 

(Costello, Mustillo, Erkanli, Keeler, & Angold, 2003). Psychopathology can occur at 

subclinical levels across childhood, manifesting as more broad adjustment difficulties 

including problems in the domains of emotional, behavioral, and social functioning. 

Research supports the idea that there is both homotypic and heterotypic continuity in 

psychopathology across childhood and adolescence (Costello et al., 2003). Based on their 

review of existing literature, Costello & Angold (1995) found that 23-61% of children 

and adolescents with a diagnosed disorder at one wave continued to show mental illness 

at a subsequent wave, suggesting continuity across childhood and adolescence. Moreover, 

adjustment difficulties in childhood predict increased adjustment problems both within 

and across domains of functioning in adolescence (Bornstein, Hahn, & Haynes, 2010) 

and adulthood (Masten et al., 2005), suggesting that early maladjustment may set the 

course for long-term problems. Understanding factors that predict child adjustment 

problems can help inform prevention and intervention work aiming to reduce risk for 

adjustment problems across development.  

Individual characteristics of children may predispose them to demonstrate 

particular types of adjustment problems (Rothbart & Bates, 1998). One area of 

functioning that is potentially key to our understanding of children’s adjustment problems 

is psychophysiology, or the physiological foundations of psychological processes 

(Cacioppo, Tassinary, & Berntson, 2007). Individual differences in children’s 
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psychophysiology predict variability in a variety of adjustment domains (e.g., Boyce et 

al., 2001; Gazelle & Druhen, 2009; Hinnant & El-Sheikh, 2009). Thus, children’s 

psychophysiology may help to explain why some children are more likely than others to 

develop adjustment problems in middle childhood.  

Children’s psychophysiological responses to stress are of particular interest to 

attempts to understand the etiology of adjustment problems. Individual differences in 

physiological responses to stress are important for understanding processes that 

contribute to the development of psychopathology in children (Calkins & Fox, 2002; 

Cicchetti & Dawson, 2002). When faced with an environmental stressor, humans 

experience reactivity in multiple biological stress-response systems, including the 

autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis. The 

development of the stress response system may be influenced by exposure to 

environmental stressors and adversity (Obradović, 2012; Taylor, Lerner, Sage, Lehman, 

& Seeman, 2004), and subsequent patterns of physiological stress reactivity may relate to 

long-term physical and mental health problems when the stress response system becomes 

dysregulated (e.g., McEwen, 1998; Taylor, et al., 2004). Consequently, stress reactivity is 

an aspect of psychophysiology that is likely to be particularly relevant to understanding 

the etiology of adjustment problems. 

 Activity of the autonomic nervous system (ANS), which operates to maintain 

homeostasis by carrying out efferent signals from the brain to peripheral organs and 

tissues, as well as afferent signals from the periphery of the body to the brain (Janig, 

2006), appears to have particular relevance to adjustment in middle childhood (Boyce et 

al., 2001: Cummings, El-Sheikh, Kouros, & Keller, 2007; El-Sheikh et al., 2009; Hinnant, 
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& El-Sheikh, 2009; Hinnant & El-Sheikh, 2013; Getzler, Santucci, Kovacs, & Fox, 2009; 

Obradović, Bush, & Boyce, 2011). Although the HPA-axis may also play a role, HPA-

axis responding appears to be particularly relevant to stressors that involve threats to the 

social self (Gunnar, Talge, & Herrera, 2009), which is not the focus of this study. Instead, 

this dissertation focused on the ANS.  

Although a surge of research studies has emerged examining this topic over the 

past decade, existing research on children’s autonomic reactivity remains limited in 

several ways. First, many studies on children’s stress reactivity have examined only one 

branch of the ANS (i.e., parasympathetic or sympathetic). Because the branches of the 

ANS work in tandem, examining a single branch does not capture the complete picture of 

autonomic responding, which may prevent researchers from drawing accurate and 

specific conclusions about how children’s ANS reactivity relates to adjustment. Second, 

many studies on ANS reactivity have utilized a cross-sectional design. Longitudinal 

research is needed to investigate whether particular profiles of ANS reactivity precede 

changes in specific developmental outcomes. Finally, much of the research on children’s 

autonomic reactivity has utilized a variable-centered approach to analysis. Since variable-

centered analyses examine aggregate effects, this approach excludes potentially important 

information about interindividual variability. In contrast, a person-centered approach 

identifies differences and similarities between individuals, and therefore may be helpful 

in identifying important heterogeneity in developmental processes (Laursen & Hoff, 

2006). This project sought to move this research forward by addressing these limitations.  

The goal of my dissertation was to examine whether the joint action of the 

parasympathetic and sympathetic nervous systems predict concurrent variability and 
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changes across time in three indicators of child adjustment: internalizing symptoms, 

externalizing symptoms, and social competence. To this end, I conducted both variable-

centered and person-centered approaches to investigate whether children’s autonomic 

reactivity predicts individual differences in adjustment concurrently and longitudinally.  

The Autonomic Nervous System 

The autonomic nervous system (ANS) responds to internal and external demands 

and provides the physiological resources needed to regulate homeostasis and evaluate 

risk in the environment. Thus, the ANS is an important element of the physiological 

stress response system that contributes to emotional and behavioral self-regulation in 

challenging situations (Porges, 2007, 2011). The ANS is composed of the 

parasympathetic nervous system (PNS) and sympathetic nervous system (SNS), which 

operate together in a dynamic manner. 

Parasympathetic activity & reactivity 

The PNS maintains homeostatic functions and is the first branch of ANS to 

respond to environmental demands. PNS activity is considered indicative of regulatory 

processes, including the regulation of emotion and social behavior (Porges, 2007, 2011). 

The vagus nerve reflects PNS activity and, similar to the function of a brake, acts to 

inhibit heart rate. Originating in the brain stem, the vagus nerve is the tenth cranial nerve 

and facilitates a dynamic feedback system between the brain and specific organs through 

both efferent (i.e., motor) and afferent (i.e., sensory) fibers in order to regulate 

homeostasis (Porges, 2007; Porges, Doussard-Roosevelt, & Maiti, 1994). Increased vagal 

input reflects PNS activation, which decelerates heart rate and reduces physiological 

arousal. In contrast, decreased vagal input reflects decreased PNS activity (or PNS 
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withdrawal), which elicits increased heart rate and increased arousal. When an individual 

is faced with an environmental challenge or stressor, the vagus nerve typically withdraws 

input to the heart, thus withdrawing the “vagal brake” and evoking heart rate acceleration 

and increased arousal. This in turn facilitates increased metabolic and attentional 

resources in order to manage environmental demands. The “vagal brake” can rapidly be 

withdrawn or reapplied to generate immediate changes in cardiovascular output in order 

to manage environmental demands without activating the SNS (Porges, 2007, 2011).  

This study examined respiratory sinus arrhythmia (RSA) as a measure of PNS 

functioning. RSA measures parasympathetic input to the heart and represents the cyclical 

change in the inter-beat intervals of the heart that occurs in correspondence with 

respiration. RSA reactivity (RSAR) is an index of PNS responding under conditions of 

stress or challenge. RSA withdrawal indicates decreased PNS activity in response to 

stress (i.e., PNS withdrawal); RSA augmentation indicates PNS augmentation, or 

activation, in response to stress (Porges, 2007).  

PNS withdrawal is thought to be an adaptive physiological response to stress 

(Porges, 2007, 2011) that reflects emotional responsiveness, enables focused attention, 

and facilitates preparedness for a behavioral response to environmental cues, as well as 

flexibility in implementing emotional and behavioral self-regulation strategies  

(Beauchaine, 2001; Calkins, 1997; Porges, 2007, 2011; Thayer & Lane, 2000; Thompson, 

Lewis, & Calkins, 2008). Thus, insufficient or impaired PNS withdrawal may be relevant 

to the emergence of internalizing and externalizing problems in children, which involve 

varying degrees of impairment in emotional and behavioral self-regulation. Moreover, 

PNS withdrawal in response to challenge has been proposed as a physiological 
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mechanism through which children engage in their social environment in particular 

(Beauchaine, 2001; Porges, 2011); thus, PNS withdrawal may be also be relevant to 

children’s social competence. 

Consistent with these ideas, research supports the link between PNS withdrawal 

and a variety of beneficial developmental outcomes in children, including better self-

regulation (Gentzler, Santucci, Kovacs, & Fox, 2009), fewer internalizing and 

externalizing problems (Calkins & Keane, 2004; Gentzler et al., 2009) and more social 

competence (Graziano, Keane, & Calkins, 2007). Moreover, in a recent meta-analysis, 

Graziano and Derefinko (2013) found that PNS withdrawal was associated with fewer 

internalizing and externalizing problems in both community and clinical samples, and 

was associated with fewer social problems in community samples but more social 

problems in clinical/at-risk sample of children. This discrepancy in the link between PNS 

withdrawal and social problems across community versus clinical samples may suggest 

that the processes through which PNS reactivity relates to social functioning are different 

in children with existing emotional and behavioral problems, as compared to children 

without clinical symptoms. For example, it may be that children with clinical disorders 

experience a particularly high degree of PNS withdrawal, which may impair their social 

functioning by facilitating high emotional arousal coupled with poor self-regulation. In 

community samples, however, PNS withdrawal appears to have similar beneficial effects 

for internalizing, externalizing, and social problems. It is also important to note, however, 

that the meta-analysis described above found only small effect sizes in the associations 

between PNS withdrawal and internalizing and externalizing problems (Graziano & 

Derefinko, 2013).   
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Whereas moderate PNS withdrawal facilitates effective emotional and behavioral 

self-regulation, extreme PNS withdrawal may indicate hyper-reactivity and emotional 

lability (Beauchaine, 2001; Thayer & Lane, 2000). Exaggerated PNS withdrawal is 

linked to both anger and panic, reflecting the negative emotional states characteristic of a 

“fight or flight” response, and is related to less prosocial behavior and poor emotion 

regulation in children with ADHD (Beauchaine et al., 2013), as well as more conduct 

problems and anxiety symptoms in clinical populations (see Beauchaine, 2001). In one 

community sample, exaggerated PNS withdrawal was associated with more social 

exclusion and anxious solitude in children (Gazelle & Druhen, 2009). Thus, exaggerated 

PNS withdrawal may reflect overregulation, which may contribute to emotional and 

behavioral problems by eliciting extreme states of emotional arousal (Thayer & Lane, 

2000). It is important to note that psychophysiology researchers have not identified a cut-

off point to mark what should be considered excessive PNS withdrawal, which makes it 

difficult to compare findings across studies. It may be that excessive PNS withdrawal 

occurs most often in clinical populations, or that what should be considered an adaptive 

degree of PNS withdrawal may vary across populations (e.g., clinical versus community 

populations). Moreover, the magnitude of effect for physiological data will vary across 

different type of equipment (Quas et al., 2014). Therefore, even if researchers use the 

same measure (e.g., RSA), when researchers use different equipment to collect 

physiological data, the raw data cannot simply be compared across studies to identify an 

“exaggerated” level of reactivity, which makes it very difficult to interpret a true cut-off 

point at which too much physiological reactivity has occurred.  
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In response to a stressor, the vagus nerve may withdraw input to the heart to an 

insufficient extent, which reflects blunted or low PNS withdrawal, or may increase input 

to the heart, which reflects PNS augmentation or increased PNS activity. Sufficient PNS 

withdrawal is important for facilitating attentional and behavioral resources relevant to 

self-regulatory processes and behavioral responding (Porges, 2011). Thus, both blunted 

PNS withdrawal and PNS augmentation may indicate failure to mobilize the 

physiological resources necessary for effective engagement with environmental stressors. 

Consistent with this idea, blunted PNS withdrawal and PNS augmentation have been 

linked to heightened externalizing problems in children (Beauchaine, 2001; Boyce et al., 

2001; Calkins & Dedmon, 2000; Calkins & Keane, 2004; Graziano & Derefinko, 2013; 

Musser et al., 2011). However, PNS augmentation may not always be harmful. Blair 

(2003) found that PNS augmentation in response to an executive function task was 

associated with more social competence in young children. In addition, a study by 

Hastings and colleagues (2008) found that PNS augmentation in response to a social 

challenge was associated with fewer internalizing and externalizing problems and greater 

behavioral self-regulation in children, whereas PNS withdrawal was linked to more 

adjustment difficulties. However, Graziano and Derefinko’s recent meta-analysis of 44 

studies suggests that PNS withdrawal is most often associated more adaptive functioning 

in children across emotional and behavioral domains, and it is linked to better social 

functioning in non-clinical samples of children (2013). Thus, the majority of available 

evidence suggests that PNS augmentation is associated with less adaptive functioning 

across emotional, behavioral, and social domains.  



 

 
9 

SNS activity & reactivity 

The SNS functions in tandem with the PNS and activates in response to 

environmental stressors. At times, PNS responding may provide sufficient resources to 

allow the individual to appropriately manage a stressor; however, if the stressor is 

prolonged or is intense in nature, the SNS will activate, which facilitates a “fight or flight” 

behavioral response by increasing heart rate, oxygen flow, and perspiration throughout 

the body. By mobilizing metabolic resources, the SNS facilitates behavioral responding 

under conditions of perceived threat, extreme challenge, or stress (Boucsein, 2011; 

Porges, 2011). 

This study examined skin conductance level (SCL), which is a common index of 

SNS activity. SCL assesses electrodermal activity in response to sweat secretion. Sweat 

glands are innervated only by the sympathetic nervous system; thus electrodermal 

activity reflects activity of the SNS independent of PNS influence (for a detailed 

description, see Dawson, Schell, & Filion, 2007). Baseline SCL activity is assessed 

during times of rest, and SCL reactivity (SCLR) reflects the change from baseline SCL to 

SCL activity during times of stress or challenge. High SCLR represents increased SNS 

activity, or SNS activation, in response to stress, whereas low SCLR reflects blunted or 

impaired SNS activation in response to stress. Thus, in the literature, high SCLR refers to 

high SNS reactivity and low SCLR refers to low SNS reactivity.  

Activity of the SNS may be a marker of Gray’s neurophysiological motivational 

systems, known as the behavioral activation system (BAS) and behavioral inhibition 

system (BIS). According to this theory, functioning of the BAS is facilitated through SNS 

activity at a broad level, whereas functioning of the BIS is reflected specifically in SCL 
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(see Beauchaine, 2001), a specific indicator of SNS responding. The BAS controls both 

approach and active avoidance behaviors; approach behaviors aim to maximize reward, 

whereas active avoidance behaviors aim to minimize punishment in circumstances when 

a behavioral response is needed. SNS activation is thought to facilitate these active 

behaviors by mobilizing metabolic resources needed for behavioral activation. In contrast, 

the BIS facilitates voluntary behavioral inhibition in the face of aversive stimuli or 

punishment through the production of fear and anxiety. The BAS and BIS are expected to 

function in opposition, with only one system predominating and influencing behavior at a 

given time (Beauchaine, 2001; Gray, 1987). Low SCLR reflects low SNS arousal and 

may be indicative of a weak behavioral inhibition system (BIS) or fearlessness in 

threatening situations. Since BIS and BAS function in opposition, a weak BIS would also 

allow the BAS to function without restriction, thus contributing to unrestrained approach 

behaviors aimed at reward without anxiety or fear of potential consequences. Thus, low 

SCLR may reflect a weak BIS, which is thought to contribute to behavioral disinhibition, 

impulsivity, unrestrained behavioral activation behaviors, and sensation-seeking 

behaviors aimed at increasing an individual’s arousal to a normal level (Fowles, 

Kochanska, and Murray, 2000; Raine, 2002; van Goozen, Fairchild, Snoek, & Harold, 

2007).  

Consistent with these ideas, extensive research suggests that low SNS arousal is 

associated with heightened externalizing problems, including aggression  (Beauchaine, 

2001; Erath, El-Sheikh, Hinnant, & Cummings, 2011; Posthumus, Bocker, Raaijmakers, 

Van Engeland, & Matthys, 2009) and conduct problems (Gao, Raine, Venables, Dawson, 

& Mednick, 2010; see Lorber, 2004 for a review). Two recent studies examining the 
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moderating effects of SNS reactivity provide support for the idea that low SNS arousal 

heightens risk for externalizing problems in children. Gregson, Tu, and Erath (2014) 

found that peer victimization predicted externalizing problems in children with low but 

not high SNS reactivity, and Kochanska, Brock, Chen, Aksan, and Anderson (2015) 

found that negative parenting (high power-assertive control, low mutual responsiveness) 

was associated with more externalizing problems only for children with low SNS 

reactivity. Low SNS arousal may be especially problematic for boys. Two additional 

studies examining the moderating effects of SCLR found that the link between negative 

parenting (harsh parenting, marital conflict) and externalizing problems was strongest for 

boys with low SCLR (El-Sheikh, Keller, & Erath, 2007; Erath, El-Sheikh, & Cummings, 

2009). In these studies, low SNS reactivity appeared to be related to externalizing 

behaviors specifically when coupled with environmental risk.  

SNS activation is generally considered to be adaptive in the context of stress, as it 

serves to mobilize metabolic resources needed to manage a stressor through either fight 

or flight (i.e., escape) behaviors. Higher SNS reactivity is associated with less aggression 

(Posthumus, et al., 2009). However, if SNS activation is long lasting or is an exaggerated 

response to stress, this may reflect an overactive BIS, thus contributing to anxiety, 

fearfulness, behavioral inhibition, and panic (see Beauchaine, 2001 for a review). Indeed, 

evidence suggests that children with emotional disorders show excessive SNS activation 

(Garralda, Connell, & Taylor, 1991) and children with higher levels of negative affect 

have been shown to exhibit higher SNS reactivity in response to emotionally arousing 

tasks (Cole, Zahn-Waxler, Fox, Usher, & Welsh, 1996). It should be noted that higher 

SNS arousal may also contribute to externalizing problems. In contrast to the studies 
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reviewed above, heightened SNS arousal has also been found to be positively associated 

with physical aggression (see Lorber, 2004 for a review) and reactive aggression in 

children (Hubbard et al., 2002).  

Three studies examining the moderating effect of SCLR support the idea that 

exaggerated SNS reactivity may be harmful for youth when coupled with family risk 

factors. In a community sample, El-Sheikh (2005) found that marital conflict was 

associated with more internalizing, externalizing, and cognitive problems in girls with 

heightened SNS reactivity, and more internalizing symptoms in boys with heightened 

SNS reactivity. In addition, one study found that in the context of high parental 

depressive symptoms, children with high but not low SNS reactivity exhibited more 

internalizing, externalizing, and social problems (Cummings, El-Sheikh, Kouros, & 

Keller, 2007). In a sample of adolescents, Diamond, Fagundes, & Cribbet (2012) 

observed that living in a single-mother household was associated with greater 

externalizing problems among boys with high SCLR, but was associated with fewer 

externalizing problems for boys with low SCLR. In addition, mothers’ internalizing 

problems were associated with greater negative affect amongst girls with high SCLR, but 

less negative affect for girls with low SCLR (Diamond et al., 2012). As previously 

discussed in regards to research on parasympathetic reactivity, researchers have not 

identified a cut off point at which sympathetic reactivity should be considered 

exaggerated, and raw SCLR values cannot be compared across studies in a meaningful 

way (Quas et al., 2014). In addition, whereas RSAR is a commonly used measure of PNS 

reactivity across developmental studies, SNS reactivity can be assessed with distinct 

measurement procedures (e.g., SCLR, pre-ejection period). Thus, it is difficult to 
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determine if these studies captured sympathetic overarousal or whether extent of SNS 

reactivity can be compared across studies. It is possible that some studies captured 

overarousal whereas others did not, which may in part contribute to the discrepancies 

across findings.   

In sum, the literature on the SNS and children’s adjustment is more mixed than 

the literature on the PNS and children’s adjustment. SNS activation is thought to mobilize 

attentional and behavioral resources and thus may be related to adaptive functioning in 

children. In addition, low SNS arousal may contribute to externalizing behaviors, and 

exaggerated SNS reactivity may contribute to both internalizing and externalizing 

symptoms. It is unclear, however, whether SNS arousal is related to children’s social 

competence.   

Interactions between PNS and SNS 

Most of the research investigating the associations between autonomic reactivity 

and adjustment has only examined one branch of the ANS. However, physiological 

systems do not function independently, but instead operate in a dynamic, ongoing manner 

(Porges, 2007, 2011). According to Beauchaine (2001), impaired PNS reactivity (in the 

form of excessive PNS withdrawal) generates emotional lability and thus contributes to a 

variety of emotional and behavioral problems. However, SNS reactivity provides the 

physiological mechanism by which PNS dysregulation manifests into either approach 

(i.e., fight) behaviors or more inhibited (i.e., flight) behaviors (Beauchaine, 2001; 

Beauchaine, et al., 2007). Thus, previous conclusions drawn from studies of only one 

branch of the ANS are based on only partial information about the processes through 

which ANS reactivity contributes to child adjustment. To understand the influence of 
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autonomic stress reactivity on child adjustment outcomes with greater specificity, 

research must examine the joint effects of physiological systems (Beauchaine, 2001; 

Bauer, Quas, & Boyce, 2002). This approach also represents a key next step in the field; 

researchers have recently argued for the need to examine interactions between the PNS 

and SNS when investigating child adjustment (El-Sheikh et al., 2009; Keller & El-Sheikh, 

2009; Quas et al., 2014). However, little research has examined the influence of both 

branches of the ANS on adjustment. Although sparse, studies examining both branches of 

the ANS are increasing in number and support the importance of examining interactions 

between the parasympathetic and sympathetic branches of the ANS.  

Several theories may be helpful to explain how the PNS and SNS function 

together to influence children’s emotional, behavioral, and social functioning, including 

Polyvagal theory, the Doctrine of Autonomic Space, and El-Sheikh’s biopsychosocial 

framework.  

Polyvagal Theory  

 The Polyvagal Theory (Porges, 1995, 2007, 2011) proposes that the experience of 

emotion, emotional expression, and social behavior is directly linked to the 

neurophysiological system that regulates heart rate. Further, Polyvagal theory proposes 

that evolutionary development has created a hierarchically organized system that 

manages sequential responses of the autonomic nervous system under conditions of stress 

or challenge. According to this theory, the human nervous system has three hierarchically 

organized neural circuits, which are linked to the behaviors involved in social 

communication (e.g., facial expression), mobilization (e.g., fight or flight), and 

immobilization (e.g., freezing, feigning death). The vagus nerve is composed of two 
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distinct branches: a phylogenetically older branch, which promotes abnormally low heart 

rate and freezing behaviors, and a newer branch which influences heart rate variability 

and promotes social engagement. The newest circuit of this hierarchical system responds 

to environmental demands. If the newest circuit fails to sufficiently manage the 

environmental demands or is overwhelmed with a continued sense of threat, then older 

neural circuits are activated in sequential order. Importantly, the newest circuit is 

responsible for parasympathetic activity via the myelinated vagus nerve, whereas the 

second most recent neural circuit regulates sympathetic activity. Thus, according to 

Polyvagal Theory, the myelinated vagus nerve provides the first response to 

environmental conditions via PNS reactivity and only when this circuit is overwhelmed 

does the SNS activate to manage environmental conditions.  

 According to Polyvagal Theory, the dorsal vagal complex, referred to as the 

vegetative vagus, was the first response system to evolve and is composed of 

nonmyelinated vagal motor fibers originating in the dorsal motor nucleus (DMNX) in the 

brain. When higher-ordered circuits are overwhelmed or withdrawn in response to 

extreme threat, the vegetative vagus will activate, which induces extremely low heart rate, 

reduces oxygen use and energy demands, and increases pain tolerance. When the 

vegetative vagus is activated, behavioral responses resemble reptilian behavior, such as 

freezing.  

 After the vegetative vagus, the SNS was the next evolutionary development. 

When activated, the SNS is responsible for defensive behaviors, including “fight or flight” 

behaviors. By increasing cardiac output and sweat gland secretion, the SNS mobilizes 
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resources for a behavioral response, while inhibiting homeostatic activity, including 

gastrointestinal functioning (Porges, 2011).  

The ventral vagal complex is the most recent evolutionary development in the 

three-tiered neural circuitry of the autonomic nervous system and is composed of the 

myelinated vagus nerve and other cranial nerves originating in the nucleus ambiguus. 

According to Polyvagal theory, vagal activity at rest reflects the capacity for self-

regulatory processes; effective vagal responding provides an individual with the ability to 

behaviorally engage in their environment and appropriately manage their emotions and 

behaviors. Vagal responding involves both withdrawing the vagal brake and reinstating 

the vagal brake as needed. According to Polyvagal theory, PNS responding varies 

according to an individual’s perception of the environmental conditions. PNS withdrawal 

facilitates attentional and metabolic resources to enable effective behavioral and social 

engagement, which would be adaptive in a challenging or stressful scenario in which a 

behavioral response is needed. PNS activation counteracts the influence of the SNS, thus 

inhibiting defensive behaviors and promoting a calm behavioral state, which would be 

adaptive in a safe environment when a behavioral response is not needed. Importantly, 

vagal influence on the heart can be rapidly withdrawn or reapplied to immediately 

respond to environmental demands without activating the SNS, but under conditions of 

perceived threat or prolonged or extreme stress, the SNS will mobilize a fight or flight 

response.  

Polyvagal theory further suggests that humans use primitive neural circuitry to 

continuously assess risk versus safety in the environment. This process operates without 

conscious awareness and is referred to as “neuroception.” Without cognitive awareness, 
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humans perceive cues of safety or danger, which elicit neurobiologically determined 

prosocial or defensive behaviors. Polyvagal theory suggests that psychopathology may 

result when an individual is unable to either (a) inhibit defensive behaviors through PNS 

activation when the environment is safe or (b) mobilize defensive strategies in a 

threatening situation, through sufficient PNS withdrawal and SNS activation. In contrast, 

parasympathetic regulation of the heart contributes to adaptive functioning when the 

vagus nerve (a) increases the vagal brake to inhibit the defensive behaviors elicited by 

sympathetic arousal when the environment is safe, or (b) withdraws the vagal brake (i.e., 

PNS withdrawal) when attentional or metabolic resources are needed to manage 

environmental demands. Porges (2011) argues that the ability to release the vagal brake 

(i.e., PNS withdrawal) during a challenging task requiring behavioral and/or attentional 

resources may represent a physiological strategy that promotes social development and 

contributes to fewer behavioral problems. Thus, according to Polyvagal theory, human 

emotion, social communication, and behavior are directly related to the 

neurophysiological processes that contribute to reactivity of the PNS and SNS. 

Examining the two branches of the ANS together thus provides a critical avenue for 

understanding children’s emotional, social, and behavioral functioning.   

Doctrine of Autonomic Space 

To understand how the PNS and SNS function together, it is also useful to 

consider Berntson’s Theory of Autonomic Space (Berntson, Caccioppo, & Quigley, 

1991), which proposes a two-dimensional model of autonomic control. The PNS and 

SNS often respond to stress in a coordinated and reciprocal manner, thus enhancing 

autonomic functioning; however, in some instances the PNS and SNS may respond in an 
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uncoordinated manner. According to the doctrine of autonomic space (Berntson et al., 

1991), the PNS and SNS respond with: a) coupled reciprocal activity, in which PNS and 

SNS activity is negatively correlated or opposing (either reciprocal parasympathetic 

activation or reciprocal sympathetic activation); b) coupled nonreciprocal activity, in 

which PNS and SNS activity is positively correlated (either coactivation or coinhibition); 

or c) an uncoupled response in which only one branch of the ANS shows change. The 

most commonly studied profiles of autonomic reactivity include the two profiles that 

involve coupled reciprocal responding and the two profiles that involve coupled 

nonreciprocal responding (Quas et al., 2014). Thus, according to the doctrine of 

autonomic space, there are four typical profiles of autonomic stress reactivity: 1) 

reciprocal parasympathetic activation (PNS augmentation, low SNS reactivity); 2) 

reciprocal sympathetic activation (PNS withdrawal, high SNS reactivity); 3) coactivation 

(PNS augmentation, high SNS reactivity); 4) coinhibition (PNS withdrawal, low SNS 

reactivity).  

When the PNS and SNS respond in a coordinated manner, either reciprocal 

parasympathetic or reciprocal sympathetic activation may occur; both likely reflect a 

synergistic response between the two branches of the ANS. Reciprocal parasympathetic 

activation involves increased PNS activity combined with low SNS reactivity or SNS 

withdrawal and therefore reflects enhanced PNS functioning. Thus, reciprocal 

parasympathetic activation likely elicits increased “rest and digest” processes associated 

with the PNS. However, PNS augmentation and low SNS reactivity each reflect a 

physiological response that may provide insufficient resources for managing a stressor; 

thus, reciprocal parasympathetic activation may also be associated with more adjustment 
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difficulties. In a study that assessed RSAR and salivary alpha-amylase as an indicator of 

SNS activity, children exhibiting reciprocal parasympathetic activity showed high levels 

of externalizing problems (Keller & El-Sheikh, 2009).  

Recent research on the moderating effects of PNS and SNS reactivity offer 

contradictory findings regarding reciprocal parasympathetic activation. Two recent 

studies examined three-way interactions between a relevant environmental stressor, PNS 

reactivity, and SNS reactivity. One study found that reciprocal parasympathetic activation 

buffered against the harmful effects of marital conflict (El-Sheikh et al., 2009), whereas 

the other study (Wagner & Abaied, 2015) suggested that reciprocal parasympathetic 

activation may be a harmful response to stress. Specifically, I recently found that for 

college students who showed reciprocal parasympathetic activation, high relational 

victimization was associated with more reactive relational aggression (Wagner & Abaied, 

2015), which suggests that reciprocal parasympathetic activation may impair one’s ability 

to manage environmental stress, thus contributing to adjustment difficulties. It is 

important to note that the studies described above (El-Sheikh et al., 2009; Wagner & 

Abaied, 2015) examined a three-way environmental risk x PNS x SNS interaction; 

findings should be interpreted with caution in relation to this study, as this study 

investigated the two-way PNS x SNS interaction. Given the limited availability of studies 

simultaneously considering reactivity within both branches of the autonomic nervous 

system, however, these findings warrant some consideration regarding the current state of 

the field on the joint action of the PNS and SNS and their relation to adjustment in 

children. 
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Reciprocal sympathetic activation involves PNS withdrawal, which elicits 

increased heart rate and enables focused attention toward environmental stimuli, 

combined with SNS activation, which likely elicits increased metabolic resources via a 

fight or flight response (Berntson et al., 1991; Porges, 2011). Thus, for individuals who 

exhibit reciprocal sympathetic activation, the action of both the PNS and the SNS will 

elicit physiological arousal. In the context of stress, moderate levels of both PNS 

withdrawal and SNS activation may be adaptive responses. Thus the combination of PNS 

withdrawal and SNS activation may be an adaptive stress response, which would likely 

contribute to more adaptive functioning. Indeed, moderation studies suggest that 

reciprocal sympathetic activation buffers against the harmful effects of a variety of 

environmental stressors, including exposure to marital conflict in children (El-Sheikh et 

al., 2009) and exposure to relational victimization in college students (Wagner & Abaied, 

2015). On the other hand, it is possible that PNS withdrawal combined with SNS 

activation may lead to over-arousal. Excessive PNS withdrawal is linked to emotional 

lability including anxiety, panic, and rage; excessive SNS activation may contribute to 

anxiety, panic, and fearfulness (see Beauchaine, 2001), as well as externalizing 

symptoms and aggression (Lorber, 2004; Hubbard et al., 2002). One study by Lafko, 

Murray-Close, and Shoulberg (2015) found that low peer status (peer rejection and 

unpopularity) was associated with the greatest increases in relational victimization over 

time for girls who exhibited reciprocal sympathetic activation. Thus, the combination of 

PNS withdrawal and high SNS reactivity may heighten risk for emotional and behavioral 

difficulties. Although findings on the correlates of reciprocal sympathetic activation are 

mixed, the contradiction between these findings may in part be due to the fact that 
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developmental researchers do not currently have cut-off points to mark important 

distinctions regarding extent of reactivity. It may be that some samples (e.g., Lafko et al., 

2015) contain individuals who show excessive or insufficient ANS reactivity, whereas 

others contain individuals who predominantly show moderate or adaptive levels of PNS 

withdrawal and SNS activation.  

In addition to reciprocal activation, the ANS may sometimes respond to stress in 

an uncoordinated manner, whereby either dual activation or dual inhibition occurs 

(Porges, 2011). Dysregulated and uncoordinated physiological responding may contribute 

to behavioral problems in children, including externalizing problems (Bauer et al., 2002). 

In instances of coactivation, both the PNS and SNS show increased activity. Coactivation 

involves opposing actions and is analogous to simultaneously using a brake and an 

accelerator; this may elicit angry, dysregulated stress responses (Berntson, et al., 1991; 

El-Sheikh, et al., 2009). On the other hand, it may be that SNS activation can to some 

extent counteract the harmful effect of PNS augmentation, whereby SNS activation 

mobilizes resources which the PNS failed to provide (due to PNS augmentation rather 

then withdrawal). Thus, although PNS augmentation may be harmful, if PNS 

augmentation does occur, it may be helpful for the SNS to activate (i.e., high SNS 

reactivity) rather then not (i.e., low SNS reactivity). Indeed, Keller & El-Sheikh (2009) 

examined the two-way SNS x PNS interaction predicting externalizing problems and 

found that amongst children who showed PNS augmentation, those that showed high 

SNS activity exhibited fewer externalizing problems then those that showed low SNS 

activity. Thus, for individuals who exhibit PNS augmentation, those who show higher 

SNS activity may experience fewer adjustment problems.  
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Coinhibition involves PNS withdrawal and either low SNS reactivity or decreased 

SNS activity. When coinhibition occurs, the allocation of physiological resources needed 

to manage environmental demands is likely facilitated by PNS responding. PNS 

withdrawal facilitates increased heart rate, increased attention, and preparation for action, 

and low SNS reactivity may reflect a failure to launch a “fight or flight” response. In 

circumstances of extreme stress, coinhibition may provide insufficient resources. 

However, in circumstances in which environmental demands are challenging but 

minimally stressful, PNS withdrawal may provide a sufficient physiological response 

without activation of the SNS (Porges, 2011). In these low-stress circumstances, PNS 

withdrawal may provide sufficient physiological resources for a child to be able to 

manage environmental challenge and minimal SNS activation may help the child remain 

relatively calm. Indeed, one study found that children who showed low SNS activity and 

PNS withdrawal in response to a mirror tracing task had the lowest levels of externalizing 

behaviors (Keller & El-Sheikh, 2009). Thus, coinhibition may provide sufficient 

physiological resources in low-stress circumstances; however, coinhibition may be 

related to adjustment difficulties if PNS withdrawal provides insufficient resources and 

the SNS fails to activate to mobilize additional resources.  

Biopsychosocial framework 

 A third theoretical framework for conceptualizing the interplay of the PNS and 

SNS in children’s adjustment was proposed by El-Sheikh and colleagues (2009). These 

authors have found that within the context of marital conflict, the interactions between 

children’s PNS and SNS functioning predict externalizing problems in children. 

Specifically, marital conflict predicted externalizing problems for children with ANS 
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profiles characterized by coupled nonreciprocal responses (i.e., coactivation, 

coinhibition). In contrast, marital conflict was generally unrelated to externalizing 

problems for children showing physiological profiles characterized by reciprocal 

responses of ANS (i.e., reciprocal parasympathetic activation, reciprocal sympathetic 

activation). Thus, El-Sheikh et al. concluded that children’s profiles of autonomic 

functioning could serve as either protective or vulnerability factors within the context of 

environmental stressors. From this perspective, children who show either coactivation or 

coinhibition may become physiologically dysregulated in response to environmental 

stressors, leaving them vulnerable to future maladjustment. On the other hand, reciprocal 

responses of the ANS branches may be beneficial and provide children with the 

physiological resources to appropriately manage an environmental stressor. In turn, these 

children may fare better across development and experience fewer adjustment difficulties.  

Although El-Sheikh et al. (2009) examined the moderating effects of autonomic 

profiles and my dissertation does not consider children’s autonomic profiles within the 

context of an environmental stressor, El-Sheikh et al.’s conceptualization is still relevant 

to this study. Many children face everyday stressors (e.g., conflicts with friends, difficult 

academic tasks) on a regular basis; although these stressors may be less harmful then 

exposure to marital conflict, children’s autonomic responses to everyday stressors may 

still affect adjustment, either by physiologically equipping children to manage everyday 

stressors effectively, or by leaving them physiologically dysregulated or ill prepared to 

manage them. Moreover, I hypothesized that if children are physiologically ill prepared 

to manage everyday stressors, their autonomic reactivity may continue to influence their 

adjustment across time. It may be that dysregulated autonomic reactivity has a 
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cumulative effect, thus compounding risk for maladjustment across time. To examine this 

possibility, I conducted exploratory longitudinal analyses in which I examined whether 

children’s autonomic reactivity predicted changes in internalizing problems, externalizing 

problems, and social competence.   

Person-centered vs. variable centered approach 

 A small but growing body of research has investigated the joint action of 

children’s parasympathetic and sympathetic nervous systems as a predictor of 

developmental outcomes. However, contradictions exist across the studies described 

above, which may in part be due to the fact that researchers have primarily used variable-

centered approaches, as is common practice in psychological research. A variable-

centered approach to data analysis describes relations between variables. In this approach, 

hypotheses and research questions are framed in terms of variables and their relation to or 

ability to predict an outcome (Bergman & Magnusson, 1997). Variable-centered analyses 

aim to predict variance and therefore are well matched to questions about predictors’ 

relative importance in explaining variance in an outcome. Variable-centered analyses 

identify processes that to some extent occur across individuals; this approach is therefore 

important for identifying general principles of how variables relate to each other. 

Prediction is a noteworthy strength of the variable-centered approach (Laursen & Hoff, 

2006). However, this approach focuses on explaining the variance-covariance matrix and 

assumes homogeneity in the relations between predictors and outcome; therefore, the 

variable-centered approach is limited because it cannot systematically examine individual 

differences in how variables are interrelated (Bergman & Magnusson, 1997; Granic & 

Hollenstein, 2003).  
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 In contrast, person-centered approaches identify individual differences in the 

relations between variables. Whereas the variable-centered approach assumes population 

homogeneity, the person-centered approach assumes that there is population 

heterogeneity (Bergman & Magnusson, 1997; Laursen & Hoff, 2006). Person-centered 

techniques are designed to identify distinct groups of individuals who share similar 

characteristics. Classification aims to minimize within-group differences and maximize 

between-group differences in terms of attributes that characterize the groups. In contrast 

to variable-centered analyses, person-centered analyses are not limited to analyzing the 

variance-covariance matrix. Thus, an important strength of the person-centered approach 

is its ability to describe differences across individuals (Laursen & Hoff, 2006). 

Importantly, variable-centered and person-centered approaches can be combined 

to answer complex questions about processes that relate to development and how 

developmental outcomes vary across groups. Variable-centered and person-centered 

approaches each provide a unique perspective on the data: variable-centered analyses can 

identify how predictors relate to outcomes across homogeneous populations, whereas 

person-centered analyses can identify systematic differences across individuals (Laursen 

& Hoff, 2006). Thus, consistent with much of the previous research on children’s 

autonomic reactivity, I first used a variable-centered approach to examine the joint action 

of the PNS and SNS. Next, I used a person-centered approach to classify children into 

groups of autonomic reactivity profiles and then applied these results to variable-centered 

analyses to examine whether there were differences in adjustment across groups.   

Incorporating person-centered analyses into the study of psychophysiology is an 

important step for developmental researchers. This line of research may be helpful for 
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clarifying whether the extent of autonomic reactivity that a child experiences is relevant 

to adjustment. In addition, person-centered analyses may confirm the existence of distinct 

profiles of ANS reactivity that have previously been described in the literature (Berntson 

et al., 1991; El-Sheikh et al., 2009). To my knowledge, only two studies to date have used 

person-centered techniques to classify children into profiles of physiological reactivity. 

Muñoz, Kimonis, Frick, & Aucoin (2013) conducted a cluster analysis to identify profiles 

of autonomic reactivity amongst adolescent boys in a detention center. Cluster analyses 

identified three groups: “coactivators” (heightened PNS and SNS activation), 

“sympathetic activators” (heightened SNS activation combined with slightly increased 

PNS activation), and “low activators” (very low or blunted reactivity in both PNS and 

SNS branches). Given the unique population of this study, the profiles observed may not 

generalize to other populations. Nonetheless, Muñoz et al.’s (2013) findings support the 

idea that it is possible to identify distinct groups based on parasympathetic and 

sympathetic reactivity. In a recent study, Quas et al. (2014) used latent profile analysis to 

identify subgroups of children based on their reactivity across multiple physiological 

systems (PNS, SNS, HPA-axis). In four separate samples, the authors identified 

meaningful subgroups that were largely consistent across samples, suggesting that 

distinct patterns of stress reactivity exist across children. In all four samples, a pattern of 

moderate reactivity across physiological systems was most common; this group showed 

no hyper- or hypo-arousal and instead demonstrated balance and coordination across 

systems. In addition, all samples included a subgroup characterized by PNS withdrawal, 

which offers support for the idea that PNS withdrawal is a typical response to challenge 

or stress. Exaggerated reactivity across physiological systems was less common, but 
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observed in three of the four samples examined, suggesting that exaggerated reactivity 

may be an observable but relatively rare response.  

An important next step, however, is to investigate how distinct patterns of 

children’s stress reactivity relate to adjustment outcomes. My dissertation addressed this 

limitation by including a model-based cluster analysis to identify distinct clusters of 

children based on their profiles of ANS reactivity. I subsequently examined differences in 

adjustment across clusters.  

I examined PNS and SNS reactivity in response to a star-tracing task, which is a 

laboratory challenge task that has been previously used in several studies with children 

(e.g., Hinnant & El-Sheikh, 2009; Keller & El-Sheikh, 2009) to elicit a stress response. 

During this task, children are asked to trace a star while only being able to see their hand 

through a mirror, which is highly challenging for children and adults. This task requires 

children to maintain focused attention in order to accurately trace the star; since the 

participant cannot see his/her hand directly, this task is thought to elicit frustration 

(Hinnant & El-Sheikh, 2013). Thus, this task requires attentional resources and also 

likely elicits frustration, which the child must manage while continuing to attend to the 

task. Importantly, this task has been widely used in the literature to elicit ANS reactivity 

in middle childhood (e.g., Hinnant & El-Sheikh, 2009; Keller & El-Sheikh, 2009; 

Obradovic et al., 2011). 

It is important to note that previous studies examining ANS reactivity profiles 

have utilized variable-centered simple slope analyses to approximate groups of 

individuals based on PNS x SNS profiles. This study extended this research and used 

both variable-centered and person-centered analyses to examine ANS reactivity groups. 
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Specific aims and relevant hypotheses are described below. Analyses are described 

briefly in conjunction with each aim and then described in further detail in the results 

section.  

Aims & Hypotheses 

Aim 1: Investigate whether the joint action of children’s parasympathetic and 

sympathetic reactivity predicts individual differences in three outcomes of adjustment 

(internalizing, externalizing, social competence). 

 To examine Aim 1, I conducted three cross-sectional multiple regression analyses 

to investigate whether children’s autonomic reactivity was associated with Time 1 

adjustment. Separate analyses were conducted for each adjustment outcome (internalizing, 

externalizing, social competence).  

 Across adjustment outcomes, I expected that PNS withdrawal would be a 

beneficial response to stress. Although excessive PNS withdrawal is thought to elicit 

emotional lability (Beachaine, 2001; Thayer & Lane, 2000), I did not expect my 

community sample to include children with extreme levels of PNS withdrawal, nor did I 

have the ability to specifically identify excessive versus moderate PNS withdrawal within 

this sample, as researchers have not specified a specific cut-off point to indicate excessive 

versus moderate PNS withdrawal. Thus, I expected that the PNS withdrawal within this 

sample would be within a range that could be characterized as a beneficial response to 

stress.  

PNS withdrawal is thought to promote effective social engagement, behavioral 

preparedness, and self-regulatory processes (Beauchaine, 2001) and has been found to 

predict fewer internalizing problems, externalizing problems, and (in community 
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samples) better social competence (Graziano & Derefinko, 2013). Thus, I expected PNS 

withdrawal to be associated with better adjustment outcomes in children. However, I 

expected that the associations between PNS reactivity and each adjustment outcome 

would vary as a function of SNS reactivity. To test this hypothesis, I examined whether 

the two-way PNS x SNS reactivity interaction predicted individual differences in each 

adjustment outcome.  

Aim 1 Hypotheses. 

Internalizing 

I expected a positive main effect of PNS reactivity predicting internalizing problems. 

Thus, I expected that PNS withdrawal would be associated with fewer internalizing 

problems in children and PNS augmentation would be associated with more internalizing 

problems. However, I expected that the relation between PNS reactivity and internalizing 

problems would vary as a function of SNS reactivity. I expected higher levels of PNS 

augmentation to be associated with more internalizing symptoms when coupled with both 

high and low SNS reactivity, but to a greater extent (i.e., a steeper slope) in the context of 

low SNS reactivity, as high SNS reactivity may compensate for the resources that PNS 

augmentation fails to provide.  

Externalizing 

I expected a positive main effect of PNS reactivity predicting externalizing problems, 

such that PNS withdrawal would be associated with fewer externalizing problems, 

whereas PNS augmentation would be associated with more externalizing problems. 

However, I expected that the link between PNS reactivity and externalizing problems 

would vary across levels of SNS reactivity. Given the evidence linking SNS underarousal 
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with externalizing problems, I expected that children with low SNS reactivity would 

show overall higher levels of externalizing problems, as compared to children with high 

SNS reactivity, especially when coupled with PNS augmentation. Thus, I expected that 

higher levels of PNS augmentation would be associated with heightened externalizing 

problems in the context of both high and low SNS reactivity, but to a greater extent (i.e., 

a steeper slope) in the context of low SNS reactivity.  

Social competence 

I expected a negative main effect of PNS reactivity. Thus, I expected PNS withdrawal to 

be associated with more social competence and PNS augmentation to be associated with 

less social competence. I also expected that the association between PNS reactivity and 

social competence would vary as a function of SNS reactivity. However, given the 

absence of research on SNS reactivity and social competence, my hypotheses regarding 

these relations were somewhat more exploratory. I expected that higher levels of PNS 

augmentation would be associated with less social competence in the context of both high 

and low SNS reactivity, but to a greater extent (i.e., a steeper slope) in the context of low 

SNS reactivity. 

 

Aim #2: Conduct exploratory analyses to investigate whether the joint action of 

children’s PNS and SNS reactivity predicts changes in children’s adjustment across time.  

To investigate whether children’s autonomic reactivity predicts changes in 

adjustment, I conducted three longitudinal regression analyses. In a separate regression 

for each adjustment outcome, I examined whether RSAR, SCLR, and the 2-way RSAR x 
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SCLR interaction predicted Time 2 adjustment, when considering Time 1 adjustment 

levels.  

 I expected that the effects of children’s autonomic reactivity on adjustment would 

compound over time. For children who respond to stress with dysregulated responses of 

PNS and/or SNS, the ongoing interactions between the child and their environment (e.g., 

school, family, peer contexts) may alter their adjustment over time. Thus, I hypothesized 

that the cross-sectional patterns described above would be replicated longitudinally.  

 

Aim #3: Conduct exploratory analyses using a person-centered approach to identify 

distinct groups of children based on their autonomic (i.e., PNS and SNS) reactivity. An 

underlying goal of this analysis was to examine whether a cluster analysis would identify 

4 groups that reflect the 4 profiles of ANS reactivity (reciprocal PNS activation, 

reciprocal SNS activation, coactivation, coinhibition) that are assumed to exist in the 

variable-centered analyses. In addition, I examined whether there were differences 

across groups in adjustment (internalizing, externalizing, social competence). 

 To investigate whether my sample included distinct groups of children based on 

their ANS reactivity, I conducted a model-based cluster (MBC) analysis using R with 

children’s RSA reactivity and SCL reactivity included as clustering variables. I expected 

that at least 2 groups would be identified and tentatively hypothesized that 4 groups 

would be found, with one group mapping onto each of the 4 ANS reactivity profiles 

described above. In addition, I expected that if at least two distinct clusters exist in the 

sample, there would be differences in adjustment across identified clusters. Given the 

exploratory nature of the MBC analysis, I did not make specific hypotheses about how 
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the clusters might align with the theorized ANS reactivity profiles and thus did not make 

specific hypotheses about differences in adjustment across clusters. However, I expected 

that if a reciprocal sympathetic activation cluster was identified, children in this cluster 

would show better adjustment outcomes (i.e., less internalizing and externalizing, more 

social competence) compared to other groups. In addition, I expected that children who 

demonstrated PNS augmentation would exhibit the highest levels of adjustment problems 

compared to other groups.   

Method 

Participants 

 Sixty-five families participated in this study. Due to problems with the 

physiological equipment, one child did not have physiological data. Thus, the sample is 

composed of 64 children, who were predominantly Caucasian (8-10 years, M = 9.06, SD 

= 0.81; 36 boys, 28 girls; 95.3% Caucasian, 1.6% Asian American; 1.6% Hispanic; 1.6% 

reported Other). Each child had one parent participate in this study (93.8% mothers, 6.2% 

fathers; 95.3% Caucasian, 1.6% Asian American; 1.6% Hispanic; 1.6% reported Other). 

Reported gross family annual income varied (13.9% under $30,000, 23.1% between 

$30,000 and $60,000, 18.5% between $60,000 and $90,000; 41.5% above $90,000, 3.1% 

did not disclose). At Wave 2, 52 families participated. Children with and without data at 

Wave 2 did not differ in age, t(62) = 1.08, p = .29; sex, χ2(N=64, df=1) = 1.12, p = .29; 

Time 1 internalizing, t(61) = -.10, p = .92; Time 1 externalizing, t(61) = -.32, p = .75; 

Time 1 social competence, t(60) = 1.39, p = .17; RSAR, t(62) = .47, p = .64; or SCLR, 

t(62) = .36, p = .72. Missing data at Wave 2 was estimated using maximum likelihood 

estimation in Mplus.  
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Procedure 

Families were recruited via flyers, local newspaper ads, and online postings in the 

northeastern United States. At Wave 1, parent-child dyads completed a 3-hour laboratory 

visit. In the first phase of the Wave 1 laboratory visit, RSA and SCL were assessed 

during a series of baseline and challenge tasks. This study examined children’s 

physiological reactivity during one of these challenge tasks. In the second phase of the 

Wave 1 visit, parents completed a series of questionnaires. Parents were compensated 

$40 for their laboratory visit plus $0.25 per mile traveled, and children were given a prize 

or gift card of $10 in value. At Wave 2, parents completed questionnaires and were 

compensated $15. Wave 2 data was collected six months after Wave 1 participation. 

Autonomic Arousal 

Children’s autonomic arousal was measured with a custom physiological data 

acquisition system (James Long Company, Inc.), which includes a Pentium computer, 

Snapmaster software, and a bioamplifier. Respiratory sinus arrhythmia (RSA) was 

measured using an electrocardiogram (ECG). Parents placed three electrodes on their 

child’s torso: one on each opposing side of their rib cage and one ground lead on their 

sternum. Respiration was measured with pneumonic bellows that were attached around 

the child’s waist. Cardiac inter-beat intervals (IBI) were measured in milliseconds 

between consecutive R waves from the electrocardiogram and respiration was sampled at 

a rate of 1000Hz. ECG data was processed and R waves were identified using James 

Long Company’s IBI Analysis software. Misidentified R waves and any problematic IBI 

artifacts, including those from physical movement, were manually edited. Consistent with 

the ‘peak-to-valley’ method (Berntson et al., 1997), RSA values were calculated in 
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seconds and represent the difference between the minimum IBI during respiratory 

inspiration and the maximum IBI during exhalation. For each 30-second epoch of IBI 

data, RSA values were calculated by averaging the variance occurring within the 

frequency band-pass parameter of .1 to 1000 Hz. RSA values are reported in units of 

ln(ms)2.   

Skin conductance level (SCL) was assessed using two skin conductance 

electrodes, which were attached to the volar surfaces of the intermediate phalanges of the 

second and fourth fingers on the child’s non-dominant hand. Prior to measuring skin 

conductance, each child washed and dried his/her hands. Electrodes were then attached 

using double-sided adhesive collars. To increase conductivity, a layer of isotonic citrate 

salt electrode gel was put on the electrodes in the 1-cm diameter hole in the adhesive 

collars. A .5 volt rms sinusoidal AC excitations signal was used. Electrodermal activity 

was recorded to disk at 1 kHz but averaged and resampled offline at 1 Hz for the current 

study.  

Physiological data were continuously assessed and recorded throughout baseline 

and challenge tasks. Baseline RSA and baseline SCL were assessed during a rest period 

immediately prior to the laboratory challenge task. Baseline values were calculated by 

averaging the physiological data across the baseline period. RSAR was calculated by 

subtracting the mean baseline RSA from the mean RSA during the challenge task. 

Similarly, SCLR was calculated by subtracting the average baseline SCL value from the 

average SCL value during the challenge task. One RSAR outlier and one SCLR outlier 

were identified; each was manually edited to be +/- 3 standard deviations from the 

respective mean.  
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Mirror tracing task  

After a 3-minute resting baseline period, children completed a mirror tracing task 

(Lafeyette Instrument Company), which is a cognitive task in which they were instructed 

to trace a star pattern onto a piece of tracing paper while looking only at a reflection of 

their hand in a mirror. Children were not able to directly see the star pattern or their hand 

and therefore needed to look at the mirror to see the star and their tracing hand. This task 

has been used successfully to elicit physiological responses in children (El-Sheikh, 

Keiley, & Hinnant, 2010; Hinnant & El-Sheikh, 2013). 

Questionnaire Measures 

 Adjustment. Parents reported on child adjustment by completing the Child 

Behavior Checklist (CBCL; Achenbach & Rescorla, 2001), which is a 120-item parent-

report measure of child behavior across multiple domains of functioning. Internalizing 

and externalizing symptoms were assessed with the Internalizing problems scale and the 

Externalizing problems scale, respectively. Social competence was measured with the 

Social Competence subscale. The CBCL has been demonstrated to have good reliability 

and validity with high test-retest reliability and strong evidence of content, criterion, and 

construct validity (Achenbach & Rescorla, 2001).  

Results 

Preliminary Analyses 

 Descriptive statistics are displayed in Table 1 and bivariate correlations are 

displayed in Table 2. RSAR was unrelated to any other variable. SCLR was modestly and 

positively associated with Time 1 social competence, indicating that SCL activation in 

response to stress is associated with more concurrent social competence. As expected, 
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each adjustment outcome at Time 1 was moderately or strongly associated with the 

corresponding adjustment outcome at Time 2. In addition, Time 1 internalizing and Time 

2 internalizing symptoms were each moderately and positively associated with both Time 

1 externalizing symptoms and Time 2 externalizing symptoms.   

Paired sample t tests were conducted to compare mean-level RSA and SCL at rest 

to mean-levels in response to the mirror-tracing challenge task. Results indicated that the 

mean RSA during the mirror tracing task (M = 0.292, SD = 0.456) was not significantly 

different then the mean-level RSA at baseline (M = 0.289, SD = 0.341), t(63) = -0.07, p 

= .94. This nonsignificant difference is likely to have occurred because subgroups of the 

sample demonstrated opposite patterns of RSA reactivity: 82.81% of the sample 

demonstrated RSA withdrawal, whereas 17.19% of the sample demonstrated RSA 

augmentation. In contrast, results indicated a significant change from mean-level baseline 

SCL (M = 11.81, SD = 3.96) to the mean-level SCL during the mirror-tracing task (M = 

12.67, SD = 4.10), t (63) = .86, p < .001. 

Aim 1: Concurrent associations 

In order to test whether children’s autonomic reactivity predicts differences in 

concurrent adjustment (Aim 1), I conducted three multiple regression analyses in Mplus 

(Muthen & Muthen, 1998-2012). Separate models were conducted to examine each of the 

three adjustment outcomes: internalizing symptoms, externalizing symptoms, and social 

competence. Missing data was estimated using maximum likelihood estimation in Mplus, 

and maximum likelihood estimation with robust standard errors was used to 

accommodate non-normality in the data. Prior to analyses, RSA reactivity (RSAR; 

indicative of PNS reactivity) and SCL reactivity (SCLR; indicative of SNS reactivity) 
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variables were mean-centered, and a 2-way RSAR x SCLR interaction term was 

calculated. Each regression included the first order effects of RSAR and SCLR, and the 

two-way RSAR x SCLR interaction. Sex (male = 0, female = 1) was included as a 

covariate in each regression. Across models, the correlation between RSAR and SCLR 

was set to zero, as bivariate correlations indicated that the relation between RSAR and 

SCLR was negligible (r = -.005, ns). Standardized regression coefficients and 95% 

confidence intervals (CI) are reported in Table 3.  

Significant interactions were probed following the procedure outlined by Aiken 

and West (1991) and interactions were graphed using Dawson and Richter’s (2006) 

online template. Simple slopes were calculated at low (-1 SD) and high (+1 SD) levels of 

the SCLR. Simple slope statistics for significant interactions are reported in the text. To 

test whether significant interactions represented crossover interaction effects, procedures 

recommended by Roisman et al. (2012) were followed. To detect the presence of a 

crossover interaction, significant interactions were first graphed at 2 standard deviations 

above and below the mean of RSAR. I subsequently examined the proportion of the 

interaction (PoI) that is represented on either side of the crossover point (i.e., the point at 

which the simple slope lines cross over in the interaction plot). PoI values range from 0 to 

1; a PoI value close to 0 or 1 suggests an ordinal interaction, whereas a PoI value close 

to .50 suggests a crossover interaction. Finally, I examined the proportion affected (PA) 

with respect to RSAR. The PA index assesses the proportion of children differentially 

affected by high versus low SCLR. A PA value close to 0 suggests an ordinal interaction, 

whereas a PA value close to .50 indicates a crossover interaction.  
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Internalizing. Contrary to hypotheses, the regression analysis predicting Time 1 

internalizing problems indicated a nonsignificant first order effect of RSAR. In addition, 

the effects of sex and SCLR were nonsignificant. Consistent with hypotheses, there was a 

significant 2-way RSAR x SCLR interaction (β = -0.22, 95% CI = -0.43 to -0.01). The 

PoI (0.49) and the PA index (0.49) suggest a crossover interaction. Decomposition of the 

RSAR x SCLR interaction (see Figure 1) revealed that RSAR was positively associated 

with internalizing symptoms in the context of low SCLR (β = 0.33, 95% CI = 0.02 to 

0.65), but negatively associated with internalizing symptoms in the context of high SCLR 

(β = -0.16, 95% CI = -0.30 to -0.02). In other words, consistent with hypotheses, when 

coupled with low SNS reactivity, PNS withdrawal was associated with fewer 

internalizing symptoms. Contrary to hypotheses, however, when coupled with high SNS 

reactivity, PNS withdrawal was associated with more internalizing symptoms.  

Externalizing. In the regression analysis predicting Time 1 externalizing 

symptoms, sex was significantly associated with externalizing symptoms (β = -0.25, 95% 

CI = -0.48 to -0.03), such that boys showed significantly more externalizing behaviors as 

compared to girls. Contrary to hypotheses, the first order effects of RSAR and SCLR 

were nonsignificant and the 2-way RSAR x SCLR interaction was nonsignificant. 

Social Competence. In the regression analysis predicting Time 1 social 

competence, the first order effect of SCLR was significant (β = 0.26, 95% CI = 0.01 to 

0.50), such that higher SNS arousal was associated with more social competence. 

Contrary to hypotheses, all other effects were nonsignificant.   

Path Model. In order to further explore the relative importance of autonomic 

reactivity predicting each adjustment outcome, a path model was examined in which the 
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three Time 1 adjustment outcomes (internalizing, externalizing, social competence) were 

all included. Importantly, the effects reported above held when all adjustment outcomes 

were included in the model. Sex was significantly associated with externalizing 

symptoms (β = -0.26, 95% CI = -0.48 to -0.03), SCLR was positively associated with 

social competence (β = 0.27, 95% CI = .02 to .52), and the two-way RSAR x SCLR 

interaction was significant predicting internalizing symptoms (β = -0.22, 95% CI = -0.43 

to -0.01).  

Aim 2: Changes in Adjustment Over Time  

In order to test whether children’s autonomic reactivity predicts changes in 

adjustment, I conducted three exploratory regression analyses in Mplus (Muthen & 

Muthen, 1998-2012). All procedures described above were followed; in addition, each 

longitudinal regression analysis predicting Time 2 adjustment also included Time 1 

adjustment as a covariate. Standardized betas and 95% confidence intervals are reported 

in Table 3. Standardized regression coefficients and confidence intervals for all 

significant effects and the simple slope analyses are included in the text.  

Internalizing. In the regression analysis predicting Time 2 internalizing 

symptoms, Time 1 internalizing symptoms was significantly associated with Time 2 

internalizing (β = 0.62, 95% CI = 0.42 to 0.83), but the effects of sex and SCLR were 

nonsignificant. Contrary to hypotheses, the first order effect of RSAR was nonsignificant. 

Consistent with hypotheses, the 2-way RSAR x SCLR interaction was significant (β = -

0.35, 95% CI = -0.65 to -0.04) and the PoI (0.46) and the PA index (0.47) suggest a 

crossover interaction. Decomposition of the RSAR x SCLR interaction (see Figure 2) 

revealed that RSAR was positively associated with Time 2 internalizing symptoms in the 
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context of low SCLR (β = 0.45, 95% CI = 0.23 to 0.66), but RSAR was not associated 

with Time 2 internalizing symptoms in the context of high SCLR (β = -0.27, 95% CI = -

0.61 to 0.10). In other words, consistent with hypotheses and consistent with the cross-

sectional results for internalizing symptoms, when coupled with low SNS reactivity, PNS 

withdrawal was associated with fewer internalizing symptoms. However, PNS reactivity 

was unrelated to changes in internalizing symptoms when coupled with high SNS 

reactivity.  

Externalizing. In the regression analysis predicting Time 2 externalizing 

symptoms, Time 1 externalizing was significantly associated with Time 2 externalizing 

(β = 0.77, 95% CI = 0.58 to 0.96). The first order effect of SCLR was marginally 

significant (β = -0.16, 90% CI = -0.31 to -0.02), such that lower SNS reactivity was 

marginally associated with more externalizing problems. All other effects were 

nonsignificant.  

Social Competence. In the regression predicting Time 2 social competence, Time 

1 social competence was significantly associated with Time 2 social competence (β = 

0.58, 95% CI = 0.41 to 0.75). All other effects were nonsignificant. 

 

Summary of Variable-Centered Analyses 

 Contrary to hypotheses, the first order effect of PNS reactivity was nonsignificant 

across all models. Unexpectedly, more SNS activation was associated with more social 

competence. In addition, less SNS activation was marginally related to more 

externalizing symptoms over time. Consistent with hypotheses, the two-way RSAR x 

SCLR reactivity interaction was significant in the regressions predicting internalizing 
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symptoms at Time 1 and Time 2. In both cases, RSA withdrawal was associated with less 

internalizing symptoms when coupled with low SCLR. RSA withdrawal was associated 

with more Time 1 internalizing symptoms when coupled with high SCLR; however, 

RSAR did not influence Time 2 internalizing symptoms when coupled with high SCLR.  

Aim 3: Cluster identification   

To test my third aim, I conducted a model-based cluster analysis (MBC), which 

identified two distinct clusters of children based on their parasympathetic and 

sympathetic nervous system reactivity. Visual inspection of children’s autonomic profiles 

revealed that Cluster 2 contained children with opposite patterns of PNS reactivity. In an 

exploratory manner, I identified subgroups within Cluster 2 to create a 3-cluster solution. 

A detailed explanation for splitting Cluster 2 into subgroups is provided below. Using 

variable-centered regression analyses, I subsequently examined whether there were 

adjustment differences across a 2-cluster and 3-cluster solution. The analytic procedure 

for examining adjustment differences across clusters is described below.   

Model-Based Cluster Analysis 

To identify distinct groups of children based on their ANS reactivity profile, I 

conducted a model-based cluster (MBC) analysis using mclust version 5.1 library for R 

(Fraley, Raftery, Murphy, & Scrucca, 2012). RSAR and SCLR were used as clustering 

variables and were standardized prior to cluster analysis. Mclust version 5.1 compares the 

fit of fourteen models based on assumptions of the data’s shape, volume, orientation, and 

number of components. Up to nine components are examined for each model, yielding up 

to 126 unique possible cluster solutions. Goodness-of-fit was evaluated based on the 

Bayesian Information Criterion (BIC) value for each model identified. BIC values closest 
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to zero represent the best fit. When comparing fit across models, BIC value differences of 

ten or greater suggest “very strong” evidence for a superior model, whereas BIC value 

differences of two or less indicate “weak” evidence for a significant difference across 

competing models (Raftery, 1995). Previous research suggests that 76 participants would 

provide adequate power (1-! = .80) to identify at least two unique groups (Ning & Finch, 

2004). Thus the cluster analysis reported here is slightly underpowered.  

 Results from the MBC analysis indicated that the best fitting model (model 1; 

BIC = -321.14) was a model with a diagonal distribution, varying volume, varying shape, 

and two components (i.e., clusters). The next best fitting model (model 2; BIC = -323.54) 

identified was ellipsoidal in distribution with equal orientation and 2 components. Finally, 

the third best fitting model (model 3; BIC = -327.66) was ellipsoidal with varying volume, 

varying shape, varying orientation, and two components. Since the BIC values differed 

by approximately 2 across model 1 versus model 2, and the BIC values differed by less 

then 10 across all three models, results suggest that models 1, 2, and 3 are not 

significantly different from each other (Raftery, 1995). To further explore differences 

across models, I examined individual classification in each model and visually compared 

cluster classification across models. Interestingly, model 1, model 2, and model 3 each 

identified the exact same cluster classification solution. In other words, each child was 

classified into the same cluster based on his/her ANS reactivity profile in model 1, model 

2, and model 3. Taken together, the similar BIC values across models and the identical 

classification solutions across models lend support for the idea that distinct groups of 

children exist in this sample.  
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 Theoretically speaking, all three identified models conveyed the same information, 

as each model identified identical cluster classifications. Model 1 (BIC = -321.14) was 

chosen because it was the best fitting model (i.e., BIC value closest to zero). MBC results 

indicate that, on average, Cluster 1 (n = 37) exhibited a level of RSAR that was below the 

sample average RSAR (Mean = -0.108, variance = 0.007) and below sample-average 

SCLR (Mean = -.100, variance = 1.039). On average, children in Cluster 2 (n = 27) 

exhibited RSAR (Mean = 0.120; variance = 2.040) and SCLR (Mean = 0.110, variance = 

0.900) levels that were greater then the sample mean. Furthermore, MBC results suggest 

that the variability in SCLR scores is comparable across clusters, whereas RSAR scores 

are more variable in Cluster 2 as compared to Cluster 1. It is important to note that RSAR 

and SCLR scores were standardized prior to the MBC analysis; thus, negative scores 

cannot be interpreted as withdrawal and positive values cannot be interpreted as 

augmentation or activation. Based on this 2-cluster model, I created a categorical ANS 

reactivity group membership variable (Cluster 1 = 1, Cluster 2 = 2), which was 

subsequently used to examine adjustment differences across clusters.  

 In order to consider the theoretical implication of the identified cluster model, raw 

RSAR and SCLR scores were visually inspected and descriptive statistics for each cluster 

were examined (see Table 4). Examining raw RSAR and SCLR scores revealed that 

individuals in Cluster 1 (MRSAR = -.03, SDRSAR = .02; MSCLR = .79, SDSCLR = 1.00) 

exhibited slight RSA withdrawal and less SCL arousal as compared to Cluster 2. On 

average, Cluster 2 (MRSAR = .03, SDRSAR = .38; MSCLR = .95, SDSCLR = .92) exhibited 

RSA augmentation and more SCL arousal then Cluster 1. Independent sample t-tests 

were conducted to examine cluster differences in RSAR and SCLR, and Levene’s test 
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was conducted to test for homogeneity of variance across clusters. Results indicated that 

SCLR scores were not significantly different across clusters, t (62) = -0.66, p = .51, and 

the variance in SCLR scores was homogenous across clusters, F (62) = 0.32, p = .58. 

Results indicated that RSAR was not significantly different across clusters, t (26.13) = -

0.85, p = .40; however, the variance of RSAR scores was significantly different across 

clusters, F (62) = 83.22, p < .001, which indicates that the distribution of RSAR scores 

was heterogeneous across clusters. Although mean RSAR scores were not significantly 

different across clusters, this is likely due to the fact that Cluster 2 is comprised of 

children with opposite responses of the PNS (i.e., either RSA withdrawal or RSA 

augmentation), which average together to be a value that is similar to the Cluster 1 RSAR 

mean. Given that SCLR was not significantly different across clusters and that the 

distribution of SCLR scores is homogeneous across clusters, it appears that RSAR may 

be the more important factor influencing cluster classification.  

 To further investigate cluster classification, I visually inspected raw RSAR scores 

across clusters and generated additional cluster-specific descriptive statistics. Cluster 1 

(MRSAR = -.03, SDRSAR = .02) was comprised almost exclusively of children with small 

negative values for RSAR (range = .086, min = -.07, max = .016). It should be noted that 

35 of the 37 children in Cluster 1 showed RSAR scores between -.07 and -.002. Of the 

two other children in Cluster 1, one child showed an RSAR score of 0.000 (i.e., no 

change) and one child showed an RSAR score of 0.016 (i.e., slight RSA augmentation). 

In contrast, Cluster 2 (MRSAR = .03, SDRSAR = .38) showed substantially more variability 

on RSAR (range = 1.293, min = -.47, max = .823). Interestingly, Cluster 2 appears to 

have meaningful subgroups. Visual inspection of the raw RSAR scores revealed that 
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Cluster 2 was comprised of children who either demonstrated substantially larger 

negative RSAR scores (n = 16; MRSAR = -.238, range = .374, min = -.47, max = -.096) as 

compared to Cluster 1, or demonstrated substantial RSA augmentation (n = 11; 

MRSAR= .427, range = .744, min = .079, max = .823). Thus, it appears that Cluster 1 can 

be characterized as showing slight RSA withdrawal, whereas Cluster 2 can be 

characterized as demonstrating heightened RSAR; more specifically, Cluster 2 appears to 

include children with either substantial RSA withdrawal or substantial RSA augmentation.  

 Since the MBC analysis was slightly underpowered, it may be that children with 

substantial RSA withdrawal (n = 16) and children with substantial RSA augmentation (n 

= 11) were classified into the same cluster due to insufficient power. In order to consider 

whether there are meaningful differences between the subgroups of children in Cluster 2 

and how each subgroup may differ from Cluster 1, I created a new ANS reactivity group 

membership variable in which Cluster 1 membership remained the same and Cluster 2 

was split into subgroups: Cluster 2A (n = 16) refers to children originally classified in 

Cluster 2 who demonstrated RSA withdrawal and Cluster 2B refers to children originally 

classified in Cluster 2 who showed RSA augmentation. The new ANS reactivity group 

variable represents these three groups (1 = Cluster 1, 2 = Cluster 2A, 3 = Cluster 2B).  

 Cluster-specific descriptive statistics for RSAR and SCLR were generated and 

examined across the three clusters (see Table 4). Cluster 1 showed slight RSA withdrawal 

and a level of SCLR that is similar to the average SCLR for the entire sample. Similar to 

Cluster 1, the mean SCLR for children in Cluster 2B was similar to the sample-average 

SCLR; but in contrast to Cluster 1, Cluster 2B showed RSA augmentation. Children in 
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Cluster 2A showed greater RSA withdrawal then those in Cluster 1 and also showed 

above average SCLR.  

A one-way ANOVA with planned contrasts was conducted to examine whether 

mean RSAR and mean SCLR varied across 3 clusters. Homogeneity of variance in RSAR 

and SCLR scores was tested across clusters and the Brown-Forsythe F statistic was 

generated to provide a robust test of equality of means. Results indicate that there was 

heterogeneity in the variance of RSAR scores across clusters, F (2, 61) = 57.99, p < .001, 

and RSAR was significantly different across the 3 clusters, F (2, 13.73) = 40.58, p < .001. 

Planned contrasts indicated that RSAR was significantly different between Clusters 1 and 

2A (Mdiff = 0.21, t(15.43) = 6.79, p < .001), between Clusters 1 and 2B (Mdiff = 0.46, 

t(10.04) = 5.57, p < .001), and between Clusters 2A and 2B (Mdiff = -0.66, t(12.78) = -

7.60, p < .001). Variability in SCLR scores was homogeneous, F (2, 61) = 0.19, p = .83, 

and mean SCLR was not significantly different across the three clusters, F (2, 61) = 0.50, 

p = .61. All planned contrasts were nonsignificant for SCLR.  

Adjustment differences across clusters 

Variable-centered analyses were conducted in SPSS to test for concurrent 

adjustment differences across a 2-cluster solution (Cluster 1 versus Cluster 2), and to test 

for concurrent adjustment differences across a 3-cluster solution (Cluster 1, Cluster 2A, 

and Cluster 2B). The analytic procedure and corresponding results are first reported for 

the 2-cluster model and then for the 3-cluster model. For consistency, the same analytic 

procedure was followed to test for adjustment differences across the 2- and 3-cluster 

models.  
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Two-Cluster Solution. To test for differences in adjustment across Cluster 1 

versus Cluster 2, I conducted a one-way ANOVA with a planned contrast for each 

adjustment outcome, yielding three ANOVAs. Each ANOVA included Levene’s test to 

test for homogeneity of variance in adjustment scores across clusters and the Brown-

Forsythe F test was conducted to provide a robust test of equality of means. Marginally 

significant differences are displayed with means plots in Figure 3.  

Results indicate that the variability in internalizing scores was significantly 

different across clusters, F (1, 61) = 5.09, p = 0.03, and across clusters there was a 

marginally significant difference in internalizing symptoms, F (1, 59.95) = 3.06, p = .086, 

such that children in Cluster 1 (M = 7.81, SD = 6.58) showed more internalizing 

symptoms then children in Cluster 2 (M = 5.41, SD = 4.28). Variability in externalizing 

scores was significantly different across clusters, F (1, 61) = 4.79, p = 0.03, but on 

average externalizing scores were not significantly different, F (1, 60.02) = 1.33, p = .25 

in Cluster 1 (M = 6.92, SD = 6.72) versus Cluster 2 (M = 5.30, SD = 4.39). Finally, 

results indicated that across clusters, there was homogeneity in the variance of social 

competence scores, F (1, 60) = 0.22, p = .64, and a marginally significant difference in 

social competence across clusters F (1, 59.62) = 3.55, p = 0.06, such that Cluster 2 (M = 

9.63, SD = 2.25) showed more social competence as compared to Cluster 1 (M = 8.44, SD 

= 2.71). 

3-Cluster Solution. To examine adjustment differences across the 3-cluster 

solution, I followed the same analytic procedure described above for the 2-cluster 

solution, except that three planned contrasts were included in each ANOVA. In each 

ANOVA, contrast 1 tested Cluster 1 versus Cluster 2A, contrast 2 tested Cluster 1 versus 
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Cluster 2B, and contrast 3 tested Cluster 2A versus Cluster 2B for differences in 

adjustment. Marginally significant differences are displayed with means plots in Figure 4.  

Variability in scores on internalizing symptoms were homogeneous, F (2, 60) = 

2.49, p = 0.09, and not significantly different across the three clusters, F (2, 48.56) = 1.97, 

p = .15; however, contrast results showed a marginally significant difference in 

internalizing symptoms in Clusters 1 versus 2A, (Mdiff = 2.81, t(42.75) = 1.83, p = .07), 

such that Cluster 1 (M = 7.81, SD = 6.58) showed more internalizing symptoms as 

compared to Cluster 2A, (M = 5.00, SD = 4.29). Cluster 2B (M = 6.00, SD = 4.40) was 

not significantly on internalizing scores as compared to either Clusters 1 or 2A.  

Variability in externalizing scores was homogenous across three clusters, F (2, 

60) = 3.05, p = .06. Externalizing symptoms were not significantly different, F (2, 36.64) 

= 0.93, p = .41, across Cluster 1 (M = 6.92, SD = 6.72), Cluster 2A (M = 4.81, SD = 3.56), 

or Cluster 2B (M = 6.00, SD = 5.50). All contrasts were nonsignificant. 

The variability in social competence scores was homogeneous across clusters, F 

(2, 59) = 0.83, p = .44. Average social competence was not significantly different across 

clusters, F (2, 44.33) = 1.98, p = .15; however, planned contrast results indicated that 

there was a marginally significant difference in social competence across Clusters 1 

versus 2B (Mdiff = 1.28, t(23.55) = 1.74, p = .096), such that children in Cluster 2B (M = 

9.73 , SD = 1.93) showed more social competence then children in Cluster 1 (M = 8.44, 

SD = 2.71). On average, children in Cluster 2A (M = 9.56, SD = 2.51) did not differ from 

either Clusters 1 or 2B on social competence.  

Summary of MBC analysis & adjustment differences across clusters 
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 The MBC analysis identified 2 distinct clusters of children based on their 

parasympathetic and sympathetic reactivity. On average, Cluster 1 showed slight RSA 

withdrawal combined with a level of SCLR that was less then the sample average. On 

average, Cluster 2 showed RSA augmentation combined with a level of SCLR that was 

greater then the sample average SCLR. Marginally significant differences in adjustment 

were detected across clusters, such that Cluster 1 showed more internalizing symptoms 

and less social competence as compared to Cluster 2.  

 As a follow-up set of analyses, adjustment differences were examined across 3 

clusters. In the 3-cluster model, Cluster 1 remained the same and Cluster 2 was split into 

subgroups. On average, children in Cluster 2A showed substantial RSA withdrawal 

combined with above average SCLR and children in Cluster 2B showed substantial RSA 

augmentation combined with SCLR scores less then the sample-average SCLR and 

similar to SCLR scores in Cluster 1. Across these three clusters, RSAR was significantly 

different, but SCLR was not significantly different. Marginally significant adjustment 

differences were detected, such that children in Cluster 1 showed more internalizing 

symptoms then children in Cluster 2A and less social competence then children in Cluster 

2B. 

Discussion 

Limited research has examined the joint action of children’s PNS and SNS 

reactivity as predictors of child adjustment. Although the PNS and SNS operate in a 

dynamic manner, many studies have considered the influence of either children’s PNS or 

SNS independent of the other branch. However, to formulate a complete picture of how 

children’s autonomic reactivity influences development, it is important to consider both 
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branches of the ANS. The primary objective of this dissertation was to consider both the 

PNS and SNS in order to more fully understand how children’s autonomic reactivity is 

related to adjustment.   

Variable-centered approach 

First-order effects 

Parasympathetic responding under conditions of stress or challenge has been 

conceptualized as a physiological mechanism that facilitates emotional responding, 

focused attention on the challenging situation at hand, and preparedness to launch a 

behavioral response to engage with one’s social environment (Beauchaine, 2001; Calkins, 

1997; Porges, 2007, 2011; Thayer & Lane, 2000; Thompson et al., 2008). Polyvagal 

theory asserts that PNS responding is a psychophysiological marker of the regulation of 

emotion and social behavior, and that PNS withdrawal is an adaptive response to stress 

(Porges, 2007). Previous research with children supports the Polyvagal perspective and 

suggests that greater PNS withdrawal in response to challenge is associated with better 

self-regulation (Gentzler et al., 2009), fewer internalizing and externalizing symptoms 

(Calkins & Keane, 2004; Gentzler et al., 2009), and greater social competence (Graziano 

et al., 2007). Thus, I expected children’s PNS reactivity to be relevant to their emotional, 

behavioral, and social adjustment, and more specifically, I expected greater PNS 

withdrawal would be related to better adjustment outcomes. Contrary to hypotheses, all 

first order effects of RSAR were nonsignificant, such that the aggregate effect of RSAR 

was unrelated to children’s internalizing symptoms, externalizing symptoms, and social 

competence both concurrently and longitudinally. The nonsignificant relation between 

PNS reactivity and children’s adjustment stands in contrast to a recent meta-analysis, 
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which suggests that greater PNS withdrawal is associated with fewer internalizing and 

externalizing problems and more social competence in community samples of children 

(see Graziano & Derefinko, 2013). However, there are some discrepancies in the 

literature. For example, some evidence suggests that RSA augmentation is linked to more 

social competence (Blair, 2003), fewer internalizing and externalizing symptoms, and 

greater behavioral self-regulation (Hastings et al., 2008). In addition, some studies (e.g., 

Hinnant & El-Sheikh, 2009; Keller & El-Sheikh, 2009) have observed nonsignificant 

relations between children’s PNS reactivity and adjustment, including internalizing and 

externalizing symptoms.  

Although the hypothesized link between PNS withdrawal and better adjustment 

outcomes was not supported, this study does offer support for the idea that PNS 

withdrawal is a typical physiological response under conditions of challenge or mild 

stress, as the majority of children (79.69%) showed PNS withdrawal. However, this 

sample also included children who showed substantial RSA augmentation. These 

opposing responses were averaged together in the variable-centered analyses, which may 

at least in part explain why I was unable to detect a first order association between 

children’s PNS reactivity and adjustment. Furthermore, Graziano and Derefinko (2013) 

noted small effect sizes in the link between PNS withdrawal and both internalizing and 

externalizing symptoms in children, and the aggregate effect of PNS reactivity on social 

competence was nonsignificant. Due to the small sample size, this study was likely 

underpowered to detect small effects.  

 Activity of the SNS is thought to be particularly relevant to behavioral processes. 

Sympathetic activation elicits increased heart rate, oxygen flow, and perspiration, which 



 

 
52 

generate the metabolic resources needed to launch an active behavioral response to stress 

(Beauchaine, 2001; Boucsein, 2011). Moreover, the SNS is also implicated in regulatory 

processes that contribute to effective behavioral control. Thus, it was surprising that SNS 

reactivity was unrelated to concurrent externalizing symptoms. In this study, SNS 

reactivity was measured in response to a problem-solving task. Perhaps the mirror tracing 

task did not elicit sufficient variability in SNS arousal to detect an overall effect of SCLR. 

It is also possible that SCLR was unrelated to Time 1 externalizing symptoms due to the 

low frequency of problems in this sample. Consistent with this view, Boyce et al. (2001) 

found that only children showing high externalizing symptoms demonstrated a blunted 

response of the SNS. There was, however, a marginal negative effect of SNS reactivity 

on Time 2 externalizing problems. After accounting for externalizing problems at Time 1, 

lower SNS reactivity was marginally associated with increased externalizing problems at 

Time 2. Although the sample-wide mean of externalizing problems decreased from Time 

1 to Time 2, it seems more likely to have occurred for children who showed higher levels 

of SNS arousal. Extensive evidence suggests that blunted reactivity of the SNS heightens 

risk for externalizing problems, including more aggression and conduct problems (e.g., 

Erath et al., 2011; Posthumus et al., 2009; Gao et al., 2010). Blunted SNS reactivity may 

be a marker of a weak behavioral inhibition system (BIS), which may contribute to 

impulsivity, an inability to appropriately inhibit behavior, or fearlessness in 

circumstances in which punishment is possible (Beauchaine, 2001, Fowles et al., 2000; 

Raine, 2002; van Goozen et al., 2007).  

Interestingly, children’s SNS arousal was also relevant to concurrent social 

competence, such that more SNS activation in response to challenge was associated with 
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more social competence. Since there is a relative absence of research on children’s SNS 

reactivity and social competence, it is particularly interesting that on average SNS 

reactivity, but not PNS reactivity, was relevant to children’s social competence. SNS 

arousal facilitates behavioral preparedness and provides metabolic resources to manage 

challenging environmental circumstances (Beauchaine, 2001). Thus, children with less 

SNS arousal may be less physiologically prepared to behaviorally respond to stress or 

challenge, in turn leaving them less competent in managing their social environment. 

Alternatively, children who experience more SNS arousal likely maintain more 

physiological resources during times of challenge, facilitating active engagement 

behaviors and effective behavioral control (Beauchaine, 2001), both of which may be 

beneficial to children’s social adjustment. Since the children who participated in this 

study constitute what is considered to be a community sample, it is likely that the extent 

of SNS activation observed in this study is within a range that could be characterized as 

typical, rather then reflecting over-arousal, which would theoretically be harmful to 

children’s adjustment. It is important to note however, that the association between SNS 

reactivity and social competence was somewhat weak and was not replicated 

longitudinally. Nonetheless, this finding provides novel information about how SNS 

responding can contribute to children’s social functioning.  

Given that activity of the SNS is considered to be especially relevant to 

behavioral processes (Beauchaine, 2001; Boucsein, 2011), it is not surprising that in this 

study, the aggregate effect of SNS reactivity was unrelated to children’s internalizing 

problems at both Time 1 and Time 2. Although exaggerated SNS reactivity may 

contribute to extreme emotional states (see Beauchaine, 2001), it is unlikely that children 
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in this community sample demonstrated exaggerated SNS reactivity. Three moderation 

studies suggest that family risk factors are associated with more internalizing symptoms 

for youth who show heightened or exaggerated SNS reactivity (El-Sheikh, 2005; 

Cummings et al., 2007; Diamond et al., 2012), but in this study, children’s autonomic 

reactivity was not considered in the context of a known family risk factor. Thus, although 

there is some evidence suggesting that the SNS may contribute to emotional processes in 

youth, this may be more likely when known environmental risk factors are present or 

when SNS activation is exaggerated, which may contribute to physiological and 

emotional dysregulation. 

PNS x SNS interactions 

The primary goal of this dissertation was to investigate whether the joint action of 

the parasympathetic and sympathetic branches of the ANS contribute to children’s 

adjustment. I hypothesized that the associations between children’s PNS reactivity and 

adjustment would vary as a function of SNS reactivity. Consistent with hypotheses, the 

joint action of children’s PNS and SNS reactivity was relevant to children’s concurrent 

internalizing symptoms, as well as changes in internalizing symptoms across six months. 

Thus, although PNS reactivity was on average unrelated to children’s internalizing 

symptoms, PNS reactivity was relevant to children’s internalizing symptoms when 

considered in conjunction with SNS reactivity. Consistent with hypotheses, the 

association between PNS reactivity and internalizing symptoms varied across levels of 

SNS reactivity. However, the hypothesized nature of the interaction effect was only 

partially supported across models. As expected, in relation to internalizing symptoms at 

both Time 1 and Time 2, PNS withdrawal was beneficial when combined with low SNS 
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reactivity. It appears that PNS withdrawal combined with low SNS reactivity may 

provide children with sufficient resources to successfully manage environmental 

demands (via PNS withdrawal) while potentially maintaining a lower level of arousal 

through low SNS reactivity. Together, PNS withdrawal and low SNS reactivity may 

provide children with an adaptive level of arousal and sufficient internal resources to 

engage with environmental demands, thus enabling children to effectively regulate their 

emotional functioning. Since low SNS arousal mobilizes minimal physiological resources 

for managing a challenging circumstance, sufficient PNS withdrawal may be especially 

important for children who experience lower SNS arousal.  

Contrary to hypotheses, however, PNS withdrawal was linked to more concurrent 

internalizing problems when combined with high SNS reactivity, whereas PNS 

augmentation was beneficial. Both PNS withdrawal and high SNS reactivity promote 

physiological arousal. When coupled with high SNS reactivity, PNS withdrawal may 

leave a child too aroused in response to stress, thus enhancing emotional difficulties. PNS 

activation counteracts SNS arousal and therefore inhibits a “fight or flight” response and 

promotes a sense a calm, which according to Polyvagal theory would be beneficial in a 

safe environment (Porges, 2011). For children who experience high SNS reactivity, PNS 

augmentation may be helpful for managing one’s emotional experience in response to 

challenging environmental demands.   

However, the effect of PNS reactivity on internalizing symptoms given high SNS 

reactivity was not replicated across time. For those exhibiting high SNS reactivity (a 

response which provides physiological resources in times of stress), the effect of PNS 

reactivity was not strong enough to influence change in internalizing symptoms across six 
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months. Whereas low SNS arousal likely provides minimal resources during times of 

stress, higher SNS arousal may provide adequate physiological resources regardless of 

PNS responding. It may be that children who experience heightened SNS arousal (that is 

within an adaptive range) receive adequate physiological resources via the SNS and are 

thus less sensitive to the extent of resources provided by PNS responding. In contrast, 

children who experience low SNS arousal receive minimal resources from their 

sympathetic nervous system and thus may be more in need of the physiological resources 

provided by PNS withdrawal.  

Although RSAR and SCLR are both continuous variables, which were examined 

in a two-way interaction, the simple slope analyses (Figures 1 and 2) can be tentatively 

compared to previous literature on the autonomic profiles proposed by Bertson et al. 

(1991). Keller and El-Sheikh (2009) made a similar attempt when interpreting 

interactions between children’s SNS and PNS activity. Reciprocal PNS activation 

includes PNS augmentation (individuals on the right side of Figures 1 & 2) and low SNS 

reactivity (individuals on the solid line in Figures 1 & 2). Coinhibition would be depicted 

by PNS withdrawal (individuals on the left side of Figures 1 & 2) and low SCLR 

(individuals on the solid line in Figures 1 & 2). Reciprocal SNS activation involves PNS 

withdrawal (individuals on the left side of Figures 1 & 2) and high SCLR (individuals on 

the dotted line in Figures 1 and 2). Finally, coactivation is characterized by PNS 

augmentation (individuals on the right side of Figures 1 & 2) and high SCLR (individuals 

on the dotted line in Figures 1 & 2).   

Although El-Sheikh et al. (2009) examined PNS x SNS profiles within the context 

of marital conflict, whereas this study examined the effect of the two-way PNS x SNS 
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interaction, I believe it is still appropriate to consider whether my findings conceptually 

align with El-Sheikh et al.’s biopsychosocial framework. Somewhat more comparable to 

this study, Keller and El-Sheikh (2009) examined whether children’s PNS reactivity 

moderated the link between baseline SNS activity and externalizing symptoms. Keller & 

El-Sheikh (2009) concluded that children who demonstrated characteristics of 

coinhibition (PNS withdrawal combined with low SNS activity) exhibited the fewest 

externalizing symptoms, whereas children who exhibited characteristics of reciprocal 

PNS activation (PNS augmentation coupled with low SNS activity) showed higher levels 

of externalizing symptoms. Although Keller & El-Sheikh (2009) examined SNS activity 

at rest and examined externalizing symptoms as the outcome, their findings provide some 

support for the idea that coinhibition may be a more beneficial autonomic response then 

reciprocal PNS activation.   

El-Sheikh and colleagues (2009) conceptualized reciprocal autonomic profiles as 

beneficial, whereby the coordinated response of the PNS and SNS provides a child with 

important physiological resources needed to manage environmental stressors. In contrast, 

El-Sheikh et al. (2009) argued that autonomic responses that mark dual activation (i.e., 

coactivation) or dual inhibition (i.e., coinhibition) both reflect physiological 

dysregulation, which they argued leaves a child physiologically ill-equipped to 

effectively manage environmental stressors and thus vulnerable to maladjustment. 

Results from my variable-centered analyses predicting children’s internalizing symptoms 

do not support El-Sheikh et al.’s biopsychosocial framework (2009); instead, I found that 

those with reciprocal responses of the ANS were at the highest risk for internalizing 

symptoms.  
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Contrary to hypotheses, the two-way PNS x SNS reactivity interaction was not 

relevant to children’s concurrent externalizing symptoms or social competence, or to 

changes in externalizing symptoms and social competence. It is particularly surprising 

that the interaction between PNS and SNS reactivity did not influence children’s 

externalizing symptoms. Previous studies that have considered both the PNS and SNS 

suggest that the joint action of the PNS and SNS is relevant to children’s externalizing 

problems (El-Sheikh et al., 2009; Keller & El-Sheikh, 2009). It may be that the 

community sample of children in this study included levels of externalizing symptoms 

too low or with too little variability to detect effects. Moreover, this sample was relatively 

small, which limited statistical power to detect what is likely a small effect in the 

population.  

Person-centered approach 

Conducting a Model Based Cluster (MBC) analysis based on children’s 

autonomic reactivity and applying the results to investigate differences in adjustment 

across groups represents a novel approach to examining how autonomic reactivity is 

related to children’s functioning. Although the MBC analysis was likely underpowered, 

results from the MBC analysis offer support for the idea that it is possible to identify 

distinct profiles of autonomic reactivity in children. This study adds to previous research 

(Muñoz et al., 2013; Quas et al., 2014) that has utilized a person-centered approach to 

classify youth into physiological reactivity profile groups and extends this literature by 

considering whether particular developmental outcomes vary across autonomic profile 

groups.  
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 The MBC analysis identified 2 distinct clusters of children based on their PNS 

and SNS reactivity in response to a laboratory challenge task. Cluster 1 included 37 

children, who, on average, showed slight RSA withdrawal and SCL activation at a level 

similar to but slightly less then the sample-wide mean SCLR, reflecting an autonomic 

profile that can be characterized as modest reciprocal SNS activation. Cluster 2 included 

27 children who, on average, demonstrated slight RSA augmentation and SCLR at a level 

that was slightly higher than the sample-wide average SCLR. Thus, on average, Cluster 2 

can be characterized as showing coactivation of the PNS and SNS. 

To further interpret the patterns of autonomic reactivity across clusters, it was 

important to consider whether PNS and SNS reactivity were different across the two 

clusters. Across the two clusters, mean-level SNS reactivity was not significantly 

different, and the variability in SCLR scores was homogeneous. On average, Cluster 1 

(modest reciprocal SNS activation group) and Cluster 2 (coactivation group) showed 

opposite responses of the PNS (withdrawal versus augmentation); however, RSAR was 

not significantly different across these groups. Importantly, the variability in RSAR 

scores was significantly different across the two clusters, with Cluster 2 showing 

substantially more variability in RSAR scores. By further inspecting RSAR scores in 

Cluster 2, it became apparent that children in Cluster 2 either showed substantial RSA 

withdrawal or substantial RSA augmentation. Therefore, children in Cluster 2 can more 

accurately be characterized as showing heightened PNS reactivity, which includes 

heightened PNS withdrawal and heightened PNS augmentation, combined with SNS 

activation. It may be that low power prevented the MBC analysis from identifying a 3-
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cluster solution in which children in Cluster 2 were classified into separate clusters based 

on the direction (i.e., withdrawal vs. augmentation) of PNS reactivity.  

Children in the modest reciprocal SNS activation group (Cluster 1) showed more 

internalizing symptoms and less social competence as compared to children in the 

heightened PNS reactivity group (Cluster 2). Although these differences were only 

marginally significant, these trends suggest that it is possible to detect meaningful 

differences in children’s autonomic processes via person-centered analyses, and these 

differences appear to be relevant to children’s emotional and social functioning. 

Specifically, children who showed modest PNS withdrawal combined with an average 

level of SNS activation (Cluster 1) appear to be at a disadvantage, as these children 

exhibited marginally higher internalizing problems and less social competence than 

children who showed heightened PNS reactivity combined with SNS activation (Cluster 

2).  

 As an exploratory set of analyses, I chose to split Cluster 2 into subgroups based 

on the direction of heightened PNS reactivity. Thus, children who showed heighted PNS 

withdrawal were classified into Cluster 2A and children who showed heightened PNS 

augmentation were classified into Cluster 2B. On average, Cluster 2B showed SNS 

activation combined with PNS augmentation and can thus be characterized as showing 

coactivation. Importantly, 14 children in Cluster 2 showed reciprocal SNS activation and 

29 out of 37 children in Cluster 1 showed reciprocal SNS activation, yet these children 

were not classified into the same cluster, which suggests that although they all showed 

reciprocal SNS activation, these children are inherently different. SCLR did not vary 

across Cluster 1 versus 2A, but RSAR was significantly different across these groups of 
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children. As previously described, most children in the modest reciprocal SNS activation 

group (Cluster 1) showed slight PNS withdrawal, whereas the reciprocal SNS activators 

who were originally classified into Cluster 2 (i.e., those in Cluster 2A) showed 

substantially more PNS withdrawal then children in Cluster 1. Thus, children in Cluster 

2A can be characterized as showing strong reciprocal SNS activation. I had tentatively 

hypothesized that the MBC analysis would identify four clusters, with one cluster 

representing each of the four ANS profiles previously identified in the literature (see 

Berntson et al., 1991; El-Sheikh, et al., 2009). Contrary to this hypothesis, the exploratory 

3-cluster model included two distinct reciprocal SNS activation groups and one 

coactivation group. The MBC analysis did not identify a reciprocal PNS activation group 

or a coinhibition group.  

When mean differences in adjustment were tested across three clusters, 

differences in internalizing symptoms and social competence were detected. It is 

important to note that all adjustment differences found across clusters are marginal 

effects and should be interpreted with caution. Given the small sample size, it is 

nonetheless noteworthy that adjustment differences emerged across three groups. I 

expected that if the MBC analysis identified a reciprocal SNS activation cluster, children 

in this cluster would show the best adjustment outcomes. Examining adjustment 

differences across the 3-cluster model does not support this hypothesis, however, as 

children in the modest reciprocal SNS activation group (Cluster 1) showed the most 

internalizing problems across clusters. In addition, there was a marginally significant 

difference in internalizing symptoms between modest reciprocal SNS activators (Cluster 

1) versus strong reciprocal activators (Cluster 2A), suggesting that extent of ANS 
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reactivity is important to consider. It may be that simply showing a reciprocal response of 

the ANS is not enough, and a greater degree of PNS withdrawal is key to providing the 

physiological resources to effectively manage one’s emotional experience. To my 

knowledge, no study using a person-centered approach has identified groups that reflect 

varying degrees of the same autonomic reactivity profile. However, this study can be 

contextualized within previous work that has considered a single branch of the ANS. 

Children in the modest reciprocal SNS activation group (Cluster 1) appear to have shown 

blunted PNS withdrawal, whereas those in the strong reciprocal activation group (Cluster 

2A) showed heightened PNS withdrawal. Adequate PNS withdrawal is critical for the 

self-regulatory processes that support effective emotional and behavioral regulation in 

response to stress or challenge (Porges, 2011). In a study of young children, Calkins and 

Dedmond (2000) found that children identified as high-risk for future behavioral 

problems showed significantly less PNS withdrawal and more emotional and behavioral 

dysregulation, as compared to other children. Calkins and Keane (2004) measured 

children’s PNS reactivity at two time points (2.5 and 4 years of age) and classified 

children into groups using a k-means cluster analysis. These authors found that, as 

compared to children who showed blunted PNS withdrawal at both time points, children 

who showed greater PNS withdrawal at both time points were significantly more socially 

skilled and showed significantly less negative affect and fewer externalizing behaviors. 

Taken together, these studies support the idea that children who experience blunted PNS 

withdrawal exhibit more adjustment difficulties then children who show a greater extent 

of PNS withdrawal.  



 

 
63 

In regards to social competence, there was a marginally significant difference 

between modest reciprocal SNS activators (Cluster 1) and coactivators (Cluster 2B). 

Contrary to hypotheses, children who showed PNS augmentation exhibited better social 

adjustment then other children. Children in the modest reciprocal SNS activation (Cluster 

1) group showed the lowest level of social competence, whereas coactivators (Cluster 

2B) exhibited the highest social competence. This finding contradicts El-Sheikh et al.’s 

(2009) framework, which holds that reciprocal SNS activation is advantageous and 

physiologically equips a child to manage environmental demands, whereas coactivation 

reflects physiological dysregulation and thus marks a vulnerability to maladjustment. 

Instead, these findings suggest that children who exhibit a modest degree of reciprocal 

SNS activation are at a disadvantage as compared to those that show coactivation. 

Children in the coactivation and modest reciprocal SNS activation groups showed similar 

levels of SNS activation, which suggests that differences in patterns of PNS responding, 

rather then SNS responding, may be most relevant to children’s social functioning. 

Moreover, coactivators and modest reciprocal SNS activators showed levels of SNS 

activation that were similar to the sample-wide average of SNS reactivity, suggesting that 

these children showed a typical degree of SNS activation compared to the overall sample. 

Thus, it appears that for children with an average level of SNS activation, PNS 

augmentation may be more beneficial to social functioning then insufficient or blunted 

PNS withdrawal. This finding is especially interesting given that the majority of research 

(see Graziano & Derefinko, 2013) suggests that in community samples PNS withdrawal 

is beneficial to children’s functioning. Although children in the modest reciprocal SNS 

activation group (Cluster 1) did show PNS withdrawal, it is possible that the degree of 
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PNS withdrawal was insufficient and thus more harmful then PNS activation. PNS 

augmentation involves applying the “vagal brake” which inhibits SNS arousal and 

functions to increase rest and digest processes facilitated by the PNS (Porges, 2011). PNS 

augmentation may be helpful for maintaining a subjective sense of feeling calm through 

PNS activation, and for some children this may be helpful for successful social 

engagement. Indeed, some evidence suggests that PNS augmentation is associated with 

better adjustment outcomes in children. PNS augmentation has been linked to more social 

competence (Blair, 2003) and fewer internalizing and externalizing problems and better 

behavioral self-regulation in children (Hastings et al., 2008). Consistent with these 

studies, this research suggests that PNS augmentation may be beneficial to children’s 

social functioning, as children who showed PNS augmentation (combined with average 

SNS activation) exhibited the highest social competence across three clusters. According 

to Polyvagal theory, applying the vagal brake facilitates social engagement in 

circumstances in which the environment is perceived as safe (Porges, 2007, 2011). In this 

study, the person-centered analyses suggest the most socially competent children were 

those children whose physiological response involved applying the vagal brake in 

response to the mirror-tracing task. Consistent with Polyvagal theory, this research 

suggests that PNS activation may be beneficial when a child is faced with a challenging 

yet safe situation.  

Examining adjustment differences across the 3-cluster solution raises questions 

about the utility of conceptualizing children’s autonomic reactivity in terms of El-Sheikh 

et al.’s (2009) theoretical perspective. In their 2009 monograph, El-Sheikh and colleagues 

proposed the notion that ANS profiles characterized by reciprocal responding (i.e., 
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reciprocal PNS activation and reciprocal SNS activation) are beneficial, whereas 

uncoordinated responding (i.e., coactivation or coinhibition) is harmful for child 

development. Interestingly, my findings suggest that understanding how children’s 

autonomic reactivity influences their adjustment may require a more nuanced 

conceptualization of how the parasympathetic and sympathetic branches of the ANS 

respond together. Specifically, the extent or degree of reactivity may be important to 

consider. My dissertation provides preliminary evidence that there may be meaningful 

differences in autonomic reactivity across children who demonstrate the same autonomic 

profile, as defined by El-Sheikh et al. (2009). In this sample, children who showed 

modest reciprocal SNS activation (Cluster 1) exhibited marginally more internalizing 

symptoms then children who showed strong reciprocal SNS activation (Cluster 2A). 

Children who showed strong reciprocal SNS activation showed greater PNS withdrawal 

then children in the modest reciprocal SNS activation, and a greater degree of PNS 

withdrawal appears to be advantageous to children’s emotional functioning. Rather then 

considering all children who showed reciprocal SNS activation to be similar, I 

distinguished between groups of children who showed different degrees of reciprocal 

SNS activation and was able to detect marginal, yet meaningful, differences across 

groups. This finding should be interpreted with caution, however, and should be 

replicated in a larger sample in the future.  

Overall, the MBC results suggest that the degree or extent of PNS reactivity that 

children experience is important and relevant to adjustment. Children in Cluster 1 can be 

described as showing minimal or blunted PNS reactivity. Thirty-five children in Cluster 1 

showed slight PNS withdrawal, one child showed slight PNS augmentation, and one child 
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showed no change in PNS activity from rest to the challenge condition. Thus, every child 

in Cluster 1 showed a small degree of PNS response, and these children were identified 

as inherently different then children in Cluster 2. Much of the developmental literature on 

children’s PNS reactivity has emphasized the distinction between PNS withdrawal versus 

augmentation. However, the 2-cluster model suggests that extent of PNS reactivity (e.g., 

blunted versus heightened) is important to consider when conceptualizing children’s 

autonomic reactivity. Children who showed blunted PNS responding (including slight 

PNS withdrawal, no change, and slight PNS augmentation) were most similar to each 

other and thus classified into Cluster 1, whereas children in Cluster 2, who all showed 

heightened PNS reactivity (either heightened PNS withdrawal or heighted PNS 

augmentation) were most similar to each other in the model-based cluster results. 

Furthermore, children in all clusters showed SNS activation, and SNS reactivity did not 

vary across clusters in either the 2- or 3-cluster model. Thus, in this sample, differences 

in extent of PNS reactivity appear to be important in distinguishing groups of children 

based on their autonomic reactivity profiles.  

Integrating variable-centered versus person-centered approaches 

An important aim of this study was to consider whether variable-centered and 

person-centered analyses would yield similar results and by doing so consider whether 

these distinct analytic procedures offer a similar message about how children’s 

autonomic reactivity is related to their adjustment. Importantly, a variable-centered 

analytic procedure is commonplace in research on children’s autonomic reactivity. 

Decomposition of variable-centered interaction effects involves plotting simple slopes to 

estimate an average effect across approximated groups. By conducting person-centered 
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analyses to identify ANS reactivity profile groups and applying this information to 

variable-centered analyses to examine adjustment differences, I was able to examine 

whether these distinct analytic procedures conveyed a similar message regarding how 

children’s autonomic reactivity is related to their adjustment. For simplicity, I use the 

term person-centered analyses to refer to the set of analyses in which I conducted person-

centered analyses and applied these results to variable-centered analyses to examine 

adjustment differences across clusters.  

Based on my results, conceptualizing children’s PNS x SNS reactivity in terms of 

profiles of autonomic reactivity seems to be most appropriate when distinct clusters or 

groups have been identified. Variable-centered analyses that consider the joint action of 

the PNS and SNS approximate groups based on levels of PNS and SNS reactivity. 

Although this technique is common in research on children’s autonomic reactivity, the 

interpretation of such analyses may emphasize effects of autonomic profiles that are 

uncommon in the observed data. It may be helpful for future studies to incorporate a 

person-centered approach to confirm the presence of autonomic reactivity profile groups 

and to use this information when interpreting variable-centered interaction effects. 

Moreover, effects may not necessarily be linear, and simple slope analyses often assume 

an overall linear effect.  

Overall, the two analytic approaches yielded somewhat different information. 

First, the findings regarding children’s social competence convey different information. 

In the variable-centered results, children’s PNS reactivity was unrelated to social 

competence, and higher SNS arousal was linked to more social competence. In contrast, 

the person-centered analyses suggest that differences in PNS responding are relevant to 
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children social competence. Across the 2-cluster model, children in the heightened PNS 

reactivity group (Cluster 2) showed marginally more social competence then children 

who showed modest reciprocal SNS activation (Cluster 1), but SCLR was not 

significantly different across these groups. When social competence was compared across 

3 clusters, children who showed coactivation (Cluster 2B) were more socially competent 

then those who showed modest reciprocal SNS activation (Cluster 1). These groups 

(Clusters 1 and 2B) showed very similar levels of SNS reactivity, which points to PNS 

reactivity as the factor weighing more heavily in distinguishing between these groups. 

Whereas the person-centered analyses suggest that differences in PNS reactivity are 

relevant to social competence, the variable-centered regression analysis did not identify 

PNS reactivity as relevant to children’s social competence. Thus, the two approaches 

seem to provide different information about the autonomic processes that are most 

important for children’s social competence. Since this sample included children who 

exhibited PNS withdrawal and augmentation, it is possible that examining the aggregate 

effect of PNS reactivity clouded the nature of how PNS responding is related to child 

adjustment in this sample.  

 Second, both the variable-centered and the person-centered results suggest that 

ANS functioning has implications for children’s internalizing symptoms. In the variable-

centered analyses, PNS withdrawal was associated with more concurrent internalizing 

symptoms when coupled with high SNS reactivity (see Figure 1). Although the variable-

centered regression analyses used continuous measures of PNS and SNS reactivity, an 

attempt can be made to identify how the simple slope analyses map onto the autonomic 

profiles identified in the Doctrine of Autonomic Space (Berntson et al., 1991). This 
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strategy has been used in previous research on children’s PNS and SNS activity (e.g., 

Keller & El-Sheikh, 2009). According to the variable-centered regression results, for 

children who experience high SNS reactivity (i.e., SNS activation), PNS withdrawal is 

harmful and thus linked to more internalizing symptoms. PNS withdrawal combined with 

SNS activation maps onto reciprocal SNS activation (Berntson et al., 1991). Interestingly, 

this finding aligns with the person-centered analyses with a 2-cluster model. When only 2 

clusters were considered, I examined adjustment differences between children in Cluster 

1, who on average showed modest reciprocal SNS activation, and children in Cluster 2, 

who on average showed coactivation (i.e., PNS augmentation and SNS activation). 

Results indicated that children in the modest reciprocal SNS activation group (Cluster 1) 

showed more internalizing symptoms then coactivators (Cluster 2). In other words, across 

the variable- and person-centered results, findings suggest that the combination of PNS 

withdrawal and SNS activation (reciprocal SNS activation) is associated with more 

internalizing symptoms.  

 However, when internalizing symptoms were examined across 3 clusters, the 

results did not align with the simple slope analyses predicting Time 1 internalizing 

symptoms. When 3 clusters were considered, the largest difference in internalizing 

symptoms was detected between Cluster 1 (modest reciprocal SNS activation) and 

Cluster 2A (strong reciprocal SNS activation), which suggests that it is important to 

consider the extent of ANS reactivity. Importantly, the variable-centered simple slope 

analyses portray a linear relation between children’s PNS reactivity and internalizing 

symptoms, whereas the person-centered results suggest a more complicated picture of 

how the joint action of the PNS and SNS is related to children’s internalizing symptoms. 
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The variable-centered simple slope analyses suggest that at high SCLR, there is a linear 

effect of PNS reactivity such that more PNS withdrawal is harmful (see Figure 1). 

However, children in Cluster 2A showed greater PNS withdrawal and fewer internalizing 

symptoms then children in Cluster 1. Given that the simple slope analysis suggests a 

linear effect of PNS reactivity, this effect theoretically would continue along a linear path 

beyond the low RSAR plotted in Figure 1, meaning that for children who exhibit higher 

SNS activation, greater PNS withdrawal would be related to more internalizing 

symptoms. However, the person-centered analysis with three clusters suggests that 

greater PNS withdrawal is beneficial. In this community sample of children, greater 

levels of PNS withdrawal appear to protect youth from internalizing symptoms; however, 

it is possible that the vagus nerve may withdraw too much. Indeed, exaggerated PNS 

withdrawal is associated with problems related to emotional and behavioral functioning 

(Beauchaine, 2001; Gazelle & Druhen, 2009) and children with high internalizing 

problems have been shown to exhibit greater RSA withdrawal then children without 

internalizing problems (Boyce et al., 2001). Thus, it may be useful to consider curvilinear 

effects of autonomic reactivity. Examining curvilinear effects was beyond the scope of 

this dissertation, but my person-centered analysis with 3 clusters lend tentative support 

for the idea that the relations autonomic reactivity and adjustment may not be linear. 

Indeed, Keller and El-Sheikh (2009) have documented nonlinear effects of autonomic 

reactivity in children, and others have observed nonlinear effects of autonomic 

functioning in adults (Kogan, Gruber, Shallcross, Ford, & Mauss, 2013).  

Furthermore, the person-centered results (for both the 2- and 3-cluster models) do 

not confirm the information that is conveyed by the low SCLR slope in the variable-
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centered model of concurrent internalizing symptoms (see Figure 1). The MBC analysis 

did not identify a cluster of children who on average showed coinhibition (PNS 

withdrawal and low SNS reactivity) or a cluster of children who exhibited reciprocal PNS 

activation (PNS augmentation and low SNS reactivity). Thus, the simple slope analyses 

convey effects for approximated groups of children that do not seem to exist in the data. 

This discrepancy presents a conundrum for considering how to best conceptualize this 

study in the context of previous research on children’s autonomic reactivity, which has 

largely included variable-centered analyses. It appears that variable-centered analyses of 

autonomic reactivity may suggest effects at levels of reactivity, or profiles of reactivity, 

that are uncommon in the sample observed and potentially in the true population of 

children. Finally, the simple slope analyses estimate the effect of PNS reactivity on 

internalizing symptoms at low and high levels of SCLR, which again suggests the 

presence of approximated groups, but SCLR was not significantly different across 

clusters in either the 2-cluster or 3-cluster model. Thus, in this instance, the very nature of 

plotting an effect at high and low levels of autonomic reactivity, which is common in 

developmental research, seems to emphasize a distinction that was not supported by the 

person-centered analysis. Since SCLR did not vary across clusters, the variable-centered 

simple slope analyses, which suggest an effect of PNS reactivity at high and low levels of 

SCLR, seem to convey a message that was not confirmed by the person-centered analyses.  

Based on the results of this study, I consider person-centered analyses to be a 

useful and important approach to examining children’s autonomic reactivity profiles. 

Researchers aiming to conceptualize the relations between children’s autonomic 

reactivity profiles and specific developmental outcomes would likely benefit from 



 

 
72 

incorporating person-centered techniques. A conservative approach would be to include a 

person-centered analysis to confirm the existence of distinct autonomic profile groups 

within the sample, and to also conduct variable-centered analyses. Without a person-

centered approach, researchers may want to be cautious in interpreting effects for each of 

the four autonomic profiles previously identified in the literature (see Berntson et al., 

1991; El-Sheikh et al., 2009).  

Limitations 

It is important to consider the most notable limitations of this study. First, a small 

sample size limited my statistical power. More statistical power would have increased the 

likelihood that I could detect effects of autonomic reactivity that truly exist. In addition, 

with a larger sample, I would expect that a cluster analysis might have identified more 

clusters based on children’s ANS reactivity profiles. With larger clusters, group 

differences in adjustment may have been more apparent and statistically detectable. 

Although adjustment differences were only marginally significant across clusters, this 

may be due to low power. Nonetheless, it is useful to consider how adjustment varied 

across clusters and the potential practical and theoretical implications of this study, while 

keeping in mind that these findings are very tentative and should be replicated in larger, 

more diverse samples.  

The small sample size also limited the number of factors that could be considered 

in the analyses in this study. Clearly, a child’s PNS and SNS reactivity are not the only 

factors that contribute to adjustment outcomes. Future research should build upon these 

findings and investigate how the joint action of children’s PNS and SNS may interact 

with additional factors (e.g., environmental factors) to influence adjustment in middle 
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childhood. In addition, future work should consider how autonomic reactivity profiles 

vary across gender. Previous research (e.g., Erath et al., 2011) has identified gender 

differences in the effects of autonomic reactivity; however, the small sample size 

prevented me from considering gender as a moderator. This sample was predominately 

Caucasian, which limits the generalizability of these findings. For example, racial 

differences exist in SCL activity and this is thought to be a result of the inverse relation 

between darker skin pigmentation and number of sweat glands (Boucsein, 2011).  

 An additional potential limitation of this study is that variable-centered analyses 

were used to examine differences across autonomic profile clusters. Though person-

centered analyses were used to classify children, I then considered average differences in 

adjustment across groups of children. An important next step will be to use a person-

centered technique to consider how autonomic profile clusters differ on specific 

developmental outcomes. For example, along with autonomic reactivity scores, one or 

more indicators of adjustment could be included in the set of clustering variables in a 

MBC analysis. 

Finally, this study examined ANS reactivity in response to a single type of task. 

Previous research (e.g., Obradović et al., 2011) has documented differences in patterns of 

reactivity across distinct types of laboratory challenge tasks. Thus, a potentially fruitful 

next step would be to use person-centered techniques to identify autonomic reactivity 

profile groups in response to distinct types of tasks, and to examine patterns of reactivity 

across these contexts.  
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Conclusion 

This study extends research on children’s autonomic reactivity and provides new 

information about the physiological processes that contribute to child adjustment. 

Incorporating both variable-centered and person-centered analytic approaches, this study 

suggests that the joint action of children’s parasympathetic and sympathetic nervous 

systems is relevant to children’s emotional and social functioning. Importantly, the 

person-centered model-based cluster analysis identified distinct groups of children based 

on their autonomic reactivity profiles. However, this study identified only two (i.e., 

reciprocal SNS activation, coactivation) of four autonomic profiles that have been 

previously identified in the literature and are assumed to be represented in the variable-

centered simple slope analyses. Thus, this research confirms that it is possible to identify 

distinct profiles of autonomic reactivity in children and suggests that in the future, it may 

be helpful to confirm the presence of distinct autonomic profile groups when 

investigating the effects of children’s autonomic reactivity profiles based on variable-

centered analyses.  
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Table 1 
 
Descriptive statistics for study variables 
 
 

Mean 
Standard 
Deviation Minimum Maximum 

RSAR -0.004 0.25 -0.47 0.82 
SCLR 0.86 0.97 -1.02 3.82 
Time 1 Internalizing 6.78 5.75 0.00 28.00 
Time 1 Externalizing 6.17 5.82 0.00 26.00 
Time 1 Social 
Competence 8.98 2.55 0.00 14.00 
Time 2 Internalizing 4.79 4.24 0.00 20.00 
Time 2 Externalizing 4.62 4.40 0.00 16.00 
Time 2 Social 
Competence 9.09 2.01 5.00 14.00 
 
Note. RSAR = Respiratory Sinus Arrhythmia Reactivity. SCLR = Skin conductance 
Level Reactivity. 
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Table 2  
 
Bivariate correlations 
 

Variable 1 2 3 4 5 6 7 8 
1. RSAR     —   -.01   .01     .03   .07     .07    -.01    -.13 
2. SCLR      —   .03    -.02   .27*     .06    -.09    -.03 
3. Time 1 
Internalizing 

     —     .60***  -.01     .66***     .38**    -.08 

4. Time 1 
Externalizing 

        —  -.11     .39**     .72***    -.22 

5. Time 1 
Social 
Competence 

    
   —     .09    -.04     .50*** 

6. Time 2 
Internalizing 

          —     .58***    -.12 

7. Time 2 
Externalizing 

         —    -.20 

8. Time 2 
Social 
Competence 

       
     — 

 
 
Note.  RSAR = Respiratory Sinus Arrhythmia Reactivity. SCLR = Skin Conductance 
Level Reactivity.  
* p < .05, ** p < .01, *** p <.001 
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Table 3 
 
Regression Coefficients for Child Autonomic Reactivity Predicting Adjustment  
 
 T1 Internalizing Symptoms T1 Externalizing Symptoms T1 Social Competence 
 β [95% CI] R2 β [95% CI] R2 β [95% CI] R2 
Sex -.19 [-.44, .06] .10,      

p = .22 
-.25* [-.48, -.03] .08,      

p = .22 
-.01 [-.25, .23] .08,     p 

= .18 
RSAR  .11 [-.11, .33]  .07 [-.14, .29]  .10 [-.13, .33]  
SCLR  .00 [-.39, .40]  .00 [-.29, .29]  .26* [.01, .50]  
RSAR x 
SCLR 

-.22* [-.43, -.01]  -.11 [-.32, .10]  -.06 [-.28, .15]  

 
 T2 Internalizing Symptoms T2 Externalizing Symptoms T2 Social Competence 
T1 
adjustment .62* [.42, .83] 

.53,       
p < .001 .77* [.58, .96] 

.59,      
p < .001 .58* [.41, .75] 

.34,      
p = .002 

Sex .02 [-.17, .20]  .10 [-.07, .26]  .04 [-.19, .26]  
RSAR .15 [-.05, .35]  -.01 [-.14, .13]  -.19 [-.48, .10]  
SCLR .03 [-.16, .22]  -.16^ [-.33, .01]  -.21 [-.46, .04]  
RSAR x 
SCLR 

-.35* [-.65, -.04]  -.05 [-.29, .19]  .05 [-.37, .47]  

 
Note. RSAR = Respiratory Sinus Arrhythmia Reactivity. SCLR = Skin Conductance 
Level Reactivity 
* 95% CI does not contain zero. ^ 90% CI does not contain zero. 
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Table 4 
 
Descriptive statistics for autonomic reactivity 
 
 Total Sample (N = 64) 
RSAR M = -.004, SD = .25 
SCLR M = .86, SD = .97 
 
 2-Cluster Solution 
 Cluster 1 (n = 37) Cluster 2 (n = 27) 
RSAR M = -.030, SD = .022 M = .033, SD = .38 
SCLR M = .788, SD = 1.00 M = .951, SD = .92 
 
 3-Cluster Solution 
 Cluster 1 (n = 37) Cluster 2A (n = 16) Cluster 2B (n = 11) 
RSAR M = -.03a, SD = .022 M = -.24a, SD = .12 M = .43a, SD = .27 
SCLR M = .79, SD = 1.00 M = 1.07, SD = 1.04 M = .78, SD = .72 
 
 
Note. RSAR = Respiratory Sinus Arrhythmia Reactivity. SCLR = Skin Conductance 
Level Reactivity. a significant difference at p < .05 level.    
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RSAR x SCLR 2-way Interaction Predicting Time 1 Internalizing Symptoms 
 
 

 
 
 
Figure 1.    Concurrent internalizing symptoms as a function of respiratory sinus 
arrhythmia reactivity (RSAR) and skin conductance level reactivity (SCLR). Low and 
high RSAR are graphed at 1 SD below and above the mean, respectively. Low RSAR 
represents RSA withdrawal, whereas high RSA represents RSA augmentation. Low and 
high SCLR are graphed at 1 SD below and above the mean, respectively.  
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RSAR x SCLR 2-way Interaction Predicting Time 2 Internalizing Symptoms 
 

 

 
 
 

Figure 2.     Change in internalizing symptoms as a function of respiratory sinus 
arrhythmia reactivity (RSAR) and skin conductance level reactivity (SCLR). Low and 
high RSAR are graphed at 1 SD below and above the mean, respectively. Low RSAR 
represents RSA withdrawal, whereas high RSA represents RSA augmentation. Low and 
high SCLR are graphed at 1 SD below and above the mean, respectively.  
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Adjustment differences across 2-cluster model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Marginally significant differences in internalizing symptoms and social 
competence across 2 clusters. Cluster 1: Modest reciprocal SNS activation. Cluster 2: 
Heightened PNS reactivity combined with SNS activation. 
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Adjustment across 3-cluster model 
 
 

 
Figure 4. Marginally significant differences in internalizing symptoms and social 
competence are denoted with an asterik. Cluster 1: Modest reciprocal SNS activation 
group. Cluster 2A: Strong reciprocal SNS activation group. Cluster 2B: Coactivation 
group. 
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