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Abstract

Satellite imagery and remote sensing provide explanatory variables at relatively high
resolutions for modeling geospatial phenomena, yet regional summaries are often
desirable for analysis and actionable insight. In this paper, we propose a novel method
of inducing spatial aggregations as a component of the statistical learning process,
yielding regional model features whose construction is driven by model prediction
performance rather than prior assumptions. Our results demonstrate that Genetic
Programming is particularly well suited to this type of feature construction because it
can automatically synthesize appropriate aggregations, as well as better incorporate
them into predictive models compared to other regression methods we tested. In our
experiments we consider a specific problem instance and real-world dataset relevant
to predicting snow properties in high-mountain Asia.

Keywords: spatial aggregation, feature construction, genetic programming, symbolic
regression
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“ Those who are inspired by a model other than nature,
a mistress above all masters, are laboring in vain...

”Leonardo di ser Piero da Vinci

1
On The Origin of Regression

Charles Darwin’s carefully constructed case for a theory of evolution by natural selec-

tion [1] implied a simple and eloquent explanation for all of life and its consequences.1

Few books have ever had such an impact on either science or philosophy as Darwin’s

had on both. Although it would be another seventy years before Ronald Fisher,

the father of frequentist statistics, finally united Mendelian genetics with natural
1The theory itself was in fact jointly proposed by Charles Darwin and Alfred Russel Wallace [2]

one year prior to Darwin’s ‘On the Origin of Species [1].’
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selection [3], grounding the theory in a mathematical formalism and unifying the larger

scientific community in the belief that it was the basic mechanism of evolution. In

the meantime, Darwin’s half-cousin, Francis Galton,2 sought to understand heredity:

how characteristics present in individuals of one generation manifest in individuals of

the subsequent generation.3 It was the problem of heredity that provided Galton the

initial inspiration to conceive the modern notions of correlation and regression.

In describing that extra large and extra small individuals tended to have offspring

of a size closer to the sample mean, Galton employed the usual meaning of regression,

‘to go back,’ calling this phenomena ‘regression toward mediocrity’ and creating the

basic foundations of what statisticians still call regression today [4]. In regression,

or more generally in statistical modeling, there are two main goals in analyzing data [5]:

Prediction. To predict responses with future input variables;

Information. To extract some information about the association between re-

sponse and input variables.

Of course the two are closely related– it’s hard to justify associations using a model

with poor prediction performance. In classical statistics, we typically assume that the

data are generated by a given stochastic data model: a function of input variables,

random noise, and parameters estimated from the data. Alternatively, algorithmic

models treat the data mechanism as unknown and seek a function, an algorithm that

operates on input variables to predict the response variables [5]. Figure 1.1 illustrates

the difference between these ‘two cultures’ of statistical modeling as outlined by Leo
2Darwin and Galton shared the same grandfather, Erasmus Darwin, and the two shared a regular

correspondence archived at http://galton.org/letters/darwin/correspondence.htm
3Galton, however, was interested in ‘improving human stock’ through the selective mating of

humans, and is responsible for coining the term ‘eugenics’ and popularizing the discipline.

2

http://galton.org/letters/darwin/correspondence.htm


x
inputs parametric

model
predicted
response

ŷ
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Figure 1.1: The two cultures of statistical modeling presented by Breiman. Data modeling
assumes the basic structure of the underlying relationship between inputs and response.
Algorithmic modeling makes no assumptions about the true relationship and can be a black-
boxed in pursuit of prediction accuracy.

Breiman [5] in allusion to C.P. Snow’s famous essay [6] about the cultural divide

separating science and the humanities.

There are, inevitably, data problems more conducive to data modeling and others

more so to algorithmic modeling. Though many problems lie somewhere in between.

The benefit of data modeling is that it provides a simple explanation of the underlying

data mechanism which in turn produces more testable hypotheses. However with

strong model assumptions, any subsequent hypotheses are really about the validity

of model rather than the structure of the underlying mechanism and this disconnect

often leads to erroneous scientific conclusions [7–10]. In any case, data modeling

assumes simplicity for interpretability, while algorithmic modeling accepts complexity

for prediction performance.

Whether for prediction or comprehension, the central goal of statistics is to extract

useful information from data. The emphasis is therefore not on interpretability, but

accurate information. Higher predictive accuracy is associated with more reliable

information about the underlying data mechanism. Therefore Breiman invites us to
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abandon “the belief that a statistician, by imagination and by looking at the data,

can invent a reasonably good parametric class of models for a complex mechanism

devised by nature,” and instead we should be satisfied with a model which generalizes

well to previously unseen data.

1.1 A Modern Touch

The field of Statistics was born in a data-scarce environment. In the early days of

statistics, typical data problems came from carefully designed experiments and were

relatively small in scope: consisting of only a few dimensions, p, and a limited number

of observations, n, but with n >> p. In turn, effective statistical methods leveraged

probability theory at the cost of strong assumptions concerning how the data were

generated. However, with the onset of the Information Age and the proliferation of

computers, we now find ourselves in a data-rich environment.

Apart from an exponential increase in the amount and variety of data problems,

their scope have exploded in both size and complexity. Algorithmic models generally

provide the most accurate predictors possible for modern data problems, but inherently

lack simple interpretability in their structure. “But the evolution of science is from

simple to complex,” Breiman opines [5]:

There is no consideration given to trying to understand cosmology on

the basis of Newton’s equations or nuclear reactions in terms of hard ball

models for atoms. The scientific approach is to use these complex models

as the best possible descriptions of the physical world and try to get usable

information out of them.
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To be sure, data modeling continues to be the best solution to a meaningful set of

problems but they are far outnumbered by larger, more complex data problems in the

wild which have never heard of good experimental design.

The growing set of data-rich problems, along with a few of their more accomplished

algorithmic solutions, gave rise to the field of Statistical Learning [11]. In statistical

learning, models are often referred to as learners since, from our frame of reference,

they appear to be ‘learning’ to recognize patterns in data (although this anthropo-

morphization is misleading [12,13]). The preferred criterion to access the performance

of models is generalization: a good learner is one that accurately predicts responses

with unseen inputs. In other words, a good learner generalizes or adapts to new data

environments.

With a rich set of robust examples of learning and adaptation from nature, it seems

appropriate that many artificial learners explicitly mimic natural artifacts. After all,

nature has always served as a great source of inspiration for scientist and engineers, a

tradition which dates back at least as far as Leonardo da Vinci (1452− 1519), who

examined physiology of birds and fish in his famous designs of flying and swimming

devices.

Today, in statistical learning, we have designed artificial neural networks [14]

and immune systems [15], along with a myriad of algorithmic models imitating the

behavior of grey wolves [16], monkeys [17], dolphins [18], cats [19], bats [20], eagles [21],

cuckoos [22], tree frogs [23], fish [24], krill [25], bacteria [26], weeds [27], flowers [28],

honey bees [29], fruit flies [30], fireflies [31], glow worms [32], ants [33], roaches [34],

dand virtually every other type of insect [35] (but see [36]). Yet in doing so, we are

ignoring the fact that these artifacts originated only after more than three billion
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years of evolution on this planet. Their structure is the accumulation of successive

changes – ‘decent with modification,’ as Darwin called it – with each successive change

increasing ability to survive and reproduce successfully [1]:

The framework of bones being the same in the hand of a man, wing of a

bat, fin of the porpoise, and leg of the horse,–the same number of vertebrae

forming the neck of the giraffe and of the elephant,–and innumerable other

such facts, at once explain themselves on the theory of descent with slow

and slight successive modifications.

It follows that many aspects of biological structure can be understood only in the

context of their ancestral heritage (if at all [37, 38]), obscuring the salient concepts

of adaption we seek to reproduce. Therefore it may instead be more productive to

mimic the process responsible for success rather than merely its result.

This distinction was famously made by Ernst Mayr’s (1961) ‘Cause and effect

in biology [39],’ in which he distinguished between proximate and ultimate causes.

A proximate cause is an immediate, mechanical explanation, whereas an ultimate

cause is a historical explanation of why an organism has one trait rather than another

[40]. Although Niko Tinbergen’s (1963) ‘On aims and methods of ethology [41],’

which followed shortly after Mayr’s work, provides a better framework by clearly

distinguishing between past and present, as well as function and cause [42]. Tinbergen’s

‘four questions,’ distinguish between proximate ‘how questions,’ concerning how an

individual organism’s structures function and ultimate ‘why questions,’ concerning

why a species evolved the structures (adaptations) it has.

It may be impossible to know which proximate insights could and should be

exploited for designing robust statistical models. Rather, the goal is to distill aspects
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of adaption through the recognition and imitation of ultimate processes. In fact this

general philosophy underlies our success in arguably the most difficult engineering

problem in human history: heavier-than-air flight. At first we attempted to emulate

natural examples of flight and indeed many unsuccessful early attempts had flapping

wings. From Leonardo da Vinci’s ‘flying machines’ through subsequent designs over

the next four hundred years, we fixated on the anatomy and mechanics of birds. It

was only after we shifted focus from replicating proximate aspects of natural fliers, to

the ultimate aerodynamic forces responsible for the capability of flight (drag and lift),

that successful aircraft were constructed [43]. This insight enabled us to even surpass

nature with designs capable of supersonic speed and space travel.

Natural evolution.

Biological organisms have evolved to solve incredibly complex problems in efficient

and creative ways through essentially trail and error. According to Darwin, it is

‘the struggle for existence’ which eliminates some individuals before they are able

to reproduce and pressures selection towards individuals with a facility to endure

environmental and ecological conditions. Neo-Darwinian evolution links natural

selection with an explicit method of heredity by which novel traits can arise to be

selected for in the first place. Accordingly, adaptation, in the evolutionary sense, is

often outlined by the following equation:

adaptation = variation + heredity + selection
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where variation implies the existence of a population of at least two individuals that

differ from one another to some extent [44,45].

Hereditary information is contained in an organism’s genetic material, know as

the genotype, whereas natural selection operates on the physical manifestation of

the genetic information, known as the phenotype. Selected parents reproduce by

transmitting their genotype to their offspring through an error-prone copying process.

This small variation produces a range of traits in subsequent generation that in turn

may affect their ability to survive and reproduce. However traits which are different

but do not negatively effect individuals reproduction success may also be transmitted

to future generations, a process known as neutral evolution [46]. Neutral genetic

variants are thus hidden from selection and allowed to drift and accumulate in natural

populations [38].

It is also important to recognize that current organisms may not be ‘better’ than

previous generations when environmental and ecological conditions where different.

This idea is expressed eloquently by Richard Dawkins in ‘The Blind Watchmaker [47]’:

Natural selection, the blind, unconscious, automatic process which Darwin

discovered, and which we now know is the explanation for the existence

and apparently purposeful form of all life, has no purpose in mind. It has

no mind and no mind’s eye. It does not plan for the future. It has no

vision, no foresight, no sight at all.

Yet, while genetic variation might be undirected, phenotypic variation is shaped by

the processes of development which are in large part a product of evolution. Thus,

random genetic changes might produce phenotypic changes that are ‘informed’ by past

selection [48–50]. This idea, that environmentally induced phenotypes can become
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subject to heritable modification [51], implies the environment plays a formative as

well as a selective role [38]. And that evolution cannot be completely reduced to

a sequence of events whose unfolding is determined solely by natural selection and

genetic code, but instead operates on a complex interplay between gene, organism

and environment [52].

Artificial evolution.

Nils Aall Barricelli believed “a similar evolution should be possible with any kind of

elements having the necessary fundamental properties,” and in 1951 proposed “to

perform numerical experiments by the use of large calculating machines, in order to

clarify the first stages in the evolution of species [53].” In the spring of 1953 on one

of the very first electronic computers, Barricelli took over the night shift between

daily hydrogen bomb simulations lead by John Von Neumann [53]. Barricelli’s

experiments [54], which were ambitiously performed in 5 kilobytes, were as much

about applying the powers of computing to evolution as they were about applying the

power of evolution to computing.

Since Barricelli’s pioneering work, algorithms inspired by neo-Darwinian evolution

have proven capable of delivering high quality solutions to difficult problems in a

variety of scientific and technical domains from robotics [55], to engineering [56–58],

bioinformatics [59], and environmental modeling [60,61]. Whereas natural evolution

does not have a predetermined goal and is essentially an open-ended adaptation

process, artificial evolution is an optimization procedure that attempts to find the

best solution according to a predefined measurement – the objective function – which

summarizes the performance or value of candidate solutions. Although in artificial

9



Algorithm 1 The basic evolutionary algorithm
1: P ← createRandomPopulation()
2: evaluatePopulation(P)
3: while not terminationCondition() do
4: S ← selectParents(P)
5: P ← recombineAndMutate(S)
6: evaluatePopulation(P)
7: end while
8: return getFittestIndividual(P)

evolution this measurement is more commonly referred to as the fitness function since

only the most ‘fit’ individuals are allowed to reproduce.

Evolution algorithms (outlined in Algorithm 1) generally involve a population of

randomly generated individuals, or candidate solutions. Individuals are evaluated

on a particular task based on a predefined fitness function and the worst performing

individuals are deleted. Modified copies of the survivors are made by changing subtle

aspects of an individual or combining aspects from a pair of individuals, in analogies

to asexual mutation and sexual recombination (crossover), respectfully. Over many

generations, the population tends towards more successful solutions [62–64].

From a computer-science perspective, evolutionary algorithms are stochastic

(meta)heuristic search methods maintaining their working memory in the form of a

population of candidate solutions [65]. Hence, it might be argued that evolutionary

algorithms are not faithful models of natural evolution but merely a class of optimiza-

tion procedures with an attached metaphor. Albeit the most successful metaphor

used in the development of optimization algorithms, introducing many components

and concepts which were truly new [36]. Indeed, evolutionary algorithms are an

abstraction; it is simply not feasible to artificially synthesize biological evolution in

every detail. However, they are unquestionably a form of evolution in their own right.
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As Daniel Dennett [66] said “If you have variation, heredity, and selection, then you

must get evolution.”

Most classical approaches to optimization involve hand designing a gradient or

higher-order statistic of the objective function which, under regularity conditions,

can be shown to generate sequences that asymptotically converge to locally optimal

solutions [67]. Evolutionary algorithms are often used on difficult, poorly understood

problems where these other methods fail or are trapped in suboptimal solutions. These

problems typically include cases that have many free parameters with complex and

nonlinear interactions, are characterized by noncontinuous functions, have missing or

invalid data, an absence of subject-matter knowledge, or several local optima [45]. But

even where adequate hand-designed solutions exist, they are tightly constrained by the

way we think and function in our everyday physical world [12,13,68]. Evolutionary

algorithms are less restricted by our innate human design bias and can generate

unintuitive, and potentially superior, novel solutions.

There are many variations of the generic evolutionary computation template under

various names differing in their representation of individuals (genotype), the genotype-

phenotype mapping, the fitness function, the way in which ‘fit’ individuals are selected

and how they subsequently reproduce. In perhaps the most flexible implementation,

Genetic Programming (GP, [69]), individuals represent programs: algorithms which

may be executed by a computer. Algorithms, in general, may represent any self-

contained step-by-step set of operations which have the following five properties: (1)

they must terminate after a finite number of steps, (2) they must be unambiguous,

(3) they must accept input, (4) they must generate output, and (5) they must be

reproducible, in principle by someone using paper and pencil [70]. Crucially, the size
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of a program and its genotypic representation (e.g. parse trees) are not fixed which

facilitates the evolution of individuals with increasing complexity. This is important

for data problems since we would like to explore a range of candidate solutions across

various levels of complexity.

In GP, individual programs are constructed using a set of predefined components,

known as primitives, which in turn define the space of possible resulting programs. Say,

for example, that we would like to use GP to design an electrical circuit that performs

some specific task (the details of which are unimportant here). One possible primitive

set could include wire, resistors, capacitors, transistors, motors and integrated circuits.

Although our primitive set should at least contain all of the necessary components

required to build a minimally working circuit in this context. In other words, our

set of primitives should be sufficient for the particular problem domain. However in

many cases it is not be possible to know a priori exactly which primitives are required

for sufficiency. Other primitives, not included in the minimally sufficient set, might

be necessary to achieve adequate progress in optimization; but each new primitive

exponentially increases the search space of possible programs.

1.2 Symbolic Regression

In classic statistical regression (or data modeling) we seek numerical coefficients of

a mathematical relationship with a predefined functional form. In linear regression,

for example, we search for coefficients of a linear combination of input variables that

minimize the difference between the predicted and actual responses [71]. Symbolic

regression [72–75] differs from classical regression in that we do not make assumptions

about the functional form of the mathematical expression. Symbolic regression instead
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involves finding the mathematical expression itself, in symbolic form.

In GP-based symbolic regression, the individual programs are candidate regression

models: free-form mathematical expressions which may be conveniently represented

as parse trees (see Figure 1.2 for example). Accordingly, the primitive set will

consist of arithmetic operators and operands which may be complied by evolution to

form a mathematical function. Under closure – whereby all the variables, constants,

arguments for functions, and values returned from functions are the same data type –

we can ensure syntactically correct parse trees by simply restricting internal nodes to

operators and leaf nodes (terminals) to operands. To handle multiple data types, the

definition of what constitutes a legal parse tree has a few additional criteria (see [76]).

From now on we will refer to GP-based symbolic regression as simply ‘GP’ for

convenience.

Walking through a run.

Suppose the actual mechanism generating our data is 3x3 + 2x2 + x+ 1, though we

only observe x ∈ {−1.0,−0.9, . . . , 0.9, 1.0}. How might an evolutionary process ‘learn’

the correct equation without knowing it beforehand? Let’s walk through a small

evolutionary run to get a sense of how GP works as an optimization procedure.

The first step is to specify our primitive set, defining the building blocks available

to construct programs. Our primitive set will include operands: our observable variable

x along with the constant 1.0; as well as the operators {+,−,×,÷}. Next we must

choose a fitness function to access the performance of candidate solutions. Let’s use

the sum of squared errors between the output of a candidate solution (its prediction)

and the actual values observed at each datapoint.

13
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Figure 1.2: A population of four programs.

GP starts by randomly creating a population of individual programs, four in our

case as illustrated in Figure 1.2. The first program (p1) is equivalent to 1/x. The

second program (p2) is 2x− 1. The third program (p3) is x2 + x. The fourth program

(p4) is 2x2. Our programs are functions of x, so we will write them as

p1(x) = 1/x, p2(x) = 2x− 1, p3(x) = x2 + x, p4(x) = 2x2.

The syntax of a program is it genotypic representation, and given a sample of data-

points, the output vector of predicted responses is its phenotype. Consequently, the

behavior of each program corresponds to a point in n-dimensional space (in our case

n = 21), known as the sampling semantics [77]. Selection operates on the sampling

semantics (predicted responses) of programs through a fitness function which measures

their distance from true semantics (actual responses) defined by 3x3 + 2x2 + x+ 1.

Randomly initialized combinations of components will naturally provide very poor

solutions to most problems. However some programs will inevitably be better than

others. The fitness (sum of squared errors) of our programs are: 368.5, 178.8, 77.1, and

94.7, respectfully. We will compare solutions pairwise, in what is known as tournament
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selection, deleting the inferior solution. First, p1 is compared to p2, and because 1/x

has higher squared error than 2x− 1, p1 is deleted. Next, p3 and p4 are compared and

p4 is deleted. The remaining programs are 2x− 1 and x2 + x.

In tournament selection, only the best individual in the entire population is

guaranteed to survive. For the rest of the population, it’s the luck of the draw.

We saw this when the two best solutions in our population, p3 and p4, competed

against each other and the second best solution overall, p4, was deleted. Moreover,

p2 survived while p4 was deleted even though p4 would have defeated p2 if they met

face-to-face. However, in the aggregate of larger populations the survivors will tend to

be better overall than the individuals which were deleted, and the additional element

of stochasticity may help our procedure escape local optima that would otherwise trap

a more greedy selection process.

The survivors now have the opportunity to reproduce offspring which will fill in

the two vacancies in our population. We use crossover to create a new program by

swapping randomly chosen subtrees from (copies made of) the survivors, resulting in

a new program o1(x) = 2x− x2 (Figure 1.3). And we copy p3 with mutation to fill

the final vacancy resulting in o2(x) = 2x2 + x (Figure 1.4). It is important to note

that in practice, mutation and crossover are applied probabilistically and mutually

exclusive of one another: an exact/unmodified copy of an individual may occur, as

well as a copy with both mutation and crossover.

Our population now includes p2, p3, o1 and o2, with fitness 178.8, 77.1, 125.7 and

56.6, respectfully. We repeat the steps of selection and reproduction again, restarting

the loop. Note that selected programs in the first generation had fitness 178.8 and

77.1, whereas selected programs in the second generation (p3 and o2) have fitness
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Figure 1.3: Subtree-swapping crossover. The double edged nodes indicate a randomly
selected crossover point. The subtrees may then be swapped between parents p2 and p3. Note
that two potential offspring are made if we swap subtrees; the other possibility, not shown
here, is 1 + x.

77.1 and 56.6. Thus selection and reproduction successfully improved the overall

fitness of our population both in terms of the best individual and the average. Each

successive generation, GP directs its search in the general directions of the survivors,

incrementally replacing individuals with better alternatives (regression models with

lower squared error). GP proceeds until some criterion of convergence is met or until

a prespecified number of generations is surpassed. For more details on practical GP

implementations see [78].
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Figure 1.4: Subtree-replacing mutation. A modified copy of p3 which grew the subtree 2x
in place of the terminal node x.

Another objective.

GP lends itself well as a statistical tool for regression in complex, data-rich problems.

There are no assumptions about model structure and the solutions are white-box: the

resulting model’s mathematical expression can be analyzed, unlike in artificial neural

networks for example. Additionally, GP inherently performs dimensional reduction,

only incorporating the variables chosen by the survivors. However there are some

issues with the simple approach to GP summarized above.

In real data there is always noise accompanying the signal we attempt to uncover.

Unless we incorporate a preference for simpler models our candidate solutions will

become bloated in size and complexity, eventually overfitting the training data.4 There

are simple ways to remove this bias however. One approach is to explicitly incorporate

selection pressure towards more concise solutions through an additional objective

function. To do so we rely on multiobjective optimization and the notion of Pareto
4Bloat, the generational tendency towards larger trees in GP, also increases the CPU time required

to evaluate and copy individuals– the two most computationally expensive procedures within GP.
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Figure 1.5: An example of multiobjective optimization from xkcd.com (Randall Munroe,
https://xkcd.com/388/). Maximizing taste and minimize difficulty, the Pareto front
consists of peaches, strawberries, seeded and seedless grapes.

dominance [79]. The goal is then to find solutions that are optimal according to all of

the criteria (parsimony and accuracy) simultaneously.

Figure 1.5 illustrates the problem of multiobjective optimization in two dimensions,

difficulty and taste. A fruit is said to Pareto dominate another if the first fruit is

not inferior to the second in all objectives (may be equal), and is strictly better than

the second in at least one objective. Oranges are better than pomegranates along the

difficulty-axis, but are inferior to oranges along the tastiness-axis so neither dominate

the other. Bananas are equivalent in taste to pomegranates but they are easier, thus

bananas dominate pomegranates. The set of solutions that are non-dominated by any

others is called the Pareto front. In our example, the Pareto front contains peaches,
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strawberries and seedless grapes. Since peaches are the tastiest, seedless grapes are

the easiest, while strawberries are either easier or tastier than all other fruit. Note

how blueberries would reside on the Pareto front if not for seedless grapes.

Incorporating this concept of dominance in tournament selection we can check,

pairwise, if one solution dominates another. However it will now be more likely that

a tournament match ends in a draw, so our population size might increase. Note

that solutions on the Pareto front are implicitly guaranteed protection from deletion,

whereas suboptimal solutions may still survive by chance in tournament selection.

In order to incorporate a preference for parsimony, it seems reasonable to define

model complexity as the syntactic length of a candidate solution. If two models of

different length have the same error then the shorter of the two must be a more

concise representation and its simplicity will help with post hoc inference. Using error

and complexity as objectives to drive evolution we can sort the final Pareto front

of candidate regression models by length, simplest to most complex. More complex

models will only be present if they have lower error than all smaller models in the

population. The simplest model will contain a single constant term and will likely be

the mean of the response value, though this really depends on the fitness function.

The next model might incorporate our input variable in a simple linear combination.

As we march down the Pareto front, we can extract useful information from the way

in which input variables are incorporated and in what combinations, as well as how

the form of the model changes when allowed more complexity.

A model is ultimately selected based on how well it balances the objectives. The

selected model is then finally validated by calculating error on the test set of data

held out from training.
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Exploration, exploitation and diversity.

The start of evolutionary algorithms is know as the exploration phase, which involves

globally investigating promising areas of the search space. In exploration, large changes

in structure due to crossover and mutation are just as likely to be beneficial to fitness

as they are to be detrimental. To support this phase, a population should consist

of a diverse set of individuals. However after some relatively good solutions emerge

in our population, we expect evolution will usually proceed by making fairly small

adjustments to prior existing solutions. This is because drastic changes in structure

often severely disrupt an individual’s functionality– when one component is altered,

it may no longer work in combination with other unchanged components. Evolution

persists through locally refining solutions around the most promising regions, a phase

of search know as exploitation.

In exploitation, better solutions will quickly begin to replicate more similar offspring

which in turn reproduce even more similar offspring. This results in an exponential loss

of diversity, limiting the scope of exploration, and can mean premature convergence to

local optima. Yet without exploitation we are essentially performing random search

by arbitrary jumping around the global search space. Similarly, without exploration

we are just following the first randomly selected local optima we found. Exploration

and exploitation are both necessary but antagonistic phases of search and finding a

proper balance between the two is a challenging task.

One solution is to promote diversity through adding a third independent optimiza-

tion objective that, either implicitly or explicitly, rewards individuals for behaving

differently than other individuals in the population. As an example of implementing

three objectives, we might add another goal of nutrition to our fruit optimization. The
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individual fruit would then be pushed back or pulled forward along a third axis in our

illustration. Consequentially, fruit have an additional opportunity to be nondominated

and more individuals will reside on our Pareto front.
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“ When once you have tasted flight, you will forever
walk the earth with your eyes turned skyward, for
there you have been, and there you will always long
to return.

”Leonardo di ser Piero da Vinci

2
Satellite Imagery

Satellite imagery is a quintessentially modern source of data problems which are

inherently complex. The data derived from this imagery can be enormous in spatial

and temporal dimensions, and its scope raises important questions concerning scale

and meaningful units of estimation. Moreover, remotely monitoring phenomena from

outer space can introduce measurement error, irregularly distributed in geographic

space, which may dampen signals in unintuitive ways at different scales. It is naive
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to think that a simple model can adequately explain such a complex convolution

of system components and measurement error. Yet even if a particular phenomena

was truly the simple function of potentially observable variables at some scale, most

Earth systems are still not well understood and lack the domain knowledge necessary

to realize the simple data model. The most efficient way to perform any statistical

analyses is by first finding solutions with adequate predictive accuracy and only then

figuring out why they work so well. Theory and insight to domain scientists may then

follow this empiricism as we decompose particularly useful solutions.

2.1 Towards Meaningful Units

Regional modeling focuses on explaining phenomena occurring at a regional, as opposed

to site-specific or global scales [80]. Regional models are of interest in many remote

sensing applications, as they provide meaningful units for analysis and actionable

insight to policymakers. Yet satellite imagery and remote sensing provide variables at

relatively high resolutions. Consequently, studies often involve decisions concerning

how to integrate this information in order to model regional processes. Considering

measurements at each individual spatial unit as a separate model feature can result in

a high dimensional problem in which high variance and overfitting are major concerns.

For this reason, spatial aggregation is often applied in this setting to uniformly up-

sample variables to be consistent with the response. Although in averaging variables

across all spatial units in the region, we discard information which could in turn

diminish prediction accuracy and our understanding of underlying phenomena.

Rather than strictly incorporating individual spatial units or uniformly up-sampling,

it might instead be beneficial to construct features of a regional model using particularly

23



important subsets of geographical space. In this paper, we move away from uniform

up-sampling aggregations towards more flexible and interesting aggregation operations

predicated on their subsequent use as features of a regional model. We propose a novel

method of inducing spatial aggregations as a component of the statistical learning

process, yielding features whose construction is driven by model performance rather

than prior assumptions.

Related work. The general problem of modeling a response using features at a

different scale is closely related to the modifiable areal unit problem [81] and the more

general change of support problem [82]. These problems center around the different

inferences obtained when the same set of data is grouped at increasingly higher scales

or in alternative formations at the same scale. However, to the best of our knowledge,

this relationship has not been explicitly exploited to improve prediction accuracy.

2.2 A Complex System

In experiments designed to explore these techniques, we consider a specific problem

and real dataset: estimating the volume of water in snow – the Snow Water Equivalent

(SWE) – in the Hindu Kush range of high-mountain Asia (Figures 2.1,2.2). A region

which spans most of Afghanistan and extends into parts of Pakistan, India, China,

Tajikistan, Uzbekistan, Turkmenistan, and Iran.

The accumulation of snow is a vital source of water for natural systems and

humans [83]. For humans, snow is important because it forms its own reservoir [84],

providing both flood control and water storage by capturing water in solid form in

cold months and releasing it in warm months, concurrent with higher agricultural
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Figure 2.1: The Hindu Kush region of High Mountain Asia, bounded by the red polygon,
contains most of Afghanistan and extends into parts of Pakistan, India, China, Tajikistan,
Uzbekistan, Turkmenistan, and Iran.

and evapotranspirative demands [83, 85]. With more than one-sixth of the Earth’s

population relying on seasonal snow packs for their water supply [84], reliable SWE

estimates are critical for resource management. Beyond potable drinking water,

precise information about the water volume stored in the snowpack is necessary in

the evaluation of hydroelectric power, sanitation, manufacturing, agriculture and

environmental protection.

Accurate models of SWE can serve as a monitoring system by providing a bench-

mark to measure the advance of global warming, which influences the timing and

magnitude of accumulation and melt [83,85]. Moreover, irregular amounts of SWE

can signal the onset of hydrologic extreme events like drought and flood [86], which

are among the most influential environmental stressors affecting the development of

human societies [87]. Monitoring SWE in this particularly unstable geopolitical region

is especially important considering societal vulnerability to climatological events –

most prominently drought – has led to societal disintegration, armed conflicts, and
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Figure 2.2: Topography of the Hindu Kush region of High Mountain Asia. From left to
right: elevation in meters, aspect in radians, and log slope in log radians.

eventually societal collapse [88–93].

Unfortunately, however, accurate SWE estimation is notoriously difficult due to

the complex characteristics of snow distribution [94] and the challenges of monitoring

it in mountainous regions across many national boundaries [86]. High-mountain Asia

is especially sensitive in this respect, and furthermore suffers from a dearth of relevant

ground-based sensors, meaning satellite imagery is the sole source of data. And current

estimation techniques based on this imagery fall short [86]. New models will need

to include a more faithful representation of surface-water processes and provide a

continuity of observations to account for nonstationarity [95].

Thus, our broader practical goal is improved near-real-time estimation of SWE in

this region. We aim in particular to estimate regional SWE (the response variable) of

the Hindu Kush range, given a set of explanatory variables that are measured across

a regular grid nested within the response. Regional SWE is of scientific and practical

interest, and furthermore the methods we explore here can be scaled down to smaller

prediction areas using the same data sources, e.g. basin scale, though this is beyond

the scope of this paper.
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“ Although nature commences with reason and ends in
experience it is necessary for us to do the opposite,
that is to commence as I said before with experience
and from this to proceed to investigate the reason.

”Leonardo di ser Piero da Vinci

3
Experiments and Results

We take a comparative approach to the SWE problem, considering ridge regression,

lasso, and GP-based symbolic regression.1 For each regression model, we consider a

filter-based method of feature construction in addition to a second, more dynamic

method. For linear regression, we incorporate a wrapper approach in which constructed

features and the regression model are induced in separate learning processes, with
1The source code necessary for reproducing our results is available at

https://github.com/skriegman/ppsn_2016.
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Table 3.1: Regression models and their implemented feature construction methods.

Standard Filter Wrapper Embedded

Ridge X X X ×
Lasso X X X ×

GP X X × X

feedback between the two. For symbolic regression, we use an embedded approach

where constructed features and the regression model are induced simultaneously over

the course of an evolutionary run. Table 3.1 provides a summary of our methods,

indicating which feature construction methods are implemented in combination with

particular regression models.

The Dataset.

The SWE dataset is derived from data collected by NASA’s Advanced Microwave

Scanning Radiometer (AMSR-E; aboard the Aqua satellite) and Moderate Resolution

Imaging Spectroradiometer (MODIS; aboard the Terra and Aqua satellites) for March

1 - September 30, in 2003 - 2011, over the Hindu Kush region of high-mountain

Asia.2 We have three explanatory variables measured daily across a 113× 113 regular

grid within the region for 1935 days. The first explanatory variable, a, is a physical

estimate of SWE itself derived from AMSR passive microwaves [96–98]. This passive

microwave-based SWE estimate has a number of issues which are outlined in [86] and

highlighted in Table 3.2. Additionally, there are two explanatory variables derived

from MODIS data which measure different statistics of the fraction of snow covered

area at a sub-pixel level [99–101]. Concretely, in addition to a, we have sub-pixel snow
2Raw satellite data was pre-processed by Dr. Jeff Dozier (UCSB) using previously reported

techniques and is available upon request.
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Figure 3.1: From rasters to panel data (without spatial aggregation). Incorporating mea-
surements at each of the 113 × 113 individual spatial units, of each of our 3 explanatory
variables, results in 113× 113× 3 features – or columns in the design matrix – of a regional
model. The response summarizes the entire study region with a single value for each of the
1935 days.

covered area mean, mµ, and sub-pixel snow covered area standard deviation, mσ.

Whereas each of the explanatory variables (a, mµ, mσ) are measured across a

113× 113 raster image, the response variable is regional SWE, s, an attribute of the

entire study region, represented as a single 1 × 1 value for each of the 1935 days

(Figure 3.1). The response, s, was ‘reconstructed’ by combining snow cover depletion

record with a calculation of the melt rate to retroactively estimate how much snow

had existed in the region (see [102] for details). While the explanatory variable a and

the response s both represent an estimate of SWE, a is inaccurate but available on

a daily basis, whereas s is considered ‘ground truth’ but available only retroactively

after the snow has melted.
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Table 3.2: Correlation between uniformly upsampled explanatory variables and the regional
response, s.

a mµ mσ s

a 1.0
mµ 0.7343 1.0
mσ 0.6567 0.8631 1.0
s 0.4349 0.7423 0.6677 1.0

Without any spatial aggregation, each of the 113× 113 spatial units (pixels) within

the region, for each of the 3 explanatory variables, can be treated as a separate

regional model feature (Figure 3.1). In other words, the columns of the design

matrix correspond to a particular explanatory variable at a particular spatial location

within the region, and the rows of the design matrix correspond to their 1935 daily

measurements. There are 113 × 113 × 3 = 38307 features without considering any

interaction terms.

Table 3.2 compares the Pearson correlation3 between the regional response and our

three explanatory variables after mean uniform upsampling (their mean across space

for each day). AMSR SWE (our explanatory variable a) is a standard approach to

modeling SWE with satellite imagery that is used in practice. However, the correlation

between the upsampled AMSR SWE estimate, a, and the retroactive regional ground

truth, s, is particularly low at 0.4349. This disparity is the motivation behind pursuing

inductive estimates of SWE and incorporating the related MODIS variables.
3The Pearson product-moment correlation coefficient – the covariance of two variables divided by

the product of their standard deviations – was developed by Karl Pearson, however it is based on the
ideas originally introduced by Francis Galton.
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Figure 3.2: The geometry of ridge regression (left) and lasso (right) constraints as solid
blue regions in two dimensions of coefficients, β1 and β2. The red ellipses represent the
contours of the error function (sum of squares) as it moves away from the unconstrained
minimum at β̂ (the OLS solution). The biased solutions of ridge and lasso, depicted as red
points, are restricted to reside along the perimeter of their blue constraint. Figure adopted
from [11].

3.1 Regression Models

Ridge regression [103] is similar to ordinary least squares (OLS) but subject to a bound

on the L2-norm of the coefficients. Because of the nature of its quadratic constraint,

ridge regression cannot produce coefficients exactly equal to zero and keeps all of the

features in its model (Figure 3.2). Lasso (Least Absolute Shrinkage and Selection

Operator, [104]) modifies the ridge penalty and is subject to a bound on the L1-norm

of the coefficients. The geometry of this L1-penalty has a strong tendency to produce

sparse solutions with coefficients exactly equal to zero (Figure 3.2). In many high

dimensional settings, lasso is the state-of-the-art regression method given its ability

to produce parsimonious models with excellent generalization performance. For both

lasso and ridge regression, the parameter constraining the coefficients is set through
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the default cross-validation search procedure in Python’s scikit-learn.

Genetic Programming (GP, [69]) is a very flexible heuristic technique which can

conveniently represent free-form mathematical equations (candidate regression models)

as parse trees. GP’s inherent flexibility is well-suited for our particular problem because

it can efficiently express spatial aggregations and seamlessly combine them into the

learning process with minimal assumptions. Furthermore, the white box nature of GP

may provide physical insights about this complex problem that is currently lacking,

as in other domains [73,105].

To search the space of possible GP trees we use a variant of Age-Fitness Pareto

Optimization (AFPO, [106]). AFPO is a multiobjective method that relies on the

concept of genotypic age of an individual, defined as the number of generations its

genetic material has been in the population [107]. The age attribute is intended to

protect young individuals before being dominated by older already optimized solutions.

Each randomly initialized individual starts with age of one which is then incremented

by one every generation. An offspring inherits age of the older parent.

The AFPO algorithm starts with a population of n randomly initialized individuals.

In each generation, it proceeds by selecting random parents from the population and

applying crossover and mutation operators (with certain probability) to produce n− 1

offspring. The offspring, together with a single randomly initialized individual, are

added to the population extending its size to 2n. Then, Pareto tournament selection

is iteratively applied by randomly selecting a subset of individuals and removing the

dominated ones until the size of the population is reduced back to n.

We extend AFPO to include an additional objective of model size, defined as the

syntactic length of an individual tree. The size attribute protects parsimonious models
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which are less prone to overfitting the training data. To determine which individuals

are dominated, the algorithm identifies the Pareto front using using three objectives

(all minimized): age, error (fitness), and size. For the fitness objective, we use a

correlation-based function rather than pure error, and define

fCOR = 1− |φ(ŝ, s)|

where φ(ŝ− s) denotes Pearson correlation between model predictions (ŝ) and actual

values of our response (s), regional SWE. Correlation has recently been shown to

outperform error-based search drivers given that if a model makes a systematic error

it could be easily eliminated by linearly scaling the output and therefore should be

protected [61]. Accordingly, for all GP implementations, we apply a linear transfor-

mation after fCOR -driven evolution has concluded, by using an individual program

(model) output as the single input of OLS on the training data.

We used the settings in Table 3.3 for all implemented GP experiments. Each

experiment consists of 30 trials, from which the best model (lowest training fCOR)

is selected. The selected model is then transformed using OLS, and subsequently

validated using unseen test data.

Standard Methods. Ridge regression, lasso, and GP may be performed on the raw

data using each variable at each individual spatial unit as a separate feature (Figure

3.1). We denote these methods as Standard Ridge (SR), Standard Lasso (SL) and

Standard GP (SGP). SR, SL and SGP each have access to 113 × 113 × 3 = 38307

features, but only 1720 observations in each fold of data.
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Table 3.3: Genetic programming settings.

Parameter Value
population size 1000
generations 1000

initialization ramped half-and-half
height range 2− 6

instruction set {+,−,×, /, exp, log, sin, cos}
tournament size 2
crossover probability 0.75
mutation probability 0.01
maximum tree height 17
maximum tree size 300
number of runs 30

3.2 Feature Construction Methods

Feature construction is a well studied problem and the utility of genetic programming

for feature construction has been recognized in many previous studies [108]. The key

difference in our work from this past work is the nature of the data being modeled.

We presume that there exist spatial autocorrelations of varying size and shape that,

if aggregated to improve the signal to noise ratio, yield features supporting more

accurate predictions.

In a regional model, we can construct features by aggregating higher dimensional

variables across space. However, it is not entirely clear what kind of aggregations

are useful as features of a predictive model. Grouping variables based on similarity

or dissimilarity does not necessarily produce useful regional features. In this paper,

we make an assumption about the importance of distance and continuity in effective

spatial aggregations, based on Tobler’s first law of geography [109] which states that

“everything is related to everything else, but near things are more related than distant
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things.” Accordingly, we limit the space of possible spatial aggregations to be an

average of values within a circular spatial area defined by its centerpoint and radius.

However, where to aggregate, how many aggregations to perform, and how to combine

the aggregates must still be determined manually or decided during model optimization.

We view filters and wrappers as intermediary steps in relaxing assumptions towards

our embedded approach, which automates all three of these aspects.

The Filter Method.

Filter-based feature construction methods transform or ‘filter’ the original variables

as a preprocessing step, prior to modeling. Our filter for the SWE problem repre-

sents a static up-sampling transformation of the original variables. Each variable

is decomposed in space by a grid of overlapping circles4 of equal radii centered on

a square lattice pattern of points (see Figure 3.3 for example). Each constructed

feature corresponds to the average (arithmetic mean) of a particular variable sampled

within a particular circle of space. Units that reside in an overlapping region of two

separate circles are included in the calculation of both features. Since there are three

explanatory variables in the SWE dataset, an R × R grid corresponds to p = 3R2

constructed features. The constructed features are then used as inputs for ridge

regression, lasso, and GP, which we will refer to as Filtered Ridge (FR), Filtered

Lasso (FL), and Filtered GP (FGP). We will also specify the value of R used in a

particular model instance as a subscript, e.g. FR15 denotes Filtered Ridge with R=15.

We consider filters with R ∈ {1, 2, . . . , 20}, however note that the standard methods

are essentially filters with R = 113, albeit with the non-overlapping square pixels.
4The shape of circles are in reality so-called ‘small circles,’ as they lie on the surface of earth.
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Figure 3.3: Overlapping circle grids for a particular variable representing the regions
sampled by the filter approach Each of the three SWE variables are decomposed by overlapping
circle grids at resolution R resulting in p = 3R2 constructed features.

The Wrapper Method.

Wrapper-based feature construction methods incorporate feedback from the fit of the

model. We implement wrappers around both ridge regression and lasso in order to

enable the circular sampling regions to define their own center and radius. The circles

are no longer fixed on a grid with a predetermined size. Instead, each constructed

feature is uniquely parameterized by the coordinates of a center unit (x, y), as a

latitude and longitude tuple, and a radius r, as a single value floating point number in

km. The center can be any spatial unit in the region, including one at the edge of the

raster. The radius is restricted to be within 0 and 1000 km, which is flexible enough

to contain only a single unit or span the entire region (see Figure 3.5b,d for example).

Wrapped Ridge (WR) and Wrapped Lasso (WL) separately use a ridge/lasso-

driven hill climbing algorithm to construct features that minimize Mean Absolute

Error (MAE), i.e.
1
n

n∑
i=1
|ŝi − si|

where si is the actual value of our response (regional SWE) and ŝi is output predicted

by the model over n observations. The algorithm uses the same number of circles for
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each of the three variables, initializing their parameters (x, y, r) randomly. For 1000

iterations, a single constructed feature (circle) is randomly selected and subject to a

Gaussian mutation on one of its parameters with standard deviation equal to 25% of

the radius and centered at zero. A new ridge/lasso model is then refit on the mutated

set of features using a random subset of data sampled without replacement. If the

mutation lowered model error on the complementing set of training data left out, then

the change is accepted. Otherwise, the mutation is undone. If a proposed mutation to

the radius would take it outside the restricted range of 0−1000 km, then it is ‘bounced-

back’ the distance it would have exceeded the boundary. For example, a random

mutation that would result in a radius of 1200 km, becomes 1000−(1200−1000) = 800

km. Thirty restarts are used from which the best model based on training data is

selected. We consider R ∈ {1, 2, 3, 4} for wrappers corresponding to 3×R2 features

which really means 3× 3×R2 modifiable parameters.

The Embedded Method.

By using GP, we can allow for flexibility with respect to the placement and number of

aggregations as well as the way in which they are combined to form a model. However,

stochastic optimization methods like GP cannot be easily ‘refit’ in the same manner

as deterministic algorithms like ridge regression or lasso. Therefore using wrapper

approach for GP is computationally infeasible. Instead, modifications to aggregated

features are implemented through mutation-based operators.

In Genetic Programming with Embedded Spatial Aggregation (GPESA) introduced

here (Figure 3.4), our constructed features are represented as parameterized tree

terminals, with parameters (x, y, r). Constructed features are randomly initialized
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Figure 3.4: GPESA trees employ specialized terminals which take the average of a
spatially distributed variable within an adjustable circle of geographical space, specified by
their centerpoint (longitude, latitude) and radius.

in the same manner as the wrapper method, but separately for each terminal of

each individual in the population. Greedy Gaussian mutations to the parameters

(x, y, r) of a randomly selected constructed feature occur in the population with 20%

probability, each generation. Mutations to r have mean zero and a standard deviation

of 25%, subject to the bounce-back rule. Similarly, mutations to (x, y) have mean

distance zero and a standard deviation of 0.25r. For 25 iterations, greedy mutations

modify the parameterized terminals within a particular GP tree. A modification is

accepted if it successfully reduces average error (fCOR) on random subsets of training

data sampled with replacement. Aside from the stochastic application, another key

difference between the wrapper method’s hill climbing algorithm and the GPESA’s
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greedy mutations is that the overall regression model stays the same between mutations

rather than being refit after each mutation.

Validation.

In order to validate the generalization of models we partition the dataset into nine

overlapping folds. Each fold corresponds to leaving out one year for testing and

training on the remaining eight (using years 2003 - 2011). We use MAE on the unseen

test data as a metric to assess model performance. To account for a difference in

scale across any set of features, all input model features are standardized over time by

removing the mean and scaling to unit variance. This means that as wrapper and

embedded methods construct new aggregations, the sampled data is scaled over time

prior to being averaged over space. Since our goal is near-real-time estimation for a

future day, the training values of a feature’s mean and variance are reapplied when

scaling the same feature in validation.

3.3 Results

Table 3.4 displays the test error of each valid regression and feature construction

method combination. For filters and wrappers, only the best performing model

is displayed in Table 3.4 and we indicate the particular value of parameter R as a

subscript (see Figure 3.6a for all filter results). Since the ultimate goal of our paper is

to synthesize a method better than existing approaches, we must statistically compare

GPESA to SL, the state-of-the-art linear regression / variable selection algorithm.

The null hypothesis of interest here is that of no difference between GPESA and a
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Table 3.4: Median mean-absolute error with corresponding standard errors in parentheses.
Only the best testing filter- and wrapper-based results (choice of R) are displayed. We
explicitly compare GPESA with the state-of-art, SL. Bold values indicate significance (at
0.05 level with Bonferroni correction) under a Wilcoxon singed rank test in which the null
hypothesis asserts that distribution of the differences between GPESA and SL is symmetrically
distributed about 0.

Year SR SL SGP FR4 FL19 FGP19 WR2 WL3 GPESA

2003 0.86 0.51 0.35 (0.14) 0.50 0.46 0.44 (0.08) 0.43 (0.10) 0.49 (0.09) 0.29 (0.09)

2004 0.47 0.30 0.32 (0.10) 0.34 0.29 0.26 (0.05) 0.37 (0.16) 0.35 (0.16) 0.17 (0.05)

2005 0.95 0.44 0.50 (0.13) 0.61 0.40 0.52 (0.06) 0.58 (0.11) 0.63 (0.09) 0.32 (0.07)

2006 0.66 0.27 0.41 (0.29) 0.57 0.52 0.36 (0.06) 0.53 (0.11) 0.54 (0.11) 0.27 (0.05)

2007 0.72 0.33 0.44 (0.10) 0.42 0.38 0.34 (0.05) 0.52 (0.13) 0.50 (0.11) 0.24 (0.06)

2008 1.46 0.46 0.60 (0.13) 0.71 0.64 0.58 (0.11) 0.70 (0.31) 0.54 (0.26) 0.52 (0.18)

2009 0.81 0.41 0.65 (0.08) 0.90 0.61 0.56 (0.08) 0.98 (0.10) 1.03 (0.09) 0.41 (0.10)

2010 0.62 0.48 0.44 (0.12) 0.43 0.47 0.41 (0.06) 0.43 (0.11) 0.52 (0.11) 0.32 (0.07)

2011 0.87 0.48 0.61 (0.17) 0.77 0.60 0.53 (0.10) 0.82 (0.20) 0.93 (0.16) 0.45 (0.12)

Mean 0.82 0.41 0.48 0.58 0.49 0.44 0.58 0.61 0.33

SL. Therefore we perform yearly Wilcoxon signed rank tests [110] comparing GPESA

to SL with Bonferroni correction across the nine years. For five out of the nine test

years, GPESA is significantly better than SL, while for the other four years there is

no significant difference with SL.

Through displaying only the best testing filters and wrappers, we aim to focus

speculation about GPESA performance through a conservative lens. Yet we ultimately

view filters and wrappers as intermediary steps ‘working up’ to GPESA. Accordingly,

the best test error better represents a bound on the potential performance of a

particular intermediary method even though it may not be possible to achieve such

performance through a parameter sweep based on the training data. And indeed,

across all methods tested, GPESA reported the lowest recorded median mean-absolute

error within all but two years (7 of 9) where it has the second lowest.
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3.4 Discussion

Our results show that incorporating dynamic aggregations of higher resolution variables

into a regional model is beneficial in our particular problem setting, as compared to

both uniform up-sampling of variables and a state-of-the-art linear regression technique

(SL) that incorporates individual spatial units. SL achieves competitive prediction

performance through a sparse linear combination of the individual spatial units, on

par with SGP which is not linearly constrained. Ultimately, GPESA performed

significantly better (lower median test error) than SL on a majority (5 of 9) of cross

validation folds. Moreover, whenever GPESA was not significantly better than SL it

was not significantly worse.

A main reason why GPESA has an advantage in this application is the difficulty

of knowing a priori what the most important spatial datapoints are, and how to

best aggregate them. Additionally, the structure of the model itself is unknown

and it depends on the resulting aggregations. Therefore this is not a fixed length

optimization problem, which makes it well-suited for GPESA, which can search over

different numbers and non-linear combinations of spatial aggregations. While SL

can theoretically perform the same aggregation as a GPESA terminal (mean within

a radius of a geographical point), SL is restricted to a single linear solution while

GPESA is not.

However, it’s important to emphasize that the computational cost of GPESA is

higher than that of traditional GP and much higher than that of linear regression. In

particular, the most expensive operation is the ‘on the fly’ aggregation component of

GPESA which makes the fitness evaluation require 500% more time than in SGP. Part
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of the incurred cost is due to inefficiencies of our implementation that necessitated a

copy with all spatial aggregation operations. In future work we will look at reducing

this overhead through more efficient data structures (e.g. k-d trees).

Importance of Spatial Units.

To better understand the relevance of particular spatial locations, we define the

importance of a spatial unit for both linear and symbolic methods, separately. For

ridge regression and lasso, we can define importance by exploiting the disposition of

coefficients to be larger for variables with a stronger correlation to the response, relative

to a particular feature set. We define linear regression importance of a particular

spatial unit as the average absolute coefficient of features that incorporate the unit

into a regression model. While we cannot as easily determine relative importance

within nonlinear models, we can instead define importance by exploiting the multiple

candidate solutions provided from stochastic multiobjective optimization. We define

GP importance of a particular spatial unit as the average absolute correlation (1−fCOR)

of nondominated solutions that incorporate the unit.

To visualize the importance of spatial information, we generated a series of

heatmaps (Figure 3.5). In Figures 3.5a, 3.5c, and 3.5e we show regional im-

portance values of filter methods for each R ∈ {1, ..., 20}, with the relevant value of

R annotated in the upper left corner of each box. Note that in lasso- and GP-based

approaches, some variables are unused (white), while ridge cannot perform variable

selection and uses all. Figures 3.5b and 3.5d plot WR and WL for R ∈ {1, 2, 3, 4}.

Finally, Figures 3.5e and 3.5f plot the importance of spatial information in the GP

sense, for FGP and GPESA, respectively. Overall, this visualization indicates an
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Figure 3.5: (Continued on the following page.)
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Figure 3.5: Importance (defined in Section 3.4) of spatial units. For filters a.) FR, c.)
FL, and e.) FGP, importance is displayed at each resolution R ∈ {1, 2, . . . 20} and each
individual filter subplot is annotated with the corresponding R. For wrappers b.) WR and d.)
WL, R ∈ {1, 2, 3, 4}. Finally, f.) GPESA, which has no R parameter. White areas indicate
spatial units unused in feature construction across all three exploratory variables.

agreement among all methods on the relatively higher importance of information in

the lower center/right region of the image.

Nevertheless, the placement of the important regions is particularly counter-

intuitive. A human investigator might speculate that it would be optimal to monitor

the regions of space with the most SWE, i.e. at the highest elevations. However as we

can see from comparison to Figure 2.2, models are able to reasonably induce total

areal SWE based solely on changes on the fringe of mountainous regions. Why these

regions are so predictive would be interesting for domain scientists to consider, to

potentially drive new physical insights or monitoring strategies. It appears as though

the models are performing ‘edge detection’ by relating regional SWE to the melt rate

and/or the eventually complete disappearance of snow in these low elevation regions.

It is more difficult to ascertain the importance in SL (Figure 3.6b) which combines

seemingly random pixels, inconsistently across model years. This is due in part to

the geometry of SL’s constraint which tends to only include one of many correlated

variables into it’s sparse regression model. While it is preciously this constraint and

the resulting sparsity that makes SL so good at generalization, the multiplicity of SL

models and the pixels they incorporate further supports the idea of performing at

least some spatial aggregation.
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a. b.
Filter Method Test Error Standard Lasso Importance

Figure 3.6: Supplemental results. a.) Mean absolute test error for the filters by resolution
R. b.) importance (defined in Section 3.4) of spatial units used by Standard Lasso (SL).
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“ Such is the supreme folly of man that he labors so as
to labor no more.

”Leonardo di ser Piero da Vinci

4
Summary and Conclusions

In this work we developed a novel method to address the problem of modeling a

regional response with high resolution satellite imagery. We moved away from uniform

up-sampling aggregations towards more flexible and interesting aggregation operations

predicated on their subsequent use as features of a regional model. Our proposed

technique, GPESA, is general and intended to apply to a variety of modeling problems

on spatially organized data. But as an application example, and as a setting in
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which to evaluate our techniques, we considered the problem of estimating snow water

equivalent in high mountain Asia using satellite imagery. Our results showed that

using GP to evolve spatial aggregations outperforms lasso, the state-of-the-art method

for directly incorporating individual spatial units into a sparse linear model.

4.1 Future Work

In future work we plan to explore more flexible spatial and temporal aggregations for

more predictive modeling in real earth science applications. To do so we will concentrate

on four connected avenues of research: (1) relax constraints on the geometries in

space which highlight spatial units to be sampled, (2) incorporate varying geometries

in time, (3) design more sophisticated statistics to aggregate elements of the resulting

samples, and (4) improve the identification of useful aggregations by considering their

semantics.

Geometries in space.

Throughout the paper, we use circles to select spatial units for aggregation because

circles only have two adjustable parameters: a centerpoint and radius. We could

proceed by including an additional focal point and use the resulting ellipse to select

spatial units. If circles in fact support more effective aggregations in certain regions,

they may still be formed by placing both foci are at the same point (the center).

This additional flexibility and may accommodate superior model performance, but in

general the search space increases exponentially in the number of additional modifiable

parameters.
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Even if an ellipse proves more effective than a circle, increasing complexity in this

manner inevitably leads to many parameters governing smaller aspects of a complex

shape (e.g. a convex hull, perimeter, or the union of many circles). In any case,

we will eventually hit a complexity ceiling as the number of governing parameters

increases. We could define complex geometries without any additional parameters by

using threshold logic at each spatial unit: “if a variable is greater than c, include the

unit in the aggregation sample.” Variance or entropy may prove useful in defining

threshold-based geometries, especially given that the most important regions, as

indicated by Figure 3.5, were in areas with higher relative variance across time (the

snow completely melted here and SWE went to 0). Metadata like elevation, aspect and

slope could be used in a similar fashion although preliminary experiments suggested

groupings based on distance in geographical space were significantly more effective

than in elevation, aspect or slope. The issue with threshold logic is that it might

produce erratic, sparse patterns that may not generalize well to unseen data. For this

reason, the simplicity of circular spatial aggregations was potentially beneficial in our

experiments, and it remains to be seen if perusing more complex geometries begets

overfitting.

Alternatively, Compositional Pattern Producing Networks (CPPNs, [111, 112])

have demonstrated a fantastic ability to create complex geometries characterized

by symmetry, repetition, and interesting variation using convolutions of a small set

of simple functions (Figure 4.1). Replacing GPESA terminals with CPPNs could

allow for more interesting geometries with a modest number of modifiable parameters.

Moreover, the continuous and symmetric properties of CPPNs could conceivably

protect against overfitting the training data.
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presence?

sample unit (x, y)

x y

Figure 4.1: A CPPN is iteratively queried for each location on the map and produces
output values as a function of its coordinates. These outputs determine the presence of units
in the sample of a spatially aggregated feature.

The CPPNs could simply take the coordinates of a particular spatial unit and

output whether or not to include it in a sample to be aggregated (as in Figure 4.1).

However, the most important regions indicated by Figure 3.5 reside in a relatively small

subset of possible elevations as well as geographical coordinates. Latitude and longitude

might have ultimately worked better because regions with high importance were more

restricted in geographical space than in elevation. Perhaps in some combination

these three inputs (elevation, latitude and longitude) could collectively form superior

aggregation samples along Earth’s surface.

Co-evolution. In order to increase the efficiency of sampling geometries we may

have to adjust the GPESA algorithm. A natural approach is the co-evolution [113] of

sampling geometries alongside a population GPESA trees with empty terminals. In

the geometry population, the algorithms could adjust the parameters of ellipses or

49



alter the network structure of CPPNs. In this manner, individual models would gain

exposure to a range of samples across geographical space and vice versa, which could

provide a refinement in both selection geometries as well as the way in which they are

combined into a predictive model.

Geometries in time.

So far, we only explored spatial aggregations but we could adjust aggregation in time

as well. The first step is to incorporate ‘day of year’ as a fourth explanatory variable.

We expect there are at least coarse grain temporal autocorrelations in snow dynamics

since overall it melts away over the course of the season. Thus, we could predict SWE

for a particular day based on data from certain ranges of time. If the more recent

months of a variable exhibit a stronger association with the response, then limiting

spatial aggregations to a window in time could increase predictive accuracy. However,

we must be careful not to surrender useful observations in a high dimensional problem.

A more economical approach is to simply vary the selected spatial units across time.

Currently, aggregation occurs in a circle throughout a stack of images in time. The

semantics of a GPESA terminal are the aggregations of a particular circle across each

of the 1720 training day images. So the sampling geometry is actually a cylinder in

spacetime (Figure 4.2). Instead of a cylinder, we could have a more curvilinear shape

dictating which spatial units to aggregate for a given time of year. With relatively few

parameters we can use a bicone (two cones placed base-to-base). The widest portion

of the bicone will correspond to the current day we are estimating and as we move

away from the current day the selected region will shrink to a single unit (Figure

4.2). This structure will repeat in time for each snow year in our training set, eight

50



x

y

t

(GPESA terminal)
time invariant time variant

Figure 4.2: Sampling geometries in space (x, y) and across time (t) for a single training
year. Current GPESA sampling geometries are time-invariant; in future work we will
investigate relaxing this constraint.

bicones placed apex-to-apex. For this shape to be more effective than a cylinder, days

of the year in the immediate future or past must have larger spatial autocorrelations

associated in some way with the current day response. But perhaps the opposite is

true, in which case we can just shift our cones up to touch apex-to-apex on the current

day (rather than base-to-base).

If we cut off the upper part of a larger cone with a plane (the resulting shape is

called a frustum) then we can expand the apex from a single unit to a circle of any

size. The parameters dictating this conical frustum are the shared centerpoint and

two radiuses of each base. So there is just one extra parameter from a cylinder, three

in total. Next, we can allow the centerpoint of each base to shift in space as well

(another two additional parameters to specify the second centerpoint, five in total).

If there are asymmetrical autocorrelations in past days versus the future days, base

centerpoints and radiuses could also change according to a function of the current day

(one additional parameter, six in total)...
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Clearly this hand-designed path through increasing parameters will again lead

us exponentially fast into a complexity ceiling. Yet by simply including time as an

additional CPPN input we could produce a much wider assortment of interesting 3D

geometries (in spacetime), as evolved and printed in [114].

Statistics.

We fixed the statistic responsible for aggregating spatial units selected within a

circular region. We chose the arithmetic mean but this data reduction can be done in

a variety of more sophisticated ways which may potentiate more accurate modeling.

For example, we could allow for the choice between mean, median, minimum and

maximum; but again we run into the problem of additional parameters. Indeed

preliminary experiments suggested that restricting the statistic to the mean was

superior to a selection between these four summary statistics. Although it would be

interesting to try entropy or variance in addition to mean.

Another way to extend the flexibility of aggregation statistics is to use a weighted

average. This could be accomplished through CPPNs with an additional output

specifying the weight. Or, in accordance with Tobler’s first law of geography, we could

replace circles with Gaussian distributions, their standard deviations controlling a

distance-decayed weighting of neighboring units. The resulting predictive model may

be interpreted as a mixture of Gaussians.

In a way this idea is reminiscent of geographically weighted regression (GWR, [115]),

which calculates regression coefficients at every point in geographical space based on

a distance-decayed weighted sample of its neighbors. However, GWR is primarily

an exploratory tool for investigating non-stationary on a map, whereas our goal is
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regional model accuracy. In a similar fashion, we could incorporate explanatory

variables across different images into locally weighted regressions. Such an approach

could prove beneficial if there are generally useful areas of space with higher signal-to-

noise ratios across multiple variables. But if generally useful regions do exist across or

within variables, then we might be able to isolate them by modeling their importance

directly and incorporating the resulting distribution through an a priori change of

basis, similar to [116].

Semantics.

Standard tree-based GP searches the space of programs using crossover and mutation

operators that replace or modify subtrees. These operators are guaranteed to produce

syntactically correct offspring, however their actual effects on the behavior of the

program are unpredictable because the genotype-phenotype mapping is characterized

by low locality: even a minimal change at the syntax level may diametrically alter

program semantics. With nontrivial fitness landscapes, such large phenotypic changes

are problematic because the probability of a mutation being beneficial is inversely

proportional to its magnitude [3]. Recently, many semantically-aware search operators

have been proposed [117–122], and have proved to be effective on a number of symbolic

regression problems.

We could simply replace the mutation and crossover operators in GPESA with

one of the semantic procedures referenced above. Additionally, information about

the semantics of spatial aggregations could be exploited to maintain their semantic

diversity across the population [123] or for intelligent initializations [124]. However

we could also design new semantic operators that guide how aggregations are formed

53



and modified. Using semantic forward or backwards propagation [125,126], we could

deduce the necessary semantics of particular aggregation terminals in GPESA. In

other words, the exact aggregation values over time that would result in zero training

error when passed up the tree. The optimization problem then becomes a matter of

finding aggregation terminals that yield similar semantics or simple operations that

exploit given aggregations. We can then archive previously explored aggregations in

order to reuse those that best approximate the exact target semantics. This archive

could remove the need for GPESA’s embedded hill climber along with its subsequent

distance calculations and tree evaluations.

GPESA 2.0

In summary, we see semantic operators, CPPNs, and co-evolutionary approaches

as the most promising avenues for future research towards producing more cogent

aggregations. However, while future research is focused primarily on the aggregation

terminals of GPESA, there are many other general algorithmic improvements from the

GP literature that could be applied to the other end of the trees or their population.

Given the separate success of both lasso and GPESA, a hybrid approach is particularly

appealing. Perhaps the easiest adjustment we could make is to use lasso on all the

unique subtrees within solutions on the final Pareto front [127]. Although we could

also apply a similar idea every generation, guiding selection towards individuals that

contribute to a collective lasso solution [128,129].

Regardless of which enhancements are made, it is crucial that we apply GPESA

to other datasets in order to determine if its success was merely an artifact of a single

environment. To this end, we plan to pursue data for SWE in the larger High-mountain
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Asia region (extending eastwards) as well as Normalized Difference Vegetation Index

(NDVI) in the Amazon rainforest. Additionally, synthetic datasets should be created

to test the sensitivity of GPESA and to get a better understanding of the kinds of

spatiotemporal autocorrelations it can and cannot exploit. Ultimately, by refining the

generalization performance of GPESA and dissecting its complex solutions, we should

gain a deeper understanding of the natural phenomena we model.
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