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ABSTRACT 

 

Tick-borne zoonoses represent a significant and escalating public health threat, particularly in the 

United States, where ixodid (family Ixodidae) ticks serve as vectors for an array of tick-borne 

pathogens. With the release of climate change projections, understanding the complex interplay 

between environmental variables and disease dynamics becomes paramount. This study 

integrates epidemiological, molecular, and climatological data to investigate the influence of 

temperature and precipitation on the prevalence of Borrelia burgdorferi, Babesia microti, and 

Anaplasma phagocytophilum within adult Ixodes scapularis populations. Leveraging multiple 

linear regression models and climate projections, my analysis reveals associations between 

climatic factors and pathogen prevalence rates. While temperature emerges as a key determinant, 

precipitation exhibits a comparatively lower influence. By extrapolating current trends into 

future climate scenarios, our projections suggest a notable escalation in disease incidence by 

2070. Despite inherent limitations in our model, including data constraints and potential 

overestimation of pathogen prevalence, our findings underscore the urgent need for continued 

research and proactive public health measures to mitigate the threat of tick-borne zoonoses 

amidst a changing climate. This comprehensive approach provides valuable insights into the 

dynamic nature of environmental factors, vector ecology, and disease transmission dynamics, 

informing targeted strategies for disease prevention and protection of the public health.  
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1 Introduction  

1.1 Tick-Borne Zoonoses  

The people are getting sicker—an evocative opening line for a dystopian narrative and an 

unequivocal truth regarding the state of public health within the United States (CDC, 2024). 

Among the myriad pathogens threatening human health, ticks, particularly ixodid ticks (family 

Ixodidae), emerge as formidable vectors of zoonotic diseases. These arthropods play a unique 

role in disease transmission, harboring and transmitting an array of pathogens including 

protozoa, bacteria, and viruses (Jongejan and Uilenberg 2004). Ticks are responsible for 

transmitting approximately 95% of locally acquired, nationally notifiable human vector-borne 

diseases reported annually to the Centers for Disease Control and Prevention (CDC)(Adams et 

al. 2016; Paddock et al. 2016). Over recent decades, the incidence of tick-borne diseases has 

surged, with expanding geographic distributions and the emergence of novel tick-borne 

pathogens compounding the public health burden (Paddock et al. 2016). 

Of the numerous tick species inhabiting the United States, a select few from the families 

Ixodidae and Argasidae pose significant risks to human health due to their propensity to feed on 

humans (Merten and Durden 2000). These ticks, such as Amblyomma americanum, Dermacentor 

variabilis, and Ixodes scapularis (I. scapularis), are primary vectors of tick-borne illnesses, and 

orchestrate the transmission of pathogens to vertebrate hosts across their life stages. In light of 

the escalating threat posed by tick-borne zoonoses, a comprehensive understanding of tick 

ecology, pathogen dynamics, and vector-host interactions is imperative for devising effective 

strategies to mitigate disease transmission and safeguard public health.  

The primary tick vector in the eastern United States, the blacklegged tick, I. scapularis, is 

associated with a diverse array of diseases. Associated with this vector are the zoonoses: Lyme 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610605/#R144
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610605/#R144
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disease caused by Borrelia burgdorferi and Borrelia mayonii, relapsing fever caused by Borrelia 

miyamotoi, Anaplasmosis attributed to Anaplasma phagocytophilum, Ehrlichiosis induced by 

Ehrlichia muris euclairensis, and Babesiosis caused by Babesia microti (Dolan et al. 1997, 2016; 

Ebel 2010; Johnson et al. 2015; Karpathy et al. 2016; Krause et al. 2015; Piesman and Eisen 

2008; Pritt et al. 2011, 2016a, 2016b, 2016c; Teglas and Foley 2006). Of these diseases, Lyme 

disease has garnered widespread attention for its ability to cause long-term complications if not 

promptly diagnosed and treated. Similarly, babesiosis and anaplasmosis have demonstrated an 

increasing incidence in recent years, underscoring the urgency of addressing their transmission 

dynamics across their shared vector.  

Conventional public health strategies typically encompass diagnosis, testing, and treatment 

protocols - a perspective that perpetuates medicalization and urges ecologists and molecular 

geneticists to explore means to immunization. However, for diseases lacking a known vaccine, 

like Lyme disease, prevention strategies necessitate a nuanced understanding of local ecological 

dynamics. This proactive approach aims to mitigate potential cases by unraveling the intricate 

relationship between I. scapularis and its reservoir hosts. This relationship, classified as a highly 

complex ecological system, presents challenges that impede accurate and comprehensive 

research efforts (Mather & Ginsberg1994). Overcoming these obstacles is essential for advancing 

preventive strategies and empowering disease ecologists to assume a pivotal role in public health 

research.  
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1.2 Ixodid Distribution Modelling  

Despite these challenges, considerable effort has been directed into understanding tick 

distribution models in an attempt to better understand the ecological forces that threaten human 

health. As of 2022, 107 peer-reviewed articles have been published detailing various distribution 

models for tick species in North America and Europe. Among them, the most frequently modeled 

species was Ixodes ricinus (n=23), followed closely by I. scapularis (n=16) (Kopsco et al., 

2022). Recent publications have focused on population distributions of I. scapularis in newly 

suitable habitats, such as Florida (Glass et al., 2021; Kessler et al., 2019) and Ontario and 

Ottawa, Canada (Slatculescu et al., 2020; Soucy et al., 2018, respectively). Earlier studies 

examined regions more representative of New England, like New Brunswick (Lieske and Lloyd, 

2018) and the United States as a whole (Hahn, 2016; Kopso, Smith, and Halsey, 2022).  

Earlier models utilized ground-observed environmental data to forecast the expansion of 

established I. scapularis populations. Autologistic analysis uncovered that maximum, minimum, 

and mean temperatures, in addition to vapor pressure, played significant roles in maintaining tick 

populations, achieving an impressive accuracy of 95% (Brownstein, 2003). Subsequent studies, 

exemplified by the work of Hahn et al. in 2016, employed response curves for climate, elevation, 

and land cover variables chosen by refined I. scapularis models to delineate suitable habitats 

where surveillance records had yet to designate counties as established tick habitats. Among 

these variables, maximum temperature and precipitation of the warmest quarter, and precipitation 

of the driest quarter emerged as the most influential climatic factors affecting county habitability, 

corroborated by multiple optimized models.  
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The more recent work by Lieske and Lloyd (2018) applied occupancy modeling through passive 

surveillance to determine if New Brunswick, Canada, an area sharing a northeast border with 

Maine, was suitable area for I. scapularis populations. The study found that milder winter 

conditions and rising annual precipitation were correlated with a positive predictor of tick 

occurrence. By this estimate, climate projections suggest that approximately a quarter of the 

region would be suitable for Ixodes scapularis populations by the 2080’s.  

Through the examination of climate-dependent dynamics throughout various stages of the tick 

life cycle, whether in nymphal or adult forms, these researchers employ a "bottom-up" 

methodology to dissect the zoonotic threats posed to human health. The "bottom-up" approach 

aims to elucidate the relationship of environmental factors on tick ecology across diverse 

landscapes, albeit with inherent assumptions that may introduce uncertainties into its broader 

application. Nonetheless, the collective findings consistently point towards a climate-mediated 

expansion of tick populations, underscoring the imperative for continued investigation. Given the 

demonstrable influence of climatic variables such as temperature and precipitation on tick 

population dynamics, the looming specter of climate change raises pertinent questions regarding 

its potential to exacerbate zoonotic disease transmission. The critical question then remains: to 

what extent will climate-induced alterations in environmental conditions foster an environment 

conducive to the proliferation of tick-borne diseases?  

1.3 Climate and Ixodid-Host Dynamics  

The literature suggests that the proliferation of tick populations is poised for continued expansion 

(Paddock et al., 2016). However, the intricate interplay between population dynamics and 

disease prevalence rates is multifaceted (Dobson, 2004). I. scapularis and its pathogens, B. 
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burgdorferi, B. microti, and A. phagocytophilum, operate within an enzootic transmission cycle 

(Prusinski, 2014). This would suggest that while tick population models anticipate a favorable 

trajectory for the habitat range of I. scapularis, these same environmental variables may exert 

differential impacts on the persistence and transmission rates of pathogens across diverse animal 

hosts.  

1.3.1 Transmission Dynamics  

The presence of pathogens within tick populations relies heavily upon the activity of I. 

scapularis and its reservoir hosts, a dynamic deeply intertwined with phenology (Couret, 2022). 

This relationship, defined by interspecies interactions, seasonality, spatiotemporal patterns, and 

climatic variance contribute to the high complexity of the tick-host system (Couret, 2022; 

VanAcker, 2022). While research has yet to fully illuminate the intricacies of the tick-host 

system, the partial insights gleaned from interdisciplinary efforts are invaluable in preventative 

measures to public health. Among these insights, the transmission dynamics of tick-borne 

pathogens, including B. burgdorferi, B. microti, and A. phagocytophilum, are particularly 

noteworthy, as they are intimately connected to the life cycle of their respective vectors.  

The process begins with the hatching of uninfected larvae, which actively seek hosts, typically 

small mammals, or birds, to initiate the infection cycle. Since these pathogens are not transmitted 

transovarially, larvae acquire them during their first blood meal, potentially infecting the tick. As 

these larvae develop into nymphs, they may transmit the pathogen during subsequent feedings, 

often on small or medium-sized mammals (Arthur, 1962). As a result, if environmental factors 

affect the activity of ticks in their enzootic cycle, then differentiation between ixodid models and 

pathogen prevalence can be expected.  
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1.3.2 Biotic and Abiotic Factors Affect Activity  

The activity of I. scapularis and the transmission cycle across its reservoir hosts are significantly 

influenced by climatic and environmental variables (Gray, 2009 Süss, 2008, Hartemink, 2019; 

Estrada-Peña, 2012, Hubálek, 2003). Ticks, like many other arthropods, are highly sensitive to 

climate conditions, which has been found to impact their development, survival, and questing 

behavior (Gray, 2009; Hubálek 2003). While warmer temperatures may favor tick survival and 

population growth, excessive heat and water stress can inhibit tick activity (Hartemink, 2019). 

Questing behavior, critical for finding hosts and transmitting pathogens, is influenced by 

temperature and humidity, affecting the intensity of tick infestations in reservoir hosts and the 

risks for humans (Süss, 2008).  

1.4 Climate-Dependent Ixodid Zoonoses Prevalence Projections  

The existing body of literature provides substantial evidence supporting a positive correlation 

between climatic variables, including temperature and precipitation, and various aspects of I. 

scapularis ecology, such as its survival, abundance, and population dynamics (Ogden et al., 

2005; Schulze et al., 2009). Additionally, these climatic factors have been shown to alter the 

activity of the ixodid species, which would suggest differential results between ixodid projection 

models and prevalence rates. Given the ongoing phenomenon of climate change, which is 

projected to induce significant alterations in temperature and precipitation patterns across the 

continent, models forecasting the expansion of ixodid populations must also account for the 

potential implications for human health along the same dimensions.  

Due to the intricate dynamics characterizing I. scapularis ecology, the myriad assumptions 

inherent in modeling render findings somewhat nuanced and occasionally discordant across 
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studies. Given the emerging phenomenon of co-infections, it becomes imperative for research 

endeavors to be transferable and applicable to broader contexts (Lou, 2017). Consequently, 

analyses that center on a specific pathogen may yield insights that are germane to understanding 

other related pathogens, fostering a more inclusive comprehension of the intricate interplay 

between vector ecology and disease transmission.  

If climatic variables indeed wield significant influence over tick population dynamics and 

zoonotic pathogen prevalence, then it stands to reason that climate change will disrupt the 

observed incidence rates, deviating from what would be anticipated under a traditional 

exponential growth model. Moreover, by concurrently studying Borrelia burgdorferi, Babesia 

microti, and Anaplasma phagocytophilum, a multifaceted perspective emerges, complementing 

climate change projections with novel disease forecasts. 
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2 Methods  

We merged four types of data to conduct the regression analysis in this study: meteorological 

data from the National Oceanic and Atmospheric Administration (NOAA), ground-level 

observed PCR results of adult I. scapularis samples, annual state-level epidemiological data on 

Lyme disease, babesiosis, and anaplasmosis cases from the CDC, and climate projections from 

CHELSA. The CDC, NOAA, and CHELSA databases are publicly available.  

2.1 Meteorological Data  

The Global Summaries dataset, referred to as GSOM for Monthly, provides monthly 

meteorological data spanning from 1763 to the present. It includes various parameters such as 

monthly mean maximum, mean minimum, and mean temperatures, total precipitation, snowfall, 

departure from normal temperature and precipitation, heating and cooling degree days, days with 

extreme temperatures and precipitation, foggy days, and thunderstorm occurrences. These data 

are sourced primarily from the Global Historical Climatology Network - Daily (GHCN-Daily) 

dataset (Lawrimore, 2016).  

2.1.1 Forest Matching  

New England state forests, in conjunction with established research sites affiliated with the UVM 

Wildlife Pathogens Laboratory, were aligned with NOAA weather stations by a spatial 

correspondence procedure. Leveraging the Haversine formula to account for the Earth’s 

curvature, a cohort of 146 weather stations was successfully paired with their corresponding 

forest locations, exhibiting an average spatial separation of 10 kilometers. However, the spatial 
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disparity between forests and their matched weather stations exceeded one standard deviation for 

77 forest locations, signifying a non-negligible level of spatial discrepancy.  

2.1.2 Preprocessing  

Among the matched weather stations, a total of 57 climatic variables were recorded; however, 

we found not all weather stations were uniform in their data collection capabilities. Remarkably, 

42% of the 146 stations failed to measure climatic variables, excluding DP01 (number of days 

with >= 0.01 inch/0.254 millimeter in the month), DP10 (number of days with >= 0.1 inch/2.54 

millimeters in the month), DP1X (number of days with >= 1.00 inch/25.4 millimeters in the 

month), DSND (number of days with snow depth >= 1 inch/25 millimeters), DSNW (number of 

days with snowfall >= 1 inch/25 millimeters), EMNT (extreme minimum temperature for 

month), EMXT (extreme maximum temperature for month.), EMXP (highest daily total of 

precipitation in the month), PRCP (total monthly precipitation), TAVG (average monthly 

temperature), TMIN (monthly minimum temperature), TMAX (monthly maximum temperature) 

and SNOW (total monthly snowfall), for the month of July 2022. Moreover, only 58% of stations 

provided measurements for average temperature. Forest sites paired with weather stations 

characterized by incomplete meteorological data were deemed inadequate for further analysis 

and thus excluded from subsequent investigations.  

2.1.3 Site Selection  

To identify representative forest sites for modeling New England climatic dynamics, two 

Principal Component Analyses (PCA’s) were conducted. PCA[1], which incorporated all 

variables except TAVG, and PCA[2], which excluded PRCP, were employed. The variables 

TAVG and PRCP were plotted against their respective PCA axes. Through a rigorous selection 
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process, four forest sites were identified based on the following criteria: (1) representation of the 

four quartile ranges of average temperatures and precipitations in New England, (2) minimal 

summed residual across both regressions, and (3) accessibility and availability of scientific 

collection permits. The output of this selection process can be seen in Figure: 1. The sites 

deemed most representative for modeling New England climatic dynamics were: Mountain 

Laurel Estates, Goffstown, NH; Jericho Research Center, Jericho, VT; St. Mikes, Winooski, VT; 

and Ashburnham State Forest, Ashburnham, MA.  

 

 

 

 

 

 

 

 

Figure 1. Relationship Between Average July Temperature, Precipitation, and PCA Scores. 

Scatter plots depicting the association between average July temperature, precipitation, and PCA 

scores. Black dotted vertical lines delineate quartile ranges, while a gray shadow around the 

regression line indicates the 95% confidence interval. The PCA equation and R² value for the 

regression are provided in the bottom right corner. Data points represent various state forests 

derived from preprocessed NOAA Monthly Summaries for July 2022. The identified forests, 

Ashburnham State Forest, MA; Jericho Forest, VT; Mountain Laurel Estates, NH; and Saint 

Michael’s, VT were selected as the most representative sites for ixodid collection. 
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2.2 Molecular Data  

2.2.1 Field Sampling  

Adult I. scapularis specimens were collected from designated sites between May and September 

of 2023, following landowner consent. Collection was conducted using a 1x1 meter white drag 

cloth. Each collected specimen was preserved in 250 mL plastic tubes containing 100 mL of 

100% ethanol. To maintain and store specimens, each tube accommodated a maximum of 10 

samples and was stored at room temperature until transferred to a freezer set at -17.8°C until 

future molecular analysis. Given that the sampling period coincided with a period of dormancy 

for adult I. scapularis, site revisits were conducted weekly until an approximate total of 50 

samples per site were obtained.  

2.2.2 Molecular Methods  

To detect the presence of B. burgdorferi, B. microti, and A. phagocytophilum, all specimens were 

screened by PCR methods. DNA was first extracted from full body samples using the Qiagen 

DNeasy Blood and Tissue Kit following manufacturer’s instructions. Following the procedure 

for Multiplex PCR in Diagnostic Virology, we used the forward primers RecR, 5BM, and 5AP 

and the reverse primers RecF, 3BM, and 3AP (Elnifro et al., 2000). In the thermocycler, the 

samples were run in cycles of 94°C for 30 seconds, 56°C for 90 seconds, and 72°C for 90 

seconds. A total of 40 cycles were completed, with a 15-minute denaturation at 95°C and a final 

extension of 72°C for 10 minutes.  

The PCR products were subjected to gel electrophoresis using 2% agarose gels to facilitate size 

differentiation. This technique enabled the identification of distinct bands corresponding to the 

amplified DNA fragments. Specifically, a band at approximately 550 base pairs signified a 
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positive infection of B. burgdorferi, while a band at approximately 310 base pairs indicated a 

positive infection of B. microti. Additionally, the presence of a band at approximately 1200 base 

pairs was indicative of a positive infection of A. phagocytophilum. The recorded infections were 

documented, and the samples were properly disposed of in accordance with established 

laboratory protocols. 

2.3 Empirical Strategy 

Using an incidence model derived from an exponential growth model and climatic dependent 

multiple linear regression, the regression model to examine the impact of the change in climatic 

variables Ci - in our case, the change in average temperature and total precipitation in July—on 

an outcome of interest Yt - in our case, the prevalence of pathogens - takes the form: 

 

where i indexes different climatic variables, t indexes time, and ρ indexes the growth rate of Y 

independent of the change in climatic variables defined by Ci. The error process ϵi is modeled 

using standard errors, allowing for arbitrary correlation over time and space in the covariance 

matrix clustered at the state level.  

Recognizing the random variations in climatic variability, akin to weather changes that draw 

from the broader state climate distribution, Ci considers the change in such variables with the 

assumption that variability will be reduced across dimensions. The future projection for C is 

collected from v2.1 CHELSA monthly projections across the models SSP126, SSP370, and 

SSP575 (Karger, 2017). Consequently, Ci pinpoints the causal impact of climatic variations on 
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disease incidence. The inclusion of the observed growth rate, denoted as ρ, effectively absorbs 

unobservable spatial characteristics.  

The selection of temperature and precipitation as primary climatic variables in our study is 

rooted in their profound impact on the activity and abundance of I. scapularis (Ogden et al., 

2005; Schulze et al., 2009; Burtis et al., 2016). Temperature regulates the mobility of these ticks 

(Burtis et al., 2016; Benelli, 2020), influencing their ability to seek hosts, while humidity 

governs their questing behavior (Knülle, 1982). While relative humidity is an optimal measure, 

its limited availability necessitated the use of precipitation, which also significantly affects tick 

behavior (Burtis et al., 2016). Thus, comprehending the intricate interplay between temperature, 

precipitation, and tick activity is paramount for understanding disease dynamics and devising 

effective preventive strategies. 

A fundamental issue with Equation 1 is regarding the functional form of C. Based off the noted 

trends in collected data, it was determined to consider the variables across a continuous 

spectrum, as opposed to bins for temperature and precipitation. As a result, the output is 

considered across a continuous spectrum. In this context, the functional form of C is determined 

by the nature of the climate data and how it varies continuously over time or space, that 

adequately captures the continuous variation in temperature or precipitation over the relevant 

time period or geographic area. The choice of employing β values for each variable, represents 

an effort to allow the data, rather than polynomial assumptions, to determine the incidence-

variable relationship. This degree of flexibility and freedom from assumption arises from the 

careful selection of sites that are intended to be highly representative of New England ecology. 

The second aspect to consider regarding Equation 1 pertains to the necessity of an accurate and 

precise ρ. The observed rate of growth is defined as the annual change in the prevalence of the 
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disease-causing pathogens, accommodating unobserved variations across sites. The underlying 

assumption posits that ρ represents the average rate of change over each time step, t, and remains 

independent of the climatic variables, C. As time (t) progresses, the significance of ρ increases 

exponentially. Furthermore, the assumption is made that pathogen prevalence follows an 

exponential growth model. This assumption finds partial support from CDC observations of 

annual incidence cases and the absence of evidence suggesting a carrying capacity beyond the 

presence of ticks and reservoir species. Consequently, this equation is applicable solely in 

scenarios where ixodid ticks are anticipated to be present. The methodology for computing ρ is 

elaborated upon in the subsequent section.  

2.4 Epidemiological Data  

In order to calculate ρ, we collected CDC incidence reports for Lyme disease, Babesiosis, and 

Anaplasmosis, and applied a rigorous function that seeks to fit an exponential model to the 

dataset. The function begins by initializing parameters for time, where each data point is indexed 

sequentially. Subsequently, it defines an objective function, which computes the sum of squared 

differences between the observed data and the predicted values based on the exponential growth 

model. The function then utilizes optimization techniques to minimize this objective function, 

effectively estimating the parameters of the exponential model, including the R value. This 

method employs the Nelder-Mead method for nonlinear optimization.  

An inherent limitation of the current methodology lies in its temporal scope. Despite the 

redefinition of Lyme Disease in 2008, available data from the CDC spans only the past 16 years, 

providing an annual record of its incidence across states. Conversely, babesiosis and 

anaplasmosis are diseases of emerging concern, with data on Babesiosis incidence by state 
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spanning from 2014 to 2020 and Anaplasmosis incidence recorded from 2017 to 2021. 

Consequently, the estimation of respective ρ values suffers from a degree of statistical 

underpowering, thereby compromising the precision of our projections.  

The last assumption inherent in this model pertains to the equivalence between disease incidence 

and the prevalence of corresponding pathogens within tick populations. This assumption implies 

a consistent frequency of human-tick interactions, and consequently, tick bites on humans, over 

time therefore, any alteration in pathogen prevalence is presumed to yield a proportional change 

in disease incidence. It is assumed that state-level incidence data can serve as a surrogate 

measure for pathogen prevalence within the respective state. In that respect, ρ can be derived 

from incidence data.  
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3 Results and Discussion  

 

Figure 2.  Prevalence of Borrelia burgdorferi, Babesia microti, and Anaplasma 

phagocytophilum Across Four Sites. The figure depicts the prevalence of Borrelia burgdorferi 

(blue), Babesia microti (red), and Anaplasma phagocytophilum (green) across four sites: 

Ashburnham (n=38), Goffstown (n=40), Jericho (n= 57), and Saint Mikes (n=52). Pathogen 

prevalence is expressed as a percentage of the total sample collected at each site. The results 

were obtained through multiplex PCR analysis of ticks collected at the representative sites, with 

sample sizes indicated for each location. (ANOVA: p = 2.433E-9). 
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Figure 3.  Multiple Linear Regression Models for Borrelia, Babesia, and Anaplasma. 

(A) Borrelia Regression Model, (B) Babesia Regression Model, and (C) Anaplasma Regression 

Model illustrates the relationship between temperature (x-axis), precipitation (z-axis), and 

pathogen prevalence (y-axis). The coefficient of determination (R^2) for each model is provided: 

0.98 for Borrelia, 0.18 for Babesia, and 0.45 for Anaplasma. Temperature was found to exert a 

greater influence on pathogen prevalence across all sites, while precipitation exhibited a lesser 

significance. Statistical analysis indicated no significant p-values (p>0.05) for all variables 

across all factors. 
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Table 1.  Summary of Regression Models. This table presents the statistical analysis derived 

from the multiple linear regression analyses conducted for the Borrelia, Babesia, and Anaplasma 

pathogens. The reported values include Pathogen Model, R2 (coefficient of determination), β0 

(intercept), Variable (predictor variable), β (regression coefficient), SE(β) (standard error of the 

coefficient), t-statistic, p-value, 2.50% (lower bound of the 95% confidence interval), and 97.5% 

(upper bound of the 95% confidence interval). 

 

 

Figure 4. Projected Prevalence of Borrelia burgdorferi in the Northeastern United States for 

the Year 2070. The maps depict varying shades of blue, indicating the prevalence ranging from 

dark blue (low prevalence) to light blue (high prevalence). From the upper left to the bottom 

right, the maps represent the growth rate assuming an exponential model, as well as three 

scenarios based on different SSP: SSP126 (Low CO2 emissions), SSP370 (Moderate CO2 

emissions), and SSP585 (High CO2 emissions).The figure suggests a positive correlation 

between CO2 emissions, temperature, precipitation, and pathogen prevalence on the prevalence 

of Borrelia burgdorferi in populations of Ixodes scapularis. 

B

or 

Bor 



 24 

 

Figure 5. Projected Prevalence of Babesia microti in the Northeastern United States for the 

Year 2070. The maps depict varying shades of red, indicating the prevalence ranging from dark 

red (low prevalence) to light red (high prevalence). From the upper left to the bottom right, the 

maps represent the growth rate assuming an exponential model, as well as three scenarios based 

on different SSP: SSP126, SSP370, and SSP585. The figure suggests a low correlation between 

CO2 emissions, temperature, precipitation, and B. microti prevalence in I. scapularis. 

 

Figure 6. Projected Prevalence of Anaplasma phagocytophilum in the Northeastern United 

States for the Year 2070. The maps depict varying shades of green, indicating the prevalence 

ranging from dark green (low prevalence) to light green (high prevalence). From the upper left to 

the bottom right, the maps represent the growth rate assuming an exponential model, as well as 

three scenarios based on different SSP: SSP126, SSP370, and SSP585. The figure suggests a low 

correlation between CO2 emissions, temperature, precipitation, and A. phagocytophilum 

prevalence in I. scapularis. 
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Tick-borne illnesses pose a significant public health risk, with their prevalence on the rise both in 

the United States and globally. The interactions between human activity and climate change are 

playing a role in the emergence of new diseases and the spread of existing ones into previously 

unaffected regions (Caminade, 2019). Factors like temperature and humidity have a direct impact 

on the abundance of ticks, availability of hosts, their survival rates, and the transmission of 

diseases. Studies, both empirical and simulation-based, have highlighted the positive impact of a 

warming climate on tick population expansion through increased survival rates and better access 

to hosts for feeding. Our study seeks to investigate how temperature and precipitation influence 

Lyme disease, babesiosis, and anaplasmosis incidence across U.S. states. Our hypothesis was 

that an increase in temperature and precipitation would lead to an increase in pathogen 

prevalence across all zoonoses because an increase in temperature and precipitation would 

contribute to an environment that is conducive to heightened activity and questing (Ogden et al., 

2005; Schulze et al., 2009), which would increase the rate of pathogen transmission across ticks 

and reservoir species.  

The results of the multiplex PCR analysis of ticks collected across the four representative sites, 

Asburnham (n= 38), Goffstown (n= 40), Jericho (n=57), and Saint Mikes (n=52), can be seen in 

Figure 2. Gel electrophoresis revealed an average Borrelia burgdorferi prevalence of 73.2%, an 

average Babesia microti prevalence of 3.7%, and an average Anaplasma phagocytophilum 

prevalence of 9.2% across all sites. The p-value across all sites considering pathogen prevalence 

for all three pathogens was significant (p = 2.433E-9).  

The statistical weight of temperature and precipitation on pathogen prevalence across Borrelia, 

Babesia, and Anaplasma was assessed by plotting the results in a three-dimensional space. This 

analysis, depicted in Figure 3, provides insights into the influence of these environmental 
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variables. Table 1 presents summary statistics for these models. Notably, the models reveal a 

significant impact of temperature on the prevalence of Borrelia, Babesia, and Anaplasma, as 

evidenced by the respective coefficients (β) of 3.72 -0.551, and 2.42, while precipitation exhibits 

comparatively lower effects β= 0.003, 0.0176, -0.0133, respectively). The Borrelia model 

demonstrates a high level of fit (R-squared = 0.98), indicating strong agreement between 

observed and predicted values. However, the models for Babesia and Anaplasma exhibit lower 

levels of fit (R-squared = 0.18 and 0.45, respectively). Notably, all p-values for the variables in 

these models exceed 0.05, suggesting non-significance in the observed relationships. All models 

had a VIF less than 5.0 which suggests a low level of collinearity.  

The exploration of non-significant results in the regression models was coupled with the 

integration of v2.1 CHELSA climate projections for the year 2070. Leveraging the socio-

economic pathways (SSPs) of SSP126, SSP370, and SSP385, these models facilitated the 

generation of novel disease forecasts that deviate from traditional climate-independent growth 

models. By extrapolating current trends into future climate scenarios, our study unveils potential 

trajectories of disease prevalence.  

CHELSA projections using the Borrelia model for 2070 suggest a high level of variation between 

climate independent exponential growth projections, and climate dependent models (Figure 4). 

The independent model suggests a future incidence of around 50-100 cases per 10,000 people 

across most states, with notable exceptions including New York, Massachusetts, Rhode Island, 

Maryland, West Virginia, Ohio, Michigan, and Wisconsin - which have projected rates exceeding 

200 cases per 10,000 people. This is attributed to a particular high ρ, which is derived from 

notable increase in the rate of incidence in the last 10 years. The SSP models, however, project 
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heighted incidence, with the SSP585 model projecting upwards of 150 cases per 10,000 people 

across much of the northeast of the United States.  

CHELSA projections using the Babesia model for 2070 suggest a low level of variation between 

climate independent exponential growth projections, and climate dependent models (Figure 5). 

The independent model suggests a future incidence of around 0-25 cases per 10,000 people 

across most states, with notable exceptions including Maine - which have projected rates 

exceeding 100 cases per 10,000 people. This is attributed to a particular high ρ, and a relatively 

low change in projected temperature and precipitation. The SSP models project decreased 

incidence across all states in comparison to the independent exponential growth model.  

CHELSA projections using the Anaplasmosis model for 2070 suggest a low level of variation 

between climate independent exponential growth projections, and climate dependent models 

(Figure 6). The independent model suggests a future incidence of around 0-75 cases per 10,000 

people across most states, with notable exceptions including Nebraska - which have projected 

rates exceeding 100 cases per 10,000 people. This is attributed to a particular high ρ, which is in 

part explained by a limited record of incidence on an annual basis. The SSP models revealed 

little differentiation between climate projections and the independent exponential growth models.  

Our findings indicate that climate change is poised to exert a significant influence on the 

prevalence of Borrelia, Babesia, and Anaplasma within Ixodes scapularis populations in the 

foreseeable future. Employing a model that accounts for the effects of temperature and 

precipitation on the prevalence of tick-borne pathogens, our projections suggest an approximate 

escalation to 150 cases per 10,000 individuals by the year 2070, translating to an augmentation 

of around 3 Lyme disease cases per county per year. Additionally, our model predicts 25 cases of 

Babesiosis and 50 cases of Anaplasmosis per 10,000 individuals. These projections were derived 
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by juxtaposing observed prevalence rates in New England forests with anticipated climate 

scenarios in the northeastern United States. However, it is important to acknowledge the inherent 

limitations of our model, as indicated by a p-value exceeding 0.05. Consequently, our projections 

may tend to overestimate the prevalence of Borrelia and Anaplasma while underestimating that 

of Babesia. Given the restricted scope of our dataset, our model likely inflates ρ leading to an 

exaggerated annual rise in pathogen prevalence.  

This data partially supports our hypothesis that climate change would have an effect on the 

prevalence of tick-borne pathogens. However, the lack of significant evidence leaves our 

investigation unresolved and further research must continue to answer this question. While the 

methodology may provide a reproducible approach that enhances our understanding of the 

complex interplay between climate change and tick-borne pathogen prevalence, its limitations 

underscore the need for continued investigation. Further research efforts should focus on 

expanding the scope and diversity of the dataset used for site selection, as well as incorporating a 

more comprehensive and representative dataset for tick-borne pathogen prevalence across 

various temporal scales. 

By augmenting the dataset in this manner, the pathogen models derived from the multiple linear 

regression analyses can be refined, thereby improving their accuracy and reliability for future 

projections. Additionally, a more robust dataset will provide a stronger foundation for 

illuminating the intricate climate-dependent associations governing tick-host ecological systems. 

Unlike "bottom-up" models that rely on a plethora of assumptions regarding ecological 

dynamics, our methodology is grounded in the application of readily available datasets, thus 

minimizing the risk of bias introduced by speculative assumptions. However, the power of our 
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projections and the scientific validity of our findings are inherently constrained by the quality 

and comprehensiveness of the incorporated data. 

In conclusion, while our study provides valuable insights into the potential impacts of climate 

change on tick-borne pathogen prevalence, it also highlights the necessity for ongoing research 

efforts to address the inherent limitations and uncertainties. By refining our methodologies and 

expanding our datasets, we can advance our understanding of these complex ecological systems 

and better inform public health interventions aimed at mitigating the risks posed by emerging 

infectious diseases. 
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