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Investigating Swine Farm Disease Spread by a
Large Agent-Based Model

Gian Cercena

April 30, 2024

Abstract

Contagious swine diseases cost billions of dollars in lost profits annually, and pose dangers to other animals, including
humans. These diseases can be mitigated by biosecurity measures, but the costs for these measures have collective incentives
not always reflected in individual incentive structures. We design a large scale agent-based model (ABM) of the swine
industry in the United States, where agent behavior is determined by their individual economic incentives, which have
collective consequences in terms of disease spread. The agents in our model include swine producers (farms), feed mills,
processors, and veterinarians. By simulating various scenarios under different assumptions regarding disease characteristics
and network structures, the model may serve as a valuable tool for researching the impacts of disease spread on American
swine supply chains. With the global demand for pork products continuing to be ever-present, ensuring the robustness of
swine production networks is of vital importance. Through the exploration of disease spread dynamics and the evaluation of
potential mitigation strategies, Pigs-Model contributes to the development of more effective biosecurity measures and disease
management protocols, ultimately enhancing the sustainability and security of swine farming operations.

1 Introduction

The swine farming industry stands as a vital part of
agriculture across the world. With the products that
the industry outputs standing at the forefront of all
meat consumed across the globe, accounting for 34%
of all meat production [1], there is an international
necessity for this production chain to be robust. The
world, continuing to evolve, will demand more from
food chains such as these, increasing the complexity
between the many elements of the system.

This high level of workload has lead to farmers work-
ing under time constraints, with many farmers stat-
ing the time they have is "very limiting" [2]. Ac-
cordingly, there is an increase of farmers looking to
streamline and simplify their processes in order to
save on not only time, but money, as financial issues
are also pervasive among farms [3].

One key aspect of farming is the constant clash be-
tween secure product and disease within livestock
heards. With disease being one of the chief antag-
onists to a smoothly working supply line, many re-
sources are needed to combat it. Over the past few
decades, researchers have further investigated swine-
related diseases [4], as the chance to mitigate its ef-
fects on the industry prove not only to help the farm-
ers themselves, but the international community as a
whole. A safer and more robust system could lead
to lower consumer goods’ prices, in turn leading to
the assistance of certain areas such as potential food
deserts [5]. So, it follows that with any farm, or prod-
uct, disease prevention plays an essential role in the

conflict between man and nature, safeguarding suste-
nance for communities worldwide. This collection of
practices and protocols is known as biosecurity [6].

Biosecurity covers a wide variety of conventions that
farms implement in order to prevent disease spread
among their livestock. Examples of biosecurity on
farms may include disposable footwear, extra sanita-
tion routines, such as showers, and routine disinfec-
tion on all vehicles and tires [7]. Additionally, farms
will actively monitor their livestock and isolate those
which appear to be sick [8]. Biosecurity extends to
all parts of the swine farm network, such as proces-
sors and feed mill producers too, who must ensure
that disease is not carried back to their facilities since
it could then be carried from one farm to another
(see Figure 3) [9, 10, 11]. One additional aspect of
biosecurity is compliance. While measures can be
put into place, it is imperative that employees of a
given facility actually follows these practices. In our
model, we are specifically interested in the effect of
producer biosecurity and the impact of incentives for
producers, so for the current scope of this model, the
biosecurity practices of feed mills and finishing units
are assumed to generally be fixed.

An issue arises upon the realization that not all farms
have equal biosecurity, which can stem from a multi-
tude of reasons [12]. Farms can be varying sizes, and
farms of different sizes can have different concerns
and threats. A large proportion are farms with low
swine capacity [13], which may not be large enough
nor have the financial resources to have a role or
shared practices dedicated to biosecurity. On the
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other hand, larger farms, which while a minority,
produce the vast majority of goods, could be on such
a scale that small oversights may not get noticed until
it causes sizeable issues to render at least a part of, if
not all of a farm’s operations unsafe.

Specialized farms will often require specific biose-
curity measures that address unique disease risks
with their products. Specific to only swine producers,
there is a unique process where swine are moved
from one facility to another dependent on their age.

“Livestock are often moved between facili-
ties to reduce costs and improve productiv-
ity. There is an old adage, ‘Livestock follow
the grain’. Even now this aphorism seems
true, as shipping animals is less expensive
than shipping grains, which are required for
animals to attain their slaughter weights."
[14]

As the produce is moved to and from specific farm-
types given their age, there are varying procedures
for farms that farrow swine, farms that grow weaned
swine to feeder, farms that grow feeder swine until
they are brought to a finisher, or even farms that
participate in all parts of this process [8, 15].

Minimizing disease within swine not only assists the
industry, but will decrease the opportunity for swine-
related disease to mutate and further infect other
organisms, such as seen with the swine flu. The
HINT1 influenza A virus, known for its high muta-
tion rates [16], caused the deadly 1918 flu pandemic,
and continues to cause issues. Resurfacing in a new
form almost a century later, the virus again caused a
large outbreak within the United States and Mexico
[17] causing upwards of 60 million cases, 250,000
hospitalizations, and 12,000 deaths [18].

Additionally, Porcine Reproductive and Respiratory
Syndrome (PRRS) stands out as a significant concern
within the industry. PRRS outbreaks within swine
producers can increase unmarketable swine from
anywhere between 10-30%, and cause mortality in
rates from 10-25% [19]. Losses from PRRS can be
significant, and due to its wider variety of strains, it
can be difficult to prevent transmission, shown by the
fact that it can infected other herds up to 3 kilometers
away [20], and persist within feed, though it varies
with factors such as temperature [21].

Many strategies for controlling PRRS has been ex-
plored within the literature. Measures such as vacci-
nations have shown positive effects in reducing viral
load [22], nursery depopulation can control for intra-
producer transmission [23], and heightened biosecu-
rity measures have such as air filtration have lowered

infection rates [24].

While these practices release some of the immense
strain disease has on the swine industry, it would
be impossible to attempt to rectify every issue that
producers face with biosecurity especially due to
diminishing returns. The model described within
this paper hopes to stand in place of the systems
implemented across the world, to be experimented
with in order to find better, more optimal practices to
prevent disease spread and release part of the burden
encountered by producers.

2 Agent-Based Modelling

Agent-based models (ABMs) are a modelling tech-
nique that utilizes advanced levels of compute per-
formance in order to build and simulate complex
systems comprised of many autonomously-acting
agents [25, 26]. It is unique from other modelling
methods which often rely on equations or data ag-
gregated across entire systems. Whereas other meth-
ods use equations or dynamics from a top-down
approach—attempting to model a behavior from a
few overarching rules or prescriptions—ABMs work
from the ground-up, defining rules for many agents
at varying levels. Typically, many agents interact
with each other, making decisions based upon rules
defined within their classes, as well as based on the
environment around them and the actions of other
agents. The objective is to simulate these systems
typically starting at a low level, to observe emergent
phenomena that would occur in real-life.

Due to the large scale of many ABMs, the micro-level
patterns and behaviors observed by the individual
agents eventually lead to the emergence of macro-
level patterns and observations. These observations
can be the focused output of a given model, though
the actions of the individual agents can very well be
of interest to. In recent years, ABMs have seen a rise
in popularity, owing to their flexibility and increases
in available computing power [27].

ABMs have found success across many disciplines
since they can be adapted to model vastly different
environments. Pharmaceuticals [28], marketing [29],
environmental planning [30], and psychology [31]
are just a sample of fields where ABMs have been
utilized to great effect [27]. Specifically related to
disease modelling in livestock, supply chains [32],
economics [33], and epidemiology [34] have all also
had success with ABMs, lending confidence to this
model and future works.

UVM SEGS
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Figure 1: Pigs-Model process chains. Red processes are for producers, green are for feed mills, grey are for veterinarians, and blue are

for processors.

2.1 FLAMEGPU

The building and fine-tuning of an agent-based
model (ABM) was the bulk of the work within this
paper. The creation of this ABM was largely based
off of a pre-existing model [35, 36, 37], but recreated
and built upon within the FLAMEGPU framework
[38]. FLAMEGPU is an agent based modelling frame-
work, built to be domain-independent, and efficient.
FLAMEGPU is useful in modelling computationally
expensive large scale simulations with massive pa-
rameter spaces such as this one due to the computa-
tionally expensive nature of ABMs. Using graphics
processing units (GPUs) in order to speed up the
simulation by parallelizing the large amount of com-
putations that happen within simulations.

Central processing units (CPUs) serve as the com-
putational core of a computer, tasked with speed-
ily reacting to real-time input making them latency-
focused. In contrast, graphics processing units
(GPUs) are optimized for handling large amounts
of parallel computations, focusing on high through-
put of data. This is due to inherent differences of
the architecture within CPUs and GPUs. CPUs fea-
ture a smaller selection of high performance cores,
each able to perform complex sequential tasks at
high speeds. On the other hand, GPUs have a many
smaller cores able to execute simpler tasks in parallel,
which allows them to handle many more operations
simultaneously [38, 39]. Furthermore, the better cost-
effectiveness per parallel process inherent to GPUs
increases their value to those interested in modelling
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computationally intensive tasks, making them more
suitable for simulating large models.

This gives massive speed gains for complex simula-
tions such as Pigs-Model, allowing it to handle mul-
tiple independent process chains at once as seen in
Figure 1 where the chains labeled Aging Pigs, Feed
Delivery, Infection Reporting, and Finishing are able
to run simultaneously. There is an exception due to
the fact that processes relating to the same agent type
(color) within the figure belong to the same agents,
meaning they cannot be parallelized.

3 Pigs-Model

3.1 Description and Purpose

Pigs-Model is a comprehensive agent-based model
designed to simulate the intricate dynamics of specif-
ically socioeconomically important diseases and their
spread within swine farm networks. The model aims
to capture the complex interactions among differ-
ent agents, including producers, processors, feed
mills, and veterinarians, as well as pseudo-agents
like swine batches and markets. The model incorpo-
rates various agent interactions, each playing a cru-
cial role in disease transmission within the system.
The intent is for it to be used as a tool to research the
impacts of disease spread through American swine
supply chain under varying assumptions concerning
disease characteristics and production chain network
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Figure 2: The agents within Pigs-Model and their connections.

structure.

3.2 Temporal Scale

The temporal scale of the model refers to the time
frame of the simulation and how time is represented
within it. In the case of the Pigs-Model, each time
step is discrete, representing a single day in real
life. Choosing a day as the time unit is significant
for several reasons. First, it is evident that with a
more granular time step, such as hours, the com-
putational requirements would increase significantly.
While finer detail could be captured with hourly time
steps, the simulation runtime would become con-
siderably longer, and managing the resulting data
output would become challenging.

Days are chosen because many activities on swine
farms occur on a daily basis. Additionally, data re-
garding disease transmission in swine farming is
typically recorded and analyzed on a daily basis, as
tracking it on an hourly basis would be impractical.
Given this context, modeling based on days aligns
the simulation with the typical rhythm of events oc-
curring within swine producers.

3.3 Agents

In Pigs-Model, there are four categories of agents: pro-
ducers (swine farms), processors (slaughter plants),
feed mills, and veterinarians, along with two pseudo-
agents: swine batches, and markets (see Figure 2).
Again, much of the following has been adapted from
or used previous works as a reference [35, 36, 37].

3.3.1 Producers

Farrow to Finish

| Farrow to Feeder
Feeder o Slaughter
Finish House
Wean to Feeder
Farrow to
LT Wean to Finish
Farrowing (Birth) 5 Weeks 10 Weeks 24 Weeks
Suckling Pigs Nursery Pigs Grow/Finish Market Weight

Figure 3: Types of Producers. Note that not all types will
necessarily be in a given network.
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Figure 4: The percent chance to increase biosecurity based on
the producer risk preference.

Producers are defined as the actual swine farms
within the model. They have the largest and most in-
volved action space, and each timestep they control a
multitude of values such as increasing or decreasing
biosecurity, shipping batches of swine to other farms
or processors, requesting and receiving batches of
swine from other farms, and potentially farrowing
new batches of swine.

First, understanding how biosecurity affects the dy-
namics of disease spread within a system of swine
producers is vital, so each producer is assigned a
risk preference. They can be within one of three
groups, risk averse, risk opportunist, and risk toler-
ant. Depending on their category, producers follow
one of three sigmoid functions (see Figure 4) which
gives them a probability of updating their biosecurity
level each time they interact with their veterinarian
based on the amount of other infections within their
local network (the other producers associated with
the veterinarian). Note that the maximum amount
of producers within any veterinarian network is 50
which was worked out to be a suitable number given
the quantity of producers within the system. Within

UVM SEGS



Pigs-Model, biosecurity modifies the values used to
determine the probability that a farm will acquire a
disease given an interaction with a disease actor for
a given farm, so higher biosecurity levels reduce the
probability of infection.

As for the swine themselves, each producer has
"batches" of swine, where each batch contains the
swine of the same age (detailed later in Swine Batches).
Producers can have up to 20 unique batches, each
acting independently from each other. Producers
only hold on to batches that exist within a defined
age range based upon its type (see Figure 3). There
are four defined categories, farrow, wean, feeder, and
finish. Farrowing producers are unique in the fact
that they are at the start of the swine network, as
they have the capability of farrowing (giving birth)
to piglets. The amount of farrowing batches at a
given time is determined by the amount of sows
uniquely available within the producer. Dependent
on the amount of sows, farrowing producers can
have anywhere between 1 and 4 sow batches, each
with their own cooldowns on how often they can
farrow a new batch. These cooldowns can be thought
of as a gestation period, though for a proper inflow
of batches into the system, this period may be ad-
justed to lengths that could be unrealistic in real-life,
but would account for out-of-system farrowed swine
entering.

These batches are a fix to an issue that arises within
large agent based models due to the potentially large
count of individual agents. Representative agents
such as the batches of swine allow the simulation to
model more individuals in a collective way than nor-
mally would be able to be simulated independently
given the computational capacity available. Represen-
tative agents can be dynamic, rescaling populations
in real-time [40, 41], or can be done from the start as
within Pigs-Model.

3.3.2 Processors

Processors would be the agents representing the pro-
cessor plants (slaughterhouses). They are one of the
two final destinations for all swine within the model,
with the other being the markets (see Section 3.3.5.2).
They serve as a representation of the slaughtering
of the swine, and provide the producer with mone-
tary compensation for the sold swine. Additionally,
they act as another point of disease spread within the
system. As swine remain within processing plants,
due to the fact that they can arrive from various pro-
ducers, they can serve as a nexus point for disease
spread. This is of particular importance since the
trucks that deposit swine at processing plants will
return to their producer potentially transmitting a

UVM SEGS
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disease that they picked up at the processor.

3.3.3 Feed Mills

Feed mill agents are what supply the producers the
feed required for the consumption by swine. Each
feed mill has a local network of producers that is
determined based on proximity upon agent initial-
ization. Feed mills generate D ~ Poisson(A = 2)
delivery routes that each deliver to a maximum of
15 producers within their local network, with the
individual producers being chosen uniformly until
either all have been selected or the maximum route
limit is hit.

3.3.4 Veterinarians

Veterinarians, as briefly described earlier, exist as
an agent to give producers a way to determine if
they are infected, and to spread information regard-
ing local infection counts. Producers have regularly
scheduled veterinary visits, they will potentially call
the veterinarian based on their biosecurity level (with
a higher level increasing the likelihood) if they have
symptomatic pigs, and they will call the veterinar-
ian if they were previously told they were sick and
would like an update on whether or not they still
are. Additionally, veterinarians play a crucial role in
enabling producers to determine whether to enhance
biosecurity measures based on their risk preference
as briefly described in Section 3.3.1 and elaborated
later within Section 3.4.4.

3.3.5 Pseudo-Agents

Below are pseudo-agents due to the fact that while
they can act as agent in some aspects, they tend to
be associated with specific agents, or exist entirely
within functions of other agents, and are noted here
for clarity.

3.3.5.1 Swine Batches

While modelling at such a low level where individ-
ual swine were agents could be deemed preferable,
certain simplifications were made to save on mem-
ory and computational power. Instead of managing
each swine independently, swine of the same age and
same infection status within the same producer are
grouped into batches, which follows real-life indus-
try practices [8, 11]. This means each batch has the
same disease status, so if the batch is exposed to an
infection event and catches it, the entire batch would
become infected.

non

A batch is categorized as either "susceptible”, "ex-
posed", "infected", or "recovered". A batch is suscep-
tible if it has not been infected yet, exposed if it has
been infected, but not showing symptoms, infected
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once it starts showing symptoms, and recovered after
the disease has left the batch after a given amount of
time, or if the entire batch dies from the disease. Ad-
ditionally, batches on the farm can infect each other,
leading to intra-farm disease dynamics. Each batch
can be thought of as a pen of swine that share the
values noted above, age and disease status.

The size and age of each batch is randomly initialized
during the start of a simulation, where the size is
based upon the total capacity of the producer, and
the age is uniformly selected from the age range the
producer type allows it to have (see Figure 3). This
is a meso-scale metapopulation model of disease
spread on a farm, with each batch representing a
small subpopulation within a larger metapopulation.

3.3.5.2 Markets

Mentioned earlier, a market is an alternative way for
swine to exit the system. After swine batch reaches
a certain age (21 days after initially being able to be
sold), they are sold to secondary-level markets. The
key aspect of this is to ensure that there is no block-
age of swine that fills a producer that cannot sell, in
order to keep the system properly functioning. These
types of markets exist in reality, there are dealers who
act as intermediaries who buy swine from producers
and sell to processors or other dealers within the mar-
ket. They benefit producers who can occasionally sell
swine to hedge against price fluctuations in the mar-
ket, as well as processors to ensure a steady inward
supply of swine. While these exact phenomena are
not modeled within Pigs-Model, the alternative exit of
swine through these markets is in order to maintain
the movement of swine throughout the system.

3.4 Agent Interactions

There are many agent interactions to aid Pigs-Model
in being a comprehensive model that covers many
aspects of the real-life swine industry.

3.4.1 Producer-Producer Interactions

When swine are for example weaned (at 5 weeks of
age within Pigs-Model), depending on the producer
type, they can either be bought or sold. Sales and
purchases of batches typically involve transferring
the entirety of a single batch from one producer to an-
other. However, in rare cases where no neighboring
producer can accept the entirety of the batch, only
the portion that can be accepted will be sold, while
the remainder will remain with the original producer.
It is important to note that the selling period for each
farm type is an additional 3 weeks past the specifica-
tion of age for the swine type, meaning that weaned

swine can start to be bought at an age of 35 days, but
can continue to be sold until the batch is 56 days old.
A similar process occurs for feeder swine as they can
be bought within an age range of 70 to 91 days.

3.4.2 Producer-Processor Interactions

If a producer has the capability of carrying swine
to market weight age (168 days), instead of selling
to another producer upon reaching its sale age, the
producer sends the batch to the processor they were
initialized with a connection to. As processors do
not have a capacity, and within the model instantly
process the swine, there is no complications such as
overloading a processor that can occur. Addition-
ally, the processor will monetarily compensate the
producer for the batch sent.

3.4.3 Producer-Feed Mill Interactions

The significance of feed mills within the model isn’t
necessarily to actually supply feed to the producers,
as that has been abstracted away from this model,
but instead to simulate the potential disease spread
through feed trucks from one producer to another.
Depending on the combination of the current pro-
ducer’s and feed mill’s biosecurity levels, disease
can either be carried away from a producer if it is
infected or carried to a producer from a previously
visited producer that passed the disease to the feed
mill truck.

3.4.4 Producer-Veterinarian Interactions

Veterinarians inform how producers adjust their
biosecurity level. When a veterinarian visit occurs
the veterinarian alerts the producer to how many
other infected producers there are within the local
veterinarian network. Since the veterinarian network
is generated based on proximity, this information
is crucial for producers to know, as the higher that
value tends, the greater likelihood there is for that
producer to become infected due to various transmis-
sion pathways.

Seen in Figure 4, each producer is assigned a risk
preference level which determines their attitude to
biosecurity. This is intended to represent attitudes
found in real-life producers where some practice
higher levels of biosecurity than others, either due to
the preference of the personnel within the producer,
or the company that owns the farm or the swine.
The more producers within the same veterinarian
network that are infected, the more likely it is that a
producer increases their biosecurity level. Addition-
ally, if a producer finds themselves infected, an extra
weight is placed upon them (by artificially increas-
ing the local infection count) incentivizing them to

UVM SEGS
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increase biosecurity more often.

When producers have swine that become symp-
tomatic, they can call in a veterinarian to determine
whether or not there is a disease present within their
batches. This is implemented to simulate the com-
mon practice of a pooled oral fluid collection test
[42], with the probability of false negative and false
positive probabilistically dependent on fraction of
batches in a farm which are infected. If a producer
finds they are infected, they will summarily not de-
crease their biosecurity during the duration, regard-
less of their risk preference, though increasing it is
still determined on their risk preferences against the
local infection count and whether or not they are
infected.

3.4.5 Producer-Market Interactions

If a producer has a batch of swine that is not able to
be sold for 21 days after it has reached its sale age
(e.g. each farm it can sell has been at capacity), the
batch then gets bought by a market, defined above.
These external markets are not individual agents, nor
are they tied to specific producers. Instead, their
functionality gets utilized by producers who have
batches that reach past their selling age.

3.5 Agent networks

Each agent type is connected to other agents of its
type and other types through several overlaid net-
work structures (see Figure 5), which define the po-
tential list of interactions between agents. Producers
interact with other producers directly through the
swine shipment network. Feed mills, processing
plants, and veterinarians interact directly with pro-
ducer agents through the feed mill routing network,
the processing plant network, and the veterinarian
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network, respectively. While these are the only direct
interactions, disease or information may be spread
between agents who do not have a direct interac-
tion through multiple steps on the same network or
through a collection of interactions over multiple net-
works. In our model, these networks are defined by
two aspects: the information, parameters and con-
straints, which go into the construction of the list
of directly interacting agents, and the nature and
directionality of these interactions. In this section
we will focus on the network parameterization and
construction.

The swine shipment network is a hierarchical, di-
rected, modular network. It is directed in that for
each pair of connected agents, one a selling agent
and one is a buying agent for that connection de-
pending on farm type. It is hierarchical in that there
is a directional flow of the shipments from farms
which raise younger pigs to farms that raise older
pigs resulting in no cycles in the shipment network.
The shipment network is modular in that producers
tend to be connected to other producers affiliated
with the same company.

The producer network structure is constructed
through the following steps. First, we initialize or
read in the farm-type, company affiliation, and the
number of customers for each producer. Then, we
use a degree-corrected stochastic block model [43] to
create a network of buyer-seller pairs. In this network,
each producer exclusively ships to other producers
with the same company affiliation. Moreover, each
producer, on average, serves the specified number of
customers, and exclusively sells to corresponding pro-
ducer types. For instance, farrow-to-wean producers
exclusively sell to wean-to-feeder or wean-to-finish
producers (see Figure 3).

The processing plant networks are similar to the
swine shipment networks, in that the swine move
in one direction from finishing farms to processing
plants. However, the processing plant that a given
producer ships to is determined only by distance,
with company affiliation not playing a role.

The networks used in this model for the feed mills
are an abstraction of the true routing procedure for
how grain is taken to farms in the system. Farms
are serviced by the nearest feed mill, and as trucks
typically dump all feed and refill and clean at the
mill between each customer, the order of customers
for a given day has no effect on disease dynamics.
For other diseases which can survive in feed, these
abstractions would likely cause more discrepancies,
however, for PRRS, research suggests this is not a
major factor [44], and the major vector is thought
to be the drivers. The construction of the feed mill
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networks consists of each farm being serviced by its
closest feed mill, and each feed mill has multiple
trucks which each service a random set of customers
per day in a random order.

For the veterinarian, the producer too joins with the
nearest veterinarian, but each veterinarian is capped
at 50 total producers, so if the nearest has reached its
capacity, the producer searches for the next-nearest
veterinarian with less than 50 producers. Note that
this currently means feed mills and slaughterhouses
can have variable connection counts to producers
based on their location.

The current producer data being utilized is from the
Farm Location and Agricultural Production Simula-
tor (FLAPS) [13]. Since there is no publicly available
collection of national data regarding swine popula-
tions across farms within the US, FLAPS was utilized
to impute values for farms within each state, giv-
ing researchers a better source of data for various
applications while keeping a level of company confi-
dentiality. This synthetic data has been constructed
to accurately simulate the 2012 Census of Agriculture
data. FLAPS had an absolute percent difference of
less than a tenth of a percent at the state-to-national
and individual farm-to-county levels. Within the
FLAPS data, the state of North Carolina has been
of initial focus within Pigs-Model due to its higher
density of swine population.

3.6 Infections/Disease

The infection enters the simulation at a specified date,
rather than at the model’s outset. This approach
is useful for evaluating the infection onset separate
from any potential influence a burn-in period might
have on the system. A burn-in period denotes the
duration, from the model’s initial step, until the sim-
ulation reaches a behavior that is expected. Given
that the initialization of producers and their swine
batches is user-controlled, the decisions made regard-
ing how they are initialized at the beginning of the
simulation may not resemble their appearance at a
later timestep within the same simulation.

Burn-in is difficult to account for, and while marginal
gains can be made towards reaching a smaller burn-
in period through more concentrated efforts, it can
potentially lead to isolated instances where the sys-
tem behaves anomalously due to unrealistic initial
conditions. By introducing the infection at a speci-
fied later date rather than at the start, we allow the
simulation to reach a certain level of stability first,
yielding more reliable and realistic results when the
disease is initiated.

Average Producer Population and Biosecurity
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Figure 6: An example of population burn-in and an infection-
caused biosecurity response within Pigs-Model.

Seen in Figure 6, for the parameters in this given
run, the burn-in period for biosecurity lasts until
timestep 13, whereas the burn-in period for the aver-
age producer population ends at timestep 132. This is
determined by looking at the average producer pop-
ulation across the system and noting when it reaches
a stable figure. The infection is then introduced at
timestep 135 after the effects of burn-in have ended.
When the infection enters the system, an fraction of
producers (and other agent types too if desired) are
infected at random according to the initial infection
rate input variable. Also note that an infection has
a certain infectious length, meaning that after a cer-
tain amount of timesteps of being infected, the batch
will gain immunity from it. Immunity can also be
calibrated for a certain length, but this is not consid-
ered for this model as the timescale of immunity is
less than the length of a typical life of a pig in this
industry.

There are two chief ways to transfer an infection
agent-to-agent, either through direct infection trans-
fer, or contact infection transfer. Direct infection
transfer occurs when an infected producer sells to
another agent, be it either another producer or pro-
cessor. When an infected producer sells an infected
batch of swine to a susceptible producer, and the
batch is accepted, the receiving producer becomes
infected. Alternatively, if an infected producer sells a
batch of swine to a processor the processor becomes
infected as a result from receiving the batch.

Second is contact infection transfer which covers sce-
narios which an agent interacts with another agent
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Figure 7: 14 day averages for farrowed and processed swine.
The infection start is at timestep 135.

that recently was in contact with infected swine. Each
of the following occur through the result of a truck
carrying disease from one agent to another. Infected
feed mill trucks can deliver disease to susceptible
producers, non-infected feed mill trucks can pick up
a disease from an infected producer, an infected feed
mill truck can bring a disease back to its feed mill,
and if an infected processor picks up sold market
weight swine from a susceptible producer, an infec-
tion can be transferred to that producer.

4 Results

The results for Pigs-Model will generally be in the
form of model validation, this paper aims to serve as
a foundation to stimulate future research questions
on the basis of this ABM. Note that the results listed
here may not completely represent true values within
the American swine system as of now. The purpose
of these results are to show the proper functional-
ity of the model. Additional parameter tuning will
eventually lead to results that fall more in line with
reality.

4.1 System-Wide

As mentioned within Section 3.6, burn-in is an is-
sue when it comes to models where parameter ini-
tialization is complex. The challenge apparent in
the behavior within Figure 7 for the beginning of
the simulation. For the first 130 timesteps, there is
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a large difference in the the number of swine be-
ing processed (leaving the system) per timestep and
those being farrowed (entering the system). This dif-
ference arises due to the initialization of producer
capacity and distribution of batch ages not accurately
reflecting the more complex distributions of these
variables at model equilibrium. Since swine batches
are assigned ages uniformly within their producers
given age range, this causes an anomalous amount of
swine that are processed until a full market weight
age cycle of 168 days passes. As time progresses
and the maximum age of a swine batch (168 days) is
reached, the processing rates fall to align themselves
roughly with the farrowing rates, exiting the burn-in
period. Note that the cycles, when grouped in sizes
of 4, roughly reflect the 168 day life cycle of swine
within the system. This also exemplifies the up to 4
sow batches per farm mentioned in Section 3.3.1.

Once the processing values fall in line with the far-
rowing values, comparing the two also shows us that
there is a lower amount of swine being processed
than farrowed which confirms that during their life
cycle, the amount of total swine is decreasing over
time due to the infection.

4.2 Producer-Specific

As Pigs-Model has a primary focus on the spread of
an infection throughout a system, it is vital to ensure
that it is properly spreading throughout a the given
system. After the burn-in period, at timestep 135,
an infection is introduced to the system, as seen in
Figure 8. For the specific simulation shown in this
figure, an initial infection rate of 5% was chosen,
meaning that randomly, 5% of all producers have
a batch that receives an infection. An initial spike
is seen following this infection, which then sharply
retreats, and then trails off after time.

Farrow-to-finish producers can be seen to have a
slight burn-in period and afterwards their popula-
tion percentages rise to an average of about 80%.
Interestingly, for their infection rates, there is a large
decline at about timestep 200. This is due to multi-
ple factors within Pigs-Model. First, farrow-to-finish
producers carry the same batches throughout their
entire life cycle. They are unique to other producers
in this aspect which benefits them by giving them a
lower likelihood of being introduced to disease via
the buying and selling mechanic. This can be noted
in the later infection values for these producers, as it
tends towards 0. Additionally, a batch only remains
infectious for a certain length, 60 in this specific sim-
ulation, which explains the sudden drop at timestep
200, at it is about 60 steps after the initial infection.
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Percentage Farm Population (Excluding sows) & Infection Percentage with 1 Standard Deviation Bands vs Simulation Step, Comparison Between Farm Types
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Figure 8: Average population and infections for each farm type and agqregated across all, as well as a 1 standard deviation band for

each measure from an example simulation.

Moving to feeder-to-finish and wean-to-feeder pro-
ducers, we observe similar trends. Again, there is an
initial burn-in period with wean to feeder producers
taking approximately 35 timesteps, corresponding to
the length of time that swine remain in that specific
producer. Similarly feeder-to-finish producers have
a similar burn-in period to farrow-to-finish. The val-
ues these producer types tend to over time are lower
than farrow-to-finish’s 80.74%, as they sit at around
41.47% and 36.86% averaged across the mean values
for the last 100 timesteps respectively. Since they can-
not introduce their own swine into the system, they
have to rely on previous producers and have com-
petition between producers of their own type when
trying to purchase new batches. Some producers,
due to their initialized connections, may experience
more or less competition, as seen by the larger stan-
dard deviation band around the average population
percentage values for these producers. Additionally,
the infection rates differ from farrow-to-finish, with
feeder-to-finish and wean-to-feeder stages exhibiting
much higher rates. The mean of their average values
across the last 100 timesteps being 9.02% and 9.52%
respectively. During the initial infection period, some
farms experienced even higher rates. Feeder-to-finish
had 52.05% of farms reach over 50% of their swine in-
fected for at least one timestep while wean-to-feeder
had an even higher value of 60.62%. This is clearly
attributed to the increased truck and swine batch
activity, as these farms are visited more frequently,
thereby increasing the chances of infection.

Farrow-to-wean and farrow-to-feeder producers each
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are seen to have very small burn-in periods. Addi-
tionally, their swine population values are prone to
act in a cyclic behavior. Since these two producer
types farrow their own swine, as they sell batches
of swine to feeder or finish producers, they repop-
ulate based upon their sow batch cooldowns. Once
their burn-in period has ended, they evidently enter
a cycle relating to these cooldowns. In addition, the
standard deviations for these producers at any given
point post burn-in is much smaller than the produc-
ers that do not farrow, which follows due to the fact
that they do not rely on any producer previous to
them to give them product.

4.3 Biosecurity

The average level of biosecurity across a given simu-
lation will be correlated with the prevalence of the in-
fection within the system. As the amount of uniquely
infected producers increase, the average producer
will have a higher likelihood of increasing biosecu-
rity. This can be clearly seen within Figure 6 as after
the initial infection date, biosecurity is seen respond-
ing in turn, increasing at first rapidly, then leveling
out as this infection becomes endemic and each pro-
ducer reaches a stable individual biosecurity level.
This is seen to notable effectiveness as infection levels
within Figure 8 tend downwards as the simulation
continues.
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5 Future Work

Pigs-Model leaves many areas open for future explo-
ration of disease dynamics and supply chain man-
agement within the American swine industry. The
models size and complexity, as well as its versatility
and adaptability lends itself well for utilization in
future works. Below are future plans for work within
the model and potential avenues for future research.

5.1 Model-Specific Work

At present, Pigs-Model remains incomplete. Though
it lies near the threshold of a viable product, several
modifications are needed to improve its utility.

5.1.1 Model Calibration

Pigs-Model does not model a specific disease, in-
stead it can—dependent on initialization and creation
of parameters—model a variety of infections such
as porcine reproductive and respiratory syndrome
(PRRS), porcine epidemic diarrhea virus (PEDV), or
even the initial onset of African Swine Fever. There
are many such variables that then need to be deter-
mined in order to run a simulation faithful to real-life
disease dynamics and characteristics. These variables
may include transmission or mortality rates, incu-
bation or immunity periods, and other parameters
specific to the disease being modeled.

A resource that will be invaluable in this process will
be the Morrison Swine Health Monitoring Project
(MSHMP) [45]. MSHMP collects data across the
United States and reports values of infectious dis-
eases (PRRS, PEDYV, and senecavirus A) within swine.
It is voluntary and joined by most of the larger swine
producers within the US, giving vital insights to the
actual incidence of infections that will be used for
future calibration within Pigs-Model.

5.1.2 Simulating Novel Disease Outbreaks

One of the primary uses of Pigs-Model could be to
simulate the spread and impact of novel diseases on
the American swine industry. Given varying initial-
ization parameters, the effects of different disease
can be analyzed. One important disease of note is
African Swine Fever (ASF). Due to the fact that its
presence has not made its way into mainland North
or South America yet, (though it has found its way
into nearby island nations of the Dominican Republic
and Haiti [46]) it is of interest to analyze its potential
effects on the American swine network. Through
simulating series of ASF infections within Pigs-Model,
areas of improvement can be noted in order to devise
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policies that can help better protect against the initial
onset of such an outbreak.

By leveraging model data coupled with machine
learning techniques, producer agents can dynami-
cally adjust their biosecurity measures and opera-
tional practices to either ramp up defenses in re-
sponse to heightened risks or scale them down when
the threat level decreases. Such adaptive strategies
serve as a mechanism for calibrating the model to
new system attributes. Before introducing ASF into
the simulation, the model is first calibrated using data
pertaining to PRRS. It is then equilibrated to incorpo-
rate preemptive system-wide biosecurity measures.
This preparatory step allows us to observe how the
system’s adaptations to these preemptive changes
influence the United States’” capacity to combat ASF,
should it ever breach biosecurity barriers.

Additionally, endemic diseases that already exist
within the swine network can be analyzed in order
to find ways of stifling their growths. PRRS is one
example of a common disease that has found its way
into most parts of the world [47]. Though it has en-
trenched itself within the system for decades, there
is hope that a model such as this could help find
policies to continue to limit its impact.

5.1.3 Biosecurity Updates

As biosecurity plays a vital role within this model,
updating it to be more indicative of real-life practices
can enhance the accuracy of this model. Biosecurity
could be broken down into two separate categories,
one for biosecurity-related infrastructure (such as air
filtration) that could be a one-time investment, and
the other for daily biosecurity practices (such as the
likelihood of calling a vet) that could be dependent
on producer types, or the company the producer
belongs to. Other key points such as outdated biose-
curity tables, simplified risk assessment methods,
and compliance of biosecurity practices by employ-
ees within producers are issues that remain to be
explored.

Relating to this, an additional mechanic where pro-
ducers could potentially reject swine batches upon
finding out that they are sick, or quarantining them
if the producer has a requisite biosecurity level could
be implemented to more closely follow with real-life
scenarios.

5.1.4 Nationwide Model

Eventually, a transition to a national network would
be in place as that is the end goal for Pigs-Model. In
order to properly understand the disease dynamics
of the swine industry across American, it will be vital
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to simulate diseases across the entire country. There
are issues that too arise when focusing in on specific
states (such as North Carolina) due to the fact that
many states can have a net positive or negative inflow
of swine of specific ages. This can cause issues within
the supply chain for specific states, so being able to
simulate the entire US will help get the model to act
more realistically.

5.1.5 Objective Functions

Objective Functions play a crucial role in understand-
ing the effectiveness any attempted enhancements
or optimizations within complex agent based mod-
els such as Pigs-Model. These functions serve as a
way to quantify the "goodness" of any given mode’s
outcome. By utilizing these metrics and comparing
them against previous or future iterations of Pigs-
Model, it will be easier understood what to adapt in
subsequent versions of the model.

Several metrics can serve as useful objective functions
within Pigs-Model, each highlighting a varying part
of the model that might be an area of interest in a
given undertaking. First could be infection count.
This would total the amount of individual infected
swine (though the amount of infected batches could
also be of interest) as this would track with the extent
of the infection throughout the system or even the
count of infected agents can also be utilized. Along
these lines, the count of swine and their deaths are
another useful point for an objective function.

What would likely need further development would
be more involved values that could be used as ob-
jective functions such as a producer’s budget, or
currently available money. If swine infection rates
weren't of interest, and maximizing profits were in a
hypothetical paper focusing in on greedy producer
strategies, proper monetary values for all such parts
of the model would have to be accurate and well
understood.

Also, metrics used to define the performance of the
supply chain could be developed. Ideas could in-
clude throughput, efficiency, and resilience.

5.2 Network Optimizations

One such way of limiting disease spread could be
through the optimization of the swine network it-
self. This meaning the rewiring of inter-producer,
producer-to-feed mill, or producer-to-processor con-
nections [48]. There has been much research done
into the robustness of networks and they have been
seen to great effect [49, 50, 51, 52].

12

Many measures to define robustness exist, both based
on the adjacency and Laplacian matrices [53, 48].
Two example adjacency spectrum measures are spec-
tral radius and spectral gap [50, 54]. These utilize
the eigenvalues of the adjacency matrix in order to
define robustness, each unique in their application.
Specifically, as an example, spectral radius is used
to determine the rate of spread of a process among
a network, defined as the largest, or principal eigen-
value. These processes could be a disease in the case
of Pigs-Model, and if one were to want to minimize
its spread, a strategy would have to be defined to
minimize the value of the principal eigenvalue of the
network. Accordingly, since spectral gap is based
upon the difference between the first and second
largest eigenvalue, it also is used to determine the
speed of the spread of a process on a network. Opti-
mizing for a smaller spectral gap could also assist in
the suppressing of disease spread.

Considering the vast space of possible viable ship-
ment networks and the challenges in traversing them,
innovative approaches are necessary. One approach
is designing a heuristic that traverses the space of all
possible networks, utilizing parameters derived from
user-defined data, as well as information regarding
the input network. An example of such value could
be the preference for having a company affiliation
or remaining unaffiliated. Alongside this, spectrum
measures including spectral radius or spectral gap,
mean shortest path length, and component size are
used to minimize an output objective function such
as lowered mortality rates. By iteratively rewiring the
network within the space defined by these metrics,
the space needed to traverse is manageable, enabling
machine learning techniques to be of use. This ap-
proach steps around the computational inefficiencies
inherent in a large ABM, as the time needed to run
all simulations could be unwieldy.

It is vital to recognize the trade-offs inherent in opti-
mizing network structures to mitigate disease spread.
While reducing spectral gap or mean shortest path
length may seemingly enhance resilience against
outbreaks, such optimizations could unintentionally
compromise other aspects of network robustness, po-
tentially disrupting the efficiency of trade within the
swine supply chain. Thus, any optimization strategy
must strike a delicate balance between disease con-
tainment and network resilience, a consideration that
warrants further investigation for informing policy
recommendations.
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6 Conclusion

In conclusion, the development and analysis of Pigs-
Model has provided, and will continue to provide,
valuable insights into the dynamics of disease spread
within the American swine industry. It highlights the
important interactions within the network, as pro-
ducers respond to diseases that permeate the system.
Through running Pigs-Model in various scenarios,
this model will contribute a platform for understand-
ing the effects diseases have on the swine supply
chain, and inform potential policies for mitigating
the spread of such diseases.

Overall, the results obtained by Pigs-Model demon-
strate the complex nature of the swine industry in
cases where infections are present. Despite issues
such as burn-in, and model calibration, the model
clearly indicates its future usefulness, able to effi-
ciently examine the effects of disease within the sys-
tem. Moving forward, there are many avenues for
future research and model refinement, indicating the
potential of this model. More closely utilizing real-
world data to simulate the effects of novel outbreaks
such as ASF can prove to be vital for the continual
building of safer supply chains. By combining empir-
ical data with machine learning techniques, robust
network optimizations, and epidemiological explo-
rations, this model will serve as a valuable tool for
informing policy decisions aimed at defending the
American swine industry against disease.

Special Thanks Many thanks go out to Samuel
F. Rosenblatt and Kevin Andrew for an immense
amount of help at every step, Scott Merrill and Nick
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