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The Effect of the 2008 Financial Crisis on
Bosnian Households

Tin Skoric

May 2024

The 2008 Global Financial Crisis was particularly difficult for Bosnia and
Herzegovina, an upper-middle-income country. This paper investigates the effects
of changes in risk aversion on consumption saving behavior in the context of the
Global Financial Crisis. I use the Ramsey-Cass-Koopmans (RCK) growth model
(Cass 1965; Koopmans 1963) and apply it to Bosnian economic data. I estimate the
effects of a change in risk aversion via numerical simulations to derive quantitative
results concerning both the short- and long-term. I find that output, consumption,
and investment decreased by as much as 2.53%, 2.41%, 7.40% respectively in the
long term.
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1 Introduction

Every individual—constantly—is making one of two decisions with their
income, to spend it for consumption or save it for future consumption. Unfor-
tunately for us all, individuals can scarcely be certain of their futures, and, in
trying to mitigate the risks of an uncertain one, individuals must adjust their
consumption-saving behavior. Studying these adjustments broadly is important
for understanding how individuals across income levels make decisions, and how
those decisions influence the macroeconomy, however, there is limited research
in the space covering middle-income countries—in particular, middle-income
countries experiencing financial crises. What do people do with their money
when they do not know what it will get them tomorrow?

The theory concerning precautionary saving can be traced to the mid-20th
century with the permanent income hypothesis (Friedman 1957). Under the per-
manent income model, individuals anticipate their future incomes with certainty
and save in the short run to account for the differences between their present
and anticipated incomes. When an individual expects less income in the future,
they will save more in the present. In doing this, individuals are smoothing their
total consumption across periods rather than riding whatever wave of income
is available in a given period. This is beneficial as while some utility from
consumption is sacrificed under periods of higher income, it prevents periods of
lower income that decrease utility more significantly. Stability across a lifetime
is preferable to hopping between relative riches and squalor. In choosing between
saving or consuming, one chooses one and forgoes the other today for the benefit
of consuming more in the future. When individuals know their futures—as in
Friedman’s hypothesis—consumption smoothing is not so tricky, but what if
individuals do not know their futures? What if the future is uncertain?

While not the first to consider the effects of uncertainty on saving, an
early framework for evaluating those effects can be found in Leland (1968),
who constructed a model of precautionary saving, introducing uncertainty to
future incomes, and concluded that “[...] saving will be a positive function of
uncertainty.” If individuals wish to smooth their consumption but do not know
what their future incomes will be, then they do not know how much to save or
if to save at all. Without knowing their future incomes, they cannot accurately
assess the utility exchange from saving. In fact, individuals at this level can only
assess with certainty the utility from consuming their incomes altogether. In
this case, individuals are left with two primary approaches: caution or incaution.
Individuals may choose to still forgo some consumption in the present and ward



off the risk of a poor future period, or to take on the risks of the future. The
choice depends on the risk profile of an individual—if individuals have a low
or high aversion to risky outcomes. A gambler may be happy to make such a
bet, but most people may not be. In the context of a more uncertain future, most
individuals will likely become more cautious. Of course, the future is always
uncertain, so what makes it more so? What magnitude of event is necessary for a
notable change in risk aversion? The exact margin is difficult to assess, but, the
2008 Global Financial Crisis was certainly an event of such magnitude.

In the early 2000s credit availability for home buyers became very broad,
resulting in many people who plainly could not afford their homes, buying homes.
This availability of credit inflated prices on the housing market through the excess
demand generated. Credit must eventually be repaid, however, and to the dismay
of lenders, many people who had been lent mortgages for their homes, could not
afford to repay. While default among some debtors is not unexpected—in fact,
the point of packaging securities with various risk levels was meant to mitigate
this—the problem was that many debtors could not pay and that these securities
were wrongly rated, understating actual default risk among debtors. A hole
thus appeared in all mortgage-related assets as it became clear that a significant
amount of value in the housing was essentially hollow. From 2007 to the second
quarter of 2011, “[...] home prices fell by over a fifth on average across the
nation from the first quarter of 2007 to the second quarter of 2011” (Weinberg
2013). Foreclosure rates ticked up and huge financial institutions teetered under
the weight of vapor money, entire market sectors concerned with housing were
upended. The crisis in the securities market disrupted the financial system which
had depended on the liquidity derived from securities markets. The credit crunch
that followed caused the worldwide economic crisis. In response, households
became more risk-averse. While the issue was in the housing market, there was a
decline in economic activity across the board—people stopped spending as much
as they had been. As the crisis worsened, the decline in activity followed and, in
all, “[...] US gross domestic product fell by 4.3 percent, making this the deepest
recession since World War II” (Weinberg 2013). Even after the recession, the
recovery would be lackluster, and it would take years to return to strong growth
rates and lower levels of unemployment. Beyond the many households who lost
their incomes due to layoffs, many more too actively hesitated to spend money
they had out of fear of the recession—thereby prolonging it. The onset of a period
of heightened economic uncertainty led American consumers to change their
consumption preferences by becoming more risk-averse, ultimately resulting in
an even worse downturn than would have otherwise been due to the additional



loss in output. This same story played out globally.

Following the 2008 Global Financial Crisis, the theory of precautionary
saving has been empirically tested against other national economies. Bande and
Riveiro (2013), and Tamura and Matsubayashi (2011) tested the theory against
data from the Kingdom of Spain (Spain hereafter) and Japan respectively, both
presenting results consistent with theoretical models. The former study comprised
a review of Spanish regional data from the late 1980s to the 2010s and the latter
covered a similar period in Japan. In the study of Spain, the authors considered
a two-period model and found “[...] a significant and positive effect of income
uncertainty on saving” with a coefficient of 0.063 (Bande and Riveiro 2013). This
finding means that—at least in Spain and according to the authors’ measures of
uncertainty—an increase in the level of income uncertainty among households is
related to an increase in the proportion of income saved by households. In this
study, “[...] uncertainty is the uncertainty measure based on the estimation of the
conditional variance of expected future income,” (Bande and Riveiro 2013). Both
studies broadly represent the same trends in two different, high-income countries,
characterized by an increase in saving under periods of atypical economic
uncertainty to limit potential losses in well-being. The risk premium drops for
individuals under higher uncertainty. In other words, when people are worried
about the future state of the economy, they become more averse to making risky
decisions with their own incomes. As noted before, the choice to save or consume
under uncertainty depends on how willing individuals are to take on risk. In the
case that individuals become less willing, they will save more—the potential gain
from consuming in the present is not worth the danger that a risky future presents.

The two works by Bande and Riveiro (2013) and Tamura and Matsubayashi
(2011) included changes in consumption-saving behavior under uncertainty
in high-income countries. This could mean that these studies’ results are not
generalizable to middle-income countries like Bosnia where economic uncertainty
can be even more alarming for residents. During the Global Financial Crisis,
many deposit holders in Bosnia went as far as to withdraw their money from
banks, not just to cover their expenses under a period of belt-tightening, but
also to simply keep it as cash under fears of a banking collapse (Dvorsky and
Stix 2010). I, therefore, chose to study changes in consumption saving behavior
in Bosnia, specifically under the increased uncertainty of the Global Financial
Crisis, and apply a well-known economic model, the Ramsey-Cass-Koopmans
(RCK) growth model (Cass 1965; Koopmans 1963). The RCK model includes
a parameter for risk aversion, 6, that can be adjusted to account for the appetites
of individuals to make risky decisions. I use Bosnian economic data from the
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Penn World Table (Groningen Growth And Development Centre 2023) and the
World Bank covering a period from 1996-2007 to calibrate the model for the
Bosnian economy before the financial crisis and then run numerical simulations in
Wolfram Mathematica to quantitatively assess the economic effect of an increase
in risk aversion. These simulations allow me to isolate the effect of a change
in 6 on the Bosnian economy via simultaneous solutions to functions written
following the model, holding other parameters constant.

Per the theory underlying the RCK growth model, I find that the increase
in risk aversion results in lower levels of consumption, output, investment, and
capital accumulation in the long term. Specifically, I find that between the steady
states, output, consumption, and investment decreased by as much as 2.53%,
2.41%, and 7.40% respectively. In dynamic simulations, I find that at 10 years
of transition between the steady states, the growth rate of output decreased by as
much as 0.61%, and the growth rates of output, consumption, and investment in
that year are 2.89%, 2.27%, and 0.017% respectively.

In Section 2, I present the theoretical model and results. In Section 3, I
calibrate the model according to the macroeconomic ratios derived from the data
following Kydland and Prescott (1996). In Section 4, I simulate a change in the
coefficient of relative risk aversion and display my steady state and dynamic
results. In Section 5, I test the robustness of my results via a sensitivity analysis
where I change parameters other than 6 to see how that impacts my results. In
Section 6, I discuss my results and compare them to those of other works.

2 Methodology

2.1 Theoretical Model

A theoretical model describes complex economic processes in simplified
terms. Theoretical models do not aim to be perfect representations of an economy
but aim to illustrate important relationships. The RCK growth model builds on
microeconomic foundations, representing consumption-saving behavior by house-
holds and their interactions with firms in a dynamic environment (Cass 1965;
Koopmans 1963). I consider the model without debt and deficits but with lump-
sum taxes. In the model, households supply their labor and capital to firms in
exchange for wages and rents (household income). Additionally, the government
provides services for households with revenues raised via their taxing. The money



households earn in income (less the amount paid in taxes) is then either put towards
consumption—in the contemporaneous period—of the output goods and services
produced by those firms or, is saved for consumption of those goods and services
in a future period. Table 1 below defines the variables of the theoretical model
presented in the next subsections:

Table 1: Model Variables

Variable Description
« Contribution of Capital to Output (o < 1)
0 Coefficient of Relative Risk Aversion (the preferences of

individuals to “risk” their incomes towards consumption)
Rate of Time Preference (the reward for consuming in the
immediate period)

Interest Rate (the reward for saving)

Population Growth Rate

Growth Rate of Technological Progress

Capital Accumulation

Wages

Capital Stock

Labor

Effectiveness of Factors of Production (Capital and Labor)
Taxes

Government Expenditure

hs

QRS xe »9 3 3

2.1.1 Firms

The production function of this model is a Cobb-Douglas function where
firms operate under perfect competition. The production function is expressed in
its intensive form:

Y = F(4 1) = (k) = k° ()

Profit maximization yields the optimality conditions for wages and the interest
rate:



r=f'(k) 2)

w = f(k) = k(f"(K)) 3)

(2) and (3) indicate that the interest and wage rates correspond to the marginal
product of capital and labor respectively.

2.1.2 Households

Households make decisions to save or consume, considering future periods
as well as the present, and their consumption-saving behavior is characterized by
constrained utility maximization. Households want to maximize their utility across
periods and into the future according to their risk and rate of time preferences. The
coefticient of relative risk aversion defines the risk preferences of households and
is expressed as:

(4)

u(e(t) = 57 ©

defining utility according to consumption and risk preferences. Lastly, households
maximize their utility according to the CRRA and their rate of time preference:

maxU:/ e Plu(c(t))dt (6)
t=0

The rate of time preference, p, illustrates the preferences of households for consum-
ing more in the immediate period. In other words, it is the premium for impatience.
While maximizing their utility, households face a dynamic budget constraint:
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k= (r(t) —n—g)k(t) + w(t) — c(t) = T(t) @

which constrains their utility according to how much they can afford, as well as
the no-Ponzi-game constraint (Friedman 1957), which restricts households from
taking an infinite stream of rolling debt to pay off prior debts. The solution to
the problem households face is found via applying the maximum principle on the
Hamiltonian function:

c(t)t=?

H =
1-0

+A@D)[r(t) — (0 + g)k(t) + w(t) — c(t)] (®)

where A(%) is marginal utility of consumption. Following the maximum principle,
the optimality conditions for households:

oI (t)
aelt) ©)
oI (t) .

alongside these two is a third, the transversality condition:

e PIN)K(t) =0 (11)

which says that all capital saved should be put towards consumption by death since
individuals can increase utility by increasing consumption (decreasing marginal
utility A\) within their lifetimes. In other words, there is no point in saving money
you cannot use.

Combining Equations (9) and (10) yields the intertemporal allocation of con-
sumption also called the Keynes-Ramsey rule or Euler equation, which describes
how households allocate for consumption over time. In per effective worker terms,
the Euler equation is:

$(6) = 5lr(t)— p— 6(n + g)] (12)
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where % represents the elasticity of intertemporal substitution, which describes
how much individuals are willing to reallocate consumption across periods of
time—and thus how quickly households adjust to new equilibria. A low coeffi-
cient of relative risk aversion means a high elasticity of intertemporal substitution,
which means that an individual is more willing to reallocate consumption from
the present to the future.

2.1.3 Government and General Equilibrium

In this implementation of the RCK model, government spending, G(t), is
financed by lump-sum taxes, 7'():

G(t) =T(t) (13)

The goods market equilibrium—national accounts identity—closes the model:

Y(t)=C(t)+I(t) + G(t) (14)

By Walras’s law, since the capital and labor markets are in equilibrium, the goods
market is also in equilibrium.

2.2 Dynamic and Steady State Equilibria

The dynamic equilibrium is described by the consumption function and dy-
namic budget constraint equations (loci) respectively:

é= SR —p)— (n+9) 15)
k=fk)—kn+g)—c—T (16)

and the transversality condition from (11), which helps to eliminate unstable tra-
jectories. The steady-state equilibrium is achieved whereby ¢ = k = 0, which
results in the steady-state equations of the model:
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f(n+g)+p
&

k= ( JaT (17)

c=k*—kin+g)—T (18)

Since o < 1, there is a negative exponent meaning that 6 is at the denominator.
This means that an increase in 6 results in a lower steady-state value of k. Since
output, y, is a function of capital, it also results in a lower value of output in the
steady state.

Taking all these changes together, the short- and long-run effects of a change
in risk aversion can be summarized as follows: In the short run, an increase in 6
results in a jump in consumption above the prior steady state, although following
a decreasing trend with each successive period. In the long run, an increase in 6
results in capital accumulation, output, and consumption below the steady state.
This can be observed in an example phase diagram:

C

25)

2.0

10F .-:::::3:"

L 1 L L L L | k
30 40

Figure 1: Example Steady State When 6 Increases (6 from 0.5 to 1.5)

As seen in Figure 1, an increase in 6 results in the locus for consumption shifting
leftward (the dashed black line is the initial steady state and the solid black
line is the final steady state), which results in both a lower equilibrium level of
consumption and capital accumulation. In the transition between the loci, as seen
in arrows on Figure 1, consumption initially spikes in the short-run at ¢ = 0

13



and then drops alongside capital accumulation, in the long run, following the
red-colored saddle path of the first locus towards that of the second.

3 Calibration

As per Kydland and Prescott (1996), I calibrate my model. This involves
comparing results generated from dynamic simulations with real data. To do
this, I use data from the Bosnian economy concerning consumption, investment,
government spending, and national income, to create macroeconomic ratios
comprised of the former three compared to the latter. I use other data (interest
rates, risk aversion, etc.) as parameters for my model, and generate results for
consumption, investment, government spending, and national income. I compare
the macroeconomic ratios from the real data with those derived from my model
and use that comparison to assess the validity of my model.

3.1 Data Description

I source most data on the Bosnian economy from the section covering Bosnia
(ordered by country code as “BIH”) in the Penn World Table (Groningen Growth
And Development Centre 2023). The data is annual, and observations in the Penn
World Table for Bosnia begin in the year 1990 and end in the year 2019. For
my data, [ am only looking at the period from 1996 to 2007 for the initial steady
state, and then the year 2008 for the change in risk aversion, #. Data on GDP,
Y, is recorded annually in millions at current purchasing power parity (PPP) of
2017 U.S. Dollars (USD). Data on consumption (C'), investment ([), government
spending (), and net exports (N ), are recorded as decimal shares of GDP that
add to one for each year. Consumption as a share of GDP in the Penn World Table
includes consumption of both domestic- and foreign-produced goods meaning that
the value includes the share from imports, so although my model does not include
net exports, I include it in Table 3 to show that the sum of GDP shares add to 1.
Data on capital stock, K, is recorded annually at current PPP of 2017 USD. Data
on the labor share of GDP (%) is recorded annually. Additional data is collected
from the World Bank. Data on the population growth rate, n, is collected from a
dataset covering global population growth rates (World Bank 2023). Data on the
interest rate, r, is collected from the series on deposit interest rates (World Bank
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2024a). The data on the interest rate for Bosnia only began recording observations
in 2002. Similarly, data on the tax rate is collected from the series on tax revenue
as a percent share of GDP (World Bank 2024c¢). As with the interest rate, data in
the World Bank series only begins recording observations very recently, with the
first being in 2005—only three years to use for the average prior to the 2008 crisis.
Total factor productivity data is derived via a dataset from Dieppe (2020) that con-
tains values for total factor productivity recorded since 2001 as a percent. This can
be used to calculate g for 2002 and onward by taking the changes between obser-
vations'. On the next page is a table listing all data and sources in detail. The Penn
World Table and World Bank are abbreviated as “PWT” and “WB” respectively to
save space.

Table 2: Bosnian Economic Data 1996-2008

Var.  Description Source Link
Y CGDPo: Output-side real GDP at current PPPs (millions, PWT Link
2017 USD)
C Consumption (GDP * ¢sc_h, millions, 2017 USD) PWT Link
G Government Spending (GDP * csc_g, millions, 2017 PWT Link
USD)
I Investment (GDP * csc_i, millions, 2017 USD) PWT Link
Nx  Net Exports (Ex. + Im. = X, millions, 2017 USD) PWT Link
Ex.  Exports (GDP * csc_x, millions, 2017 USD) PWT Link
Im.  Imports (GDP * csc_m, millions, 2017 USD) PWT Link
¢ Share of household consumption at current PPPs PWT Link
g Share of gross capital formation at current PPPs PWT Link
g Share of government consumption at current PPPs PWT Link
% Share of goods exports at current PPPs PWT Link
L v~ Share of goods imports at current PPPs PWT Link
v Share of residual trade and GDP statistical discrepancy at PWT  Link
current PPPs
n Population Growth (Annual, %) WB Link
g Total Factor Productivity (Annual, log diff. %) WB Link

'Something worth noting with the Penn World Table data is that it uses a residual/statistical
discrepancy variable, “csh_r” to account for disparities in macroeconomic ratios when aggregated
over time. Excluding this variable results in macroeconomic ratios that do not add up exactly to 1.
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3.2 Parameters and Model Economy
3.2.1 Parameters for the Initial Economy

I first find the average values for consumption, investment, government ex-
penditure, net exports, and labor as a share of GDP over the 11-year period from
1996 (the first year after the Bosnian War) to 2007 (the last year before the 2008
crisis). These values are the representation of the initial steady state for the actual
economy.

I derive my initial parameters from those macroeconomic ratios and the equa-
tions of the model. The equilibrium condition for the wage rate described in Sec-
tion 2.1.1 gives the following formula for a:

a=1 v (19)
which solves for «, the contribution of capital to output according to the contribu-
tion of labor to output. I solve for its value using the average of % over a period
from 1996 to 2007 and choose a value slightly below the solution. I choose a value
below the solution, o = % so that Wolfram Mathematica cooperates. For n (the
population growth rate), I take the average growth rate of the population over a
period from 1996 to 2007 using World Bank data. The data on population growth
is heavily skewed by the war in the 1990s with a positive average prior to 2008.
In reality, the population has been steadily declining for decades and there are 1
million fewer persons in Bosnia today than in 1996. The reason that the average
value for n prior to 2008 is positive is because the World Bank data asserts that
the growth rate of the Bosnian population was 4% in 1996. This I believe to be
from repatriations and better record-keeping post-war. The Penn World Table of-
fers population data as well (Groningen Growth And Development Centre 2023),
but using that instead would result in problems that I will detail later. For g (the
growth rate of technological progress), I take the average of the change in total
factor productivity from 2002 to 2007. For 11/ (the exogenous ratio of taxes to out-
put), I take the average tax revenue as a percentage of GDP from 2005 to 2007. It
is assumed in the model that government taxation equals government expenditure,
G. For p (the rate of time preference), I take the average deposit rate, r, over a pe-
riod from 2002 to 2007 to calibrate the rate of time preference. I take an average
because I want to know what the deposit rate generally was in the period prior to
2008. The rate of time preference is a parameter within the continuous function
seen in Equation (6) that can be related to the interest rate (a discrete-time vari-
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able). More specifically, if the interest rate is the price of time passing, the rate of
time preference is the discount for getting things immediately. If the interest rate
is higher, individuals place a greater discount on immediate prices.

For the initial coefficient of relative risk aversion, I take the estimate of
6 = 0.72 found by authors Gandelman and Hernandez-Murillo (2015). This es-
timate is in line with those of similar middle-income countries from the paper
in the same period. Additionally, the average value for the rate of time prefer-
ence (p = 0.03776) obtained using the deposit interest rate is comparable to that
(p = 0.03678) which is achieved using a formula based on the Euler equation
expressed in the steady state. This formula is expressed as:

_(r—p)
0= (n+g) 20

and is rewritten to solve for the rate of time preference, with the average (prior to
2008) values of the deposit interest rate, population growth rate, and growth rate
of technological progress alongside 8 = 0.72 plugged in:

p=r—~0(n+g) 1)

As noted previously, the rate of time preference illustrates the preferences of
households for consuming more in the immediate period. Equation (20) describes
risk aversion in terms that include the rate of time preference subtracting the
interest rate. Rewriting this, Equation (21) describes the rate of time preference
in terms of risk aversion—adjusted by the growth rates of population and
technological progress—subtracting from the interest rate. The higher the interest
rate or lower the coefficient of relative risk aversion, the higher the rate of time
preference—the premium for getting things sooner is higher when you are less
concerned about risks. Of course, it is worth recalling that the rate of time
preference is also a function of the interest rate alone. The resulting values from
each method are close, which further evidences this to be a reasonable estimate
for the initial coefficient of relative risk aversion.

In the steady state, my model underestimates the ratio of consumption,
(greatly underestimates) investment and government expenditure to output:
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Table 3: Actual versus Model Economy

Bosnia % % % %
Actual 0.8390 0.2151 0.2546 —0.3024
Economy

Model 0.7704 0.0197 0.2099 0
Economy

It is worth noting that a significant part of the Bosnian economy is constituted by
imports that are not included in this model because it is a closed economy model.
This discrepancy leads to the extremely low result for the level of investment in
the model economy. We will see however that the dynamic response is more in
line with what should be expected. In terms of national accounts, investment is
solved for by taking the following difference:

I=Y—-C—G— Nz (22)

and in the closed economy model Nz = 0:

I=Y-C—-G (23)

Equation (23) should look familiar, as it is the same as the goods market
equilibrium from Equation (14) shown in Section 2.1.3. The issue of the level of
investment being underestimated cannot be solved by tweaking other parameters,
the model is missing a piece of the puzzle—net exports. Any gains would only
go to consumption since investment acts as a residual of output not used towards
consumption. For example, because 7" = G in the model, it may be assumed from
Equation (23) that a lower value of the exogenous tax ratio parameter (%) would
lead to higher investment. However, this would ignore that consumption is still
solved for first—simultaneously with capital accumulation—and would increase
following a decrease in the tax ratio. This means that, in the model, consumption
would assume all the gain from a cut in taxes before investment gets the chance to
sjge any of it. Below is a table displaying the steady state were the tax ratio set to
Yy = 0:
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Table 4: Actual versus Model Economy (No-Tax Example)

Bosnia % % % %
Actual 0.8390 0.2151 0.2546 —0.3024
Economy

Model 0.9803 0.0197 0 0
Economy

As seen in Table 4, the resulting share of investment within the model economy
is identical to the share found in Table 3, and all gains from the tax cut go to con-
sumption.

Whatever the case, my model estimates the share of consumption in the
Bosnian economy quite well, and I move forward with it despite the underestima-
tion of investment. In my dynamic results and sensitivity analysis sections, I will
demonstrate that my results are still robust despite this underestimation. Below is
the table of parameters for the model presented in the next three subsections:

Table 5: Parameters

=18

« 0 p n g
0.72 0.03776 0.00553  —0.00320 0.

DO

0990

W~

3.2.2 Estimation of Change in Risk Aversion Between Steady States

Between steady states, I will be adjusting the value for 6 to reflect the change
inrisk aversion. I was unable to similarly find an estimate for Bosnia or a like coun-
try immediately following the Global Financial Crisis, meaning that I had to arrive
at my own estimation for # for that period. Authors Gandelman and Hernandez-
Murillo (2015) derived their value (f = 0.72) using 2006 Gallup World Poll data
and regressing a logarithmic risk utility function? (g) on individual self-reports of
happiness (h), income (y), and a series of controls (x) with the following model:

179_1

[ tipg 2
9ty) = {log(y) i£0 =1 @4

2Gandelman and Hernandez-Murillo (2015) use p rather than @ for risk aversion but I swapped
that to avoid confusion
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h; = a+vg(y;) +x;8 + v, (25)

While I would have liked to replicate this methodology given that it produces
sound estimates, using Gallup World Poll data was not an option due to the cost
involved. Instead, I attempt three different methods of estimation for € in the sec-
ond period, and I will detail each and their results.

The first method involves solving for 6 using Equation (20) with values of the
interest and population growth rates, and the growth rate of technological progress,
updated for the year 2008. As noted earlier, the population growth rate is positive
if derived from the World Bank, and negative if from the Penn World Table over
the 1996 to 2007 period. Although the latter appears more reasonable on the sur-
face, g is also negative, and if both n and g are negative, the Equation (20) returns
very wonky (negative) estimates. So, while I acknowledge the real population
growth may be negative (although it is fair to say that the conditions of the war
make basically any estimate from the era difficult), I cannot use a negative value
in the model. Further, g cannot reasonably be made positive for argument’s sake
after being consistently negative for 2008 and the years immediately prior. I there-
fore resolve to use the averages of n and g for the period 1996 to 2008 to account
for this issue, allowing n to remain positive. While it is not ideal, it is more rea-
sonable to say that out of all of the variables involved in Equation (20), population
growth and technological progress rates are the least likely to significantly change
in the course of a year absent emergency conditions. I then take the value of the
deposit interest rate for 2008, calibrate the rate of time preference as I did with the
average prior to 2008 in Section 3.2.1, and plug all the values into Equation (20).
The resulting estimate is § = 1.61, which is higher than the estimates noted later,
but is not unreasonable to see high jumps in risk aversion under the context of the
Global Financial Crisis as seen in Bekaert, Engstrom, and Xu (2022).

Although I cannot exactly replicate the methodology of Géndelman and
Herndndez-Murillo (2015), I can use their essential model (25) and substitute it
with national rather than individual data. For example, instead of using individ-
ual reports of household income, I use per capita Gross Domestic Product. Sim-
ilarly, rather than using individual reports of happiness, I use the OECD (2017b)
Consumer Confidence Index which reflects consumer sentiments nationally. Al-
though data for this index is not available from the OECD for Bosnia, there are a
number of countries similar to Bosnia with data available. I choose Greece, Hun-
gary, Slovenia, and Tiirkiye as they are countries near Bosnia that do not generally
have hugely higher incomes (none except Slovenia have a GDP per capita greater
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than ~$20,000 current USD) and have OECD data available. While this is not a
one-for-one replacement, these are sets of data that answer alike questions. For in-
come and all other variables—except the Consumer Confidence Index—included
in the model (25) I find national substitutes for Bosnia covering the period 1996
to 2008. Since not all variables are available monthly, I average the index yearly.
Further, since some countries selected from the Consumer Confidence Index do
not have data available for many periods prior to 2007 I average the index values
for the four countries together yearly. I then regress the model over the period
1996 to 2007 to derive coefficients for each variable. Lastly, I plug in values for
the year 2008 and solve for 6 using the coefficients derived. The substitutes that
I was able to find do not change all that much in 2008 relative to the prior years
included, so the resulting estimate for € in 2008 is almost equal to that of years
prior. Ignoring the limited number of observation periods in this implementation,
this method could be useful but the substitute values that I have found simply do
not do well by it.

The last estimation method is to take the OECD (2017a) Consumer Barome-
ter, which is the normalized change in the Consumer Confidence Index, and mul-
tiply the averaged yearly value for 2008 by the initial estimate (# = 0.72). The
reasoning for this is that if a measure of happiness can be related to risk aversion—
as it is inversely by Gandelman and Hernandez-Murillo (2015)—and if the Con-
sumer Confidence Index can be considered a substitute for such a measure, then
the change in that index could be considered akin to a change in the prior measure,
which would then mean a change in risk aversion. Since this is simply a change
value that I am multiplying as a scalar rather than regressing, I am unconcerned
by some countries not having data until the 2000s and select a range of values. I
select from the four countries (Greece, Hungary, Slovenia, and Tiirkiye) for the
ones with the least (Hungary, A ~ —0.06) and most (Tirkiye, A ~ —0.23) neg-
ative average change in the Consumer Barometer for the year 2008. I also take
the average (A ~ —0.13) across all four countries. This results in three estimates:
0 = 0.77,0.81,0.89. This is a good range of estimates, although the lowest one is
only very marginally different from the initial value. It is worth noting that the low
estimate for # comes from the Consumer Barometer for Hungary, which is not con-
sidered a middle-income country, whereas the high estimate comes from Tiirkiye
which is considered one. In fact, Tiirkiye is the only country of the four to be con-
sidered middle-income, so perhaps the higher estimate is a better characterization
for Bosnia. To support this, looking at another middle-income country—albeit
one not close to Bosnia—-Brazil has an average yearly change that is more nega-
tive than the average of the four countries (A ~ —0.17). With this in mind, and
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Bekaert, Engstrom, and Xu (2022), I think it best to focus on the highest estimate,
0 = 0.89 of the three.

While the second method would have been ideal, it was not feasible for the
reasons outlined earlier. By contrast, the first and third methods each have some
positives and negatives. For the former, it provides an estimate that feels suffi-
ciently high given the circumstances while not requiring any particularly severe
leaps of logic. However, the first method still requires me to hold constant some
data that is not constant—even if it is slow-changing—and to make personal as-
sumptions about data integrity under wartime conditions. For the latter, it requires
only the assumption that consumer confidence and happiness are closely related.
However, the third method provides much lower estimates than the first—not even
the largest one is two-tenths greater than the pre-crisis estimate—and frankly, the
numbers appear too low for a financial crisis based on analyses of changes in risk-
aversion during the financial crisis (Bekaert, Engstrom, and Xu 2022). In all, I
carry forward the former and latter as the high and low ends of a range of possible
estimates. I also take the mean of the two # = 1.25 to serve as a middle-road
estimate.

Table 6: Relative Risk Aversion (6) Estimates for 2008

Low Middle High
0 0.89 1.25 1.61

4 Results

4.1 Comparative Statics

Comparative statics compares equilibrium steady states following a change
in a parameter, other things held constant. Using my three estimates for 6 in 2008
(0.89, 1.25, 1.61), I calculate three ranges of possible steady states. In the 2008
crisis, Bosnians became more risk-averse, which can be attributed to individuals
being less prone to consumption out of fear of an uncertain future. The steady-state
table shown below shows the results for all three estimates.
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Table 7: Steady States

Steady State Y c 1
Initial (6 = 0.72) 2.91 2.24 0.06
Final (§ = 0.89) 2.89 2.23 0.06
A (%) —0.50 —0.47 —1.49
Final (8 = 1.25) 2.86 2.21 0.05
A (%) —1.53 —1.45 —4.52
Final ( = 1.61) 2.83 2.19 0.05
A (%) —2.53 —2.41 —7.40

In Table 7, A(%) represents the change in, output, consumption, and investment
between steady states characterized by different values of the coefficient of
relative risk aversion, . No matter the higher value of 6, all variables of
interest decrease between steady states—and they decrease more the higher the
value of . When § = 0.89, output, consumption, and investment decrease by
0.50%, 0.47%, 1.49% respectively. When 6 = 1.25, output, consumption, and
investment decrease by 1.53%, 1.45%, and 4.52% respectively. When 6 = 1.61,
output, consumption, and investment decrease by 2.53%, 2.41%, and 7.40%
respectively. When risk aversion increases by any amount, individuals save
more and put less of their incomes towards consumption, but by doing this they
decrease output, thus earning less income down the line, resulting in less overall
to put towards saving and consumption.

4.2 Dynamics

Using the changes in risk aversion outlined previously, I simulate the quan-
titative impacts on the Bosnian economy of the increase in risk aversion from the
2008 crisis. Below are time paths, graphs illustrating the change in economic vari-
ables of interest over time (y, ¢, ¢ when 6 increases from 0.72 to 0.89, 1.25, 1.61,
t = years):
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Figure 2: Evolution of Variables of Interest over Time after the 2008 Crisis
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The changes to investment seen in Figure 2c¢ show that the growth rate of
investment drops sharply below the steady state and is increasing towards the new
equilibrium. By year 100 (@ from 0.72 to 1.61), investment is only 12.28% below
the steady state. Below are tables showing growth rates by year and the changes
in the growth rates illustrating this same dynamic:

Table 8: Growth Rates by Year after 2008 Crisis (In Percent)

Steady State Growth Rate Y c 1

0 =0.89 On by year 5 2.90 2.25 0.05
On by year 10 2.90 2.25 0.05
On by year 20 2.90 2.24 0.05

0 =1.25 On by year 5 2.90 2.27 0.03
On by year 10 2.89 2.26 0.03
On by year 20 2.89 2.24 0.04

0 =1.61 On by year 5 2.90 2.28 0.01
On by year 10 2.89 2.27 0.02
On by year 20 2.88 2.25 0.03

Table 9: Changes by Year after 2008 Crisis (In Percent)

Steady State A in Growth Rate Y c 7

0 =0.89 A by year 5 —0.09 0.45 —21.13
A by year 10 —0.16 0.28 —17.58
A by year 20 —0.27 0.03 —12.28

0=1.25 A by year 5 —0.23 1.16 —54.65
A by year 10 —0.43 0.77 —47.05
A by year 20 —0.73 0.15 —35.15

0 =1.61 A by year 5 —0.33 1.68 —78.99
A by year 10 —0.61 1.15 ~69.51
A by year 20 —1.08 0.28 —54.16

As seen in Figure 2 across sub-figures Figure 2a through Figure 2¢ and in
Table 9 and Table 8 above, all variables of interest decrease over time following
any increase in risk aversion, 6. Of note is the way each variable of interest
changes through time. Output begins at the equilibrium level and decreases with
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each successive period. By contrast, consumption and investment both begin
outside the steady state level at the initial period of change, with consumption
beginning above and decreasing thereafter, and investment beginning below
and increasing to just below that level by the end. Just as before, based on
Equation (15) and Equation (16), and the discussion in Section 2.2, it is clear
why consumption decreases over time with the change in risk aversion—and
since the variables of interest are all related, that explains the changes in the
other variables. Consumption decreases because 6 has increased and 6 reduces
consumption in the steady state equations. Recall that % represents the elasticity
of intertemporal substitution and that if it is low—and with an increase in risk
aversion, elasticity would become /ower—individuals are more willing to save
rather than consume in a single period. Output decreases because it is a function
of capital accumulation from the intertemporal budget constraint, and since
the capital accumulation decreases to maintain equilibrium when consumption
decreases, so does the output. Investment begins below equilibrium and rises
to a point still below the initial steady state because it must reflect the national
accounts identities as seen in Equation (21). Since government expenditure is
an exogenous constant and this model simulates a closed economy, the only
two things that constitute output and can change in terms of national accounts
are consumption and investment. Output begins at the equilibrium steady state
level and decreases in dynamic simulations, but consumption begins above the
steady state and decreases. This means that investment must begin below and rise
(although still to a point below equilibrium) for the national accounts identities to
hold. These dynamics are consistent with the theory outlined in Section 2.1, and
evidence that the model is robust even if it imperfectly estimates the levels.

In the long run, the variables of interest are all below the initial equilibrium
level. However, in the earlier periods, consumption is still above the initial steady
state, and investment is far below. Looking at Table 9, one can see the changes
in the growth rates of the variables over time. By year 10, output and investment
are down by 0.16% and 17.58% respectively, and consumption is up by 0.28%
when 6 = 0.89. However by year 20, output is down by 0.27% but investment
is down by only 12.28%—indicating that investment is actually increasing back
towards the original equilibrium, as seen in Figure 2c—and consumption is up by
only 0.03% when 6 = 0.89—indicating that consumption is decreasing as seen
in Figure 2b. This same story plays out across all values of 6. In year 10 when
6 = 1.25, output and investment are down by 0.43% and 47.05% respectively,
and consumption is up by 0.77%, whereas by year 20 output and investment are
down by 0.73% and 35.15% respectively, and consumption is up by 0.15%. In
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year 10 when # = 1.61, output and investment are down by 0.61% and 69.51%
respectively, and consumption is up by 1.15%, whereas by year 20 output and
investment are down by 1.08% and 54.16% respectively, and consumption is
up by 0.28%. As can be seen, the larger the increase in 6, the sharper the initial
spike and downturn in consumption and investment respectively. Additionally,
looking at Table 8, the growth rates of output and consumption are always lowest
and investment always highest in year 20 when compared to year 5 respectively,
which makes sense given what was observed in Table 9. For example, in year 10
when # = 1.61, output, consumption, and investment are 2.89, 2.27, and 0.02
respectively, whereas by year 20 output, consumption, and investment are 2.88,
2.25, and 0.03 respectively.

S Sensitivity Analysis

I introduce three changes: a new value for the rate of time preference, the
ratio of taxes to output, and depreciation. I choose these three changes because
they all should impact the model in different ways, and seeing if that holds true
through dynamic simulations is important to assess the robustness of my results
and how sensitive it is to changes in its parameters.

5.1 A New Value of the Rate of Time Preference (p)

Recalling the relative roles of the rate of time preference and coefficient of
relative risk aversion as the premiums for impatience and patience, and given the
increase in the latter between steady states, it is worth investigating the effect of a
higher value for the former.

5.1.1 Data and Model

The model does not change with this adjustment. To determine a new value
for the rate of time preference (p), I first search for a new value for the interest
rate r and then solve for the value of p as in Section 3.2.1. To find this value,
I must change my source of data from the deposit interest rate to something
else and take its average. Many typical sources for this rate—bond yields and
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corporate rates—were not available for the 2007 and prior time periods. I elect
to use data on the net interest margin of banks in Bosnia from the World Bank
(code: GFDD.EI.O1). This records the net interest revenue of banks as a share of
their interest-bearing assets, meaning that it illustrates the relative rate of interest
banks see yearly. Plugging in the average of values for and before 2007 results
in the new value for the rate of time preference, p = 0.05243. The resulting
steady state with the updated value of p shows little change to the estimations of
macroeconomic ratios when compared to Table 3.

5.1.2 Results

The variables of interest, y, c, ¢, all have lower steady-state values with the
adjustment to the value of p still decreasing following the changes in 6 as in the
model without the adjusted value of p:
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Table 10: Steady States (With Higher Rate of Time Preference p)

(a) p = 0.03776 (b) p = 0.05243

Y c 1 Y c 1

f=072 291 224 006 6=072 248 1.93 0.04
=089 289 223 006 6=089 257 1.92 0.04
A (%) —050 —047 —1.49  A(%) —0.36 —0.35 —1.09
f=125 286 221 005 6=125 245 1.90 0.03
A (%) —153 —1.45 —452  A(%) —1.12 —1.08 —3.33
f=161 28 219 005 6=161 244 1.89 0.03
A (%) —253 —241 —7.40 A(%) —1.86 —1.80 —5.49

As seen in Table 10, just as in Table 7, no matter the higher value of 6, all variables
of interest decrease between steady states. When 6 = 0.89, output, consumption,
and investment decrease by 0.36%, 0.35%, and 1.09% respectively. When 6 =
1.25, output, consumption, and investment decrease by 2.45%, 1.90%, and 3.33%
respectively. When # = 1.61, output, consumption, and investment decrease by
1.86%, 1.80%, and 5.49% respectively. However, both the steady-state levels
per each value of @, and the changes between them are slightly different. Output
is decreased in Table 10b (new value of p) when compared to Table 10a (initial
p), alongside consumption and investment, but the ratios of the latter two to the
former remain about the same as seen when comparing their initial steady states.

Using the new value for the rate of time preference, I simulate the quantitative
impacts on the Bosnian economy of the increase in risk aversion from the 2008
crisis. I only simulate the change from § = 0.72 to # = 1.61 since the difference
in this case is the new value of p. Below are time paths comparing the change in
the coefficient of relative risk aversion depending on the value of the rate of time
preference (y, ¢, ¢ when 6 increases from 0.72 to 1.61 for when p is 0.03776 and
0.05243, t = years):
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Figure 3: Evolution of Variables of Interest over Time after 2008 Crisis (With
Higher Rate of Time Preference p)
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The dashed and dotted lines in the above figures show the steady state prior to
the change in @ when p = 0.03776 and p = 0.05243 respectively. The time
paths of output and consumption are very similar to those seen in Figure 2a
and Figure 2, although that of consumption does become negative by year 20.
This slight difference in the time path for consumption leads the time path for
investment to increase further as time passes. This dynamic of consumption
dropping more steeply with time makes sense intuitively: a higher rate of time
preference—the premium for impatience—will result in greater emphasis being
placed on consumption in earlier years, with later years increasingly written off.
These dynamics show that the model is fairly robust.

5.2 A New Value of Taxation (%)

Given the exogenous nature of the tax ratio, it is worth investigating the
effects of changing it in the model. As in Section 3.2.1 when discussing the
underestimation of investment in the steady state, government spending takes out
a share of GDP in the national accounts identities of Bosnia, but a decrease in it
would exclusively go towards a higher steady-state level of consumption. It is
worth investigating if there are any other dynamic differences from a change in
taxation. By all accounts, there should not be. For this adjustment in the tax ratio,
I do not set it to zero, but instead to a slightly higher level. I take the average of
government expenditure for the years 2005 to 2007 from the World Bank (2024b)
and set the tax ratio to % = 0.34228. This new value means that over 34% of
output will go towards taxation.

5.2.1 Data and Model

Adjusting the model to simulate the economy with a new value for the tax
ratio does not require any changes to it, only to the value of %

5.2.2 Results

Only c has a different—higher— steady-state value when compared to Ta-
ble 7.
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Table 11: Steady States (With Higher Tax Ratio %)

(a) £ = 0.20990 (b) £ = 0.34228

Y c 1 Y c 1
=072 2091 2.24 0.06 60=0.72 291 1,85  0.06
=089 2.89 2.23 0.06 606=0.89 2.89 1.85 0.06

A (%) —0.50 —0.47 —1.49 A (%) —0.50 —047 —1.49
=125 286 2.21 0.06 6=125 2.86 1.83  0.05
A (%) —1.53 —1.45 —4.52 A (%) —1.53 —1.44 —4.52
6 =1.61 2.83 2.19 0.06 6#=1.61 2.83 1.81 0.05
A (%) —2.53 —2.41 —7.40 A (%) —2.53 —2.38 —7.40

The resulting steady state with the updated value of % shows no change to invest-
ment as a share of GDP, with taxes assuming a portion of the share held prior by
consumption. The model now underestimates consumption and still greatly under-
estimates investment in the steady state. As seen in Table 11, just as in Table 7,
no matter the value of 0, all variables of interest decrease between steady states.
When 6 = 0.89, output, consumption, and investment decrease by 0.50%, 0.47%,
1.49% respectively. When # = 1.25, output, consumption, and investment de-
crease by 1.53%, 1.44%, and 4.52% respectively. When 6 = 1.61, output, con-
sumption, and investment decrease by 2.53%, 2.38%, and 7.40% respectively.
However, only the steady state levels and changes of consumption are different
per each value of 6 when Table 11b and Table 11a are compared—the levels are
the same for output and investment as in Table 7 as well as the changes between
steady states. The change to the tax ratio has almost no effect beyond snatching
some of the share of output once held by consumption. Unlike the change to p
from the prior section, output is not reduced at all by this change to )Z/, and instead,
it is the ratio of consumption to output that is changed, rather than the level of out-
put. This is consistent with Section 3.2.1, where it was demonstrated in Table 4
that changes in taxation only affect consumption in the RCK model.

Using the new value for the tax ratio, I simulate the quantitative impacts on
the Bosnian economy of the increase in risk aversion from the 2008 crisis. Below
are time paths comparing the change in the coefficient of relative risk aversion
depending on the value of the tax ratio (y, ¢, ¢ when 6 increases from 0.72 to 1.61
for when % is 0.20990 and 0.34228, t = years):
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Figure 4: Evolution of Variables of Interest over Time after 2008 Crisis (With
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The dashed and dotted lines in the above figures show the steady state prior to
the change in # when % = 0.20990 and % = 0 respectively. As can be seen,
the resulting changes lie entirely with consumption, with it being significantly
higher in level at all points in the time path. Do these results imply anything
about tax cuts as a policy to stimulate investment? Not really. Again, this is
more a reflection of the shortcomings of a closed economy model imposed on an
economy with a high trade deficit. However, it is not unreasonable to say that
cutting taxes to spur investment would similarly not function as a one-to-one
interaction, with much of the difference rather being saved or consumed. Either
way, the dynamics of the model are identical following the change in the tax
ratio, with consumption only being higher in absolute /evel. This is consistent
with what was discussed in Section 3.2.1, and is further evidence of robustness in
terms of dynamic results from the model.

5.3 Introducing Depreciation ()

Given that assets in the real world tend to depreciate, it is worth investigating
how introducing a rate of depreciation may impact the model. In the real world,
capital depreciation leads to investment in capital stock. Existing machinery, for
example, cannot be relied on forever, and must be updated eventually. However,
even if introducing depreciation increases the share of investment in output,
that share would come from what was held by consumption—taxes are static
and exogenous and there are still no trade flows—thus reducing its share of
output. However, knowing that these dynamics would be the likely result of
the introduction of depreciation to the model, it is worth seeing by how much
the shares of each of these things are changed in the steady states and dynamic
simulations.

5.3.1 Data and Model

Introducing a non-zero value for depreciation, 9, adjusts the formulation of
the model. The optimality conditions for firms are changed such that Equation (2)
is rewritten as:

r=f(k)—¢ (26)
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which results in new equations of the loci:

Co LB )~ (Gt

k=fk)—k(6+n+g)—c—T

and new steady-state equations:

06+n+g)+p
(0]

E=(

_1
)(171

c=k*—k(0+n+g)—T

27

(28)

(29)

(30)

Data on the depreciation rate is sourced from the Penn World Table as an average
for the 1996 to 2007 period for Bosnia. The resulting steady state with § shows a
large change to consumption and investment as shares of GDP. The model now
underestimates the share of consumption with the difference being added to the
share of investment. This makes sense and follows the theoretical explanation
outlined earlier—capital depreciation spurs investment in capital stock, resulting

in a larger share of output being diverted to investment.

5.3.2 Results

The steady-state outcomes across values of 6 show a clear departure from
those found in Table 7. While y and c are lower across steady states, ¢ is higher

with the non-zero value of §.
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Table 12: Steady States (With Depreciation ¢)

(a)§ =0 (b) § = 0.06403

Y c 1 Y c 1

f=072 291 224 006 6=072 197 1.05 051
=089 289 223 006 6=089 186  1.04 0.42
A %) —050 —047 —1.49 A®%) —6.01 —0.68 —16.96
=125 286 221 005 6#=125 166  1.01 0.30
A(%) —153 —1.45 —452  A(%) —1582 —3.87 —40.35
f=161 28 219 005 6=161 152 097 0.23
A (%) —253 —241 —7.40 A%) —23.09 —7.80 —54.50

As seen in Table 12, just as in Table 7, no matter the value of 6, all variables of in-
terest decrease between steady states. When 8 = 0.89, output, consumption, and
investment decrease by 6.01%, 0.68%, and 16.96% respectively. When 6 = 1.25,
output, consumption, and investment decrease by 15.82%, 3.87%, and 40.35%
respectively. When # = 1.61, output, consumption, and investment decrease by
$23.09%8$, $7.80%$, and 54.50% respectively. However, both the steady-state
levels per each value of €, and the changes between them are all very different.
Introducing depreciation, 9, greatly reduces the steady-state levels of output and
consumption across all values of # and greatly magnifies the size of their changes
between steady-state levels. Additionally, the results of investment are very signif-
icantly affected by depreciation. The dynamic response of investment is increased
ten-fold and decreases sharply between 6 values. The introduction of depreciation
has both reduced output and changed the respective shares of consumption and
investment in it. A change in the /eve/ makes sense intuitively. First, if assets
depreciate output is lost by their depreciation. Second, if assets depreciate, it is
necessary to invest in them to prevent further losses to output. Together these two
realities explain the level but not the dynamic response.

Using the new value for depreciation, I simulate the quantitative impacts on
the Bosnian economy of the increase in risk aversion from the 2008 crisis. Below
are time paths comparing the change in the coefficient of relative risk aversion
depending on the value of depreciation (y, ¢, ¢ when € increases from 0.72 to 1.61
for when 0 is 0 and 0.06403 , ¢t = years):

36



20 40 60 80 100

2.6
24 6=0

22 — 6=0.06403
2.0

(a) Evolution of Output (0 = 0.06403)

18 6=0

161 6=0.06403

(b) Evolution of Consumption (6 = 0.06403)

020l K

0.15| 6=0

ool — 6=0.06403

005 TTTTTTTTTTTTTToTmoooommmoommmooToToooes

20 40 60 80 100

(¢) Evolution of Investment (6 = 0.06403)

Figure 5: Evolution of Variables of Interest over Time after 2008 Crisis (With
Depreciation d)
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The dashed and dotted lines in the above figures show the steady state prior to
the change in # when 6 = 0 and 6 = 0.06403 respectively. As can be seen,
the resulting changes starkly contrast the initial time paths seen in Figure 2. For
example, output and consumption begin above their steady states as still expected
but decrease so sharply that the first few periods are cut off from the graphs.
Investment, by contrast, sees the opposite and is significantly higher across time
when compared to Figure 2c. The dynamics here are very different from those
of the model without depreciation, and evidence that my results with the baseline
calibration are not robust to new values of § as far as the dynamic response to
investment is concerned.

6 Conclusion

The increase in the coefficient of relative risk aversion, 6, in Bosnia results in
large drops in output, consumption, investment, and capital accumulation. In sum,
between the two steady states, output, consumption, and investment, all decrease
by as much as 2.53%, 2.41%, and 7.40% respectively. In dynamic simulations,
by year 10, output and investment decrease by as much as 0.61% and —69.51%),
and the initial spike in consumption is reduced to only 1.15% over equilibrium
when compared to 1.68% in year 5. As noted in Section 4.2, the changes to invest-
ment show that the level of investment drops sharply below the steady state but
the growth rate is positively increasing towards the new—still lower—equilibrium.
This can be seen in Table 9, where the change to investment in year 5 is even larger
in magnitude than in year 10. Additionally, in the sensitivity analysis, all vari-
ables of interest still decrease alongside an increase in risk aversion, 6, although
the relative shares fluctuate with the changes in other parameters. The fact that
the changes noted from an increase in risk aversion remain consistent through the
comparative statics exercise, dynamic simulations, and the sensitivity analysis, ex-
cept the change to J, evidences the model implementation to be robust to changes
in the rate of time preference (p) and tax ratio (%) but not depreciation (9), and
the level of investment in the steady state is underestimated.

Comparing results to Bande and Riveiro (2013) and real-world evidence from
Weinberg (2013), I find that the reaction of households to a period of heightened un-
certainty in Bosnia resulted in similarly negative adjustments to consumption. In
other words, changes to consumption saving behavior in Bosnia, a middle-income
country, are comparable to changes in high-income countries. In dynamic simu-
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lations with rising levels of risk aversion, individuals reduce their consumption—
and, given no alternatives, any income that is not consumed is saved. This reduc-
tion in consumption represents a decline in economic activity which results in a
decline in output, thereby reducing all macroeconomic variables. This is consis-
tent with the theory outlined by Cass (1965) and Koopmans (1963) and explored
in Section 2. This dynamic is noted by Weinberg (2013), who writes that in the
real world, output in the United States declined by 4.3% through the height of the
2008 Global Financial Crisis. My results with the initial parametrization seen in
Section 3.2.1 show a decline of 2.53% at the highest end. It is very well possi-
ble that the highest estimate of risk aversion, # = 1.61, may even be low given
how sharp the decline was in the real-world United States and that estimates of
risk aversion can range far higher, as seen in Bekaert, Engstrom, and Xu (2022).
At the same time, estimating risk aversion at higher levels—particularly given the
issues with data availability—runs the risk of overstepping things. Next, although
following a different model and methodology, in their consumption growth mod-
els, Bande and Riveiro (2013) find the coefficients of their various measures of
uncertainty on consumption to range from —0.043 to —0.053, with standard er-
rors ranging from 1.38 to 1.83. These coefficients from Bande and Riveiro (2013)
may appear low in comparison, but that is because they are regression outputs,
representing a decrease per one-point increment in their estimates of uncertainty,
of which they use multiple and which have ranges of values greater than just one
point each. In other words, these are elasticities. Comparing these results to the
elasticity of output from the change in risk aversion (6 from 0.72 to 1.61) in my
model implementation:

<y2*y1> (2.83—2.91)

Yy 2.91 _
92—191 - <1.61—O.72> = —2.224% G
(Bt 579

shows that even an imperfect theoretical model can provide results within the
ranges of those like Bande and Riveiro (2013).

Either way, the logic remains the same on both counts—individuals choose
to consume less than they would otherwise and in turn experience a loss in utility.
As for the spike in consumption in the short run, this is explained by the elastic-
ity of intertemporal substitution (see: Section 2.1.2), which defines how quickly
households adjust to new equilibria. Lastly, through the sensitivity analysis, it is
clear that the results are robust to changes in parameters other than depreciation
and are generally not prone to wild aberrations from their adjustment. The results
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of my model are therefore broadly in line with conventional theory, evidence from
the real world, and prior works.

Given the limited literature covering consumption-saving behavior in Bosnia,
more research and data are needed. Time series data on Bosnia does not extend
before 1990 in the Penn World Table and the different series from the World Bank
have even fewer observations recorded. This data too may be below par in quality
for some periods, given the destructive and brutal war that took place during the
first half of the 1990-2000 decade, which is why I only included data post-1995 as
the Bosnian War ended in December 1995. As for the World Bank data specifically,
there are alternative data sources like the Bosnian Agency for Statistics (BHAS)
and the Bosnian Central Bank (CBBH) for information on taxation however there
are caveats to the data released. Additionally, Bosnia is very dependent on imports
and has a significant trade deficit (% is —30%) that clearly impacts its macroeco-
nomic ratios, as discussed in Section 4. This deficit is not totally accounted for in
my implementation of the model and an alternative open-economy model could do
better by accounting for this discrepancy. Further research could take the form of
a more econometric approach like Bande and Riveiro (2013)—which additionally
investigates components of uncertainty—or could involve gathering larger sets of
data from sources like the BHAS or the CBBH.
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8 Mathematica Code

(*>I<*************************>I<********************************************)
(*THESIS CODEx*)

(*RCK Model with TvsY and G=Tx)
(ko ok stk o ok sk ok sk o sk o ok ok sk ok o ok sk sk sk o o sk sk o s o sk sk sk ok sk sk o ok sk sk o o ok sk sk s o sk sk sk ok sk sk ok ok sksk ok ok )

Clear All;
Remove["Global  *"];

(*Initial Params*)

n = 0.00553;

g = -0.00320;

\[Alpha] = 1/3; (*1/3%)

\ [Rho] = 0.03776;

TsY = 0.20990;

\ [Thetal] = 0.72;

\[Delta] = 0; (*Changed in sensitivity analysis*)

(*Steady State Functionsx)
kDot [\[Alphal , g , n_, \[Deltal , Tsy_] :=
k[t]1"\[Alpha] - ((\[Delta] + n + g)*k[t]) - c[t] - Tsy*k[t]~\[Alpha];
cDot [\[Alphal , g_,
n_, \[Deltal_, \[Rhol_, \[Theta] ] := (1/\[Thetal*(\[Alphal (k[
t]~(\[Alphal - 1)) - \[Rho]l) - (\[Deltal + n + g))*c[t];
kFormula := kDot[\[Alphal, g, n, \[Deltal], TsY];
cFormula := cDot[\[Alphal, g, n, \[Deltal, \[Rhol, \[Thetall;
cFunction := c[t] /. Flatten®@Solve[kFormula == 0, c[t]];
(*Called in Programx)
kStar := k[t] /. Flatten@Solve[cFormula == 0, k[t]];
cStar := cFunction /. k[t] -> kStar;
yStar [\ [Alphal ] := kStar~\[Alphal;
gStar [\[Alpha] , TsY_] := TsYxyStar[\[Alpha]];
iStar[\[Alpha] , TsY_] :=
yStar[\[Alpha]] - cStar - gStar[\[Alphal], TsY];
(xSaddle Functionsx*)
derivck[k ] := cFormula/kFormula /. {c[t] -> c[k], k[t] -> k};
saddleBelow[kStar_, cStar_] :=
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NDSolve[{c'[k] == derivck[k], c[kStar]
c, {k, 0.01, kStar}];
saddleAbove [kStar , cStar ] :=
NDSolve[{c' [k] == derivcklk], c[kStar]
c, {k, kStar, 40}];
pathFrom[kStar_, cStar_, 0ldkStar_] :=
NDSolve[{c'[k] == derivck[k], c[kStar]
c, {k, 0ldkStar, kStarl}];
kPathFrom[cTime_ , 0ldkStar_ ] :=
NDSolve[{k'[t] == kFormula /. c[t] -> cTimel[k[t]],
k[0] == 0ldkStar}, k, {t, 0, 100}] ;
cPathFrom[kTime , 0ldcStar_] :=
NDSolve[{c'[t] == cFormula /. k[t] -> kTime[t], c[0] == 0ldcStarl,
c, {t, 0, 100}] ;
(ko ok sk o ok sk o o sk o o ok sk ok o ok sk ok o o ok sk sk o o sk ok o ok sk ok o ok sk ok o o ok sk ok s sk ok ok ok sk ok ok skokok ok )
(*INITIAL EQUILIBRIUM*)
(*0Other eqs, \[Thetal=0.89,1.25,1.61, characterized as low, mid, and \
high respectively*)
Print["Steady state with initial value of \[Theta] = 0.72:"]
kStarl = kStar;
cStarl = cStar;
yStarl = yStar[\[Alphal];
gStarl = gStar[\[Alphal, TsY];
iStarl = iStar[\[Alpha], TsY];
cStariline = Graphics[{Dashed, Line[{{0, cStarl}, {100, cStari}}]}];
iStariline = Graphics[{Dashed, Line[{{0, iStar1l}, {100, iStari1}}]}];

= cStar - 0.00001},

= cStar + 0.00001},

= cStar + 0.00001},

Print["y: ", yStaril]
Print["c: ", cStaril]
Print["i: ", iStari]
Print["g: ", gStarl]
Print["k: ", kStari]
Print["y/y: ", yStarl/yStari]
Print["c/y: ", cStarl/yStari]
Print["i/y: ", iStarl/yStarl]
Print["g/y: ", gStarl/yStarl]
Print["k/y: ", kStarl/yStaril]
(*Locix*)

kLocusl =
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Plot [cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Green}];
cLocuscl = Graphics[{Dashed, Line[{{kStarl, 0.01}, {kStarl, 5}}]1}];
ckLocil = Show[kLocusl, clLocuscl, AxesLabel -> {"k", "c"}];
(xSaddle Pathx)
ckl = ¢ /. saddleBelow[kStarl, cStar1][[1]];

InitialTrajectoryBelow =

Plot[ck1[k], {k, 0.01, kStarl}, PlotStyle -> {Red, Dashed}];
ck2 = ¢ /. saddleAbove[kStarl, cStari] [[1]];
InitialTrajectoryAbove =

Plot[ck2[k], {k, kStarl, 40}, PlotStyle -> {Red, Dashed}];

(3kokok ok o o o ok ok sk sk sk sk ok ok o o o ok ok ok ok sk sk sk sk ok ok o o ok ok ok sk sk sk sk ok ok o o ok ok ok sk sk sk ok ok ok o o o ok ok sk sk ok sk ok ok ok ok ok ok ok )
\ [Theta] = 0.89;

Print["Steady state with new value of \[Thetal] = 0.89:"]

(*\ [Thetal]=0.89 EQUILIBRIUMx*)

kStar089 = kStar;

cStar089 = cStar;

yStar089 = yStar[\[Alphall;

gStar089 = gStar[\[Alpha], TsY];

iStar089 = iStar[\[Alpha], TsY];

Print["y: ", yStar089]

Print["c: ", cStar089]

Print["i: ", iStar089]

Print["g: ", gStar089]

Print["k: ", kStar089]

Print ["\[CapitalDeltaly’%: ", (((yStar089 - yStarl)/yStar1l))=*100];
Print["\[CapitalDeltalc%: ", (((cStar089 - cStarl)/cStarl))*100];
Print ["\[CapitalDeltali%: ", (((iStar089 - iStarl)/iStar1))*100];
Print ["\ [CapitalDeltalk%: ", (((kStar089 - kStarl)/kStarl))=*100];

(*Time Path FROM Initial Equilibriumx)
Time089 = ¢ /. pathFrom[kStar089, cStar089, kStarl][[1]];
kPath089 = k /. kPathFrom[Time089, kStari1] [[1]];
yPath089 [time ] := kPath089[time]~\[Alpha];
cPath089 = ¢ /. cPathFrom[kPath089, Time089[kStar1]][[1]];
iPath089[time_] := (yPath089[time]*(1 - TsY)) - cPath089[time]
ytPathPlot089 =
Plot [yPath089[t], {t, O, 100}, AxesLabel -> {t, y},
PlotStyle -> RGBColor[1, O, O, 0.25],
PlotLegends -> {"\[Thetal=0.89"}];
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ctPathPlot089 =
Plot [cPath089([t], {t, 0, 100}, AxesLabel -> {t, c},
PlotStyle -> RGBColor[0O, 1, O, 0.25],
PlotLegends -> {"\[Thetal]=0.89"}];

itPathPlot089 =
Plot[iPath089[t], {t, O, 100}, AxesLabel -> {t, i},
PlotStyle -> RGBColor[0, 0, 1, 0.25],
PlotLegends -> {"\[Thetal=0.89"}];

ktPathPlot089 =
Plot [kPath089[t], {t, 0, 100}, AxesLabel -> {t, kI,
PlotStyle -> RGBColor[1l, O, 1, 0.25],
PlotLegends -> {"\[Thetal=0.89"}];

Print["Changes from \[Theta]=0.72 to \[Thetal]=0.89 in order y, c, i, \
k, 5, 10, and 20 years into transition:"]

Print ["6\[CapitalDeltaly%: ", (((yPath089[5] - yStarl)/yStaril))*100]

Print ["5\[CapitalDeltalc%: ", (((cPath089[5] - cStarl)/cStarl))*100]

Print ["5\[CapitalDeltali%: ", (((iPath089[5] - iStar1)/iStar1))*100]

Print["5\[CapitalDeltalk)%: ", (((kPath089[5] - kStarl)/kStarl))=*100]

Print ["10\ [CapitalDeltaly%: ", (((yPath089[10] - yStarl)/
yStar1))*100]

Print ["10\ [CapitalDeltalck: ", (((cPath089[10] - cStarl)/
cStar1l))*100]

Print["10\ [CapitalDeltali’%: ", (((iPath089[10] - iStarl)/
iStar1))=100]

Print ["10\ [CapitalDeltalk’: ", (((kPath089[10] - kStarl)/
kStar1))*100]

Print ["20\ [CapitalDeltaly’%: ", (((yPath089[20] - yStarl)/
yStar1))*100]

Print ["20\ [CapitalDeltalc’%: ", (((cPath089[20] - cStarl)/
cStar1))=*100]

Print ["20\ [CapitalDeltali%: ", (((iPath089[20] - iStarl)/
iStar1))=100]

Print ["20\ [CapitalDeltalk’%: ", (((kPath089[20] - kStarl)/kStarl))*100]

Print["Growth of y, ¢, i, k, 5, 10, and 20 years into transition \
between steady states characterized by \[Theta]=0.72 to \
\ [Theta]=0.89:"]
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Print["5y%: ", yPath089[5]]

Print["5c%: ", cPath089[5]]

Print["5i%: ", iPath089[5]]

Print["5k%: ", kPath089[5]]

Print["10y%: ", yPath089[10]]
Print["10c%: ", cPath089[10]]
Print["10i%: ", iPath089[10]]
Print["10kY%: ", kPath089[10]]
Print["20y%: ", yPath089[20]]
Print["20c%: ", cPath089[20]]
Print["20i%: ", iPath089[20]]
Print ["20kY%: ", kPath089[20]]

(skok ok o sk ok ook o ok ok ook oK ok ook oK ok ook oK ok o ok oK ok o ok o ok ok K ok o oK ok K ok o ok ok K ok o oK ok K ok o ok o K ok ook oK ok ok Kok koK )
\[Theta] = 1.25;

Print["Steady state with new value of \[Theta] = 1.25:"]

(*\ [Thetal=1.25 EQUILIBRIUMx*)

kStar125 = kStar;

cStar125 = cStar;

yStar125 = yStar[\[Alphal]l;

gStar125 = gStar[\[Alpha], TsY];

iStar125 = iStar[\[Alphal, TsY];

Print["y: ", yStar125]

Print["c: ", cStari25]

Print["i: ", iStari125]

Print["g: ", gStar125]

Print["k: ", kStari25]

Print ["\[CapitalDeltaly%: ", (((yStarl25 - yStarl)/yStar1))=*100];
Print["\[CapitalDeltalc%: ", (((cStarl25 - cStarl)/cStarl))*100];
Print["\[CapitalDelta]i’: ", (((iStar125 - iStarl)/iStar1))=100];
Print ["\[CapitalDeltalk¥%: ", (((kStar125 - kStarl)/kStar1))=*100];

(*Time Path FROM Initial Equilibriumx)
Timel25 = ¢ /. pathFrom[kStar125, cStar125, kStarl][[1]];
kPath125 = k /. kPathFrom[Time125, kStar1][[1]];
yPath125[time_] := kPath125[time]~\[Alpha];
cPath125 = ¢ /. cPathFrom[kPath125, Timel125[kStar1]][[1]];
iPath125[time_] := (yPath125[time]*(1 - TsY)) - cPath125[time]
ytPathPlot1256 =

Plot [yPath125[t], {t, O, 100}, AxesLabel -> {t, y},
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PlotStyle -> RGBColor[1, 0, 0, 0.5],
PlotLegends -> {"\[Thetal=1.25"}];
ctPathPlot125 =
Plot[cPath125[t], {t, 0, 100}, AxesLabel -> {t, cI},
PlotStyle -> RGBColor[0, 1, 0, 0.5],
PlotLegends -> {"\[Thetal=1.25"}];
itPathPlot125 =
Plot[iPath125[t], {t, O, 100}, AxesLabel -> {t, i},
PlotStyle -> RGBColor[0, O, 1, 0.5],
PlotLegends -> {"\[Thetal=1.25"}];
ktPathPlot125 =
Plot[kPath125[t], {t, O, 100}, AxesLabel -> {t, k},
PlotStyle -> RGBColor[1, 0, 1, 0.5],
PlotLegends -> {"\[Theta]=1.25"}];

Print["Changes from \[Theta]=0.72 to \[Thetal=1.25 in order y, c, i, \
k, 5, 10, and 20 years into transition:"]

Print["5\[CapitalDeltaly’%: ", (((yPath125[5] - yStarl)/yStar1))=*100]

Print["5\[CapitalDeltalch: ", (((cPath125[5] - cStarl)/cStarl))=*100]

Print ["6\[CapitalDeltali%: ", (((iPath125[5] - iStarl)/iStar1))=*100]

Print ["6\[CapitalDeltalk%: ", (((kPath125[5] - kStarl)/kStar1l))=*100]

Print["10\ [CapitalDeltaly%: ", (((yPath125[10] - yStarl)/
yStar1))*100]

Print["10\ [CapitalDeltalc’%: ", (((cPath125[10] - cStarl)/
cStar1))*100]

Print ["10\ [CapitalDeltali%: ", (((iPath125[10] - iStarl)/
iStar1))=*100]

Print ["10\ [CapitalDeltalk’: ", (((kPath125[10] - kStarl)/
kStar1))=*100]

Print ["20\ [CapitalDeltaly%: ", (((yPath125[20] - yStarl)/
yStar1))*100]

Print ["20\ [CapitalDeltalck: ", (((cPath125[20] - cStarl)/
cStar1))*100]

Print ["20\ [CapitalDeltali%: ", (((iPath125[20] - iStarl)/
iStar1))=*100]

Print ["20\ [CapitalDeltalk’: ", (((kPath125[20] - kStarl)/kStar1))*100]

Print["Growth of y, ¢, i, k, 5, 10, and 20 years into transition \
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between steady states characterized by \[Thetal=0.72 to \
\ [Theta]=1.25:"]
Print["5y%: ", yPath125([5]]

Print["5c%: ", cPath125([5]]

Print["5i%: ", iPath125[5]]

Print ["5k%: ", kPath125[5]]

Print["10y%: ", yPath125[10]]
Print["10c%: ", cPath125[10]]
Print["10i%: ", iPath125[10]]
Print["10k%: ", kPath125[10]]
Print ["20y%: ", yPath125[20]]
Print["20c%: ", cPath125[20]]
Print["20i%: ", iPath125[20]]
Print["20kY%: ", kPath125[20]]

(kokok ok ok o o ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok sk ok ok ok ok o ok ok ok ok ok sk ok ok ok o o o ok ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok ok ko ok )
\ [Theta] = 1.61;

Print["Steady state with new value of \[Theta] = 1.61:"]

(*\ [Thetal=1.61 EQUILIBRIUM*)

kStar161 = kStar;

cStarl61l = cStar;

yStar161 = yStar[\[Alphall;

gStar161 = gStar[\[Alpha], TsY];

iStar161 = iStar[\[Alpha], TsY];

Print["y: ", yStar161]

Print["c: ", cStari161]

Print["i: ", iStari161]

Print["g: ", gStar161]

Print["k: ", kStar161]

Print ["\[CapitalDeltaly%: ", (((yStarl6l - yStarl)/yStar1))=100];
Print["\[CapitalDeltalc%: ", (((cStar161l - cStarl)/cStarl))*100];
Print ["\[CapitalDeltali%: ", (((iStar161 - iStarl)/iStar1))*100];
Print ["\[CapitalDeltalk’%: ", (((kStar161 - kStarl)/kStar1))*100];
(xLocix)

klLocusl161 =

Plot [cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Blackl}];
(*To better see change in steady state plotx)
kLocus161Zoom =

Plot [cFunction /. k[t] -> k, {k, 20, 26.75}, PlotStyle -> {Black}];
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cLocusc161 = Graphics[{Line[{{kStar161, 0.01}, {kStar161, 5}}]1}];
ckLocil61 = Show[kLocus161, cLocusc161, AxesLabel -> {"k", "c"}];
(*To better see change in steady state plotx)
ckLocil61Zoom =
Show[kLocus161Zoom, cLocuscl161l, AxesLabel —-> {"k", "c"}];
(*Saddle Path*)
ckl = ¢ /. saddleBelow[kStar161, cStari61][[1]];
TrajectoryBelowl6l =
Plot[ck1[k], {k, 0.01, kStar161}, PlotStyle —> {Red}];
ck2 = ¢ /. saddleAbove[kStari161, cStar161][[1]1];
TrajectoryAbovel6l =
Plot[ck2[k], {k, kStar161, 40}, PlotStyle —> {Red}];
(*Time Path FROM Initial Equilibriumx)
Timel61l = ¢ /. pathFrom[kStar161, cStar161, kStarl][[1]];
kPath161 = k /. kPathFrom[Timel161, kStari1] [[1]];
yPath161[time_] := kPath161[time] ~\[Alpha];
cPath161 = ¢ /. cPathFrom[kPath161, Timel161[kStar1]][[1]];
iPath161[time_] := (yPath161[time]*(1 - TsY)) - cPath161[time]
ytPathPlot161 =
Plot[yPath161[t], {t, O, 100}, AxesLabel -> {t, y},
PlotStyle -> RGBColor[1, O, 0, 0.75],
PlotLegends -> {"\[Thetal=1.61"}];
ctPathPlot161 =
Plot[cPathi61[t], {t, 0, 100}, AxesLabel -> {t, cI},
PlotStyle -> RGBColor[0O, 1, O, 0.75],
PlotLegends -> {"\[Thetal=1.61"}];
itPathPlot161 =
Plot[iPath161[t], {t, 0, 100}, AxesLabel -> {t, i},
PlotStyle -> RGBColor[0O, O, 1, 0.75],
PlotLegends -> {"\[Thetal=1.61"}];
ktPathPlot161 =
Plot [kPath161[t], {t, O, 100}, AxesLabel -> {t, k},
PlotStyle -> RGBColor[1, 0, 1, 0.75],
PlotLegends -> {"\[Thetal=1.61"}];

(*Rewriting legends from previous plot for later sensitivity analysisx)
ytPathPlotl6la =
Plot[yPath161[t], {t, O, 100}, AxesLabel -> {t, yl,
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PlotStyle -> RGBColor[1, 0, 0, 0.25],

PlotLegends -> {"\[Rho]=0.03776"}];
ctPathPlotl6la =

Plot[cPathi161[t], {t, 0, 100}, AxesLabel

PlotStyle -> RGBColor[0O, 1, O, 0.25],

PlotLegends -> {"\[Rho]=0.03776"}];
itPathPlotl6la =

Plot[iPath161[t], {t, 0, 100}, AxesLabel

PlotStyle -> RGBColor[0, O, 1, 0.25],

PlotLegends -> {"\[Rho]=0.03776"1}];
ktPathPlot16la =

Plot[kPath161[t], {t, O, 100}, AxesLabel

PlotStyle -> RGBColor[1, 0, 1, 0.25],

PlotLegends -> {"\[Rho]=0.03776"}];
ytPathPlot161b =

Plot[yPath161[t], {t, 0, 100}, AxesLabel

PlotStyle -> RGBColor[1, 0, 0, 0.25],

PlotLegends -> {"TsY=0.20990"}];
ctPathPlotl161b =

Plot [cPath161[t], {t, 0, 100}, AxesLabel

PlotStyle -> RGBColor[0O, 1, O, 0.25],

PlotLegends -> {"TsY=0.20990"}];
itPathPlot161b =

Plot[iPathi161[t], {t, O, 100}, AxesLabel

PlotStyle -> RGBColor[0O, O, 1, 0.25],

PlotLegends -> {"TsY=0.20990"}];
ktPathPlot161b =

Plot[kPath161[t], {t, 0, 100}, AxesLabel

PlotStyle -> RGBColor[1l, O, 1, 0.25],

PlotLegends -> {"TsY=0.20990"}];
ytPathPlotl16lc =

Plot[yPath161[t], {t, O, 100}, AxesLabel

PlotStyle -> RGBColor[1, 0, O, 0.25],

PlotLegends -> {"\[Deltal=0"}];
ctPathPlot161lc =

Plot [cPath161[t], {t, 0, 100}, AxesLabel

PlotStyle -> RGBColor[0O, 1, O, 0.25],

PlotLegends -> {"\[Deltal=0"}];
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itPathPlot161c =
Plot[iPath161[t], {t, O, 100}, AxesLabel -> {t,
PlotStyle -> RGBColor[0O, O, 1, 0.25],
PlotLegends -> {"\[Deltal=0"}];
ktPathPlot161c =
Plot[kPath161[t], {t, O, 100}, AxesLabel -> {t,
PlotStyle -> RGBColor[1, 0, 1, 0.25],
PlotLegends -> {"\[Deltal=0"}];
ytPathPlot161d =
Plot[yPath161[t], {t, O, 100}, AxesLabel -> {t,
PlotStyle -> RGBColor[1, O, 0, 0.25],
PlotLegends -> {"\[Deltal=0, TsY=0.20990"}];
ctPathPlot161d =
Plot [cPathi61[t], {t, 0, 100}, AxesLabel -> {t,
PlotStyle -> RGBColor[0O, 1, O, 0.25],
PlotLegends -> {"\[Deltal=0, TsY=0.20990"}];
itPathPlot161d =
Plot[iPath161[t], {t, O, 100}, AxesLabel -> {t,
PlotStyle -> RGBColor[0O, O, 1, 0.25],
PlotLegends -> {"\[Deltal=0, TsY=0.20990"}];
ktPathPlot161d =
Plot [kPath161[t], {t, 0, 100}, AxesLabel —> {t,
PlotStyle -> RGBColor[1, 0, 1, 0.25],
PlotLegends -> {"\[Deltal=0, TsY=0.20990"}];
(k%)

v},

Print["Changes from \[Theta]=0.72 to \[Theta]=1.61 in

k, 5, 10, and 20 years into transition:"]

order y, c, i, \

Print["5\[CapitalDeltaly’%: ", (((yPath161[5] - yStarl)/yStar1))=*100]

Print["5\[CapitalDeltalchk: ", (((cPath161[5] - cStarl)/cStarl))=*100]

Print ["6\[CapitalDeltali%: ", (((iPath161[5] - iStarl)/iStar1))=*100]

Print["5\[CapitalDeltalk%: ", (((kPath161[5] - kStarl)/kStar1l))*100]

Print ["10\ [CapitalDeltaly’%: ", (((yPath161[10] - yStarl)/
yStar1))*100]

Print ["10\ [CapitalDeltalc’%: ", (((cPath161[10] - cStarl)/
cStar1))=*100]

Print ["10\ [CapitalDeltali%: ", (((iPath161[10] - iStarl)/
iStar1))=100]
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Print["10\ [CapitalDeltalk’%: ", (((kPath161[10] - kStarl)/
kStar1))+*100]

Print ["20\ [CapitalDeltaly%: ", (((yPath161[20] - yStarl)/
yStar1))*100]

Print ["20\ [CapitalDeltalc’: ", (((cPath161[20] - cStarl)/
cStar1))*100]

Print ["20\ [CapitalDeltali’%: ", (((iPath161[20] - iStarl)/
iStar1))*100]

Print ["20\ [CapitalDeltalk’%: ", (((kPath161[20] - kStarl)/kStarl))=*100]

Print["Growth of y, ¢, i, k, 5, 10, and 20 years into tramnsition \
between steady states characterized by \[Thetal=0.72 to \
\ [Theta]=1.61:"]

Print["6y%: ", yPath161[5]]
Print["5c%: ", cPath161[5]]
Print["5i%: ", iPath161[5]]
Print["5k%: ", kPath161[5]]
Print["10y%: ", yPath161[10]]
Print["10c%: ", cPath161[10]]
Print["10i%: ", iPath161[10]]
Print["10kY%: ", kPath161[10]]
Print["20y%: ", yPath161[20]]
Print["20c%: ", cPath161[20]]
Print["20i%: ", iPath161[20]]
Print ["20k%: ", kPath161[20]]

(ko ok sk o ok sk o o stk o o ok sk o o ok sk ok o o ok sk o s sk ok o sk sk o o ok sk sk o s ok sk ok s sk ok o ok sk ok ok skokok ok ok )
(*Steady State Diagram, Transition from \[Thetal=0.72 to \
\ [Thetal=1.61%)
Arrowl =
Graphics[{Magenta,
Arrow[{{kStarl, cStarl}, {kStaril, Timel61[kStari1]}}1}];
Arrow2 =
Graphics[{Magenta,
Arrow[{{kStarl, Time161[kStar1]}, {kStar161, cStar161}}11}];
Arrows = Show[Arrowl, Arrow?2];
LociGraphicl =
Graphics [{Text[
"\'\ (\*xOverscriptBox [\ (k\), \(\[Application]\)]\)=0", {38,
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2.35}], Textl
"\1\ (\*OverscriptBox[\(c\), \(\[Application]\)I\)=0 ", {26.5,
2.6}1}];
LociGraphic2 = Graphics[{Text["(k0,c0)", {27.4, 2.13}]}];
LociGraphic3 = Graphics[{Text["(kl,c1)", {20, 2.3}]1}];
LociGraphiclZoom =
Graphics[{Text[
"\'\ (\*xOverscriptBox[\(k\), \(\[Application]\)]\)=0", {26.35,
2.275}],
Text ["\ !\ (\*OverscriptBox [\ (c\), \(\[Application]\)]I\)=0 ", {24.3,
2.305}1}];
LociGraphic2Zoom
LociGraphic3Zoom
SteadyStatePlot =
Show[ckLocil61, ckLocil, TrajectoryBelowl6l, TrajectoryAbovel61,
Arrows, LociGraphicl, LociGraphic2, LociGraphic3]
SteadyStateZoom =
Show[ckLocil61Zoom, ckLocil, TrajectoryBelowl61l, TrajectoryAbovel61l,
Arrows, LociGraphiclZoom, LociGraphic2Zoom, LociGraphic3Zoom]
(*Time Paths from \[Theta]=0.72 to new \[Theta] 's*)
ytPathAll = Show[ytPathPlot161, ytPathPlot125, ytPathPlot089]
ctPathAll =
Show[{ctPathPlot161, ctPathPlot125, ctPathPlot089, cStarilinel},
PlotRange -> All]
itPathAll =
Show[{itPathPlot161, itPathPlot125, itPathPlot089, iStariLine},
PlotRange -> Al1]
(ks ok s ook ok sk stk ok ok ok ok o ook ok sk sksksk sk ok ok sk s ok ok sk sksksk sk sk ok ok sk ok ok sk sk sksksk sk ok ok s o okok ok sk sksk sk sk sk sk sk ko ook )

Graphics[{Text["(k0,cO)", {25, 2.23}]1}];
Graphics[{Text["(kl,c1)", {22.35, 2.2}1}];

(*What if there were no tax? Steady state analysisx*)

(st sk sk ok sk sk sk sk ok sk ok ok sk sk sk sk ok K ok ok sk ok 3k sk ok K ok ok 3 ok 3k sk sk K ok 3 ok 3 ok 3k ok sk sk ok K ok 3 ok 3k ok sk sk ok K ok k ok 3k ok sk sk ok sk ok sk ok sk ok )
Print ["NO TAX ANALYSIS:\n"]

(*Model without Tax*)

(%*New Paramsx)

n = 0.00553;

g = -0.00320;

\[Alphal = 1/3;

\[Rho] = 0.03776;

TsY = 0;
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\[Theta] = 0.72;

\ [Delta] 0;

(koo ok ok sk o ok ok sk sk sk sk ok ok ok ok o e ok ok sk sk sk sk ok ok ok ok o e o ok sk sk sk sk sk ok ok o o o o ok ok sk sk sk sk ok ok ok s o o ok ok sk sk sk sk ok ok ok ok ok ok ook )
(*INITIAL EQUILIBRIUM*)

(*0ther eqs, \[Thetal=0.89,1.25,1.61, characterized as low, mid, and \
high respectively*)

Print["Steady state with initial value of \[Theta] = 0.72:"]

kStarl = kStar;

cStarl = cStar;

yStarl = yStar[\[Alphall;
gStarl = gStar[\[Alphal, TsY];
iStarl = iStar[\[Alpha], TsY];

cStarilineb = Graphics[{Dotted, Line[{{0, cStarl}, {100, cStar1}}]1}];

iStariLineb = Graphics[{Dotted, Line[{{0, iStarl}, {100, iStari1}}]}];
Print["y: ", yStari]
Print["c: ", cStari]
Print["i: ", iStaril]
Print["g: ", gStaril]
Print["k: ", kStarl]
Print["y/y: ", yStarl/yStaril]
Print["c/y: ", cStarl/yStaril]
Print["i/y: ", iStarl/yStari]
Print["g/y: ", gStarl/yStaril]
Print["k/y: ", kStarl/yStaril]

(okkok ok ok oK oK K oK K oK K oK K oK K oK K oK K oK K oK K oK K ok K ok o ok K ok ok o ok o ok o ok o ok ok ok o ok o ok o ok ok ok ok ok ok ok ok ok ok ok ok ok )
(*Sensitivity Analysis*)

(ko ook ok ook ook KoK KoK oK oK KoK K oK K ok K ok ok K ok K ok o ok K ok ok o ok o ok o ok o ok o ok ok ok ok ok ok ok K ok ok K ok K ok Kok Kok )
Print ["INTEREST RATE SENSITIVITY ANALYSIS:\n"]

(¥Change in Interest Ratex)

(*New Params*)

n = 0.00553;

g = -0.00320;

\[Alphal = 1/3;

\[Rho] = 0.05243;

TsY = 0.20990;

\[Theta] = 0.72;

\[Delta] = 0;

(o ok ko ook ook ok o ok ook ok o ok ook ok ok ok ook ok oK ok ook ok ok ok ok ok ok ok ok ok oK ok o ok ok oK ok o ok Kok ok o Kok o ok Kok ok Kok ok )
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(*INITIAL EQUILIBRIUMx*)

(*0ther eqgs, \[Thetal=0.89,1.25,1.61, characterized as low, mid, and \
high respectively*)

Print["Steady state with initial value of \[Theta] = 0.72:"]

kStarl = kStar;

cStarl = cStar;

yStarl = yStar[\[Alphal];
gStarl = gStar[\[Alphal, TsY];
iStarl = iStar[\[Alpha], TsY];

cStarilinea = Graphics[{Dotted, Line[{{0, cStarl}, {100, cStari1}}]1}];
iStarilinea = Graphics[{Dotted, Line[{{0, iStaril}, {100, iStari1}}]1}];

Print["y: ", yStaril]
Print["c: ", cStarl]
Print["i: ", iStari]
Print["g: ", gStarl]
Print["k: ", kStari]
Print["y/y: ", yStarl/yStari]
Print["c/y: ", cStarl/yStaril]
Print["i/y: ", iStarl/yStaril]
Print["g/y: ", gStarl/yStaril]
Print["k/y: ", kStarl/yStaril]
(*Locix*)

kLocusl =

Plot [cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Green}];
cLocuscl = Graphics[{Dashed, Line[{{kStarl, 0.01}, {kStarl, 5}}]1}];
ckLocil = Show[kLocusl, clLocuscl, AxesLabel -> {"k", "c"}];
(*Saddle Pathx)
ckl = ¢ /. saddleBelow[kStarl, cStari][[1]];

InitialTrajectoryBelow =

Plot[ck1[k], {k, 0.01, kStarl}, PlotStyle -> {Red, Dashed}];
ck2 = ¢ /. saddleAbove[kStarl, cStarl][[1]];
InitialTrajectoryAbove =

Plot[ck2[k], {k, kStarl, 40}, PlotStyle -> {Red, Dashed}];

(st skt okofeof ot sk ok koo ok ok sk sk sk sk sk sk sk sk sk sk ok ok okttt ks sk o oo ok o sk sk sk sk sk sk sk sk sk sk sk sk ook otk ok ok ok skokokok )
\ [Theta] = 0.89;

Print["Steady state with new value of \[Theta] = 0.89:"]

(*\ [Thetal]=0.89 EQUILIBRIUMx*)

kStar089 = kStar;
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cStar089 = cStar;

yStar089 = yStar[\[Alphall;

gStar089 = gStar[\[Alphal, TsY];

iStar089 = iStar[\[Alphal, TsY];

Print["y: ", yStar089]

Print["c: ", cStar089]

Print["i: ", iStar089]

Print["g: ", gStar089]

Print["k: ", kStar089]

Print ["\[CapitalDeltaly’%: ", (((yStar089 - yStarl)/yStar1l))*100];
Print["\[CapitalDeltalc?: ", (((cStar089 - cStarl)/cStarl))=*100];
Print["\[CapitalDeltali’%: ", (((iStar089 - iStarl)/iStar1))=*100];
Print ["\ [CapitalDeltalk’%: ", (((kStar089 - kStarl)/kStarl))=*100];

(*Time Path FROM Initial Equilibriumx)

Time089 = c /. pathFrom[kStar089, cStar089, kStarl][[1]];
kPath089 = k /. kPathFrom[Time089, kStar1] [[1]];

yPath089 [time ] := kPath089[time] ~\[Alpha];

cPath089 = ¢ /. cPathFrom[kPath089, Time089[kStar1]][[1]];
iPath089[time_] := (yPath089[time]*(1 - TsY)) - cPath089[time]

Print["Changes from \[Theta]=0.72 to \[Thetal=1.61 in order y, c, i, \
k, 5, 10, and 20 years into transition:"]

Print["5\[CapitalDeltaly’%: ", (((yPath161[5] - yStarl)/yStar1))=*100]

Print["5\[CapitalDeltalch: ", (((cPath161[5] - cStarl)/cStarl))=*100]

Print["5\[CapitalDeltali%: ", (((iPath161[5] - iStar1)/iStar1))*100]

Print ["6\[CapitalDeltalk%: ", (((kPath161[5] - kStarl)/kStaril))=*100]

Print["10\ [CapitalDeltaly%: ", (((yPath161[10] - yStarl)/
yStar1))=*100]

Print["10\ [CapitalDeltalc’%: ", (((cPath161[10] - cStarl)/
cStar1))=*100]

Print ["10\ [CapitalDeltali%: ", (((iPath161[10] - iStarl)/
iStar1))=100]

Print ["10\ [CapitalDeltalk’: ", (((kPath161[10] - kStarl)/
kStar1))=*100]

Print["20\ [CapitalDeltaly%: ", (((yPath161[20] - yStarl)/
yStar1))*100]

Print["20\ [CapitalDeltalc’%: ", (((cPath161[20] - cStarl)/
cStar1))*100]
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Print ["20\ [CapitalDelta]i%: ", (((iPath161[20] - iStarl)/
iStar1))*100]
Print["20\ [CapitalDeltalk%: ", (((kPath161[20] - kStarl)/kStarl))*100]

Print["Growth of y, ¢, i, k, 5, 10, and 20 years into tramnsition \
between steady states characterized by \[Thetal=0.72 to \
\ [Theta]=0.89:"]

Print["5y%: ", yPath089[5]]
Print["5c%: ", cPath089([5]]
Print["5i%: ", iPath089[5]]
Print ["5k%: ", kPath089[5]]
Print["10y%: ", yPath089[10]]
Print["10c%: ", cPath089[10]]
Print["10i%: ", iPath089[10]]
Print["10k%: ", kPath089[10]]
Print ["20y%: ", yPath089[20]]
Print["20c%: ", cPath089[20]]
Print["20i%: ", iPath089[20]]
Print["20kY%: ", kPath089[20]]

(o ok sk sk ok sk sk ok ok sk ok ok sk ok ok sk ok ok ok 3 ok ok sk ok ok ok ok ok sk ok ok ok ok ok sk 3k ok ok K ok ok sk 3k ok ok ok ok 3k ok ok K ok ok sk 3k ok ok K ok ok ok ok ok ok )

\ [Theta] =

1.25;
Print["Steady state with new value of \[Theta] =

1.25:"]

(*x\ [Thetal=1.25 EQUILIBRIUMx)

kStar125 = kStar;

cStarl125 = cStar;

yStar125 = yStar[\[Alphall;

gStar125 = gStar[\[Alpha], TsY];

iStar125 = iStar[\[Alpha], TsY];

Print["y: ", yStar125]

Print["c: ", cStar125]

Print["i: ", iStari125]

Print["g: ", gStar125]

Print["k: ", kStar125]

Print["\[CapitalDeltaly%: ", (((yStar125 - yStarl)/yStarl))=100];
Print["\[CapitalDeltalc%: ", (((cStarl25 - cStarl)/cStarl))*100];
Print ["\[CapitalDeltali%: ", (((iStar125 - iStarl)/iStar1))*100];
Print ["\[CapitalDeltalk¥%: ", (((kStar125 - kStarl)/kStar1))*100];

(*Time Path FROM Initial Equilibriumx)
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Timel25 = ¢ /. pathFrom[kStar125, cStar125, kStarl][[1]];
kPath125 = k /. kPathFrom[Time125, kStar1] [[1]];
yPath125[time_] := kPath125[time]~\[Alpha];

cPath125 = ¢ /. cPathFrom[kPath125, Timel125[kStar1]][[1]];
iPath125[time_] := (yPath125[time]*(1 - TsY)) - cPath125[time]

Print["Changes from \[Theta]=0.72 to \[Theta]=1.25 in order y, c, i, \
k, 5, 10, and 20 years into transition:"]

Print["5\[CapitalDeltaly’%: ", (((yPath125[5] - yStarl)/yStar1))=*100]

Print["5\[CapitalDeltalc)k: ", (((cPathl125[5] - cStarl)/cStarl))=*100]

Print ["6\[CapitalDeltali%: ", (((iPath125[5] - iStarl)/iStar1l))=*100]

Print["5\[CapitalDeltalk’: ", (((kPath125[5] - kStarl)/kStar1))=*100]

Print ["10\ [CapitalDeltaly’%: ", (((yPath125[10] - yStarl)/
yStar1))*100]

Print["10\ [CapitalDeltalc’%: ", (((cPath125[10] - cStarl)/
cStar1))=*100]

Print["10\ [CapitalDeltali%: ", (((iPath125[10] - iStarl)/
iStar1))*100]

Print["10\ [CapitalDeltalk’%: ", (((kPath125[10] - kStarl)/
kStar1))*100]

Print ["20\ [CapitalDeltaly’%: ", (((yPath125[20] - yStarl)/
yStar1))=*100]

Print["20\ [CapitalDeltalc’%: ", (((cPath125[20] - cStarl)/
cStar1))*100]

Print ["20\ [CapitalDeltali’%: ", (((iPath125[20] - iStarl)/
iStar1))=100]

Print ["20\ [CapitalDeltalk’: ", (((kPath125[20] - kStarl)/kStarl))*100]

Print["Growth of y, ¢, i, k, 5, 10, and 20 years into transition \
between steady states characterized by \[Theta]=0.72 to \
\ [Theta]=1.25:"]

Print["5y%: ", yPath125[5]]
Print["5c%: ", cPath125[5]]
Print["5i%: ", iPath125[5]]
Print["5k%: ", kPath125[5]]
Print["10y%: ", yPath125[10]]
Print["10c%: ", cPath125[10]]
Print["10i%: ", iPath125[10]]
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Print["10k%: ", kPath125[10]]

Print["20y%: ", yPath125[20]]
Print["20c%: ", cPath125[20]]
Print["20i%: ", iPath125[20]]
Print ["20k%: ", kPath125[20]]

(************************************************************************)
\ [Theta] = 1.61;

Print["Steady state with new value of \[Theta] = 1.61:"]

(*\ [Thetal=1.61 EQUILIBRIUMx*)

kStarl161 = kStar;

cStar161l = cStar;

yStar161 = yStar[\[Alphall;
gStar161 = gStar[\[Alpha], TsY];
iStar161 = iStar[\[Alpha], TsY];

cStarilinea = Graphics[{Dotted, Line[{{0, cStarl}, {100, cStari1}}]1}];
iStarilinea = Graphics[{Dotted, Line[{{0, iStarl}, {100, iStar1}}]1}];

Print["y: ", yStar161]

Print["c: ", cStari161]

Print["i: ", iStari161]

Print["g: ", gStar161]

Print["k: ", kStari61]

Print ["\[CapitalDeltaly%: ", (((yStarl6l - yStarl)/yStar1l))=*100];
Print["\[CapitalDeltalc%: ", (((cStar161l - cStarl)/cStarl))*100];
Print["\[CapitalDeltal]i’: ", (((iStar161 - iStarl)/iStar1))=100];
Print ["\[CapitalDeltalky%: ", (((kStar161l - kStarl)/kStar1))=*100];
(xLocix)

kLocusl161 =

Plot [cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Black}];
(*To better see change in steady state plotx)
kLocus161Zoom =

Plot [cFunction /. k[t] -> k, {k, 20, 26.75}, PlotStyle -> {Black}];
cLocusc161 = Graphics[{Line[{{kStar161, 0.01}, {kStar161, 5}}]1}];
cklLocil61l = Show[kLocus161, clLocuscl61, AxesLabel -> {"k", "c"}];
(*To better see change in steady state plotx)
ckLocil61Zoom =

Show[kLocus161Zoom, cLocuscl161, AxesLabel —-> {"k", "c"}];
(*Saddle Path*)
ckl = ¢ /. saddleBelow[kStar161, cStar161]1[[1]1];
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TrajectoryBelowl6l =
Plot[ck1[k], {k, 0.01, kStar161}, PlotStyle -> {Red}];
ck2 = ¢ /. saddleAbove[kStar161, cStari161][[1]];
TrajectoryAbovel6l =
Plot[ck2[k], {k, kStar161, 40}, PlotStyle —> {Red}];
(*Time Path FROM Initial Equilibriumx)
Timel61 = ¢ /. pathFrom[kStar161, cStar161, kStar1l][[1]];
kPath161 = k /. kPathFrom[Time161, kStar1] [[1]];
yPath161[time_] := kPath161[time] \[Alpha];
cPath161 = ¢ /. cPathFrom[kPath161, Time161[kStar1]][[1]];
iPath161[time_] := (yPath161[time]*(1 - TsY)) - cPath161[time]
ytPathPlot161Sensitivity =
Plot[yPath161[t], {t, O, 100}, AxesLabel -> {t, y},
PlotStyle -> RGBColor[1, 0, 0, 0.75],
PlotLegends -> {"\[Rho]=0.05243"}];
ctPathPlot161Sensitivity =
Plot[cPathi161[t], {t, 0, 100}, AxesLabel —> {t, c},
PlotStyle -> RGBColor[0, 1, 0, 0.75],
PlotLegends -> {"\[Rho]=0.05243"}];
itPathPlot161Sensitivity =
Plot[iPath161[t], {t, 0, 100}, AxesLabel -> {t, i},
PlotStyle -> RGBColor[0, 0, 1, 0.75],
PlotLegends -> {"\[Rho]=0.05243"}];
ktPathPlot161Sensitivity =
Plot[kPath161[t], {t, 0, 100}, AxeslLabel -> {t, k},
PlotStyle -> RGBColor[1, O, 1, 0.75],
PlotLegends -> {"\[Rho]=0.05243"}];

Print["Changes from \[Theta]=0.72 to \[Thetal=1.61 in order y, c, i, \
k, 5, 10, and 20 years into transition:"]

Print ["6\[CapitalDeltaly%: ", (((yPath161[5] - yStarl)/yStar1l))*100]

Print ["5\[CapitalDeltalc%: ", (((cPath161[5] - cStarl)/cStar1l))*100]

Print["5\[CapitalDeltali’%: ", (((iPath161[5] - iStarl)/iStar1))*100]

Print ["5\[CapitalDeltalk’%: ", (((kPath161[5] - kStarl)/kStar1))*100]

Print["10\ [CapitalDeltaly%: ", (((yPath161[10] - yStarl)/
yStar1))*100]

Print["10\ [CapitalDeltalc’%: ", (((cPath161[10] - cStarl)/
cStar1))*100]
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Print["10\ [CapitalDeltali%: ", (((iPath161[10] - iStarl)/
iStar1))*100]

Print["10\ [CapitalDeltalk%: ", (((kPath161[10] - kStarl)/
kStar1))*100]

Print ["20\ [CapitalDeltaly’%: ", (((yPath161[20] - yStarl)/
yStar1))=*100]

Print ["20\ [CapitalDeltalc)k: ", (((cPath161[20] - cStarl)/
cStar1))*100]

Print ["20\ [CapitalDeltali’%: ", (((iPath161[20] - iStarl)/
iStar1))*100]

Print ["20\ [CapitalDeltalk’: ", (((kPath161[20] - kStarl)/kStarl))*100]

Print["Growth of y, ¢, i, k, 5, 10, and 20 years into transition \
between steady states characterized by \[Theta]=0.72 to \
\ [Thetal=1.61:"]

Print["5y%: ", yPath161[5]]
Print["5c%: ", cPathi161[5]]
Print["5i%: ", iPath161[5]]
Print["5k%: ", kPath161[5]]
Print["10y%: ", yPath161[10]]
Print["10c%: ", cPath161[10]]
Print["10i%: ", iPath161[10]]
Print["10kY%: ", kPath161[10]]
Print["20y%: ", yPath161[20]]
Print["20c%: ", cPath161[20]]
Print["20i%: ", iPath161[20]]
Print["20kY%: ", kPath161[20]]

(st skeototeokok ok ko ok ok okokok ok sk sk sk sk sk sk sk sk sk sk sk ok ok otttk ok ko ok ook ok sk sk sk sk sk sk sk sk sk sk sk ok ootk ok ok skokokok )
(xTime Paths from \[Thetal]=0.72 to new \[Thetal]'sx*)
ytPathAll =

Show[{ytPathPlot161la, ytPathPlotl161Sensitivity}, PlotRange -> All]
ctPathAll =

Show[{ctPathPlot16la, ctPathPloti161Sensitivity, cStarliline,

cStarilLinea}, PlotRange -> All]
itPathAll =
Show[{itPathPlot161la, itPathPlot161Sensitivity, iStariLine,

iStarilLinea}, PlotRange -> All]
(koK KoK KoK KoK KoK KoK KoK KoK KoK KoK KoK KoK ook ook ook o ok ook ook ook o ok o ok o ok o ok o ok o ok o ok o ok o ok o ok o ok o ok ook ok ok oK )

62



Print ["TAX RATIO SENSITIVITY ANALYSIS:\n"]

(*Model with higher Taxx)

(¥*New Paramsx*)

n = 0.00553;

g = -0.00320;

\[Alpha] = 1/3;

\ [Rho] = 0.03776;

TsY = 0.34228;

\[Theta] = 0.72;

\ [Delta] = O;

(ko sk o ok ok o ok ook oKk ook o Kok ok ook ok ok ook ok ok ook ok ok ok ok Kok ok ok Kok ook ok Kok ok o Kok ok Kok ok Kok ok )
(*INITIAL EQUILIBRIUMx)

(¥*Other eqs, \[Thetal=0.89,1.25,1.61, characterized as low, mid, and \
high respectively*)

Print["Steady state with initial value of \[Theta] = 0.72:"]

kStarl = kStar;

cStarl = cStar;

yStarl = yStar[\[Alphal];
gStarl = gStar[\[Alphal, TsY];
iStarl = iStar[\[Alphal, TsY];

cStarilineb = Graphics[{Dotted, Line[{{0, cStarl}, {100, cStari1}}]1}];
iStarilineb = Graphics[{Dotted, Line[{{0, iStaril}, {100, iStar1}}]1}];

Print["y: ", yStaril]
Print["c: ", cStarl]
Print["i: ", iStarl]
Print["g: ", gStarl]
Print["k: ", kStari]
Print["y/y: ", yStarl/yStari]
Print["c/y: ", cStarl/yStaril]
Print["i/y: ", iStarl/yStaril]
Print["g/y: ", gStarl/yStaril]
Print["k/y: ", kStarl/yStari]
(*Locix)

kLocusl =

Plot [cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Green}];
cLocuscl = Graphics[{Dashed, Line[{{kStarl, 0.01}, {kStarl, 5}}]1}];
ckLocil = Show[kLocusl, clLocuscl, AxesLabel -> {"k", "c"}];
(*Saddle Path*)
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ckl = ¢ /. saddleBelow[kStarl, cStari][[1]];
InitialTrajectoryBelow =
Plot [ck1l[k], {k, 0.01, kStarl}, PlotStyle -> {Red, Dashedl}];
ck2 = ¢ /. saddleAbove[kStarl, cStari][[1]];
InitialTrajectoryAbove =
Plot[ck2[k], {k, kStarl, 40}, PlotStyle -> {Red, Dashed}];
(skok ok s ko ok ok o sk ok o ok ook ok o ok ook ok o ok ok ok o ok ook ok o ok ook ok K ok o ok ok K ok o ok ok K ok o ok ok K ok o ok ok K ok o ok o Kok ok ok ok ok )
\ [Theta] = 0.89;
Print["Steady state with new value of \[Theta] = 0.89:"]
(*\[Thetal=0.89 EQUILIBRIUMx*)

kStar089 = kStar;

cStar089 = cStar;

yStar089 = yStar[\[Alphall;

gStar089 = gStar[\[Alpha], TsY];

iStar089 = iStar[\[Alphal, TsY];

Print["y: ", yStar089]

Print["c: ", cStar089]

Print["i: ", iStar089]

Print["g: ", gStar089]

Print["k: ", kStar089]

Print ["\[CapitalDeltaly’%: ", (((yStar089 - yStarl)/yStar1l))*100];
Print ["\[CapitalDelta]c%: ", (((cStar089 - cStarl)/cStarl))=*100];
Print["\[CapitalDeltali%: ", (((iStar089 - iStarl)/iStar1))=*100];
Print["\[CapitalDeltalk’: ", (((kStar089 - kStarl)/kStarl))=*100];

(*Time Path FROM Initial Equilibriumx)

Time089 = c /. pathFrom[kStar089, cStar089, kStarl][[1]];
kPath089 = k /. kPathFrom[Time089, kStar1][[1]];
yPath089[time_ ] := kPath089[time] "\ [Alpha];

cPath089 = ¢ /. cPathFrom[kPath089, Time089[kStar1]][[1]];
iPath089[time_] := (yPath089[time]*(1 - TsY)) - cPath089[time]

Print["Changes from \[Theta]=0.72 to \[Thetal=0.89 in order y, c, i, \
k, 5, 10, and 20 years into transition:"]

Print ["5\[CapitalDeltaly’%: ", (((yPath089[5] - yStarl)/yStarl))*100]
Print ["5\[CapitalDeltalchk: ", (((cPath089[5] - cStarl)/cStarl))=*100]
Print ["6\[CapitalDeltali%: ", (((iPath089[5] - iStarl)/iStar1l))=*100]
Print["5\ [CapitalDeltalky: ", (((kPath089[5] - kStarl)/kStarl))=*100]
Print ["10\ [CapitalDeltaly%: ", (((yPath089[10] - yStarl)/
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yStar1))=*100]

Print ["10\ [CapitalDeltalc%: ", (((cPath089[10] - cStarl)/
cStar1))*100]

Print ["10\ [CapitalDeltali%: ", (((iPath089[10] - iStarl)/
iStar1))=100]

Print["10\ [CapitalDeltalk%: ", (((kPath089[10] - kStarl)/
kStar1))*100]

Print ["20\ [CapitalDeltaly’%: ", (((yPath089[20] - yStarl)/
yStar1))*100]

Print ["20\ [CapitalDeltalc’%: ", (((cPath089[20] - cStarl)/
cStar1))*100]

Print ["20\ [CapitalDeltali%: ", (((iPath089[20] - iStarl)/
iStar1))*100]

Print ["20\ [CapitalDeltalk)%: ", (((kPath089[20] - kStarl)/kStarl))=*100]

Print["Growth of y, ¢, i, k, 5, 10, and 20 years into transition \
between steady states characterized by \[Thetal=0.72 to \
\ [Theta]=0.89:"]

Print ["by%: ", yPath089[5]]
Print["5c%: ", cPath089([5]]
Print["5i%: ", iPath089[5]]
Print["5k%: ", kPath089[5]]
Print["10y%: ", yPath089[10]]
Print["10c%: ", cPath089[10]]
Print["10i%: ", iPath089[10]]
Print["10k%: ", kPath089[10]]
Print["20y%: ", yPath089[20]]
Print["20c%: ", cPath089[20]]
Print["20i%: ", iPath089[20]]
Print ["20k%: ", kPath089[20]]

(koo ok ke ok ok sk sk sk sk ok ok sk o o ko ok ok sk sk sk sk sk sk ok o ok ok ok sk sk sk sk sk sk ok ok o ok sk sk sk sk sk sk sk sk sk o sk ok ok sk sk sk sk sk sk sk ok kR ok ok )
\ [Theta] = 1.25;

Print["Steady state with new value of \[Theta] = 1.25:"]

(*\[Thetal=1.25 EQUILIBRIUMx*)

kStar125 = kStar;

cStarl125 = cStar;

yStar125 = yStar[\[Alphall;

gStar125 = gStar[\[Alpha], TsY];
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iStar125 = iStar[\[Alpha], TsY];

Print["y: ", yStar125]
Print["c: ", cStari125]
Print["i: ", iStar125]
Print["g: ", gStar125]
Print["k: ", kStar125]
Print["\[CapitalDeltaly%: ", (((yStar125 - yStaril)/yStarl))*100];
Print ["\[CapitalDeltalc’%: ", (((cStarl25 - cStarl)/cStarl))*100];
Print["\[CapitalDeltali%: ", (((iStar125 - iStaril)/iStar1))*100];
Print ["\[CapitalDeltalk¥%: ", (((kStar125 - kStarl)/kStar1))*100];

(*Time Path FROM Initial Equilibriumx)

Timel25 = ¢ /. pathFrom[kStar125, cStar125, kStarl][[1]];
kPath125 = k /. kPathFrom[Time125, kStar1] [[1]];
yPath125[time_] := kPath125[time] ~\[Alpha];

cPath125 = ¢ /. cPathFrom[kPath125, Time125[kStar1]][[1]];
iPath125[time_] := (yPath125[time]*(1 - TsY)) - cPath125[time]

Print ["Changes from \[Theta]=0.72 to \[Thetal=1.25 in order y, c, i, \
k, 5, 10, and 20 years into transition:"]

Print ["6\[CapitalDeltaly%: ", (((yPath125[5] - yStarl)/yStar1l))*100]

Print["5\ [CapitalDeltalc)k: ", (((cPathl125[5] - cStarl)/cStarl))=*100]

Print ["6\[CapitalDeltali%: ", (((iPath125[5] - iStarl)/iStar1))=*100]

Print ["5\[CapitalDeltalk’%: ", (((kPath125[5] - kStar1)/kStar1))*100]

Print ["10\ [CapitalDeltaly%: ", (((yPath125[10] - yStarl)/
yStar1))*100]

Print["10\ [CapitalDeltalc’%: ", (((cPath125[10] - cStarl)/
cStar1))=*100]

Print ["10\ [CapitalDeltali%: ", (((iPath125[10] - iStarl)/
iStar1))*100]

Print ["10\ [CapitalDeltalk’: ", (((kPath125[10] - kStarl)/
kStar1))*100]

Print ["20\ [CapitalDeltaly%: ", (((yPath125[20] - yStarl)/
yStar1))=*100]

Print["20\ [CapitalDeltalc’: ", (((cPath125[20] - cStarl)/
cStar1))=*100]

Print ["20\ [CapitalDeltali%: ", (((iPath125[20] - iStarl)/
iStar1))=100]

Print ["20\ [CapitalDeltalk’: ", (((kPath125[20] - kStarl)/kStarl))*100]
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Print["Growth of y, ¢, i, k, 5, 10, and 20 years into transition \
between steady states characterized by \[Theta]=0.72 to \
\ [Theta]=1.25:"]

Print ["5y%:
Print ["5c%:
Print ["5i%:
Print ["5kY:

Print ["10y%:
Print ["10c%:
Print["10i%:
Print ["10k%:
Print ["20y%:
Print ["20c%:
Print ["20i%:
Print ["20k%:

yPath125[5]]
cPath125[5]]
iPath125[5]]
kPath125[5]]
yPath125[10]]
cPath125[10]]
iPath125[10]]
kPath125[10]]
yPath125[20]]
cPath125[20]]
iPath125[20]]
kPath125[20]]

(o ok ko ok ok o kR o ok ook ok o ok ok ok oK ok ok ok oK ok ook ok ok ok sk ok Kok ook ok oK ok ok ok oK ok o ok oK ok ok o Kok o ok Kok ok Kok ok )
\[Theta] = 1.61;

Print["Steady state with new value of \[Theta] =
(*\ [Thetal=1.61 EQUILIBRIUMx*)

kStar161 = kStar;

1.61:"]

cStar161l = cStar;

yStar161 = yStar[\[Alphall;

gStar161 = gStar[\[Alphal, TsY];

iStar161 = iStar[\[Alphal, TsY];

Print["y: ", yStar161]

Print["c: ", cStari161]

Print["i: ", iStar161]

Print["g: ", gStar161]

Print["k: ", kStari161]

Print ["\[CapitalDeltaly’%: ", (((yStarl61l - yStarl)/yStar1l))*100];
Print["\[CapitalDeltalc’: ", (((cStari61l - cStarl)/cStarl))=*100];
Print["\[CapitalDeltali’%: ", (((iStar161 - iStarl)/iStar1))=*100];
Print["\[CapitalDeltalk’: ", (((kStari161 - kStarl)/kStar1))*100];
(*xLocix)

kLocusl161 =

Plot [cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Black}];
(*To better see change in steady state plotx)
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kLocusl161Zoom =
Plot [cFunction /. k[t] -> k, {k, 20, 26.75}, PlotStyle -> {Black}];
cLocusc161 = Graphics[{Line[{{kStar161, 0.01}, {kStar161, 5}}]1}];
ckLocil61 = Show[kLocus161, cLocuscl161, AxesLabel -> {"k", "c"}];
(*To better see change in steady state plotx)
ckLocil61Zoom =
Show[kLocus161Zoom, cLocuscl61, AxesLabel -> {"k", "c"}]1;
(xSaddle Pathx)
ckl = ¢ /. saddleBelow[kStar161, cStar161][[1]];
TrajectoryBelowl6l =
Plot[cki[k], {k, 0.01, kStar161}, PlotStyle -> {Red}];
ck2 = ¢ /. saddleAbove[kStar161, cStari61][[1]];
TrajectoryAbovel6l =
Plot[ck2[k], {k, kStar161, 40}, PlotStyle —-> {Red}];
(*Time Path FROM Initial Equilibriumx)
Timel61 = ¢ /. pathFrom[kStar161, cStar161, kStarl][[1]];
kPath161 = k /. kPathFrom[Time161, kStar1] [[1]];
yPath161[time_] := kPath161[time]~\[Alpha];
cPath161 = ¢ /. cPathFrom[kPath161, Time161[kStar1]][[1]];
iPath161[time_] := (yPath161[time]*(1 - TsY)) - cPath161[time]
ytPathPlot161Sensitivity =
Plot [yPath161[t], {t, O, 100}, AxesLabel -> {t, y},
PlotStyle -> RGBColor[1, 0, O, 0.75],
PlotLegends -> {"TsY=0.34228"}];
ctPathPlot161Sensitivity =
Plot [cPath161[t], {t, 0, 100}, AxesLabel —> {t, c},
PlotStyle -> RGBColor[0, 1, 0, 0.75],
PlotLegends -> {"TsY=0.34228"}];
itPathPlot161Sensitivity =
Plot[iPath161[t], {t, O, 100}, AxesLabel -> {t, i},
PlotStyle -> RGBColor[0O, O, 1, 0.75],
PlotLegends -> {"TsY=0.34228"}];
ktPathPlot161Sensitivity =
Plot [kPath161[t], {t, O, 100}, AxesLabel -> {t, kI,
PlotStyle -> RGBColor[1, 0, 1, 0.75],
PlotLegends -> {"TsY=0.34228"}];

Print["Changes from \[Thetal=0.72 to \[Thetal=1.61 in order y, c, i, \
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k, 5, 10, and 20 years into transition:"]

Print ["5\[CapitalDeltaly%: ", (((yPath161[5] - yStarl)/yStaril))=*100]

Print["5\[CapitalDeltalchk: ", (((cPath161[5] - cStarl)/cStarl))=*100]

Print["5\[CapitalDeltali%: ", (((iPath161[5] - iStar1)/iStar1))*100]

Print ["6\[CapitalDeltalk%: ", (((kPath161[5] - kStarl)/kStaril))=*100]

Print["10\ [CapitalDeltaly%: ", (((yPath161[10] - yStarl)/
yStar1))=*100]

Print["10\ [CapitalDeltalc%: ", (((cPath161[10] - cStarl)/
cStar1))=*100]

Print ["10\ [CapitalDeltali%: ", (((iPath161[10] - iStarl)/
iStar1))=100]

Print ["10\ [CapitalDeltalk’: ", (((kPath161[10] - kStarl)/
kStar1))=*100]

Print["20\ [CapitalDeltaly%: ", (((yPath161[20] - yStarl)/
yStar1))*100]

Print["20\ [CapitalDeltalc’%: ", (((cPath161[20] - cStarl)/
cStar1))=*100]

Print ["20\ [CapitalDeltali%: ", (((iPath161[20] - iStarl)/
iStar1))=*100]

Print ["20\ [CapitalDeltalk’: ", (((kPath161[20] - kStarl)/kStar1))*100]

Print["Growth of y, ¢, i, k, 5, 10, and 20 years into transition \
between steady states characterized by \[Thetal=0.72 to \
\ [Theta]=1.61:"]

Print["5y%: ", yPath161[5]]
Print["5c%: ", cPath161[5]]
Print["5i%: ", iPath161[5]]
Print["Bk%: ", kPath161[5]]
Print["10y%: ", yPath161[10]]
Print["10c%: ", cPath161[10]]
Print["10i%: ", iPath161[10]]
Print["10kY%: ", kPath161[10]]
Print["20y%: ", yPath161[20]]
Print["20c%: ", cPath161[20]]
Print["20i%: ", iPath161[20]]
Print["20k%: ", kPath161[20]]

(ks ok sk o ok sk o s sk o ok ok sk ok o ok sk ok o o o sk o s o sk ok sk ok sk ok o ok sk o s ok sk ok s sk ok sk ok sk ok ok skok ok ok ok )
(*Time Paths from \[Thetal=0.72 to new \[Theta] 'sx*)
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ytPathAll =
Show [{ytPathPlot161b, ytPathPlotl61Sensitivityl}, PlotRange -> All]
ctPathAll =
Show[{ctPathPlot161b, ctPathPlot161Sensitivity, cStarilLine,
cStarilinea}, PlotRange -> All]
itPathAll =
Show[{itPathPlot161b, itPathPlot161Sensitivity, iStariline,
iStariLinea}, PlotRange -> All]
(ks akok ko ok ok ok ok o sk ok o oK ok ok oK ok ok oK ok oK ok ok K ok ok K 3K ok 3K ok ok oK ok ok Kok 3 K oK ok K ok ok Kok o K ok ok K oK ok Kok K ok ok Kk ok K )
Print ["DEPRECIATION SENSITIVITY ANALYSIS:\n"]
(*Model with Depreciationx)
(*New Params*)
n = 0.00553;
g = -0.00320;
\[Alpha] = 1/3;
\ [Rho] = 0.03776;
TsY = 0.20990;
\[Theta] = 0.72;
\[Delta] = 0.06403;
(ks kok ko ok ok ok ok sk ok o K ok ok K ok ok oK ok oK oK ok K oK ok Kok 3K ok ok K oK ok Kok o K ok ok K ok ok Kok o K oK ok K oK ok Kok o K ok ok ok ok K )
(*INITIAL EQUILIBRIUMx)
(*0Other eqs, \[Thetal=0.89,1.25,1.61, characterized as low, mid, and \
high respectively*)
Print["Steady state with initial value of \[Theta] = 0.72:"]
kStarl = kStar;
cStarl = cStar;

yStarl = yStar[\[Alphal];
gStarl = gStar[\[Alpha], TsY];
iStarl = iStar[\[Alpha], TsY];

cStarilLineb = Graphics[{Dotted, Line[{{0, cStarl}, {100, cStari1}}]}];
iStarilLineb = Graphics[{Dotted, Line[{{0, iStarl}, {100, iStari1}}]1}];

Print["y: ", yStaril]
Print["c: ", cStaril]
Print["i: ", iStari]
Print["g: ", gStarl]
Print["k: ", kStari]
Print["y/y: ", yStarl/yStaril]
Print["c/y: ", cStarl/yStari]
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Print["i/y: ", iStarl/yStaril]

Print["g/y: ", gStarl/yStaril]
Print["k/y: ", kStarl/yStaril]
(xLocix)

kLocusl =

Plot [cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Green}];
cLocuscl = Graphics[{Dashed, Line[{{kStarl, 0.01}, {kStarl, 5}}]11}];
ckLocil = Show[kLocusl, cLocuscl, AxesLabel -> {"k", "c"}1;
(xSaddle Pathx)
ckl = ¢ /. saddleBelow[kStarl, cStar1][[1]];

InitialTrajectoryBelow =

Plot[ck1[k], {k, 0.01, kStarl}, PlotStyle -> {Red, Dashed}];
ck2 = ¢ /. saddleAbove[kStarl, cStarl][[1]];
InitialTrajectoryAbove =

Plot[ck2[k], {k, kStarl, 40}, PlotStyle -> {Red, Dashed}];

(3kokook ok o o o ok ok sk sk ok sk ok ok o o o o ok ok ok sk sk sk ok ok ok ok o ok ok ok sk sk sk sk ok ok o o o ok ok ok sk ok sk ok ok ok o o o ok ok ok sk ok sk ok ok ok ok ok ok ok ok )
\ [Theta] = 0.89;

Print["Steady state with new value of \[Thetal] = 0.89:"]

(#*\ [Theta]=0.89 EQUILIBRIUM*)

kStar089 = kStar;

cStar089 = cStar;

yStar089 = yStar[\[Alphall;

gStar089 = gStar[\[Alpha], TsY];

iStar089 = iStar[\[Alpha], TsY];

Print["y: ", yStar089]

Print["c: ", cStar089]

Print["i: ", iStar089]

Print["g: ", gStar089]

Print["k: ", kStar089]

Print ["\[CapitalDeltaly’%: ", (((yStar089 - yStarl)/yStar1l))=*100];
Print["\[CapitalDeltalc%: ", (((cStar089 - cStarl)/cStarl))*100];
Print ["\[CapitalDeltali%: ", (((iStar089 - iStarl)/iStar1))*100];
Print["\[CapitalDeltalk’: ", (((kStar089 - kStarl)/kStar1l))*100];

(*Time Path FROM Initial Equilibriumx)

Time089 = c /. pathFrom[kStar089, cStar089, kStarl][[1]];
kPath089 = k /. kPathFrom[Time089, kStari] [[1]];

yPath089 [time ] := kPath089[time] "\ [Alpha];

cPath089 = ¢ /. cPathFrom[kPath089, Time089[kStar1]][[1]];
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iPath089[time_] := (yPath089[time]*(1 - TsY)) - cPath089[time]

Print["Changes from \[Theta]=0.72 to \[Thetal]=0.89 in order y, c, i, \
k, 5, 10, and 20 years into transition:"]

Print ["6\[CapitalDeltaly%: ", (((yPath089[5] - yStarl)/yStar1l))*100]

Print ["5\[CapitalDeltalc%: ", (((cPath089[5] - cStarl)/cStarl))*100]

Print["5\[CapitalDeltali’%: ", (((iPath089[5] - iStarl)/iStar1))=*100]

Print ["5\[CapitalDeltalk%: ", (((kPath089[5] - kStarl)/kStarl))*100]

Print["10\ [CapitalDeltaly%: ", (((yPath089[10] - yStarl)/
yStar1))*100]

Print ["10\ [CapitalDeltalck: ", (((cPath089[10] - cStarl)/
cStar1))*100]

Print["10\ [CapitalDeltali%: ", (((iPath089[10] - iStarl)/
iStar1))*100]

Print ["10\ [CapitalDeltalk’: ", (((kPath089[10] - kStarl)/
kStar1))*100]

Print ["20\ [CapitalDeltaly%: ", (((yPath089[20] - yStarl)/
yStar1))*100]

Print ["20\ [CapitalDeltalc’%: ", (((cPath089[20] - cStarl)/
cStar1))=*100]

Print ["20\ [CapitalDeltali%: ", (((iPath089[20] - iStarl)/
iStar1))=100]

Print ["20\ [CapitalDeltalk’%: ", (((kPath089[20] - kStarl)/kStarl))*100]

Print["Growth of y, ¢, i, k, 5, 10, and 20 years into transition \
between steady states characterized by \[Theta]=0.72 to \
\ [Theta]=0.89:"]

Print["5y%: ", yPath089[5]]
Print["5c%: ", cPath089([5]]
Print["5i%: ", iPath089[5]]
Print ["5k%: ", kPath089[5]]
Print["10y%: ", yPath089[10]]
Print["10c%: ", cPath089[10]]
Print["10i%: ", iPath089[10]]
Print["10k%: ", kPath089[10]]
Print ["20y%: ", yPath089[20]]
Print["20c%: ", cPath089[20]]
Print["20i%: ", iPath089[20]]
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Print["20k%: ", kPath089[20]]
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\ [Theta] = 1.25;

Print["Steady state with new value of \[Theta] = 1.25:"]

(*\[Thetal=1.25 EQUILIBRIUMx*)

kStar125 = kStar;

cStar125 = cStar;

yStar125 = yStar[\[Alphal]l;

gStar125 = gStar[\[Alpha], TsY];

iStar125 = iStar[\[Alphal, TsY];

Print["y: ", yStar125]

Print["c: ", cStar125]

Print["i: ", iStari125]

Print["g: ", gStar125]

Print["k: ", kStari25]

Print ["\[CapitalDeltaly’%: ", (((yStarl25 - yStarl)/yStar1l))*100];
Print["\[CapitalDeltalc%: ", (((cStarl25 - cStarl)/cStarl))*100];
Print["\[CapitalDeltali’%: ", (((iStar125 - iStarl)/iStar1))=*100];
Print ["\ [CapitalDeltalk’%: ", (((kStari125 - kStarl)/kStarl))=*100];

(*Time Path FROM Initial Equilibriumx)

Timel25 = ¢ /. pathFrom[kStar125, cStar125, kStarl][[1]];
kPath125 = k /. kPathFrom[Time125, kStar1][[1]];
yPath125[time_] := kPath125[time] "\ [Alpha];

cPath125 = ¢ /. cPathFrom[kPath125, Time125[kStar1]][[1]];
iPath125[time_] := (yPath125[time]*(1 - TsY)) - cPath125[time]

Print["Changes from \[Theta]=0.72 to \[Thetal=1.25 in order y, c, i, \
k, 5, 10, and 20 years into transition:"]

Print["5\[CapitalDeltaly’%: ", (((yPath125[5] - yStarl)/yStar1))=*100]

Print["5\ [CapitalDeltalchk: ", (((cPath125[5] - cStarl)/cStarl))=*100]

Print ["6\[CapitalDeltali%: ", (((iPath125[5] - iStar1)/iStar1l))=*100]

Print ["6\[CapitalDeltalk%: ", (((kPath125[5] - kStarl)/kStar1l))=*100]

Print ["10\ [CapitalDeltaly’%: ", (((yPath125[10] - yStarl)/
yStar1))*100]

Print ["10\ [CapitalDeltalc’%: ", (((cPath125[10] - cStarl)/
cStar1))=*100]

Print ["10\ [CapitalDeltali%: ", (((iPath125[10] - iStarl)/
iStar1))*100]
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Print["10\ [CapitalDeltalk%: ", (((kPath125[10] - kStarl)/
kStar1))+*100]

Print ["20\ [CapitalDeltaly’%: ", (((yPath125[20] - yStarl)/
yStar1))*100]

Print ["20\ [CapitalDeltalc’: ", (((cPath125[20] - cStarl)/
cStar1))*100]

Print ["20\ [CapitalDeltali%: ", (((iPath125[20] - iStarl)/
iStar1))*100]

Print ["20\ [CapitalDeltalk’%: ", (((kPath125[20] - kStarl)/kStarl))*100]

Print["Growth of y, ¢, i, k, 5, 10, and 20 years into tramnsition \
between steady states characterized by \[Thetal=0.72 to \
\ [Theta]=1.25:"]

Print ["6y%: ", yPath125([5]]
Print["5c%: ", cPath125[5]]
Print["5i%: ", iPath125[5]]
Print ["5k%: ", kPath125[5]]
Print["10y%: ", yPath125[10]]
Print["10c%: ", cPath125[10]]
Print["10i%: ", iPath125[10]]
Print["10kY%: ", kPath125[10]]
Print["20y%: ", yPath125[20]]
Print["20c%: ", cPath125[20]]
Print["20i%: ", iPath125[20]]
Print ["20k%: ", kPath125[20]]
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\ [Theta] = 1.61;

Print["Steady state with new value of \[Theta] = 1.61:"]

(*\ [Thetal]=1.61 EQUILIBRIUMx*)

kStarl161 = kStar;

cStarl161 = cStar;

yStar161 = yStar[\[Alphall;
gStar161 = gStar[\[Alphal, TsY];
iStar161 = iStar[\[Alpha]l, TsY];
Print["y: ", yStar161]

Print["c: ", cStari61]

Print["i: ", iStari161]

Print["g: ", gStar161]
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Print["k: ", kStar161]

Print ["\[CapitalDeltaly%: ", (((yStarl6l - yStarl)/yStar1))=100];
Print["\[CapitalDeltalc’: ", (((cStarl161l - cStarl)/cStarl))=*100];
Print ["\[CapitalDeltali%: ", (((iStar161 - iStarl)/iStar1))=100];
Print ["\[CapitalDeltalk¥%: ", (((kStar161 - kStarl)/kStar1))*100];
(*Locix)

kLocus161 =

Plot [cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Black}];
(*To better see change in steady state plotx)
kLocusl161Zoom =

Plot [cFunction /. k[t] -> k, {k, 20, 26.75}, PlotStyle -> {Black}];
cLocusc161 = Graphics[{Line[{{kStar161, 0.01}, {kStar161, 5}}]1}];
ckLocil61 = Show[kLocus161, clLocuscl161, AxesLabel -> {"k", "c"}];
(*To better see change in steady state plotx)
ckLocil61Zoom =

Show[kLocus161Zoom, cLocuscl161l, AxesLabel -> {"k", "c"}];
(*Saddle Pathx)
ckl = ¢ /. saddleBelow[kStar161, cStari161][[1]];
TrajectoryBelowl6l =

Plot[ck1[k], {k, 0.01, kStar161}, PlotStyle —> {Red}];
ck2 = ¢ /. saddleAbove[kStar161, cStar161][[1]1];
TrajectoryAbovel6l =

Plot[ck2[k], {k, kStar161, 40}, PlotStyle -> {Red}];
(*Time Path FROM Initial Equilibriumx)
Timel61 = ¢ /. pathFrom[kStar161, cStar161, kStar1l][[1]];
kPath161 = k /. kPathFrom[Time161, kStari1] [[1]];
yPath161[time ] := kPath161[time]~\[Alpha];
cPath161 = ¢ /. cPathFrom[kPath161, Time161[kStar1]][[1]];
iPath161[time_] := (yPath161[time]*(1 - TsY)) - cPath161[time]
ytPathPlot161Sensitivity =

Plot[yPath161[t], {t, O, 100}, AxesLabel -> {t, y},

PlotStyle -> RGBColor[1, O, O, 0.75],

PlotLegends -> {"\[Deltal]=0.06403"}];
ctPathPlot161Sensitivity =

Plot[cPathi61[t], {t, O, 100}, AxesLabel -> {t, cI},

PlotStyle -> RGBColor[0O, 1, O, 0.75],

PlotLegends -> {"\[Deltal=0.06403"}];
itPathPlot161Sensitivity =
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Plot[iPath161[t], {t, O, 100}, AxesLabel —-> {t, i},

PlotStyle -> RGBColor[0, 0, 1, 0.75],

PlotLegends -> {"\[Deltal]=0.06403"}];
ktPathPlot161Sensitivity =

Plot [kPath161[t], {t, 0, 100}, AxesLabel -> {t, kI,

PlotStyle -> RGBColor[1, 0, 1, 0.75],

PlotLegends -> {"\[Deltal=0.06403"}];

Print["Changes from \[Theta]=0.72 to \[Thetal=1.61 in order y, c, i, \
k, 5, 10, and 20 years into transition:"]

Print ["5\[CapitalDeltaly%: ", (((yPath161[5] - yStarl)/yStar1l))=*100]

Print ["5\[CapitalDelta]c%: ", (((cPath161[5] - cStarl)/cStarl))*100]

Print["5\[CapitalDeltali%: ", (((iPath161[5] - iStar1)/iStar1))*100]

Print["5\[CapitalDeltalk)%: ", (((kPath161[5] - kStarl)/kStarl))=*100]

Print ["10\ [CapitalDeltaly%: ", (((yPath161[10] - yStarl)/
yStar1))*100]

Print ["10\ [CapitalDeltalc)k: ", (((cPath161[10] - cStarl)/
cStarl))*100]

Print["10\ [CapitalDelta]i%: ", (((iPath161[10] - iStarl)/
iStar1))=100]

Print ["10\ [CapitalDeltalk’: ", (((kPath161[10] - kStarl)/
kStar1))*100]

Print ["20\ [CapitalDeltaly’%: ", (((yPath161[20] - yStarl)/
yStar1))*100]

Print ["20\ [CapitalDeltalc’%: ", (((cPath161[20] - cStarl)/
cStar1))=*100]

Print ["20\ [CapitalDeltali%: ", (((iPath161[20] - iStarl)/
iStar1))=100]

Print["20\ [CapitalDeltalk%: ", (((kPath161[20] - kStarl)/kStar1l))*100]

Print["Growth of y, ¢, i, k, 5, 10, and 20 years into transition \
between steady states characterized by \[Theta]=0.72 to \
\ [Thetal=1.61:"]

Print["5y%: ", yPath161[5]]
Print["5c%: ", cPath161[5]]
Print["5i%: ", iPath161[5]]
Print ["5k%: ", kPath161[5]]
Print["10y%: ", yPath161[10]]

76



Print["10c%: ", cPath161[10]]

Print["10i%: ", iPath161[10]]
Print["10kY%: ", kPath161[10]]
Print["20y%: ", yPath161[20]]
Print["20c%: ", cPath161[20]]
Print["20i%: ", iPath161[20]]
Print["20kY%: ", kPath161[20]]
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(xTime Paths from \[Thetal]=0.72 to new \[Theta]'sx*)
ytPathAll =
Show [{ytPathPlot161c, ytPathPlotl61Sensitivity}, PlotRange -> All]
ctPathAll =
Show [{ctPathPlot161c, ctPathPlotl61Sensitivity, cStarilLine,
cStarilLinea}, PlotRange -> All]
itPathAll =
Show[{itPathPlot161c, itPathPlot161Sensitivity, iStariLine,
iStarilLinea}, PlotRange -> All]
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Print ["DEPRECIATION + NO TAX SENSITIVITY ANALYSIS:\n"]
(*Model with Depreciationx)
(*New Params*)

n = 0.00553;

g = -0.00320;
\[Alpha] = 1/3;
\[Rho] = 0.03776;
TsY = 0;

\[Theta] = 0.72;
\[Delta] = 0.06403;

(¥*Filename: SensitivityAnalysisDepreciationNoTax.nb*)

(kskok ook o ok ok ook ook ok ook oK ok ook oK ok ook oK ok o ok oK ok o ok o oK ok Kok o oK ok K ok o oK ok K ok o oK ok Kok o oK o K ok o oK o Kok ok Kok oK )
(*INITIAL EQUILIBRIUMx)

(*0ther eqs, \[Thetal=0.89,1.25,1.61, characterized as low, mid, and \
high respectively*)

Print["Steady state with initial value of \[Theta] = 0.72:"]

kStarl = kStar;

cStarl = cStar;

yStarl = yStar[\[Alphal];

gStarl = gStar[\[Alphal, TsY];
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iStarl = iStar[\[Alphal, TsY];
cStarilineb = Graphics[{Dotted, Line[{{0, cStarl}, {100, cStari}}]}];
iStariLineb = Graphics[{Dotted, Line[{{0, iStarl}, {100, iStar1}}]}];

Print["y: ", yStari]
Print["c: ", cStari]
Print["i: ", iStari]
Print["g: ", gStaril]
Print["k: ", kStari]
Print["y/y: ", yStarl/yStaril]
Print["c/y: ", cStarl/yStaril]
Print["i/y: ", iStarl/yStaril]
Print["g/y: ", gStarl/yStari]
Print["k/y: ", kStarl/yStaril]
(*¥Locix)

kLocusl =

Plot [cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Green}];
cLocuscl = Graphics[{Dashed, Line[{{kStarl, 0.01}, {kStarl, 5}}]1}];
ckLocil = Show[kLocusl, clLocuscl, AxesLabel -> {"k", "c"}];
(xSaddle Pathx)
ckl = ¢ /. saddleBelow[kStarl, cStarl][[1]];

InitialTrajectoryBelow =

Plot[cki[k], {k, 0.01, kStarl}, PlotStyle -> {Red, Dashed}];
ck2 = ¢ /. saddleAbove[kStarl, cStarl][[1]];
InitialTrajectoryAbove =

Plot[ck2[k], {k, kStarl, 40}, PlotStyle -> {Red, Dashed}];
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\ [Theta] = 0.89;

Print["Steady state with new value of \[Thetal] = 0.89:"]

(#*\ [Theta]=0.89 EQUILIBRIUM*)

kStar089 = kStar;

cStar089 = cStar;

yStar089 = yStar[\[Alphall;
gStar089 = gStar[\[Alphal, TsY];
iStar089 = iStar[\[Alphal, TsY];
Print["y: ", yStar089]

Print["c: ", cStar089]

Print["i: ", iStar089]

Print["g: ", gStar089]
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Print["k: ", kStar089]

Print["\[CapitalDeltaly%: ", (((yStar089 - yStarl)/yStarl))*100];
Print["\[CapitalDeltalc’: ", (((cStar089 - cStarl)/cStarl))=*100];
Print ["\[CapitalDeltali’%: ", (((iStar089 - iStarl)/iStar1))=100];
Print ["\[CapitalDeltalk¥%: ", (((kStar089 - kStarl)/kStarl))*100];

(*Time Path FROM Initial Equilibriumx)

Time089 = c /. pathFrom[kStar089, cStar089, kStarl][[1]];
kPath089 = k /. kPathFrom[Time089, kStar1] [[1]];

yPath089 [time_] := kPath089[time] "\ [Alpha];

cPath089 = ¢ /. cPathFrom[kPath089, Time089[kStar1]][[1]];
iPath089[time_] := (yPath089[time]*(1 - TsY)) - cPath089[time]

Print ["Changes from \[Theta]=0.72 to \[Thetal=0.89 in order y, c, i, \
k, 5, 10, and 20 years into transition:"]

Print ["6\[CapitalDeltaly%: ", (((yPath089[5] - yStarl)/yStar1l))*100]

Print["5\ [CapitalDeltalc)k: ", (((cPath089[5] - cStarl)/cStarl))=*100]

Print ["56\[CapitalDeltali%: ", (((iPath089[5] - iStarl)/iStar1l))=*100]

Print ["5\[CapitalDeltalk’%: ", (((kPath089[5] - kStarl)/kStar1))*100]

Print ["10\ [CapitalDeltaly%: ", (((yPath089[10] - yStarl)/
yStar1))*100]

Print["10\ [CapitalDeltalc’%: ", (((cPath089[10] - cStarl)/
cStar1))*100]

Print["10\ [CapitalDeltali%: ", (((iPath089[10] - iStarl)/
iStar1))*100]

Print ["10\ [CapitalDeltalk’: ", (((kPath089[10] - kStarl)/
kStar1))*100]

Print ["20\ [CapitalDeltaly%: ", (((yPath089[20] - yStarl)/
yStar1))*100]

Print["20\ [CapitalDeltalc’%: ", (((cPath089[20] - cStarl)/
cStar1))=*100]

Print ["20\ [CapitalDeltali’%: ", (((iPath089[20] - iStarl)/
iStar1))=100]

Print ["20\ [CapitalDeltalk’: ", (((kPath089[20] - kStarl)/kStarl))*100]

Print["Growth of y, ¢, i, k, 5, 10, and 20 years into transition \
between steady states characterized by \[Theta]=0.72 to \
\[Theta]=0.89:"]

Print["5y%: ", yPath089[5]]
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Print["5c%: ", cPath089[5]]

Print["5i%: ", iPath089[5]]

Print["5k%: ", kPath089[5]]

Print["10y%: ", yPath089[10]]
Print["10c%: ", cPath089[10]]
Print["10i%: ", iPath089[10]]
Print["10kY%: ", kPath089[10]]
Print ["20y%: ", yPath089[20]]
Print["20c%: ", cPath089[20]]
Print["20i%: ", iPath089[20]]
Print["20k%: ", kPath089[20]]
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\[Theta] = 1.25;

Print["Steady state with new value of \[Theta] = 1.25:"]

(*\[Thetal=1.25 EQUILIBRIUMx*)

kStar125 = kStar;

cStar125 = cStar;

yStar125 = yStar[\[Alphall;

gStar125 = gStar[\[Alphal, TsY];

iStar125 = iStar[\[Alphal, TsY];

Print["y: ", yStar125]

Print["c: ", cStar125]

Print["i: ", iStari125]

Print["g: ", gStar125]

Print["k: ", kStar125]

Print ["\[CapitalDeltaly’%: ", (((yStar125 - yStarl)/yStar1l))*100];
Print["\[CapitalDeltalc?: ", (((cStar125 - cStarl)/cStarl))=*100];
Print["\[CapitalDeltali’%: ", (((iStar125 - iStarl)/iStar1))=*100];
Print["\[CapitalDeltalk’: ", (((kStar125 - kStarl)/kStarl))=*100];

(*Time Path FROM Initial Equilibriumx)

Timel25 = ¢ /. pathFrom[kStar125, cStar125, kStarl][[1]];
kPath125 = k /. kPathFrom[Time125, kStar1][[1]];
yPath125[time_] := kPath125[time] "\ [Alpha];

cPath125 = ¢ /. cPathFrom[kPath125, Time125[kStar1]][[1]];
iPath125[time_] := (yPath125[time]*(1 - TsY)) - cPath125[time]

Print["Changes from \[Theta]=0.72 to \[Thetal=1.25 in order y, c, i, \
k, 5, 10, and 20 years into transition:"]
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Print["5\[CapitalDeltaly’%: ", (((yPath125[5] - yStarl)/yStar1))=*100]

Print["5\[CapitalDeltalchk: ", (((cPath125[5] - cStarl)/cStarl))=*100]

Print["5\[CapitalDeltali%: ", (((iPath125[5] - iStarl)/iStarl))=*100]

Print ["5\[CapitalDeltalk)%: ", (((kPath125[5] - kStar1)/kStar1))*100]

Print ["10\ [CapitalDeltaly%: ", (((yPath125[10] - yStarl)/
yStar1))=*100]

Print ["10\ [CapitalDeltalc’k: ", (((cPath125[10] - cStarl)/
cStar1))*100]

Print ["10\ [CapitalDeltali%: ", (((iPath125[10] - iStarl)/
iStar1))=100]

Print["10\ [CapitalDeltalk%: ", (((kPath125[10] - kStarl)/
kStar1))*100]

Print ["20\ [CapitalDeltaly’%: ", (((yPath125[20] - yStarl)/
yStar1))*100]

Print ["20\ [CapitalDeltalc’%: ", (((cPath125[20] - cStarl)/
cStar1))=*100]

Print ["20\ [CapitalDeltali%: ", (((iPath125[20] - iStarl)/
iStar1))*100]

Print ["20\ [CapitalDeltalk’: ", (((kPath125[20] - kStarl)/kStarl))=100]

Print["Growth of y, ¢, i, k, 5, 10, and 20 years into transition \
between steady states characterized by \[Thetal=0.72 to \
\[Theta]=1.25:"]

Print["by%: ", yPath125[5]]
Print["5c%: ", cPath125([5]]
Print["5i%: ", iPath125[5]]
Print ["5k%: ", kPath125[5]]
Print["10y%: ", yPath125[10]]
Print["10c%: ", cPath125[10]]
Print["10i%: ", iPath125[10]]
Print["10k%: ", kPath125[10]]
Print ["20y%: ", yPath125[20]]
Print["20c%: ", cPath125[20]]
Print["20i%: ", iPath125[20]]
Print["20kY%: ", kPath125[20]]
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\[Theta] = 1.61;
Print["Steady state with new value of \[Theta] = 1.61:"]
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(*\ [Thetal=1.61 EQUILIBRIUMx*)

kStar161 = kStar;

cStar1l61l = cStar;

yStar161 = yStar[\[Alphall;

gStar161 = gStar[\[Alpha], TsY];

iStar161 = iStar[\[Alpha], TsY];

Print["y: ", yStar161]

Print["c: ", cStari161]

Print["i: ", iStari161]

Print["g: ", gStar161]

Print["k: ", kStar161]

Print["\[CapitalDeltaly%: ", (((yStar161l - yStarl)/yStarl))*100];
Print ["\[CapitalDeltalc%: ", (((cStari61l - cStarl)/cStarl))=*100];
Print ["\[CapitalDelta]i%: ", (((iStar161 - iStarl)/iStar1))#100];
Print ["\[CapitalDeltalk¥%: ", (((kStar161 - kStarl)/kStar1))*100];
(*Locix)

kLocus161 =

Plot [cFunction /. k[t] -> k, {k, O, 40}, PlotStyle -> {Black}];
(*To better see change in steady state plotx)
kLocusl161Zoom =

Plot [cFunction /. k[t] -> k, {k, 20, 26.75}, PlotStyle -> {Black}];
cLocusc161 = Graphics[{Line[{{kStar161, 0.01}, {kStar161, 5}}]1}];
ckLocil61 = Show[kLocus161, cLocuscl161, AxesLabel -> {"k", "c"}];
(*To better see change in steady state plotx)
ckLocil61Zoom =

Show[kLocus161Zoom, cLocuscl161l, AxesLabel —-> {"k", "c"}];
(*Saddle Pathx)
ckl = ¢ /. saddleBelow[kStar161, cStari61][[1]];
TrajectoryBelowl6l =

Plot[ck1[k], {k, 0.01, kStar161}, PlotStyle —> {Red}];
ck2 = ¢ /. saddleAbove[kStar161, cStar161][[1]1];
TrajectoryAbovel6l =

Plot[ck2[k], {k, kStar161, 40}, PlotStyle —> {Red}];
(*Time Path FROM Initial Equilibriumx)
Timel61l = ¢ /. pathFrom[kStar161, cStar161, kStarl][[1]];
kPath161 = k /. kPathFrom[Time161, kStari1] [[1]];
yPath161[time_] := kPath161[time]~\[Alpha];
cPath161 = ¢ /. cPathFrom[kPath161, Timel161[kStar1]][[1]];
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iPath161[time_] := (yPath161[time]*(1 - TsY)) - cPath161[time]
ytPathPlot161Sensitivity =
Plot [yPath161[t], {t, O, 100}, AxesLabel -> {t, yI,
PlotStyle -> RGBColor[1, O, O, 0.75],
PlotLegends -> {"\[Deltal=0.06403, TsY=0"}];
ctPathPlot161Sensitivity =
Plot[cPathi161[t], {t, 0, 100}, AxesLabel —> {t, c},
PlotStyle -> RGBColor[0O, 1, O, 0.75],
PlotLegends -> {"\[Delta]l=0.06403, TsY=0"}];
itPathPlot161Sensitivity =
Plot[iPath161[t], {t, 0, 100}, AxesLabel -> {t, i},
PlotStyle -> RGBColor[0, 0, 1, 0.75],
PlotLegends -> {"\[Deltal=0.06403, TsY=0"1}];
ktPathPlot161Sensitivity =
Plot [kPath161[t], {t, 0, 100}, AxesLabel -> {t, kI,
PlotStyle -> RGBColor[1l, O, 1, 0.75],
PlotLegends -> {"\[Deltal=0.06403, TsY=0"}];

Print["Changes from \[Theta]=0.72 to \[Thetal=1.61 in order y, c, i, \
k, 5, 10, and 20 years into transition:"]

Print ["6\[CapitalDeltaly%: ", (((yPath161[5] - yStarl)/yStar1l))*100]

Print ["5\[CapitalDeltalc%: ", (((cPath161[5] - cStarl)/cStarl))*100]

Print ["5\[CapitalDeltali%: ", (((iPath161[5] - iStar1)/iStar1))*100]

Print["5\[CapitalDeltalk)%: ", (((kPath161[5] - kStarl)/kStarl))=*100]

Print ["10\ [CapitalDeltaly%: ", (((yPath161[10] - yStarl)/
yStar1))*100]

Print ["10\ [CapitalDeltalck: ", (((cPath161[10] - cStarl)/
cStar1))*100]

Print["10\ [CapitalDeltali’%: ", (((iPath161[10] - iStarl)/
iStar1))=100]

Print ["10\ [CapitalDeltalk’: ", (((kPath161[10] - kStarl)/
kStar1))*100]

Print ["20\ [CapitalDeltaly’%: ", (((yPath161[20] - yStarl)/
yStar1))*100]

Print ["20\ [CapitalDeltalc’%: ", (((cPath161[20] - cStarl)/
cStar1))=*100]

Print ["20\ [CapitalDeltali%: ", (((iPath161[20] - iStarl)/
iStar1))=100]
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Print ["20\ [CapitalDeltalk’%: ", (((kPath161[20] - kStarl)/kStarl))*100]

Print["Growth of y, ¢, i, k, 5, 10, and 20 years into transition \
between steady states characterized by \[Theta]=0.72 to \
\ [Thetal=1.61:"]

Print["5y%: ", yPath161[5]]
Print["5c%: ", cPath161[5]]
Print["5i%: ", iPath161[5]]
Print["5k%: ", kPath161[5]]
Print["10y%: ", yPath161[10]]
Print["10c%: ", cPath161[10]]
Print["10i%: ", iPath161[10]]
Print["10k%: ", kPath161[10]]
Print["20y%: ", yPath161[20]]
Print["20c%: ", cPath161[20]]
Print["20i%: ", iPath161[20]]
Print ["20k%: ", kPath161[20]]

(st okttt ok ok ok ook ook ok ok ok sk sk sk sk sk sk sk sk sk sk ok ok otttk kot ks ok ook ok sk sk sk sk sk sk sk sk sk sk sk ok ook koo ok ok skokokok )
(xTime Paths from \[Thetal]=0.72 to new \[Theta]'sx*)
ytPathAll =
Show[{ytPathPlot161d, ytPathPlotl161Sensitivity}, PlotRange -> Al1l]
ctPathAll =
Show[{ctPathPlot161d, ctPathPlotl161Sensitivity, cStariLine,
cStarilinea}, PlotRange -> All]
itPathAll =
Show[{itPathPlot161d, itPathPlot161Sensitivity, iStariLine,
iStarilLinea}, PlotRange -> All]
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