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Abstract

Legged locomotion presents a significant challenge in robotics. Many legged robots
accomplish stable movement through models of “central pattern generators (CPGs),”
a type of neural circuit which underlies biological rhythms from walking, flying and
breathing to patterned cognitive and central nervous system activity. While current
CPG models are effective solutions for moving from point A to point B, they have
several important drawbacks. These include reliance on complex, specialized neu-
ron models and specific neural topology, which make the system difficult to modify or
improve. Artificial CPG design also sacrifices stability for adaptability, as their mech-
anism largely prevents gait variation. In this work, we used a multi-objective evolu-
tionary algorithm to produce virtual robots able to rhythmically entrain—synchronize
footstrikes—to a simple metronome. Robots had an “auditory neuron” to sense
metronome strikes and the selection algorithm favored individuals which both traveled
away from the origin and demonstrated strong rhythmic alignment. In this paper,
we explore what conditions and methods might be conducive to evolving rhythmic
entrainment in the spirit of minimal cognition. In addition, we demonstrate evolu-
tion of a functional CPG with only a small network of simple tanh neurons and make
inferences about its mechanism.
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1 Introduction

Central pattern generators are defined as neuronal circuits that generate coordinated,

rhythmic output in the absence of patterned sensory input [1, 2]. These circuits are

common to vertebrates and invertebrates and generate an incredibly diverse array

of behaviors, the majority of which can be characterized as either episodic (like lo-

comotion) or continuous (like breathing) [1]. The dynamics of a given circuit are a

function of both its connectivity pattern and the intrinsic membrane properties of its

constituent neurons [2]. Further, these features on their own do not imply anything

about the function of a circuit—rewiring the same group of neurons can produce a

different behavior and two circuits with the same connectivity pattern can have dif-

ferent functions [3]. Instead, the features of each circuit have evolved independently

to cater to an organism’s neurobiology, behavior, and morphology [4], making each

CPG a very elegant solution to a specific problem.

In vertebrates, CPG outputs are driven by supra-spinal networks activated by

afferent (traveling from the periphery to the central nervous system) sensory inputs

[5, 6]. Though CPGs, by definition, must be able to generate rhythmic output in

the absence of sensory input [1], sensory feedback still plays a critical role in facil-

itating gait changes, frequency changes, and corrective responses to obstacles and

uncertainties [2, 5, 7]. CPG function also includes modulation of behavioral strength

and frequency, allowing for stability in response to perturbation or noise and mod-

ulation when desired [2, 5]. This combined open-loop (supraspinal interaction) and

closed-loop (internal regulation) CPG control permits incredibly robust control of

locomotion [5].
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Models of CPGs have grown increasingly popular in the field of robotics, often to

achieve stable locomotion [7]. CPGs are an effective solution for stable locomotion

because they are designed to self-synchronize and thus have very stable oscillations

[8]; this translates to success in navigating complex terrain and robustness against

perturbations [7]. While this makes CPG models very effective solutions for moving

from point A to point B, they have several important drawbacks. One of these is

reliance on complex, specialized neuron models and specific neural topology, making

the systems employing them difficult to modify or improve [9]. Artificial CPG de-

sign also sacrifices adaptability for stability, as their mechanism largely prevents gait

variation and frequency modulation [10, 8].

In biological organisms, supraspinal networks and intrinsic neuron properties fa-

cilitate legged locomotion that balances stability and adaptability. Artificial CPGs

are instead built from specialized neuron models called oscillators [8]. The most well-

known and most commonly used of these is the Matsuoka oscillator [11], which can

only entrain to a very limited range of frequencies around a pre-set intrinsic frequency

[8]. In trying to reduce complex neuron behavior to an equation—or in this case a

pair of nonlinear differential equations—critical functionality is lost. One author with

40 years of experience in invertebrate CPG analysis believes that due to the immense

difficulty of describing and predicting multiple nonlinear interactions, “there probably

is not [a correct computational model of CPG behavior]” [4]. Robots unable to adapt

their gaits (or other rhythmic behaviors) to external stimuli in real-time have greatly

reduced potential for human-robot interaction [8]. If CPG behavior may never be

perfectly modeled, balancing stability and adaptability in robotic legged locomotion

may require alternative solutions.
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A study published this July by Szorkovszky et al. at the Centre for Interdis-

ciplinary Studies in Rhythm, Time, and Motion in Oslo attempted to achieve this

balance using an evolutionary algorithm to evolve CPGs for real-time adaptation

to patterned stimuli [10]. Though this method successfully produced more adapt-

able CPGs, their system was highly complex. One reason for this complexity was

their choice of neuron model: a custom Matsuoka oscillator with several added el-

ements. Additionally, four-objective evolutionary optimization was used to find so-

lutions, which involves selecting individuals on a four-dimensional plane and is both

complicated and computationally expensive.

The field of evolutionary robotics attempts to model and understand natural em-

bodied intelligence by exerting evolutionary pressure on robots simulated in a physics

engine. Selection is facilitated by an evolutionary algorithm (EA), a type of AI search

process that begins with random solutions and generates optimal ones through a cycli-

cal process of evaluation, selection, and reproduction/mutation. EAs can be used to

automate any aspect of robot design, such as neuron weights, neural network topol-

ogy, or body morphology. In this way, an EA can occupy the role of a ‘scientist’ who,

lacking human observer bias, approaches robot design from an otherwise inaccessible

perspective—a neutral one. Maintaining neutrality while avoiding perverse instanti-

ation can be a challenge. Perverse instantiation is a term use to describe behavior

of an artificial agent that performs exactly the task it was asked to do, but in an

unexpected way, akin to ‘cheating’. If that challenge can be overcome, EAs permit

the discovery of ideal, non-intuitive solutions suited to the constraints of a simulated

organism and its environment by mimicking the process that yields the elegant but

complex solutions found in nature.
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While Szorkovszky et al. demonstrated their method was sufficient to produce the

desired behavior of real-time rhythmic entrainment (synchronization), this method

was complex and computationally intensive. Further, its continued utilization of

a CPG model to achieve locomotion reduces its potential use as a tool for under-

standing biological phenomena. Evolving a much simpler controller composed of

tanh-activated neurons rather than oscillators for rhythmic entrainment would both

reduce the complexity of the system and open opportunities for future study of real-

world evolutionary pressures [12] related to biological CPGs and rhythmic processing.

While many other studies have attempted to apply evolutionary or genetic algorithms

to the problem of CPG design, adaptable locomotion, or locomotion with multiple

defined gaits ([10], [9], [13], [14], [15]), literature searches revealed few solutions which

did not involve a neuron or oscillator model and none which attempted to evolve a

CPG simply by rewarding simple fundamental behaviors that result in their utiliza-

tion. Here, we explore what conditions and methods might be conducive to evolving

rhythmic entrainment in the spirit of minimal cognition. In addition, we demonstrate

evolution of a functional CPG with only a small network of simple tanh neurons and

make inferences about its underlying mechanism.

2 Methods

In order to determine the feasibility of evolving CPG-like behavior externally rather

than internally, the relative success of different multi-objective optimization methods

and fitness functions was explored. To better understand possible limitations of

this approach, the performance of three body plans across evolution was compared.
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Finally, one evolved individual was chosen for more in-depth testing and analysis. The

Mann-Whitney U test was used for all statistical analyses [16]. The Holm-Bonferroni

procedure was used to correct rejection criteria for the multiple pairwise comparisons

[17].

2.1 The Robots

All three robots were given capsule-shaped legs to reduce the number of contact points

between each leg and the ground to only one, making it easy to determine when a

‘step’ occurs. Doing so quickly improved the success of attempts to evolve rhythmic

behavior and the ease with which observers can estimate rhythmicity from simulation

audio. Robot proportions will be described relative to torso length, which was set to

1 meter (the standard unit of length in Unified Robot Description Format (URDF)

files). The colors and markers used in Fig. 1 to indicate the limbs and joints discussed

below will be listed beside their descriptions to increase clarity. All capsule-shaped

body components have a radius of 1/5 (dark gray) the torso length (orange) and

all joints are capable of 0.3 radians of rotation from their original position in both

directions. All revolute joints, also known as hinge joints, for flexion and extension

are marked by red circles and transverse revolute joints are marked by blue circles.

With the exception of body plan comparison, the 1DOF (degree of freedom) radial

quadruped is used in all experiments (Fig. 1a).

A. The 1DOF Radial Quadruped

The 1DOF radially-symmetric quadruped (Fig. 1a) has a cubic torso and four cylin-

drical legs, each with one upper (purple) and lower (green) component. The two
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components of each leg have lengths equivalent to that of the torso. Each hip and

knee contains a single revolute joint for flexion and extension.

B. The 2DOF Radial Quadruped

The 2DOF radially-symmetric quadruped (Fig. 1b) has a cubic torso and four cylin-

drical legs, each with two upper components and one lower component. The two

components making up the upper part of the leg, from most to least central, have

lengths of 1/5th (yellow) and 4/5ths (purple) that of the torso, respectively. The first,

short component is connected to the torso by a transverse revolute joint. The joint

connecting these two upper components as well as the knee joint connecting the long

upper component to the sole lower component (green) are revolute joints for flexion

and extension.

C. The 2DOF Bilateral Quadruped

The 2DOF bilaterally-symmetric quadruped (Fig. 1c) has a cubic torso and four

cylindrical legs, each with two upper components and one lower component. The two

components making up the upper part of the leg, from most to least central, have

lengths of 1/5th (yellow) and 4/5ths (purple) that of the torso, respectively. The first,

short component is connected to the torso by a transverse revolute joint. The joint

connecting these two upper components as well as the knee joint connecting the long

upper component to the sole lower component (green) are revolute joints for flexion

and extension.
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Figure 1: Experimental Body Plans. a: The 1DOF radial quadruped. b: The 2DOF
radial quadruped. c: The 2DOF bilateral quadruped. Analogous structures across the three
body plans are labeled with lines of the same color. Revolute (hinge) joints for flexion and
extension are marked by red circles and transverse revolute joints are marked by blue circles.

2.2 The Controller

Each robot is controlled by a recurrent neural network with three layers (Fig. 2a). The

first layer consists of one touch sensor for each leg in a given robot’s motor plan, plus

one auditory neuron, which accepts binary ‘auditory’ information. This simplified

representation of auditory information is generated by a metronome built in to the

simulation. The metronome emits 1s at regular intervals and 0s otherwise. These

values are fed directly into the auditory neuron. For more information about these

simulated auditory stimuli, see subsection 2.3. The sensory (input) layer is fully

connected to a layer of three hidden neurons, which is fully self- and recurrently-

connected as well as fully connected to the motor layer. Hidden neurons are neurons

in an artificial neural network that are neither input nor output layers. The final

output layer is composed of one motor neuron for each joint. The placement of each

sensor and motor is shown for the quadruped in Fig. 2b. The weights of all outgoing

connections from the auditory neuron to hidden neurons are maximized and frozen.
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Figure 2: Quadruped Neural Network Architecture. a: Each controller contains
one auditory neuron (orange, a), one sensory neuron for each leg (green, s), three hidden
neurons (yellow, h), and one motor neuron for each joint—two for each leg (blue, m. In
the case of the quadruped, this is four sensory neurons and eight motor neurons. b: Sensor
and motor locations in the quadruped morphology.

2.3 External Rhythmic Stimuli

Often, rhythmic entrainment and creation of a regular gait involves providing a robot

with an internal rhythmic stimulus. Typically, this is a neural oscillator model or a

sine wave. Here, we instead attempt to evolve oscillatory neural activity by providing

robots with a ‘metronome’-like external stimulus, a series of isochronous binary im-

pulses. This signal is used to update the value of each robot’s auditory neuron. Over

the course of one simulation, each robot is exposed to three different conditions, or

stimulus frequencies. Stimuli are presented in frequencies of 2Hz, 1.33Hz, and 1.66Hz

(in that order), each for 20 pulses. It should be noted that possible period lengths

are limited by the length of time between discrete timesteps (in simulation time) in

the physics engine. All experiments described here are updated with a step size of
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0.025 seconds.

Ideally, these rates would be chosen by determining the natural gait of the body

plan. However, because no central pattern generator or oscillator is employed in these

robots they do not have pre-established natural gaits. Thus, trends in Froude number

for quadrupedal animals (see Alexander [18]) were used to determine what periods

would promote steady walking gaits. Froude number is calculated using the equation

Froude Number = v2

g · h
(1)

where v is velocity, g is gravitational acceleration (9.8m/s2), and h is hip height.

Humans and most quadrupeds transition from walking to running at a Froude number

of 0.5, so inter-stimulus periods are chosen to represent Froude numbers across the

spectrum of the walking range (with goal distance per impulse, see G in Equation 9,

held constant at the length of the quadruped’s torso). Frequencies of 2Hz, 1.33Hz,

and 1.66Hz correlate to Froude numbers of 0.4, 0.18, and 0.28, respectively.

2.4 Optimization Methods

In evolutionary robotics, evolutionary pressure is exerted on robots simulated in a

physics engine. Selection is facilitated by an evolutionary algorithm (EA), a type

of AI search process that begins with random solutions and generates optimal ones

through a cyclical process of evaluation, selection, and reproduction/mutation. There

are many different evolutionary algorithms, each with their own unique features. It

is sometimes unclear which is ideal for a given application, thus the relative success

of two algorithms was evaluated.
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Age-Fitness Pareto Optimization

Age-Fitness Pareto Optimization (AFPO) is a common multi-objective evolutionary

algorithm designed to prevent premature convergence, or search stagnation [19]. This

is accomplished by minimizing solution age while maximizing solution fitness. The

use of this method to select for more than one behavior requires sub-functions to

be carefully combined into a single function. Two promising combined functions are

tested. One includes all subfunctions (see subsection 2.5): rhythmicity (fr), gait

evenness (fe), and movement (fm)

F = fr · fe · fm (2)

while the other function excludes movement.

F = fr · fe (3)

Bi-Objective Pareto Optimization

Controllers are also evolved using a modified version of the Age-Fitness Pareto Op-

timization (AFPO) algorithm in which age is substituted for a second fitness metric.

The two fitness metrics used for this method of selection were rhythmicity (fr) and

gait evenness (fe) [19].

2.5 Fitness Functions

Each of the functions below plays a role in both shaping the desired behavior—

marching to an external isochronous (evenly temporally spaced) auditory stimulus—
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and preventing perverse instantiation. These functions are used to evaluate the ‘fit-

ness’ of individuals in a population. During the selection step of an evolutionary

algorithm, individuals are competed at random—meaning their fitnesses are com-

pared to one another. Individuals with higher fitnesses are thus more likely to remain

in the population and mutate/reproduce.

Rhythmicity

Further freedom in gait selection was provided by only counting the step closest to

the metronome strike in the rhythmicity score, thus permitting robots to strike the

ground with the tracked leg at twice the stimulus frequency without punishment (a

decrease in fitness).

fr = 1
R

·
C∑

c=1

I∑
i=1

max
0≤t≤pc−1

(
pc

2 · cos
(

2π

pc

· t

)
+ pc

2

)
(4)

Above, C is the total number of rhythmic conditions presented, pc is the period of

the current condition (c), I is the number of impulses presented for each condition,

and t is the current timestep. R, the maximum rhythmicity score, can be found using

the equation below.

R =
C∑

c=1
pc · I (5)

Conversion of condition frequency in Hz to its period in discrete timesteps was per-

formed using the equation

p = (frequency · S)−1 (6)

where p is the period between impulses and S is the time in seconds between discrete

timesteps in the physics engine.
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Gait Evenness

Here, we will define gait evenness as the amount of variation between the number of

steps taken by each leg. This function is included because only one leg’s rhythmicity

is evaluated to avoid prescribing a specific gait. If the behavior of all legs were

factored into the calculation, it would be necessary to either select for pronking, a

unique quadrupedal gait in which all four legs connect with and lift from the ground

simultaneously, or choose a desired offset for each leg to mimic a more common

quadrupedal gait. However, gait evenness was also selected for to prevent the robot

from achieving rhythmicity by stepping with only one or two legs. Gait evenness was

calculated using the following equations

fe =
√

e + 1 (7)

e = 1
U

·
U∑

u=1
(ktracked − ku)2 (8)

where U is the number of untracked legs and k is the number of footstrikes recorded

for a given leg. The choice to square ktracked − ku rather than take the absolute

value of the expression was made to select against having any legs be significant

outliers. Taking the square root of e creates a more realistic gradient for selection

to follow, increasing the tractability of the problem. Without taking the square root

of the function, fe climbs from 0.1 to 1 over a range of [ktracked − 3, ktracked]. With

it, the slope decreases, allowing the same growth over a more reasonable range of

[ktracked − 10, ktracked]. Adding 1 before taking the square root of e both normalizes

the values of fe and avoids undefined values.
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Movement

The movement fitness subfunction rewarded solutions one point each time a goal

distance (G) was traveled and the square root of the ratio of actual distance traveled

(di) to the goal distance otherwise. The final result of this calculation was normalized

over the maximum movement score, as seen in the equation below.

fm = 1
C · I

·
I·C∑
i=1




1 di ≥ G√
di

G
otherwise

 (9)

2.6 In-Depth Individual Analysis

An individual is selected for in-depth analysis based on visual assessment of footprint

graphs, fitness graphs, and graphical 3D simulation results. Ideal solutions will mimic

common features of CPG-controlled biological locomotor entrainment including con-

sistent gait for the span of each individual stimulus frequency, adaptability across

tempos, continued motion throughout the course of the simulation, and succesful

synchronization of one leg with the stimulus frequency.

3 Results

3.1 Shaping Evolutionary Pressure

Bi-objective Pareto Optimization was found to produce larger and more rapid and

gains in rhythmicity, as Pareto fronts were dominated by scores above 0.8 after
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100 generations of simulation of 100 individuals. However, gait evenness scores

lagged, often resulting in best solutions which did not exhibit the desired behavior—

entrainment of locomotion to an external isochronous stimulus.

Employment of Age-Fitness Pareto Optimization (AFPO) yielded more balanced

improvement across sub-objectives. Throughout the process of tuning simulation

hyperparameters, runs with the same population size and number of generations

yielded the desired behavior more frequently when AFPO was used to select for the

product of several sub-functions as opposed to selecting for each as an independent

optimization objective.

After selection of AFPO as the primary optimization strategy, it was necessary to

determine what combination of objectives as a single function would be most likely to

yield the desired behavior. Exploratory runs indicated rhythmicity and gait evenness

objectives were necessary for evolution of locomotor entrainment. The former because

it was the primary goal and the latter because all experiments in which the sub-

function was excluded or modified resulted in perverse instantiation. The details of

this result are explored in greater depth in the discussion section (see subsection 4.1).

At both the start and end of evolution, selection without the movement subfunction

yielded significantly lower rhythmicity and movement performance than with the

subfunction (p < 0.05). Comparison of these two methods for 10 replicates with 95%

confidence intervals is visible in Supplementary Fig. 1.

3.2 Body Plan Comparison and Analysis

At the beginning of the simulation, there was no significant difference between the

performance of any of the body plans (Fig. 3). At the end of 10 generations, the

xx



(a) Radial 1DOF v. Radial 2DOF

(b) Radial 1DOF v. Bilateral 2DOF

(c) Radial 2DOF v. Bilateral 2DOF

Figure 3: Comparison of 3 body plans. Performance over evolution of 100 individuals
for 10 generations with 95% confidence intervals. 30 replicates were performed for each body
plan. a: Radial 1DOF v. Radial 2DOF. b: Radial 1DOF v. Bilateral 2DOF. c: Radial
2DOF v. Bilateral 2DOF.
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radial 1DOF quadruped performed significantly better overall and on rhythmicity

than the radial 2DOF quadruped (p < 0.01) and the bilateral 2DOF quadruped

(p < 0.05, p < 0.01). The difference between the two 2DOF quadrupeds was not

statistically significant.

3.3 Selected Individual Analysis

Graphs detailing the evolution of the selected individual are visible in (Fig. 4). This

individual was evolved from a population of 100 individuals for 100 generations using

AFPO with the fitness function F = fr · fe · fm (see Equation 3). Footprint graphs

for the selected individual’s performance on frequencies seen during training (Fig. 5a)

is shown alongside a graph of auditory and hidden neuron activity throughout the

simulation (Fig. 6b). Below the neuron activity graph is a footprint graph from a test

simulation of the same brain with stimulus frequencies of 1Hz, 1.25Hz, and 2.5Hz,

none of which were supplied during evolution (Fig. 5b). It should also be noted that

these test frequencies vary significantly from each other—more so than those provided

during evolution (2Hz, 1.33Hz, and 1.66Hz). They also are presented in increasing

order, whereas the sequence presented in the evolutionary set is non-monotonic.

4 Discussion

4.1 Shaping Evolutionary Pressure

One limitation of using this technique to evolve rhythmic entrainment is that it is

not apparent from any single fitness value what the exact behavior of the robot
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(a)

(b)

Figure 4: Selected Individual Evolution. Evolution of a population of 100 radial 1DOF
quadrupeds for 100 generations. a: On the left, fr · fm · fe (see Equation 3) on the right,
fitness of the best evolved solution v. 100 random solutions. b: Values of subfunctions
(rhythmicity, gait evenness, and movement) over the course of evolution as well as the
overall fitness function (Equation 3).
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(a) Entrainment to frequencies used during evolution.

(b) Entrainment to novel test frequencies.

(c) Entrainment in the absence of external input.

Figure 5: Selected Individual Behavior. a: Footprint graph of the selected individual
on training frequencies of 2Hz, 1.33Hz, and 1.66Hz. b: Footprint graph of the selected
individual on test frequencies of 1Hz, 1.25Hz, and 2.5Hz, none of which were included in
evolutionary runs. c: Footprint graph of the selected individual on frequencies of 1.33Hz,
followed by a period of no external input, then another period of 2Hz input.
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(a) Auditory and hidden neuron activity of the selected individual.

(b) Auditory and hidden neuron activity of a random individual with identical parameters.

Figure 6: Selected Individual Neuron Activity. Plots of neuron values over the course
of a single simulation. The values of the auditory neuron (top) spike at each point the
auditory stimulus is presented. a: Neurons of the selected evolved individual. b: Plot of
neuron values for the individual with the highest fitness of 100 random individuals with the
same parameters as the selected individual.
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will be. However, it seems there is some benefit to leaving room for interpretation in

fitness functions when trying to evolve highly complex nonlinear, adaptable behaviors.

During exploratory simulations, it quickly became clear that with greater specificity

comes greater risk of perverse instantiation and reduced problem tractability. This

led to adoption of multiple relaxed fitness functions that are ineffective alone but

collectively work to shape behavior. For example, the fitness function below tested

early in the research process reliably rewards robots who step only at the same time

as the stimulus.

fr =
C∑

c=1

(pc·I)−1∑
t=0




pc · cos
(

2π
pc

· t
)

if a footstrike occurred at t

0 otherwise

 (10)

However, it is still prone to perverse instantiation, as robots can gain even more points

by double-stepping close to each impulse. It also prevents natural gait adaptation

from occurring—if the stimulus frequency is too slow to maintain a consistent gait

and a gait transition occurs, transition to a gait cycle at exactly twice the frequency

of the stimulus will score zero points. Further, robots who stand still will be selected

for over robots who walk at the wrong times (and would thus incur a negative score).

The fitness function ultimately used to select for rhythmicity supplies a reward

equivalent to the value of cosine only for the step that is temporally closest to the stim-

ulus impulse (Equation 4). Without complementary support from another function—

critically, gait evenness (Equation 7)—solutions often step as many times as possible

without punishment to stop them and obtain very high rhythmicity scores. This ex-

plains why bi-objective Pareto optimization tends to be relatively unsuccessful. The

Pareto front quickly becomes filled with solutions with subtly-varying high rhyth-
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micity scores—likely solutions who step as frequently as possible—and population

diversity becomes low in a manner that restricts the possible evolution of other ob-

jectives. This flaw was not shared by the alternative strategy tested, AFPO, which

appeared to promote co-evolution of multiple behaviors. This result was not surpris-

ing, as AFPO was designed specifically to increase solution diversity and therefore

reduce premature solution convergence.

4.2 Body Plan Comparison and Analysis

Increased success of body plans with fewer degrees of freedom early in the evolu-

tionary process is consistent with our current understanding of motor learning and

synchronization (Fig. 3). Bernstein’s theory of graded skill acquisition suggests early

stages of motor task learning are characterized by the “freezing” of degrees of freedom

[20], suggesting this reduction increases ease of performance. However, later in learn-

ing, performance is benefited from the freeing of these joints, permitting increased

efficiency and flexibility as movements are fine-tuned. Several studies have also found

increased utilization of degrees of freedom translates to movements that are more

accurately timed [21, 22]. Thus, it is possible that continuing simulation for more

generations would reveal superior performance of quadrupeds with more degrees of

freedom in their hips.

4.3 Selected Individual Analysis

The individual selected for in-depth analysis had a relatively low overall fitness (fr ·

fe ·fm) of 0.35 and a rhythmicity score of only 0.6 (Fig. 4a). However, upon inspection
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of the footprint graph, it was clear the robot instead had a near perfect rhythmicity

score—though the leg which had aligned with the auditory stimulus was not the leg

being evaluated. Additionally, the individual appeared to have a clearly developed

gait that was sustained across changes to the stimulus frequency with little to no

variation between gait cycles (Fig. 5a). These are common features of locomotion in

biological quadrupeds and are facilitated by central pattern generators in the spinal

cord.

To determine the adaptability of the controller, it was tested without alteration

on its ability to facilitate entrainment to three new frequencies of 1Hz, 1.25Hz, and

2.5Hz. The results suggest that the controller’s performance remained largely con-

sistent across frequencies (Fig. 5b). Interestingly, the only possible exception to this

is the 2.5Hz frequency, although the behavior of the robot when this frequency be-

comes active appears more like a gait transition than a failure to entrain, as the robot

adopts a different cyclic pattern of movement based on the rate of the impulses. Gait

transition as the speed of locomotion approaches a limit of ’comfort’ is biologically

realistic, allowing animals to minimize the energy cost of travel [18]. In fact, Alexan-

der’s formal definition of gait is formed around this concept. He asserts “A gait is a

pattern of locomotion characteristic of a limited range of speeds, described by quan-

tities of which one or more change discontinuously at transitions to other gaits” [18].

Thus, we can say this controller demonstrates at least two gaits and that the point

of transition between the two occurs somewhere between 2Hz and 2.5Hz. We can

also say that this controller appears to be adaptable, with a range of entrainment

spanning at least from 1Hz to 2.5Hz.

Central pattern generators are defined as neuronal circuits that generate coordi-
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nated, rhythmic output in the absence of patterned sensory input [1, 2]. Thus, to

determine whether the controller could be considered a central pattern generator, we

tested the same controller in the absence of external input Fig. 5c. After beginning

the simulation with a 1.33Hz stimulus, external impulses were temporarily suspended.

The footprint graph produced demonstrates the robot almost immediately changes

its pace and settles into locomotion with the same gait at a slightly higher frequency.

When the stimulus returns at a frequency of 2Hz, the robot again matches the input

frequency. We can therefore claim that the controller evolved is a central

pattern generator by definition.

Finally, to gain insight into what neural mechanisms underlie this behavior, we

plotted the spiking activity of the auditory neuron and values of the three hidden

neurons across the span of the simulation (Fig. 6b). While it is difficult to make

claims about the exact mechanisms of control, there are several features of the graph

that bear resemblance to their biological equivalents. First, hidden neurons appear to

spike at regular intervals, followed by a period of negativity before returning to base-

line. Similarly, the action potentials of biological neurons begin with depolarization

followed by a rebound period of hyperpolarization as ion concentrations normalize.

During this time, neurons are temporarily inactivated and another action potential

cannot be generated. It is this property of neurons that is (most notably) exploited

by central pattern generators to produce oscillatory output in the absence of oscil-

latory sensory input. Rhythm generation is an emergent property of synaptically-

coupled neurons that are non-rhythmic in isolation. Through reciprocal inhibition,

a mechanism which elegantly harnesses intrinsic properties of neuronal membranes,

non-rhythmic neurons can instead be made to exhibit the same firing patterns as
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rhythmic pacemaker neurons [2]. The synchronization between the first two hidden

neurons and their apparent alternation with the third hidden neuron also supports

the conclusion that the controller evolved to solve for locomotor entrainment with a

version of reciprocal inhibition. This result demonstrates the potential merits of a

minimalistic evolutionary approach to certain challenging problems in robotics—life

finds a way, so perhaps our machines also can.
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Supplementary Figure 1: Comparison of two multi-objective fitness functions. Evo-
lution of 100 individuals for 10 generations with 95% confidence intervals. 10 replicates were
performed for each fitness function.
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