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is strictly necessary to obtain a cleaner pattern and time-frequency information. The 

extreme similarities between both signals were chosen deliberately in order to easily 

explain the mechanisms of the algorithm, and to show its capabilities at detecting subtle 

novelties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the raw signals were processed with short-time FFT, the time-frequency 

pattern represented by Figure 6 was obtained. The novel energy pattern is difficult to 

detect by simply looking at Figure 6. This is because of the relatively low energy of the 

novelty compared to the rest of the pattern, but the overall time-frequency pattern 

Figure 4: Original signal in time domain 

Figure 5: Novelty signal in time domain 
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contains more useful information than the time domain signals presented in Figure 4 and 

Figure 5. It is important to note that the time-frequency pattern provides both time and 

frequency information. For a sampling rate of 44,100Hz and a time window of 10 ms for 

the short-time FFT, there is a total of 220 frequency bins; bin = 40 includes energy from 

frequencies 4,000Hz-4,100Hz. It is known from the design of the experiment that novel 

time patterns should appear in bin = 40, bin = 80 and bin = 120 in Figure 6. Extracting 

and plotting the time-domain signal for bin = 40 from the time-frequency pattern, as 

shown by the time signals in Figure 7 and Figure 8 the differences in the patterns between 

healthy and novel signals are clearly visible.  

 

Figure 6: Time-frequency pattern with novelty 
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Table 5: Normal test samples with T = 20 seconds training 
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Table 6: Results for shaft imbalance 
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CHAPTER 4: CONCLUSIONS 

An audio novelty detector, designed for rotating machinery and inspired by the 

functionality of human audio pattern recognition, was conceptualized and tested. 

Experiments designed to build and test the algorithm proved the capabilities of the 

algorithm for novelty detection purposes. The structure of the probabilistic model 

presented in this thesis eliminates constraints originating from the curse of 

dimensionality [1].  

 The model could easily include a neural network classifier, as a probabilistic 

neural network could potentially be designed by establishing connections between the 

novelty detector's nodes. This could expand the capabilities of the system into classifying 

different fault modes and should be explored in future work. This model can also be 

tailored to expand its novelty detection capabilities for transient problems beyond the 

domain of machinery pattern recognition. 

The nodes of the novelty detector monitor for anomalies by using the non-

parametric Parzen Windows technique. This method is applied due to the computational 

speed advantage of statistical non-parametric techniques over neural network techniques, 

and their robustness in comparison with parametric methods [3] [2]. However, there 

exists a possibility that neural networks or other statistical techniques could perform 

better in situations where computational power is not necessarily a constraint [2].  

For future work, different novelty detection techniques [3] [2] [18] can be used to 

train the nodes, and performance can then be compared with the probabilistic novelty 

detector presented in this research.  
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Other signal processing methods such as the discrete wavelet transform can be 

used to build the frequency bins, and should be explored in future work. 

The method of “Pseudo log-likelihood cross-validation” was used to estimate the 

bandwidth parameter for each node of the novelty detector. This technique was applied 

for the final experimental testing. The method proved to successfully reduce the problem 

of overfitting the probability density function for each of the nodes. There are other 

bandwidth parameter estimation methods that should be studied and compared in future 

work related to this topic [13] [12].  

Metrics to measure the degree of novelty of a new pattern such as the “Total 

Novelty Score” and the “Individual Node Relative Difference” were defined and used to 

present results for the final experimental testing. The metrics succeeded in condensing 

the output from the novelty detector and presenting a concrete measure of novelty. This 

can be used as information to infer a machine’s fault as a Shewhart’s “assignable cause” 

[14] to the novelties. Monitoring the machine over time also showed that false alarms do 

not change the learned sound signature permanently in accordance with the 2nd law of 

thermodynamics, which can also be used as information to infer an assignable cause to 

the novelty. 

Experiments showed the novelty detector to have great performance at learning 

the sound signature of a machine in a very noisy environment and successfully 

identifying novelties. The novelty detection technique presented in this thesis could 

greatly enhance the performance of current state-of-the art condition monitoring systems, 

or could also be used as a stand-alone system.  

Python libraries and unit test suite used for this research can be found at [19]. 
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