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Figure 14: Principal response curve coefficients (PRC) of Year 1 ITS sequences for 

Field B.  Curves represent deviation between a compost treatment (baseline NC (black), 
DC (blue), PL (red)).  Curves represent deviation between a compost treatment (baseline 
NC (black), DC (blue), PL (red)).  Missing taxonomic information was not included for 
the OTU. Monte Carlo permutation tests permutated time to compute statistical 
significance.  

 
 

 
Figure 15: Principal response curve coefficients (PRC) of Year 2 ITS sequences for 

Field B.  Curves represent deviation between a compost treatment (baseline NC (black), 
DC (blue), PL (red)).  Curves represent deviation between a compost treatment (baseline 
NC (black), DC (blue), PL (red)).  Missing taxonomic information was not included for 
the OTU. Monte Carlo permutation tests permutated time to compute statistical 
significance.  
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Abstract 

Preventing Listeria contamination of artisan cheese requires routine and effective 

environmental monitoring of product contact surfaces within the production environment. 

The sensitivity of environmental monitoring methods is essential when testing for the 

presence of Listeria spp. within the processing environment as a way to control the risk of 

cheese contamination. Four environmental surfaces (dairy brick, stainless steel, plastic, and 

wood; n=27/surface type at high concentrations; n=405/surface type at low concentrations) 

were inoculated with L. innocua (Green Fluorescent Protein), L.m.  ATTC® 19115 and L.m. 

1042B, at high (106-107 CFU/cm2) and low (0.01-1 CFU/cm2) target concentrations.  

Inoculated surfaces were swabbed with World Bioproducts© EZ ReachTM environmental 

swabs with HiCap (WBHC) and Dey-Engley (WBDE) neutralizing broths, and 3MTM 

environmental swabs (3MTM) with Dey-Engley neutralizing broth.  3MTM Listeria 

Environmental Plate and Aerobic Plate Count PetrifilmTM enumeration methods and FDA, 

modified FDA, dual MOPS-BLEB enrichment, and modified USDA enrichment methods 

were used to compare sensitivity of recovery between environmental swabs. When applied 

at low concentrations, 3MTM, WBDE, and WBHC swabs recovered Listeria spp. from 

90.9%, 88.4% and 83.2% of plastic, stainless steel, and dairy brick surfaces, respectively, 

but only 65.7% of wooden surfaces; recovering 14.8%, 77%, and 96.3% at 0.01, 0.1, and 

1 CFU/cm2, respectively (p<0.05).  Slight differences in recovery (84.8% for WBDE, 

78.1% for WBHC, and 80.9% for 3MTM) for all surfaces were observed. Variable recovery 

was influenced by strain, where L.m. 1042B was recovered more effectively from wooden 

surfaces by 3MTM, WBDE, and WBHC swabs, followed by L.m. 19115, and lastly L. 

innocua.  Equivalent performance between swab formats was observed for all tested 

surfaces except wood, therefore porosity of environmental surfaces  should be taken into 
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consideration when implementing environmental sampling plans.    

  
Introduction 

 

Foods represent a major route of transmission for listeriosis as a result of post-

processing contamination, with 99% of illnesses attributed to food products, including 

ready-to-eat (RTE) foods  (Buchanan et al., 2017; Scallan et al., 2011).  Listeria 

monocytogenes (L. monocytogenes) is the third leading cause of death from a foodborne 

pathogen (19%), following Salmonella spp. (28%) and Toxoplasma gondii (24%) 

(Scallan et al. 2011). Listeriosis, the infection caused by L. monocytogenes, is manifest as 

an invasive disease leading to meningitis, encephalitis, septicemia, neonatal sepsis, and 

preterm labor. Listeriosis is also manifest as non-invasive infection, which occurs in 

healthy individuals, with symptoms including febrile gastroenteritis with flu-like 

symptoms (Scallan et al 2011; Nyarko et al., 2017). Although the incidence of cases of L. 

monocytogenes continues to decline in the U.S., the number of deaths associated with this 

pathogen of concern continues to increase (CDC, 2017a; Nyachuba & Donnelly, 2007).   

L. monocytogenes is widely distributed in dairy farm environments (Nightingale, 

et al. 2004) and is regularly isolated from dairy processing and cheesemaking 

environments (Pritchard et al., 1994, Nightingale et al. 2004, D'Amico & Donnelly 

2010). The ability of L. monocytogenes to survive under stressful environmental 

conditions including high salt, low pH and cold temperatures make this pathogen not only 

very difficult to control, but also extremely persistent  in the environment (Carpentier, & 

Cerf, 2011). Recently published studies have shown the contribution of molecular 

determinants to adaptation and persistence of Listeria strains, as well as resistance to 
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sanitizers (Pan et al. 2006, Buchanan, Gorris et al. 2017, Harter, Wagner et al. 2017, 

Kremer, Lees et al. 2017).While research has shown that the extent of Listeria spp. 

contamination in farmstead cheese plants  is low (D'Amico et al.,. 2008; D'Amico & 

Donnelly, 2008), some strains of L. monocytogenes, including those that may possess 

increased virulence, have been shown to persist in cheesemaking (D'Amico et al., 2008, 

D'Amico & Donnelly 2009) and other food processing environments for months or years 

(Ferreira et al., 2014) and serve as sources of food product contamination (Kovačević et 

al., 2012; Lahou & Uyttendaele, 2014).  Effective environmental monitoring and 

elimination of Listeria spp. within processing plants, including farmstead cheese 

operations, is thus a key component of a successful Listeria control program. 

The U.S. Food and Drug Administration (FDA) conducted environmental 

surveillance of U.S. cheesemakers producing soft cheese (154 plants total, 41 artisan 

producers) during the years 2010-2011 (Donnelly, 2000). A total of 31% of plants tested 

had positive environmental findings for L. monocytogenes. This unacceptably high 

incidence shows the need for interventions leading to control and elimination of this 

dangerous pathogen. In March of 2017, the FDA, CDC and state agencies (CDC, 2017) 

reported an outbreak of listeriosis caused by consumption of a soft raw milk cheese 

produced by Vulto Creamery of Walton, New York, which resulted in two deaths and six 

cases of illness (CDC, 2017). FDA inspections revealed widespread environmental 

Listeria contamination throughout the processing facility (USFDA HHS, 2017).  

According to the 483 Inspection Report issued by the FDA to Vulto Creamery ,  54 out of 

198 (27.2%) tested environmental sites were positive for Listeria spp.,including floors, 

drains, exterior surfaces of brine tanks, door handles to the cheese aging room, and 
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wooden cheese rack dollies (USFDA HHS, 2017).  In addition, 10 out of 54 (18.5%) food 

contact surfaces tested positive for L. monocytogenes, including  wooden cheese aging 

boards and cheese brushes.   

Food processors could use environmental monitoring programs (EMP) as a 

verification tool to ensure the control of identified biological hazards from the 

environment. The artisan cheese industry follows guidelines under 21 CFR 117, Subpart 

B “Current Good Manufacturing Practices in Manufacturing, Packing, and Holding 

Human Foods” (USFDA/CFSAN, 2018). There regulations emphasize the importance of 

cleaning and sanitizing food contact surfaces (USFDA/HHS, 2018).   

 The FDA has expressed concern over use of wooden shelves as a food contact 

surface in cheese aging due to their porosity and inability to be effectively cleaned and 

sanitized (Aviat et al., 2016).  The Vulto Creamery listeriosis outbreak investigation cited 

wooden boards as examples of food contact surface materials whose design did not allow 

for adequate cleaning and sanitizing as a result of poor maintenance (FDA HHS,  2017; 

U.S. FDA, 2018).   

 Dairy processors need assurance that they are using effective methods for 

environmental sampling, as well as sensitive methods for Listeria detection. Few 

published studies have addressed these issues.  There is conflicting advice from 

regulatory agencies regarding size of the sampling area and methods for detection 

(USFDA/CFSAN, 2017; USFDA/CFSAN, 2015; USDA FSIS, 2012; Carpentier & Barre, 

2012).  Additionally, addressing comparative recovery of swabbing devices from 

different surface materials has not been well studied.  Previous research has shown that 

environmental swabbing devices (such as a sponge-stick pre-moistened with buffered 
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peptone water, pre-moistened environmental swabs, and a Copan foam spatula) are 

capable of detecting Listeria spp. on neoprene rubber, high density polyethylene, and 

stainless steel surfaces at low (100 CFU/250 cm2) concentrations (Lahou & Uyttendaele, 

2014) with the possibility of food residues influencing recovery rates due to enhanced 

fitness (Kusumaningrum et al., 2002; Takahashi et al., 2011).  Nyachuba and Donnelly, 

(2007) compared the efficacy of three enrichment methods and one enumeration method 

to detect and isolate L. monocytogenes at low (0.1 CFU/cm2 for inoculum with uninjured 

cells and 0.1-10 CFU/cm2 for inoculum with injured cells) levels from dairy 

environmental surfaces including brick, dairy board, stainless steel, and epoxy resin. 

These authors found that efficacy of sampling methods and environmental sampling 

devices depends on the surfaces type, where the modified USDA enrichment method was 

more efficient in L. monocytogenes recovery followed by the selective USDA/FSIS 

method, then ISO 11290-1, and lastly, the 3MTM PetrifilmTM Environmental Listeria Plate 

method.   This study also found variation in recovery by swabbing device, where the 

environmental sponge was most effective at recovering L. monocytogenes from surfaces, 

followed by the 3MTM Quick Swab, and lastly the M-Vac System.  Lahou & Uyttendaele 

(2014) reported similar results, where recovery of L. monocytogenes varied by swab type.  

L. monocytogenes was undetected with the 3MTM Sponge-Stick in 11.1% of samples 

(n=27), in 7.5% of samples (n=27) with Copan Foam Spatula, and 3.7% of samples 

(n=27) with the environmental sponge after air drying for 1 hour following inoculation.  

These studies show that proper selection of testing methods or environmental sampling 

devices have a significant impact on the recovery of L. monocytogenes.   Hence, effective 
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performance of  swabbing devices and enrichment methods used to detect Listeria spp. 

on dairy environmental surfaces requires further investigation.   

 Dairy processors face many choices when selecting testing formats and swab 

formats to conduct environmental monitoring of Listeria spp. in dairy processing 

facilities. Therefore,  this study was conducted to validate the efficacy of three 

environmental swab formats for the detection of L. monocytogenes and Listeria innocua 

(L. innocua) on four environmental surfaces (dairy brick, stainless steel, food-grade 

plastic, and wood) used in dairy processing when using standard cultural methods .  The 

performance of methods and swabs was also tested on samples from naturally 

contaminated environments to assess performance including inclusivity of recovery of 

diverse L. monocytogenes subtypes. This evaluation will assist dairy processors, 

particularly artisan cheesemakers, with selection of sensitive and reliable detection 

procedures.   

 

Methods 

 
Preparation of Listeria spp. Strains 

 
Listeria spp.  (L.m. 19115, L.m. 1042B , and L. innocua) were selected based 

upon their source of origin as specified in Table 1 to include a representative population 

of Listeria spp. typically found in dairy processing environments.  Strains were prepared 

as stock cultures by inoculating 1ul of purified culture into10 ml of Trypticase soy broth 

(TSB) and grown for 24 ± 2 h hours at 35 ± 2°C.  Cultures were then mixed into sterile 

vials as 40% culture and 60% glycerol for preservation and stored at  -80°C as previously 

described (Nyarko et al., 2017).  
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Preparation of Bacterial Strains 
 
Listeria spp. cold stocks were streaked onto CHROMagar™ (chromogenic Listeria base 

agar (DRG International, Springfield NJ) and incubated for 18-24 h at 35°± 2°C.  After 

adequate growth, one colony was selected from the CHROMagar™ plate and grown in 

Brain Heart Infusion (BHI) broth and incubated for 18-24 h at 35 ± 2°C.  A 1ml aliquot 

of culture was then added to 99ml of BHI and incubated at 24± 2 h at 35 ± 2°C.  

Subsequently, high (106-107 CFU/cm2) and low (0.01-1 CFU/ cm2) target inoculum 

concentrations of L. innocua 18 Green Fluorescent Protein (GFP), L.m.  ATTC® 19115 

and L.m. DUP-1042B strains were enumerated by completing serial dilutions and plating 

onto 3MTM Aerobic Plate Count (APC) PetrifilmTM (3MTM Microbiology, Saint Paul, 

MN). 

 

Environmental Materials 
 

This study compared four environmental surfaces (Dairy brick [DB], stainless 

steel [SS], food-grade high density polypropylene (i.e. plastic) [FGPP], and wood [W]; 

n=27/surface type at high concentrations; n=405/surface type at low concentrations). 

Wood samples were prepared from seasoned spruce wooden shelves obtained from a 

local artisan cheesemaker.  Each material was cut into 100 cm2 sections, thoroughly 

washed, and sterilized by autoclaving at 121°C for 90 minute and 15-minute cycles prior 

to use as described by Nyachuba and Donnelly (2007).  
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Sampling Methods 

Three environmental sponge swab formats were evaluated: 1. World Bioproducts EZ 

Reach™ sponge sampler (World Bioproducts©, Bothell WA) pre-moistened with 10 ml 

Dey-Engley (D/E) neutralizing broth (WPDE) (Polyurethane) (USFDA/CFSAN, 2017) or 

2. HiCap (HC) neutralizing broth (WPHC) (World Bioproducts©, Bothell WA), and 3. 

3M™ Sponge-sticks with 10 ml Dey-Engley (D/E) neutralizing broth (3M™ 

Microbiology, Saint Paul, MN) (Cellulose) as recommended by FDA BAM (U.S. FDA, 

2017).  The efficacy of recovery of Listeria spp. from DB, SS, P, and W surfaces was 

compared for each sponge swab method by taking a pre-moistened sponge (with 10 ml of 

D/E or HC) from a sterile bag and hand massaging per manufacturer’s instructions prior 

to swabbing the 100 cm2 surface using the “meandering movement” (Lahou & 

Uyttendaele, 2014).  The sponge swab was aseptically placed back into the sterile bag 

and hand massaged for 1 minute prior to further processing.  All swab formats were 

performed on three replicates of each surface per strain and concentration (Nyachuba & 

Donnelly, 2007).  
 

Recovery and Enumeration of Listeria spp. at High Concentrations 

 
Each surface was inoculated with 1 ml of L. innocua 18 (GFP) and L. monocytogenes 

ATTC® 19115 and DUP-1042B at an initial target concentration of (106-107 CFU/ cm2). 

Inoculated surfaces were then swabbed (Figure 1) with each of the environmental sponge 

swabs and enumerated by completing serial dilutions and plating 1 ml of broth onto 

duplicate 3MTM APC PetrifilmTM  (3M™ Microbiology, Saint Paul, MN) that were 

incubated for 24 ± 2 h at 35 ± 2°C.  Red indicator colonies were counted to establish 

concentrations.  
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Recovery of Listeria spp. at Low Concentrations 

 
The 3MTM Environmental Listeria Plating method and the modified FDA (mFDA), FDA 

(U.S. FDA, 2017) , dual (MOPS-BLEB) enrichment (D’Amico & Donnelly, 2008), and 

modified USDA (mUSDA) (Nyachuba & Donnelly 2007) enrichment methods were used 

to compare sensitivity of recovery of Listeria spp. between environmental swabs (Figure 

1).  

The mUSDA and dual MOPS-BLEB dual enrichment methods both require a 

primary enrichment step using University of Vermont (UVM) broth (Becton, Dickinson 

and Co., Franklin Lakes, NJ) (USDA/FSIS 2006) and Listeria Repair Broth (LRB) (Busch 

& Donnelly, 1992), and Buffered Listeria Enrichment Broth (BLEB) (Neogen Food Safety 

Lansing, MI) (D’Amico & Donnelly, 2009), respectively. Samples were incubated at 30°± 

2°C for 24 ± 2 h (Figure 1). BLEB was used for the primary and only enrichment step for 

the modified FDA (mFDA) and FDA methods This enrichment broth requires Acriflavin 

and Nalidixic Acid stock solutions at 0.5% (w/v) and Cycloheximide at a final 

concentration of 1% (w/v). The mFDA method required the addition of all three antibiotics 

to BLEB immediately prior to sample enrichment, while the FDA method required the 

addition of antibiotics after 4 hours of non-selective preincubation to promote repair of 

injured Listeria.  

A 50μl aliquot of the primary enrichments were added to Demi Fraser (Becton, 

Dickinson and Co. Franklin Lakes, NJ) (ISO 11290-1, 1996) and 100 μl aliquot was 

added to Morpholinepropanesulfonic acid buffered Listeria-enrichment broth (MOPS-

BLEB) secondary enrichments, respectively and incubated at 35 ± 2°C for 24 ± 2 h.    
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After enrichment, 100 μl were plated onto Chromogenic Listeria selective agar 

(CHROMagar™, DRG International, Springfield NJ), where a streak for isolation was 

performed, and plates were incubated for 18-24 h at 35 ± 2°C to confirm presence or 

absence of growth based upon standard colony morphology (small, metallic, turquoise 

colonies with halo to detect L. monocytogenes and without a halo to detect L. innocua).   

 The performance of 3MTM PetrifilmTM Environmental Listeria (EL) Plates 

(adapted from 3MTM PetrifilmTM EL Plate Interpretation Guide 2006) was also evaluated. 

Buffered Peptone Water (BPW) was added to the sample and left at ambient temperature 

for 1 hour before 3 ml aliquots were plated onto the EL plates and incubated for 36 ± 2 h 

at 35 ± 2°C. Enumeration of growth was used to confirm presence or absence of Listeria 

spp. 

 

Electron Microscopy Imaging (MI) 
 

Microscopy Imaging was used to qualitatively compare recovery of Listeria spp. 

from surfaces between environmental swabs.  The LeicaMZ16F Stereomicroscope was 

used to detect the fluorescence of the L. innocua 18 GFP inoculum and capture images at 

5x and 11.5x magnification. Each surface (DB, P, SS, W) was spot inoculated at high 

concentrations and an image was taken before and after swabbing.   

 

Farm Environmental Sampling 

Environmental sampling a local dairy farm producing milk for artisan cheese 

manufacture was conducted to verify swab format performance outside of a controlled 

laboratory setting.  Surfaces similar to those tested in the laboratory were targeted to 

establish efficacy of sponge swabs for the detection of Listeria spp.  Barn surfaces 
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included plastic, stainless steel, wood, and concrete [C] (as a replacement for dairy 

brick).  A replicated sampling plan (Figure 2) was used for each swab format and 

surface.  Samples were swabbed onto CHROMagar© Listeria in duplicate after they were 

enriched using dual MOPS-BLEB and mUSDA enrichment methods.  Samples were also 

assayed for Listeria identification using the DuPont Qualicon BAX Q7 system (BAX 

PCR; DuPont Qualicon Wilmington, DE).   
 

 

Ribotyping 
 
The Dupont Riboprinter Microbial Characterization System (Qualicon Inc.)  was used to 

further explore subtype diversity of recovered Listeria spp. as a function of surfaces, 

swabs, and enrichment/isolation media.  The proprietary RiboExplorer software 

(V.2.0.3121.0) produces Dupont Identifications (DUP-IDS) from fragment patterns of 

band intensity and position.  These DUP-IDS were used to observe ribotype diversity 

within the dairy farm environment (D’Amico & Donnelly, 2008; Sauders et al., 2006; 

Sauders et al. 2004; Weidman et al. 1997).    

 

Statistical Analysis 

Statistical analyses were completed using the IBM SPSS Statistics program Version 

24.  Logistic regression and Pearson chi-square cross-tabulation tests were used to 

determine the statistical significance of interactions between independent variables 

(surface, swab, method, strain, and concentration) and correlations between results for 

Listeria recovery at low concentrations, respectively.  ANOVA tests were completed to 

establish statistical significance of enumeration results for Listeria inoculated to surfaces 

at at high concentrations between independent variables. Following ANOVA, POST 
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HOC Bonferonni tests were applied to determine whether or not the difference between 

means of swab formats or surface types were statistically significant. 
 

Results 

 
Recovery of Listeria spp. From Surfaces 
 

This study examined efficacy of Listeria recovery and interactive effects from 4 

surfaces (W, DB, FGPP and SS), 3 swab formats (3MTM, WBDE, WBHC), 5 detection 

methods mUSDA, MOPS BLEB, FDA, mFDA and 3MTM ELP), 3 strains (L. m 19115; 

L.m. 1042B and L. innocua), and 3 concentrations 0.01 CFU/cm2, 0.1 CFU/cm2, and 1 

CFU/cm2). When using all surfaces, swab formats, methods, strains, and concentrations 

combined, a total of 1,620 samples were collected for analysis., where 81.3% 

(1,317/1,620) of total samples were positive for Listeria spp recovery. 

 When observing total recovery results by concentration at low levels, results by 

surface and method were statistically significant (p<0.001), while results by swab and 

strain were not (Table 2).   When concentrations of 0.01, 0.1, and 1 CFU/cm2 were 

applied to material surfaces, Listeria spp. were recovered from 52.2% (282/540), 92.6% 

(500/540) and 99.1% (535/540) of total samples respectively, when using all surfaces, 

swab formats, methods, and strains.  Of these samples, Listeria spp. were recovered from: 

14.8% (20/135), 77% (104/135), and 96.3% (130/135) of wooden surfaces;  52.3% 

(71/135) 97.7% (131/135), 100% (135/135) of dairy brick surfaces;  73.3% (99/135), 

99.3% (134/135), and 100% (135/135) of plastic surfaces; and 68.1% (92/135), 97% 

(131/135), and 100% (135/135) of stainless steel surfaces, when applied at initial 

concentrations of 0.01, 0.1, and 1 CFU/cm2, respectively.   Of the methods, Listeria spp. 
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were recovered from 74.1% (80/108), 93.5% (101/108), and 100% (108/108) of surfaces 

using the mUSDA enrichment method; 50% (54/108), 96.3% (107/108), and 96.3% 

(107/108) of surfaces using the dual (MOPS-BLEB) enrichment method; 50% (54/108), 

96.3% (107/108), and 96.3% (107/108) of surfaces using the primary FDA enrichment 

method; 73.1% (78/108), 94.4% (102/108), and 96.3% (107/108) of surfaces using the 

mFDFA enrichment method; and 14.8% (16/108), 76.8% (83/108), and 98.1% (106/108) 

of surfaces using the 3MTM PetrifilmTM ELP enumeration method at concentrations of 

0.01, 0.1, and 1 CFU/cm2, respectively.  When comparing recovery results by swab, 

Listeria spp. was from 52.2% (94/180), 91.6% (165/180) and 98.8% (178/180) of 

surfaces when using the 3MTM swab;  59.4% (107/180),  95% (171/180) and 100% 

(180/180) of surfaces when using the WBDE swab; and 45% (81/180), 91% (164/180), 

and 98.3% (177/180) of surfaces when using the WBHC swab at concentrations of 0.01, 

0.1, and 1 CFU/cm2, respectively.  Lastly, variation in recovery results by strain was 

observed, where L. monocytogenes 19115 was recovered from 56.1% (101/180), 91.6% 

(165/180), and 99.4% (179/180) of surfaces; L. monocytogenes 1042B was recovered 

from 53.3% (96/180), 95.5% (172/180), and 100% (180/180) of surfaces; and L. innocua 

was recovered from 47.2% (85/180), 90.5% (163/180), and 97.7% (176/180) of surfaces 

at concentrations of 0.01, 0.1, and 1 CFU/cm2, respectively.   

 Listeria spp. were recovered from 90.9% (368/405) , 88.4 (358/405), and 83.2 

(337/405) of plastic , stainless steel, and dairy brick surfaces respectively, but only 62.7% 

(254/405) of wooden surfaces  (p<0.001) (Table 3).  Of the surfaces swabbed, 3MTM, 

WBDE, and WBHC recovered Listeria spp. from 80.9% (437/540), 84.8% (458/540), 

and 78.1% (422/540) of samples, respectively (p<0.05).    Recovery using 3MTM 
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PetrifilmTM EL Plate enumeration, dual MOPS-BLEB, FDA, mFDA, and mUSDA 

enrichment methods resulted in Listeria spp. detection from 63.3% (205/324), 82.7% 

(268/324), 82.7% (268/324), 88.6% (287/324), and 89.2% (289/324) of samples, 

respectively (p value<0.001).  Concentration also affected recovery rates, where initial 

levels of 1 CFU/cm2, 0.1 CFU/cm2, and 0.01 CFU/cm2 were recovered from 52.2% 

(282/540), 92.6% (500/540), and 99.1% (535/540) of samples, respectively (p<0.001). .   

However, no significant differences were observed in recovery of Listeria spp. as a 

function of strain, where L. monocytogenes 1042B, L. monocytogenes 19115, and L. 

innocua were recovered from 83% (448/540), 82.4% (445/540), and 78.5% (424/540) of 

samples, respectively.   

At low concentrations, the interaction between surface and method was positively 

correlated (p<0.05), while interactions between (i) surface and swab, (ii) method and 

swab in reference to each surface, and (iii) surface and concentration (with and without 1 

CFU/cm2 concentration to observe difference in significance as most of these samples at 

this concentration were positive), and (iv) surface and strain were not (Table 4).   

Specifically, the number of negative results (p <0.001) influenced statistical significance 

of the surface and method interaction, with wood showing the highest degree of 

variability.    

 While pairwise comparisons between swab types (when considering all surfaces 

and strains) at high concentrations were not significantly different, pairwise comparisons 

between the swab types and surfaces did have statistically significant differences in 

Listeria spp. recovery.  (Table 5).    Significant differences between the means of 3MTM 

(7.633± .109 CFU/100 cm2) and WBDE (7.811± .109 CFU/100 cm2) were found 
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(p<0.05), while the difference between WBDE (7.811± .109 CFU/100 cm2) and WBHC 

(7.745± .109 CFU/100 cm2), and 3MTM (7.633± .109 CFU/100 cm2) and WBHC (7.745± 

.109 CFU/100 cm2) were not (Table 5).  The mean difference in recovery between wood 

(6.797± .056 CFU/100 cm2) and plastic (8.108± .056 CFU/100 cm2), wood (6.797± .056 

CFU/100 cm2) and stainless steel (8.092± .056 CFU/100 cm2), and wood (6.797± .056 

CFU/100 cm2) and dairy brick  (7.922± .056 CFU/100 cm2) surfaces had the greatest 

variation in Listeria spp. recovery (p<0.001) (Table 5).  The significance of relative 

performance between swab and surface demonstrates that the device used to swab a 

particular surface needs to be chosen based on its efficacy and design.  

The difference of means between swab formats for each surface type was also 

analyzed for statistical significance (Table 6).  When surfaces were inoculated at high 

concentrations, there was a statistically significant difference in recovery from dairy 

brick (p<0.001), where differences between 3MTM (7.755± .083/100 cm2) and WBDE 

(8.226± .083 /100 cm2), and  WBDE (8.226± .083 /100 cm2) and WBHC (7.786± .083 

/100 cm2) were significant.   Recovery from plastic surfaces was significant (p<0.05) as a 

result of the mean difference between WBDE (8.335± .094/100 cm2) and WBHC (7.951± 

.094/100 cm2) swabs.  Wooden surfaces (p<0.05) were also associated with significant 

mean differences, where comparisons between WBDE (6.444± .135/100 cm2) and 3MTM 

(6.672± .135/100 cm2), and WBHC (7.275± .135/100 cm2) and 3MTM (6.672± .135/100 

cm2) swabs were significant.  Significant differences in recovery from stainless steel were 

not observed, with no significant difference between means obtained by of 3MTM, 

WBDE, and WBHC swabs.   
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 Our  microscopy imaging results also qualitatively demonstrated such variation in 

inoculum recovery at high concentrations from dairy brick, wood, plastic and stainless 

steel (Figure 3). Wood and dairy brick surfaces have greater porosity, therefore the 

inoculum was not as readily available, when visually compared to plastics and stainless 

steel.   

Table 7 summarizes the recovery of Listeria spp. from each method at low target 

concentrations, where recovery is separated by strain (n=108 per strain per method).  

Both L. monocytogenes 19115 and 1042B were recovered from 83.3% (90/108) of 

samples enriched using the dual (MOPS-BLEB) and primary FDA enrichment method, 

while L. innocua was recovered from 81.5% (88/108) of samples.  When comparing the 

efficacy of the mUSDA, and 3MTM EL Plate methods, L. monocytogenes 19115 was 

recovered from 93.5% (101/108), 90.7% (98/108) and 61.1% (66/108) of samples,  L. 

monocytogenes 1042B was recovered from 90.7% (98/108), 90.7% (98/108) and 66.7% 

(72/108) of samples, and L. innocua was recovered from 81.5% (88/108), 86.1% (93/108) 

and 62.0% (67/108) of samples, respectively.  In comparison to other methods, the 

mFDA method showed the greatest variation of positive recovery results between 

Listeria spp. strains (p<0.05). 

  

The recovery of Listeria spp. from all surfaces by swab type at low concentrations 

is summarized in Table 8, where recovery is separated by strain (n=180 per swab type per 

strain). Comparative results of strains showed that 3MTM, WBDE, and WBHC swab 

types  recovered L. monocytogenes 19115 from 83.3% (150/180), 88.3% (159/180), and 

75.6% (136/180) of samples; L .monocytogenes 1042B from 80.6% (145/180), 83.9% 
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(151/180), and 84.4% (152/180) of samples, and L. innocua from 78.9% (142/180), 

82.2% (148/180), and 74.4% (134/180) of samples, respectively.  In comparison to other 

swabs, the WBHC swab showed the greatest variation of positive recovery results 

between Listeria spp. strains (p<0.05). 

Lastly, Table 9 summarizes Listeria spp. recovery by surface at low 

concentrations, where recovery is separated by strain (n=135 per method per strain). 

Results show that Listeria spp. had the lowest recovery from wood surfaces with 

recovery rates of 67.4% (91/135), 65.2% (88/135), and 55.6% (75/135) for L. m. 19115, 

L.m. 1042B, and L. innocua, respectively.   Comparative results of strains from DB, 

FGPP, and SS surfaces showed that  L. monocytogenes 19115 was recovered from 85.2% 

(115/135), 88.9% (120/135), and 88.1% (119/135) of surfaces,  L. monocytogenes 1042B 

was recovered from 83.7% (113/135), 94.8% (128/135), and 88.1% (119/135) of 

surfaces, and L. innocua from 80.7% (109/135), 88.9% (120/135), and 88.9% (120/135) 

of surfaces, respectively.  No statistically significant  differences between recovery of 

strains were established for any of the surface types.  

 

Farm Environmental Sampling 

 
Farm environmental sampling was performed using MOPS-BLEB and mUSDA 

enrichment methods. The MOPS-BLEB enrichment method was used because it is the 

standard culturing method required by Dupont’s BAX System, and the mUSDA method 

was used as it demonstrated superior detection of the five standard enrichment methods 

used in our laboratory studies.  For farm environmental sampling, the experimental 

design consisted these 2 detection methods, in addition to 4 surfaces (W, DB, FGPP and 
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SS), and 3 swab formats (3MTM, WBDE, WBHC).   When using all surfaces, swab 

formats, and methods combined, a total of 144 samples were collected from dairy farm 

environments, where 72.9% (105/144) of total samples tested positive for Listeria spp. 

(Table 10).  Of these 105 samples that tested positive, L. monocytogenes alone, L. 

innocua alone, and L. monocytogenes and L. innocua together,  were recovered from 

8.3% (12/144), 35.4% (51/144), and 29.2% (42/144) of samples, respectively, when using 

all surfaces, swab formats, methods, and strains. 

Listeria spp. was recovered from 41.7% (15/36), 94.4% (34/36), 94.5% (34/36), 

and 61.1% (22/36) of wood, concrete (DB alternative),  plastic, and stainless steel 

surfaces, respectively, where L. innocua was recovered more frequently than L. 

monocytogenes (p<0.001)(Table 10).    Of samples tested, 5.6% (2/36), 16.7% (6/36), and 

19.4% (7/36) of wooden surfaces; 13.9% (5/36), 44.4% (16/36), and 36.1% (13/36)  of 

concrete (DB alternative) surfaces;  5.6% (2/36), 55.6%(20/35), and 33.3% (12/35) of 

plastic surfaces; and 8.3% (3/36), 25% (9/36), and 27.8% (10/36) of stainless steel 

surfaces showed presence of L. monocytogenes,, L. innocua, and both L. 

monocytogenes/L. innocua, respectively.  No recovery of Listeria spp. was observed for 

58.3% (21/36), 5.6% (2/36), 5.6% (2/36), and 38.9% (14/36) of wood, concrete (DB 

alternative), plastic, and stainless steel surfaces, respectively).   

Slight differences in recovery by swab format (68.8% for WBHC (33/48), 79.2% 

(38/48) for WBDE, versus 70.8% (34/48) for 3MTM) for all surfaces were also observed 

(Table 10).  Of swabs tested, 3MTM recovered 8.3% (4/48), 33.3% (16/48), and 29.2% 

(14/48), WBDE recovered 6.3% (3/48), 33.3% (16/48), and 39.6% (19/48), and  WBHC 

recovered 10.4% (5/48), 39.6% (19/48), and 18.8% (9/48) of L. monocytogenes, L. 
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innocua, and L monocytogenes. and L. innocua, respectively.  

The mUSDA method showed slightly higher recovery of Listeria spp. (75% 

(54/72))  from farm environmental surfaces when compared to the dual enrichment 

method (70.8% (51/72)) (Table 10). Out of the two methods, dual enrichment (MOPS-

BLEB) recovered 4.2% (3/72) , 31.9% (23/72), and 34.7% (25/72) and mUSDA 

recovered 12.5% (9/72), 38.9% (28/72) and 23.6% (17/72) of L. monocytogenes, L. 

innocua, and L. monocytogenes. and L. innocua, respectively.    

 Farm environmental sampling result interactions were analyzed by distinguishing 

Listeria spp. presence as L. monocytogenes, L innocua, or both (Table 11).  Interactions 

between surface and method, swab and method, or swab and surface were not statistically 

significant when observing presence of both Listeria spp. and L. innocua.  While surface 

and method interactions were not significant for the presence of L. monocytogenes, swab 

and surface, and swab and method interactions were  (p ≤ 0.05)  

 Environmental sampling revealed subtype diversity of L. monocytogenes isolates 

as a function of the swabbing device and detection method, with 10 different subtypes 

being identified through ribotype analysis: DUP-1039A, DUP 1039E, DUP-1042BA, 

DUP-1042B, DUP-1045A, DUP-1045B, DUP-1045E, DUP-1047A, DUP-1062B, and 

DUP-1062C (Table 12).   Six of the ten ribotypes (DUP-1042B, DUP-1045B, DUP-

1045E, DUP-1045A, DUP-1042A, DUP-1039C) were recovered from plastic surfaces of 

water troughs; Seven of ten ribotypes (DUP-1042B, DUP-1045B, DUP-1062C, DUP-

1039A, DUP-1045A, DUP-1042A, DUP-1039C) were recovered from stainless steel pen 

fencing; Four of ten ribotypes (DUP-1045B, DUP-1047A, DUP-1062B, DUP-1039A) 

were recovered from concrete surfaces (farm bed perimeter); and  4 of ten ribotypes 
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(DUP-1039E, DUP-1045B, DUP-1039E, DUP-1039C) were recovered from wooden 

wall boards (Table 13).  WBDE swabs recovered 8 of ten ribotypes (DUP-1039E, DUP-

1042B, DUP-1045B, DUP-1045E, DUP-1039A, DUP-1045A, DUP-1042A, DUP-

1039C);  3MTM recovered 7 ribotypes (DUP-1045B, DUP-1062B, DUP-1062C, DUP-

1045E, DUP-1039E, DUP-1045A, DUP-1039C); and WBHC recovered 4 ribotypes 

(DUP-1045B, DUP-1047A, DUP-1039A, DUP-1045A).  Comparing selectivity of L. 

monocytogenes ribotypes is useful to inform cheese producers on what methods best 

reveal the true diversity of Listeria subtypes that are present in the dairy farm 

environment. 

 

Discussion 

 
This comparative evaluation was conducted to explore the relative performance of 

swab formats and methods for detection of Listeria spp. during environmental 

monitoring.   Our data is consistent with other studies showing that the mUSDA method 

is generally superior regardless of swab type when compared to FDA, mFDA, Dual 

MOPS-BLEB enrichment, and 3MTM PetrifilmTM ELP enumeration methods (Nyachuba 

& Donnelly 2007;  Pritchard & Donnelly, 1999).   Previous research has established that 

selective agents in enrichment media may mask the detection of cells that have become 

sublethally injured, therefore using modified enrichment methods could improve the 

efficacy of recovering injured cells and may explain why the mUSDA method produced 

more positive results (Bruhn, Vogel, & Gram, 2005; Donnelly 2002).  Varied recovery as 

a result of false negatives could also be from the lack of sensitivity and specificity. 
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 Our work is also consistent with Nyachubua & Donnelly (2007), demonstrating 

that the 3MTM EL Plate method yielded lower recovery of Listeria spp. from surfaces 

when compared to other standard enrichment methods.  The limited performance of this 

method may be attributed to the use of wooden surfaces, since the 3MTM PetrifilmTM ELP 

method has only been validated for Listeria spp. detection from stainless steel, ceramic 

tile, and sealed concrete (3MTM, 2018).  In other studies, this method has proven to be 

superior or equal to the performance other standard culturing methods in sensitivity and 

accuracy (Groves and Donnelly, 2005; Horter and Lubrant, 2004).  Considering that the 

3MTM PetrifilmTM ELP method is more cost effective and is relatively rapid, these 

findings may encourage cheese makers to increase their sampling size if they use the 

3MTM ELP to recover Listeria spp. in the processing facility, particularly wooden 

environmental surfaces.    

Ismail et al., (2017) also demonstrated similar trends of Listeria recovery from 

surfaces, reporting that transfer rates of L. monocytogenes from perforated plastics 

(1.09%) and glass  (3%) were greater than wooden counterparts.  L. monocytogenes 

transfer rates from wooden surfaces to young cheese did not exceed 0.55% (initial 

concentration of 103 and 105 CFU/cm2) due to the porosity of the surface.  Lahou & 

Uyttendaele (2014) had similar findings where there was no significant difference 

between recovery results of Listeria spp. at low concentrations (100 CFU/250 cm2)  from 

non-porous stainless steel and plastic surfaces.    

 Clearly, the method used and the surface type and condition of environmental 

surfaces impacts recovery results (Ismail et al. 2017; Lahou & Uyttendaele 2014; Silva et 

al. 2008).  Understanding the efficacy of the available methods on various surfaces is 
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beneficial to artisanal cheesemakers to make cost-effective decisions about 

environmental monitoring resources that best apply to their processing facility and the 

environmental surfaces that apply to niches within that production environment.    

 In March of 2014, the FDA implemented new guidelines, stating, “The use of 

wooden shelves, rough or otherwise, for cheese ripening does not conform to cGMP 

requirements, which require that “all plant equipment and utensils shall be so designed 

and of such material and workmanship as to be adequately cleanable and shall be 

properly maintained.”  (21 CFR 110.40(a)).  In response, the artisan cheese communities 

in the U.S. and the EU contested this guideline and warranted a FDA response three 

months later in June of 2014, retracting their statement on banning the use of wooden 

boards for cheese aging.  In this statement the FDA specified that their previous mandate 

on food contact surfaces was not directed towards wooden shelves for cheese aging and 

did not prohibit their use for artisan cheese production.  The FDA clarified its position on 

the use of wooden boards in cheese aging, writing that “all plant equipment and utensils 

shall be so designed and of such material and workmanship as to be adequately 

cleanable and shall be properly maintained” (CFR Subsection C. 110.4). Therefore, the 

inclusion of wooden surfaces in this study for environmental sampling had urgency as a 

result of the FDA’s initial proposed ban targeting wooden shelving for cheese aging.   

 The artisan cheese industry insures that wooden boards used for cheese aging are 

cleaned, sanitized, and inspected prior to being used for the next cycle of cheese affinage 

(Licitra et al., 2014).  Any undesired bacteria or yeast that is entrapped in the shelves 

could lead to a poor-quality cheese product during ripening. Mariani et al., (2007) found 

that bacteria are capable of penetrating a depth of 1-2cm into the porous matrix of 



 310

wooden shelves. Therefore, sanitation protocols should take porosity and bacteria 

entrapment into consideration and be designed to destroy any bacterium within the 

wooden board in addition to the topical surface along with verification through 

environmental monitoring.   

While our sampling surface area is consistent with ISO 18593 guidance of at least 

100 cm2, the FDA provides the food industry with a  wide range of acceptable guidelines 

on environmental swabbing methods (Carpentier and Barre, 2012) .  The 2015 FDA 

Testing Methodology for Listeria species or L. monocytogenes in Environmental Samples 

has specified that swabbing surfaces in an area of 1 square inch (or 1 ft2 for sponges per 

manufacturer’s instructions) is sufficient for pathogen testing (USFDA/CFSAN, 2015).  

The FDA’s 2017 Guidance (USFDA/CFSAN, 2017) and the  United States Department 

of Agriculture (USDA) Food Safety Inspection Services (FSIS) Listeria Guideline: 

Listeria Control Program: Testing for L. monocytogenes or an Indicator Organism  

(USDA FSIS, 2012) both agree on a sampling surface area size of 1 ft2.  The FDA states 

that this sampling size is dependent upon the surface that is swabbed and the enrichment 

methods available as described in 21 CFR 10.117 (FDA/CFSAN, 2017b)  On the 

contrary, the French agency for food environmental and occupational health safety 

(Anses) and the European Union Reference Laboratory for Listeria monocytogenes 

(EURL L.m.) suggests that any given area being sampled should be at least 1,000 cm2 

(Carpentier and Barre, 2012).   

 In order to control L.  monocytogenes in processing facilities, cheesemakers need 

to collect environmental swabs post-cleaning and sanitizing. This will not only validate 

cleaning methods (Malley et al., 2015; Lahou & Uyttendaele, 2014)., but will also 
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determine what harborage sites and niches form biofilms when  production is occurring 

and after cleaning and sanitizing (Buchanan et al., 2017). It has been established that L. 

monocytogenes cannot be completely eradicated from processing plants because it is 

ubiquitous in nature and there are many entry points that can allow the organism into a 

facility (Buchanan et al., 2017). Therefore, preventing Listeria contamination of artisan 

cheese requires routine and effective environmental monitoring of product contact 

surfaces within the production environment. 

 Deciding which environmental swab to use is another important component of an 

environmental monitoring program, since the swab material and the amount of pressure 

applied (Lahou & Uyttendaele, 2014; Nyachuba & Donnelly, 2007; Vorst et al., 2004)  

affects the swabbing devices ability to remove cells from flexible and uneven 

environmental surfaces that are heavily contaminated (Kusumaningrum et al. 2002).  This 

could result in a lack of sensitivity of standard microbiological analyses by limiting 

entrapment of bacteria (Moore & Griffith, 2007).    Variation in pH, oxygen tension, and 

nutrient availability could also influence the effectiveness of swabbing devices to recover 

Listeria spp. (Poimenidou et al. 2009).  Previous studies have shown that wet surfaces 

yield a better recovery rate than dry surfaces and may be attributed to inactivated cells 

when the environment is low in moisture, limiting nutrient availability (Lahou & 

Uyttendaele 2014; Gomez et al. 2012; Moore et al. 2002).  L. monocytogenes better 

attaches to surfaces after drying (especially within the first 20 minutes) (Lahou & 

Uyttendaele 2014; Beresford et al., 2001) on different environmental materials as 

indicated by Norwood and Gilmour (2001) suggesting that cellular structures such as 

flagella, pili, and other extracellular polysaccharides may affect bacteria adhesion and 
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survival under static conditions (Poimenidou et al. 2009).  Hence, it is important for 

cheesemakers to understand the true diversity of L. monocytogenes isolates as a function 

of swabbing device and detection method since many environmental factors may affect 

recovery results.  

 The FDA BAM recommends 3MTM or World Bioproducts© pre-moistened or dry 

sponge swabs as devices that food producers can use to complete their environmental 

sampling (USFDA, 2017).  The 3M™ Sponge stick uses cellulose material and World 

Bioproducts uses  polyurethane.   Polyurethane is known to be stronger and more 

resistant to tearing, flaking, and fraying.  The polyurethane material is also manufactured 

without toxins, such as quaternary ammonium, which could accrue chemical residue 

within the sponge and inhibit microbial growth (World Bioproducts, n.d.).  Comparably, 

cellulose is known to be manufactured with those toxic materials, which could lead to  

chemical residues and subsequently cause false negative results as a result of growth 

inhibition (Fort, 2011). Cellulose can also break apart and leave small pieces behind 

when swabbing rough surfaces (Fort, 2011). 

 

Conclusions 

 
This research opens opportunity for further investigation of detection methods and 

environmental swab formats in addition to the use of sanitizers and drying techniques that 

may affect recovery of Listeria spp. from various surfaces. Discrepancy of results due to 

the variation in porosity of environmental surfaces and should be taken into consideration 

by artisan cheesemakers when implementing environmental sampling plans. The concern 

for cleaning and sanitizing, especially of wooden boards, only emphasizes the need to 
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establish the efficacy of environmental monitoring devices and methods and apply those 

findings accordingly to the artisan cheese industry.  
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Table 1: Listeria spp. used to inoculate environmental surfaces 

Strain ID Source Reference/Source 

ATCC 19115 (4b) Human Subject (Murray et al., 1926) Pirie 
DUP-1042B (4b) Dairy Farm CW 193-10 M5-1 

Li 18 Food Processing (Ma, Zhang, & Doyle, 2011) Siliker 
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Table 2: Summation of results for the recovery of Listeria spp. by concentration at low levels  

    
Target Concentrations of Listeria spp.  
No. Positives/No. Samples Tested (%)   

    0.01 CFU/cm2 0.1 CFU/cm2 1 CFU/cm2 Total 

Surface* 

W 20/135 (14.8)  104/135 (77) 130/135 (96.3) 254/405 (62.7) 

DB 71/135 (52.3) 131/135 (97.7) 135/135 (100) 337/405 (83.2) 

FGPP 99/135 (73.3) 134/135 (99.3) 135/135 (100) 368/405 (90.9) 

SS 92/135 (68.1)  131/135 (97) 135/135 (100) 358/405 (88.4) 

 Total: 282/540 (52.2) 500/540 (92.6) 535/540 (99.1) 1,620/1,620 

 3MTM 94/180 (52.2) 165/180  (91.6) 178/180  (98.8) 437/540 (80.9) 

Swab WBDE 107/180  (59.4) 171/180  (95)  180/180 (100) 458/540 (84.8) 

  WBHC 81/180  (45) 164/180  (91) 177/180  (98.3) 422/540 (78.1) 

 Total: 282/540 (52.2) 500/540 (92.6) 535/540 (99.1) 1,620/1,620 

 mUSDA 80/108 (74.1) 101/108 (93.5) 108/108 (100) 289/324 (89.2) 

 MOPS-BLEB   54/108 (50) 107/108 (96.3) 107/108 (96.3) 268/324 (82.7) 

Method* FDA   54/108 (50) 107/108 (96.3) 107/108 (96.3) 268/324 (82.7) 

 mFDA 78/108 (73.1) 102/108 (94.4) 107/108 (96.3) 287/324 (88.6) 

  3MTM ELP 16/108 (14.8) 83/108 (76.8) 106/108 (98.1) 205/324 (63.3) 

 Total: 282/540 (52.2) 500/540 (92.6) 535/540 (99.1) 1,620/1,620 

 L.m. 19115 101/180 (56.1) 165/180 (91.6) 179/180 (99.4) 445/540 (82.4) 

Strain L.m. 1042B 96/180 (53.3) 172/180 (95.5) 180/180(100) 448/540 (83) 

  L. innocua  85/180 (47.2) 163/180 (90.5) 176/180 (97.7) 424/540 (78.5) 

 Total: 282/540 (52.2) 500/540 (92.6) 535/540 (99.1) 1,620/1,620 
aChi-square tests were completed on all crosstabulation analyses to determine statistically significant associations 
 (*= p <0.05).  DB= dairy brick, FGPP= food grade polypropylene (plastic), SS= stainless steel, W= wood. 
WBDE=World Bioproducts swab with Dey Engley (DE) or HiCap (HC) neutralizing buffer 3MTM EL Plate= 3MTM 
Environmental Listeria Plates 
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Table 3: Statistical significance of Listeria spp. recovery 

results by surface, swab type, method, strain, and 

concentration  

Independent Variables Dependent Variables 

 
 

 No. Positives/ 

No. Samples Tested (%) 

Surfacea 

DB 337/405 (83.2)** 
FGPP 368/405 (90.9)** 

SS 358/405 (88.4)** 
W 254/405/ (62.7)** 

Swaba 

3MTM 437/540 (80.9)* 
WBDE 458/540 (84.8)* 
WBHC 422/540 (78.1)* 

Methoda 

3MTM EL Plate 205/324 (63.3)** 
Dual MOPS-BLEB 268/324 (82.7)** 

FDA (Primary) 268/324 (82.7)** 
mFDA 287/324 (88.6)** 

mUSDA 289/324 (89.2)** 

Straina 

Lm. 1042B 448/540 (83) 
L.m. 19115 445/540 (82.4) 
L. innocua 424/540 (78.5) 

Concentrationa 

1 CFU/cm2 535/540 (99.1)** 
0.1 CFU/cm2l 500/540 (92.6)** 
0.01 CFU/cm2 282/540 (52.2)** 

aChi-square tests were completed on all crosstabulation analyses to determine 
statistically significant associations (**= p <0.001, *= p <0.05).  DB= dairy 
brick, FGPP= food grade polypropylene (plastic), SS= stainless steel, W= 
wood. WBDE=World Bioproducts swab with Dey Engley (DE) or HiCap (HC) 
neutralizing buffer 3MTM EL Plate= 3MTM Environmental Listeria Plates 
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Table 4: Statistical significance of independent variable interactions at low 

target concentrations 

Independent Variablesa Sig. (p-value) 

Surface and Swab  0.227 
Method and Swab  0.584 
Surface and Method  0.027* 
Surface and Methods negative resultsb 0.000* 
Surface and Method positive resultsb 1.000 
Swab and Concentration  0.983 
Surface and Concentration  0.960 
Surface and Concentration (w/o 1 CFU/cm2) 0.683 
Surface and Strain  0.540 
aLogistic regression tests were completed to determine statistical significance of 
interactions between independent variables. bPearson chi-square test was completed on 
crosstabulation analyses to determine statistical significance of associations between independent 
variables with negative or positive results as a layered variable.  DB= dairy brick, FGPP= food grade 
polypropylene (plastic), SS= stainless steel, W= wood. 
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Table 5: Statistical significance of enumeration results at high target 

concentrations between pairwise comparisons of swabs and surfaces 

Independent Variables 
Mean log 

CFU/100cm2a 
Pairwise Comparisons 

Swab by (Surface and Strain)   
 

3MTM 7.633± .109 
WBDE 
WBHC 

WBDE 7.811± .109 
3MTM 

WBHC 

WBHC 7.745± .109 
3MTM 

WBDE 

 Swab and Surface*    
Swab*  

 

3MTM 7.633± .049 
WBDE* 
WBHC 

WBDE 7.811± .049 
3MTM* 
WBHC 

WBHC 7.745± .049 
3MTM 

WBDE 

Surface*   

SS 8.092± .056 
DB 
P 

W* 

DB 7.922± .056 
P 

SS 
W* 

P 8.108± .056 
DB 
SS 
W* 

W 6.797± .056 
DB* 
P* 

SS* 
aANOVA tests were completed to determine statistically significant associations between 
swab, surfaces, and strains; Bonferroni alpha (*p<0.05) (adjustment method for pairwise 
comparisons). DB= dairy brick, FGPP= food grade polypropylene (plastic), SS= stainless 
steel, W= wood. WBDE/WBHC=World Bioproducts swab with Dey Engley (DE) or HiCap 
(HC) neutralizing buffer. 
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Table 6: Statistical significance of enumeration results at high 

target concentrations between each surface and all swab 

interactions 

Independent Variables 

Mean log 

CFU/100 

cm2a 

Pairwise Comparisons 

Dairy Brick (DB)*  
 

3MTM 7.755± .083 
WBDE* 
WBHC 

WBDE 8.226± .083 
3MTM* 

WBHC* 

WBHC 7.786± .083 
3MTM* 

WBDE 

Plastic (FGP)*  
 

3MTM 8.038± .094 
WBDE 
WBHC 

WBDE 8.335± .094 
3MTM 

WBHC* 

WBHC 7.951± .094 
3MTM 

WBDE* 

Stainless Steel (SS)  
 

3MTM 8.068± .085 
WBDE 
WBHC 

WBDE 8.239± .085 
3MTM 

WBHC 

WBHC 7.969± .085 
3MTM 

WBDE 

Wood (W)*  
 

3MTM 6.672± .135 
WBDE 

WBHC* 

WBDE 6.444± .135 
3MTM 

WBHC* 

WBHC 7.275± .135 
3MTM* 

WBDE* 
aANOVA tests were completed to determine statistically significant associations 
between swabs and surfaces; Bonferroni alpha (*p<0.05) (adjustment method for 
pairwise comparisons).  DB= dairy brick, FGPP= food grade polypropylene (plastic), 
SS= stainless steel, W= wood. WBDE/WBHC=World Bioproducts swab with Dey 
Engley (DE) or HiCap (HC) neutralizing buffer. 
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Table 7: Recovery by method (enriched using mFDA, FDA (BLEB), Dual Enrichment 

(MOPS-BLEB), or mUSDA or enumerated with 3MTM EL Plates) and strain at low 

concentrations 

  Recoverya  (No. Positives/No. Samples Tested (%)) 

Method Nb 19115 1042B L. innocua 18 

FDA (BLEB) 324 90/108 (83.3) 90/108 (83.3) 88/108 (81.5) 
DUAL (MOPS-BLEB) 324 90/108 (83.3) 90/108 (83.3) 88/108 (81.5) 
mFDA 324 101/108 (93.5)* 98/108 (90.7)* 88/108 (81.5*) 
mUSDA 324 98/108 (90.7) 98/108 (90.7) 93/108 (86.1) 
3MTM PetrifilmTM ELP 324 66/108 (61.1) 72/108 (66.7) 67/108 (62.0) 

*Pearson chi square test determined that recovery by method was statistically significant (p<0.05) 
aIncludes % recovery from dairy brick, stainless steel, food grade plastic, and wood 
bTotal number of swab samples taken per strain from surfaces inoculated with 0.01-1 CFU/cm2  that were enriched 
using FDA (BLEB), Dual Enrichment (MOPS-BLEB), or mUSDA or enumerated with 3MTM EL Plates 

 
 

Table 8: Recovery by swab (3MtM environmental swabs, World Bioproducts 

environmental swabs with Dey Engley neutralizing buffer (WBDE) and HiCap 

neutralizing buffer (WBHC) and strain at low concentrations 

  Recoverya (No. Positives/No. Samples Tested (%)) 

Swab Nb 19115 1042B L. innocua 18 

3MTM  540 150/180 (83.3) 145/180 (80.6) 142/180 (78.9) 
WB® D/E  540 159/180 (88.3) 151/180 (83.9) 148/180 (82.2) 
WB® HC  540 136/180 (75.6)* 152/180 (84.4)* 134/180 (74.4)* 

*Pearson chi square test determined that recovery result by method was statistically significant (p<0.05) 
aIncludes % recovery from dairy brick, stainless steel, food grade plastic, and wood 
bTotal number of swab samples taken per strain from surfaces inoculated with 0.01-1 CFU/cm2   CFU/ml that 
were recovered using 3MTM environmental swabs, World Bioproducts environmental swabs with Dey Engley 
neutralizing buffer (WBDE) and HiCap neutralizing buffer (WBHC).  

 
 

Table 9: Recovery by surface (wood (W), dairy brick (DB), food grade 

polypropylene (FGPP, and stainless steel (SS)) and strain at low concentrations 

   Recoverya (No. Positives/No. Samples Tested (%)) 

Surface Nb 19115 1042B L. innocua 18 

W 405 91/135 (67.4) 88/135 (65.2) 75/135 (55.6) 
DB 405 115/135 (85.2) 113/135 (83.7) 109/135 (80.7) 
FGPP 405 120/135 (88.9) 128/135 (94.8) 120/135 (88.9) 
SS 405 119/135 (88.1) 119/135 (88.1) 120/135 (88.9) 
*Pearson chi square test determined that recovery by method was statistically significant (p<0.05) 
aIncludes % recovery from dairy brick, stainless steel, food grade plastic, and wood 
bTotal number of swab samples taken per strain from surfaces inoculated with 0.01-1 CFU/cm2  CFU/ml 
that were enriched using FDA (BLEB), Dual Enrichment (MOPS-BLEB), or mUSDA or enumerated with 
3MTM EL Plates



 

Table 10: Statistical significance of Listeria spp. recovery results from farm environmental samples by surface, swab 

type, and method 

Independent Variables  Dependent Variables 

    No. Positives/No. Samples Tested 
  

Nb 
Negative for  
Listeria spp./ 

No. Samples Tested 

L.m. L. innocua L.m. and Linnocua 
Total Listeria 

spp. Isolated 
from Samplesb 

Surfacea** 

W 36 21/36 (58.3) 2/36 (5.6) 6/36 (16.7) 7/36 (19.4) 15/36 (41.7) 
C 36 2/36 (5.6) 5/36 (13.9) 16/36 (44.4) 13/36 (36.1) 34/36 (94.4) 

FGPP 36 2/36 (5.6) 2/36 (5.6) 20/36 (55.6) 12/36 (33.3) 34/36 (94.4) 
SS 36 14/36 (38.9) 3/36 (8.3) 9/36 (25) 10/36 (27.8) 22/36 (61.1) 

 Total:  39/144 (27.1) 12/144 (8.3) 51/144 (35.4) 42/144 (29.2) 105/144 (72.9) 

Swaba 
3MTM 48 14/48 (29.2) 4/48 (8.3) 16/48 (33.3) 14/48 (29.2) 34/48 (70.8) 

WBDE 48 10/48 (20.8) 3/48 (6.3) 16/48 (33.3) 19/48 (39.6) 38/48 (79.2) 
WBHC 48 15/48 (31.3) 5/48 (10.4) 19/48 (39.6) 9/48 (18.8) 33/48 (68.8) 

 Total:  39/144 (27.1) 12/144 (8.3) 51/144 (35.4) 42/144 (29.2) 105/144 (72.9) 

Methoda MOPS-BLEB 72 21/72 (29.2) 3/72 (4.2) 23/72 (31.9) 25/72 (34.7) 51/72 (70.8) 
mUSDA 72 18/72 (25) 9/72 (12.5) 28/72 (38.9) 17/72 (23.6) 54/72 (75) 

 Total:  39/144 (27.1) 12/144 (8.3) 51/144 (35.4) 42/144 (29.2) 105/144 (72.9) 
aChi-square tests were completed on all crosstabulation analyses to determine statistically significant associations (**= p <0.001, *= p <0.05).  b Sum of 
individual samples that tested positive from L.m., L. innocua, or L.m and L. innocua.  DB= dairy brick, FGPP= food grade polypropylene (plastic), SS= 
stainless steel, W= wood. WBDE=World Bioproducts swab with Dey Engley (DE) or HiCap (HC) neutralizing buffer 3MTM EL Plate= 3MTM 
Environmental Listeria Plates 

bTotal number of swab samples taken per strain from surfaces inoculated with  0.01-1 CFU/cm2 that were enriched using FDA (BLEB), Dual Enrichment 
(MOPS-BLEB), or mUSDA or enumerated with 3MTM EL Plates. 
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Table 11: Statistical significance of farm environmental sampling results between 

independent variable interactions 

Independent Variablesa Sig. (p-value) 

 Listeria spp.  L. m.  L. innocua 

Surface and Method 0.698 0.667 0.395 
Swab and Method 0.868 0.050 0.769 
Swab and Surface 0.989 0.018* 0.799 

aLogistic regression tests were completed to determine statistical significance of interactions between independent 
variables at low concentrations. *=p<0.05 
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Table 12: Listeria monocytogenes Dupont ID Recovered from Surfaces and Swab Formats 

  Surface  Swab Format 
DUP ID 

L.m. 
Ribotype Plastic 

Stainless 
Steel 

Concrete Wood 
 

WBDE WBHC 3MTM 

1039 1039E    x  x   
1042 1042B  x    x   
1045 1045B x x x x  x x x 
1047 1047A   x    x  
1062 1062B   x     x 

18595 1062C  x      x 
18645 1045E x     x  x 
19157 1039E    x    x 
19169 1039A  x x   x x  
19178 1045A x x    x x x 
20233 1042A  x    x   
20248 1042B x x  x  x  x 

 x= presence 
 
 
  



 
 
 
 
 
 
 
 
 
 

 
Table 13: Environmental Listeria spp. contamination consistency recovered from surfaces  

Surface type  Sample Sites  Isolates Recovered  

Plastic Water Trough DUP-1042B, DUP-1045B, DUP-1045E, DUP-1045A, DUP-1042A, DUP-1039C 
 

Stainless Steel Pen Fencing DUP-1042B, DUP-1045B, DUP-1062C, DUP-1039A, DUP-1045A, DUP-1042A, DUP- 1039C 
 

Concrete Floor of Pen DUP-1045B, DUP-1047A, DUP-1062B, DUP-1039A 
 

Wood Barn Walls DUP-1039E, DUP-1045B, DUP-1039E, DUP-1039C 
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Figure 1: Enrichment Methods against 3MTM Environmental Listeria 

Enumeration Plates 
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Figure 2: Farm Site-Environmental Sampling Plan  



    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Comparison Using MI Between All Swab Formats at 11.5x Magnification on Surfaces. 
Left group: before swabbing (top left: 3MTM and P (plastic); top right: WBDE and SS (stainless steel; 
bottom left: WBHC and DB (diary brick); bottom right: 3MTM and W (wood)).  Right group: after 
swabbing top left: 3MTM from P (plastic); top right: WBDE from SS (stainless steel); bottom left: 
WBHC from DB (dairy brick); bottom right: 3MTM and W (wood). Other data not shown.  

 

3MTM on P: After WBDE on SS: After

WBHC on DB: After 3MTM on W: After

3MTM on P: Before WBDE on SS: Before

WBHC on DB: Before 3MTM  on W: Before
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