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Table 3.3 Performance and composition of substrate recipes before and after cultivation of Pleurotus ostreatus. 

Recipes   Before Inoculation After fruiting (SMS) Biological 
efficiency (%) 

First flush (% 
Total Yield) 

LOM (% 
dry matter) 

   C:N C:P N:P C:N C:P N:P 

Group 1        Mean ± SD Mean ± SD  

R1-Control 100% SD 605:1 4840:1 8:1 282:1 4800:1 17:1 4 ± 3 60 ± 44 0.9 

R2-A 50% SS-A, 50% SD 32:1 189:1 6:1 29:1 1573:1 6:1 63 ± 6 
*
 58 ± 12 30.0 

R2-B 50% SS-B, 50% SD 22:1 64:1 6:1 22:1 55:1 6:1 25 ± 6 55 ± 19 16.4 

R3-A 70% SS-A, 30% SD 30:1 134:1 2:1 26:1 415:1 2:1 44 ± 10 
*
 62 ± 23 23.5 

R3-B 70% SS-B, 30% SD 21:1 45:1 2:1 20:1 38:1 2:1 DNC DNC 6.0 

Group 2                     

R4-Control 50% SH, 50% SD 55:1 668:1 12:1 60:1 2275:1 38:1 111 ± 11 76 ± 9 39.5 

R5-A 15% SS-A, 35% SH, 50% SD 45:1 372:1 8:1 44:1 755:1 17:1 115 ± 13 69 ± 9 38.4 

R5-B 15% SS-B, 35% SH, 50% SD 36:1 170:1 7:1 33:1 176:1 9:1 104 ± 11 63 ± 18 40.5 

R6-A 35% SS-A, 15% SH, 50% SD 44:1 238:1 4:1 34:1 281:1 5:1 85 ± 15 
*
 63 ± 9 40.9 

R6-B 35% SS-B, 15% SH, 50% SD 35:1 87:1 2:1 30:1 63:1 2:1 40 ± 17 
*
 84 ± 18 35.5 

SD = Sawdust; SH = Soyhull; SS-A = Separated Solids A; SS-B = Separated Solids B; DNC = Did not colonize     

* 
Biological efficiency significantly different from respective group control 
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This finding suggests the more nutrient-rich SS-B may have more limited use at higher 

proportions than SS-A for cultivation of P. ostreatus (Figure 3.1). Another property of 

SS-B that may have suppressed mycelium colonization and mushroom yield was the 

relatively elevated conductivity (Table 3.2), which may be a result of food waste 

feedstocks to the digester having high salt content. Further testing would be needed to 

confirm this hypothesis. 

Group 2 R4-Control produced a mean total yield of 1107 ± 11 g FW mushroom 

per kilogram dry substrate (111 ± 11% biological efficiency), greater than 25 times the 

mass harvested from R1-Control and indicates a positive effect from soyhull additions.  

Mean yield for Group 2 recipes ranged from 399 ± 167 g FW mushroom kg-1 dry 

substrate (40 ± 17% biological efficiency) for R6-B to 1148 ± 127 g FW mushroom kg-1 

dry substrate (115 ± 13% biological efficiency) for R5-A, the most productive recipe 

tested (Figure 3.1, Table 3.3).  The top three performing recipes were all from Group 2, 

and included R4-Control, R5-A, and R5-B.  These recipes showed no significant 

difference (P >0.05) in mean total yield (Figure 3.1) and ranged from 104 – 115% 

biological efficiency. First flush ranged from 55% (R2-B) to 62% (R3-A) of total yield 

for Group 1 and from 63% (R5-A, R5-B) to 84% (R6-B) for Group 2 (Table 3.3).  The 

LOM after mushroom fruiting was lowest for R1-Control (0.9%) and greatest (41%) for 

R6-A.   

Total yields for the two best performing recipes in this study with SS ingredients 

(R5-A, R5-B) are the highest reported for P. ostreatus cultivated with biogas residuals. 

These yields exceed the maximum biological efficiency reported by Isikhuemhen et al. 

(2009a) of 96 ± 15% for P. ostreatus cultivated on substrates including 20% solid 

digestate from broiler chicken litter, 70% wheat straw, and 10% millet.  Zhou et al. 
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(2018) determined solid digestate from chicken manure and wheat straw feedstocks could 

be used to replace cottonseed hulls at a rate of 10 – 20% dry weight to achieve yields (64 

- 65% biological efficiency) comparable to the 80% cottonseed hull, 18% wheat bran, 

and 2% lime control recipe. Banik and Nandi (2004) report a much higher yield (186% 

biological efficiency) for P. sajor-caju cultivated on biogas residual slurry from cattle 

manure, poultry litter, jute caddis and municipal solid waste feedstocks mixed with rice 

straw in a 1:1 ratio.  Zhang et al. (2002) observed 128% biological efficiency for P. 

sajor-caju cultivated on rice straw, and 97% on wheat straw substrates.  

A group of relatively high-performing recipes were selected to test a series of 

correlations to develop hypotheses regarding which substrate characteristics are good 

predictors of mushroom yield.  These are described in subsequent sections below.  

Recipes selected include Group 1 50/50 sawdust:SS mixes (R2-A, R2-B) and all recipes 

from Group 2.  Total yields for this group ranged from 245 – 1148 g kg-1 dry substrate 

and C:N ratios of initial substrates ranged from 22 – 55:1.   

3.3.3.  Protein Content and Safety of Mushroom Tissues 

Elemental composition and nutritional quality of harvested mushroom tissues are 

presented in detail in Appendix A. Element concentrations varied widely among samples. 

P showed the greatest variability among the three major macronutrients (N, P, and K) and 

ranged from 1.3 – 11.0 g P kg-1 DM.  Mean protein content was 142 g kg-1 DM and 

ranged from 14 – 18%.  Previous authors have shown nutrient concentrations may vary 

between different parts of mushroom fruit bodies (i.e. pileus, stipe, mycelium) and little 

is known about the C:N:P ratios of individual species or groups of fungi (Bernaś et al., 

2006; Zhang & Elser 2017). All mushroom tissues were deemed safe for human 
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consumption when compared to safety standards set by the United States Food and 

Nutrition Board, a division of the National Academies Institute of Medicine.   

3.3.4.  C:N:P Ratios 

Increasing proportions of separated solids in Groups 1 and 2 decreased C:N and 

N:P ratios of recipes compared to respective controls (Table 3.3).  Recipe C:N ratio was 

positively correlated with total yield (r2 = 0.562, P = 0.032; for Group 1 50/50 mixes and 

Group 2 recipes). The C:N ratios of the three most productive recipes ranged from 36:1 to 

55:1. Zhou et al. (2018) found similar results when substrate combinations of cottonseed 

hulls, wheat bran, lime, and biogas solids were tested for cultivation of P. ostreatus.  

Recipes with 10% and 20% biogas solids kg-1dry substrate were the top two highest 

yielding recipes with biogas solids used, with C:N ratios of 33:1 and 38:1, respectively, 

and were not statistically different in yield from a control with C:N ratio of 46:1.  

Isikhuemhen and Mikiashvilli (2009a) found substrate combinations with C:N ratio of 

72:1 to 81:1 produced the highest yields of P. ostreatus.  While some supplementation 

with SS was useful for increasing yields, higher amounts of supplementation appeared to 

force nutrient concentrations and the C:N ratio of recipes to levels counterproductive for 

mushroom fruit body growth and development (Figure 3.1), a finding consistent with 

other studies (Belletini et al., 2016; Isikhuemhen & Mikiashvilli, 2009a; Zhou et al., 

2018). The N:P ratio of the three most productive recipes ranged from 7:1 (R5-B) to 12:1 

(R4-Control). The N:P ratio decreased with increasing proportions of SS for all recipes.  

This demonstrates the P fertilization effect of SS additions to substrate recipes. 
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3.3.5.   Nutrient Mass Balance 

Figure 3.2 shows N and P nutrient mass balances for the three highest yielding 

recipes (R5-A, R4-Control, R5-B) using measurements of nutrients contained within 

recipe substrates, mushroom tissue, and SMS. Total input N averaged 9.67 ± 1.16 g N per 

kg dry substrate for these recipes and ranged from 8.33 g N (R4-Control) to 10.41 g N 

(R5-B). SH contributed more N than SS for these substrate recipes and ranged from 

52.7% (R5-B) to 95.5% (R4-Control) of total input N. 

 
Figure 3.2 Nitrogen and phosphorus mass balance per kg dry substrate during cultivation of P. ostreatus in 
the UVM experiment (n = 4 per recipe) using the top three highest yielding substrate recipes.   
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Percent recovery of total input N as NMushroom and NSMS ranged from 124.4% (R4-

Control) to 106.1% (R5-A) for the three highest yielding recipes. Mean recovery of total 

N inputs in mushroom tissue was 52.6 ± 14.2% for the three highest yielding recipes. For 

R5-A and R5-B, the amounts of N harvested in mushrooms were similar to that added in 

SS materials.  

The average P content of inputs for the three highest yielding recipes was 1.53 ± 

1.03 g P per kg dry substrate and ranged from 0.68 g P (R4-Control) to 2.68 g P (R5-B).  

P was more abundant in recipes that included SS.  Percent recovery of total input P as 

PMushroom and PSMS ranged from 103.7% (R5-B) to 123.0% (R4-Control) for the three 

highest yielding recipes. Recovery above 100% was likely a result of neglecting 

contributions from added grain spawn, as well as the margin of error for each component 

of the mass balance. Greater masses of P were harvested in mushrooms from both R5 

recipes, despite R4-Control producing higher yield than R5-B.  Recovery of P as saleable 

mushroom for the highest yielding recipe (R5-A) was 75.7% of total input P, and more P 

was recovered in mushrooms (0.93 g P dry kg-1 initial substrate) than was added in the SS 

component of this substrate recipe (0.74 g P dry kg-1 initial substrate).  PMushroom was 

greater than PSMS for R4-Control and R5-A.  For R5-B, 47.9% of initial substrate P was 

recovered in mushrooms.  

3.3.6.  Change in Carbon Quality  

Spent mushroom substrate showed lower proportions (% DM) of stable carbon 

than uninoculated substrate recipes for Group 1 50/50 mixes (R2-A, R2-B) and Group 2 

recipes discussed below (Figure 3.3).  The ratio of cellulose to lignin was generally lower 

for SMS than uninoculated recipes.  Hemicellulose content of uninoculated substrate 
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recipes ranged from 17.6% (R4-Control) to 17.9% (R5-B). Degradation of hemicellulose 

was greatest for R5-B (32.4% loss) and lowest for R5-A (25.7% loss). Cellulose content 

in uninoculated substrate recipes ranged from 45.1% (R5-A) to 47.5% (R4-Control). Loss 

of cellulose ranged from 3.5% (R4-Control) to 23.2% (R5-B). Loss of hemicellulose was 

greater than loss of cellulose for all recipes tested (Figure 3.3), a finding supported by 

previous reports that P. ostreatus preferentially degrades hemicellulose over cellulose 

(Wang et al., 2001). Surprisingly, percent loss of hemicellulose showed a negative 

significant relationship with total yield (r2 = 0.805, P = 0.006).  Percent loss of cellulose 

showed no relationship (r2 = 0.187, P = 0.332).  Lignin content of initial substrate recipes 

ranged from 10.6% (R4-Control) to 12.7% (R2-A).  The greatest loss of lignin occurred 

for R5-A (29.8%) and was lowest for R4-Control (0.5%).  Yield and percent lignin loss 

showed no relationship (r2 = 0.124, P = 0.438).  Isikhuemhen & Mikiashvilli (2009a) 

determined the greatest loss of lignin occurred in substrate combinations that produced 

the lowest mushroom yields. Their findings were supported by previous work by Wang et 

al. (2001) who found a high degree of lignin degradation did not support the highest 

yields in P. ostreatus when cultivated on spent beer grain.  Results from this study 

suggest lignin degradation is not positively or negatively associated with mushroom yield 

but may be better explained by characteristics of the substrate that influence ligninolytic 

enzyme expression.   
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Figure 3.3 Change in lignin, cellulose, and hemicellulose as percent dry matter of substrate recipes before 
inoculation compared to residual SMS for Group 1 50/50 sawdust:SS controls (R2-A, R2-B) and Group 2. 

 

Two important enzyme groups involved in lignin degradation, versatile 

peroxidases (VPs) and manganese peroxidases (MnPs), are more readily expressed by 

Pleurotus spp. in nitrogen-rich substrates (Knop et al., 2015). Of the three highest 

yielding substrate recipes discussed here, the recipe with the lowest C:N ratio (R5-B) 

showed the greatest rate of loss for cellulose and hemicellulose, but not for lignin (Figure 

3.3). Interestingly, soyhull and SS-A had the highest levels of NH4-N for all substrate 

ingredients and were used in combination in R5-A, the recipe with the highest yield and 

greatest loss of lignin. SS-A also contained some NO3-N which was not detected in 

sawdust or soyhull ingredients.  A combination of inorganic N sources as NH4-N and 
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NO3-N may have helped support high yield and greatest degradation of lignin. 

Interestingly, substrate NH4-N showed a strongly positive relationship with total yield   

(r2 = 0.859, P = 0.003), while substrate NO3-N showed a significant negative relationship 

(r2 = 0.654, P = 0.028).  Both separated solids materials also contained more Mn than 

sawdust and soyhull, a crucial element for in the production of MnP.  

3.3.7.  Value of Spent Mushroom Substrate (SMS)                                                                                                                                                                                                                                        

In this study, we demonstrate how mushroom cultivation can be used to produce 

spent mushroom substrate with greater N:P ratios than initial substrate mixtures (Table 

3.3). One possible benefit is that greater N:P ratios of SMS can be leveraged to support 

soil nitrogen fertility while limiting over-application of phosphorus. Total N and P 

contents of SMS produced from the top three yielding recipes ranged from 7.6 to 12.8 g 

N kg-1 dry SMS and 0.2 to 2.5 g P kg-1 dry SMS. Total inorganic N of SMS produced 

from the top three yielding recipes ranged from 0.02 to 0.34 g kg-1 dry SMS.  

Additionally, SMS may be useful for balancing C:N ratios of compost recipes or for 

recycling as a bioenergy feedstock as a result of lowered lignin content (Phan & 

Sabaratnam, 2012).   

Spent mushroom substrate has often been regarded as a waste product and its 

disposal can be challenging in both developed and developing regions of the world.  In 

China, where 70% of global mushroom production occurs, excess SMS is commonly 

burned (Zhu et al., 2013). To help manage excess SMS, researchers have evaluated its 

use for a variety of applications including crop production, pest management, 

bioremediation of soil, air, and water, as food for ruminants and in aquaculture, 

bioenergy feedstock, and re-use as substrate for mushroom cultivation (Rinker, 2017).  
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Studies examining the usefulness of SMS have largely focused on products derived from 

production of Agaricus bisporus due to the species’ dominant role in the global industry. 

As diversity of cultivated species has increased, so has the range of SMS materials and 

research to explore their applications for reuse.   

Spent mushroom substrate from cultivation of Pleurotus spp. been shown to be a 

valuable animal feed, soil amendment, biocontrol, bioenergy feedstock, compost bulking 

agent, and wastewater treatment medium depending on the characteristics of the material 

and associated enzymes (Chang & Lau, 1981; Mohd Hanafi et al., 2018).  Enzymes 

stored in SMS from Pleurotus spp. have made the material useful for degrading 

polycyclic aromatic hydrocarbons (PAHs) and other persistent organic pollutants 

including phenolic compounds and dyes.  SMS from Pleurotus spp. has also been used 

for biosorption of heavy metals in contaminated wastewaters (Singh, 2006). Studies have 

shown SMS from cultivation of P. ostreatus may also be a useful biological control for 

certain nematode pests in soils (Kwok et al. 1992; Degenkolb and Vilcinskas, 2016).  

Developing markets for SMS products is an important factor contributing to the overall 

sustainability of the mushroom cultivation industry and for integrating the strategy with 

organics recycling to develop a more circular economy (Grimm and Wösten, 2018, 

Stoknes et al., 2016).   

3.3.8.   Potential Applications and Future Work 

 My results indicate that anaerobic digestion of dairy manure and food waste 

feedstocks can be coupled with mushroom farming to recycle nutrients back into the food 

system to reduce land application of nutrients. I recommend commercial mushroom 

growers offset non-local N-supplements (such as soyhulls) in sawdust-based recipes with 
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SS at rates of 15% dry substrate depending on availability and cost. In settings where SS 

is readily available and costs less than non-local import ingredients, greater rates of 

supplementation may be economically competitive. Low to moderate reductions in yield 

may even be tolerable with increasing proportions of SS >15% if savings from reduced 

import costs of non-local ingredients compare with reductions in sales of fresh 

mushrooms. I recommend growers continue to experiment with SS materials in a variety 

of substrate combinations to test their use for cultivation other high-value species. 

Mushroom farming is a strategy that can employ a wide range of regionally-

available agroforestry byproducts and produce vegetarian protein (Sánchez, 2009), 

providing a direct link from waste (digestates) to human food. Preliminary calculations 

suggest that if 100 small-scale mushroom farms (New Hampshire Mushroom Company 

and North Spore) were to adopt the top yielding recipes with SS ingredients tested in this 

study (R5-A, R5-B) and maximize production, this could utilize 9% and 17%, 

respectively, of annual digester P outflows from supplier dairy farms.  These calculations 

suggest, unsurprisingly, that industrial scale mushroom farming would be required to 

convert P outflows from industrial scale dairy farms to mushrooms at a meaningful scale 

for nutrient management.  Such industrial scale operations are currently on display in the 

Netherlands, where Pleurotus ostreatus is commonly cultivated on pasteurized wheat 

straw (Buth, 2017).   

Future work should focus on broadening the range of mushroom species tested, 

optimizing recipes including digestate materials to produce the high yields, testing the 

value of SMS products for a variety of applications to determine their most efficient use, 

and life cycle assessment to determine environmental costs and benefits across the entire 

process. Here, I have only tested screw-press separated primary solids from digester 



 

79  

residues. Further research is needed to test separated fine solids (e.g., those removed by 

dissolved air floatation post-screw press) and liquid digestate materials, which together 

offer a larger pool of nutrients to target for recovery in some systems, in mushroom 

cultivation. As with most nutrient recovery strategies, a central challenge to establishing 

linked anaerobic digestion and mushroom cultivation in practice will be the development 

of sustainable business models at multiple scales (Otoo and Drechsel, 2018). 

3.4. Conclusions  

This study suggests a range of separated solid (SS) digestate materials from dairy 

manure and food waste feedstocks can be useful ingredients for commercial cultivation of 

P. ostreatus.  Optimal proportions of SS in substrate recipes will vary depending on the 

physicochemical properties of the material and other ingredients. Optimal recipes can be 

designed to sequester most nutrients in saleable mushroom tissues, while also producing 

spent mushroom substrate (SMS) materials with reduced recalcitrant organic matter 

content and greater C:N:P ratios desirable for soil amendment products or compost 

feedstocks. Utilizing separated solid digestates in mushroom cultivation represents a 

potentially high-value reuse of this material and could help reduce excessive land 

application of nutrients to land nearby digesters and create a new export market for these 

materials. 
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CHAPTER 4. CONCLUSIONS 

Increased “food waste” recycling in anaerobic dairy farm digesters is likely to 

increase the range of variability for some characteristics of residual “digestate” 

byproducts with implications for nutrient management planning and developing markets 

for digestate export products.  This variability is expected to be related to specific 

feedstock recipes rather than simply the proportion of “food waste” as total annual 

feedstock.  Repeated sampling of facilities should be adopted to achieve a more accurate 

understanding of how nutrient budgets on individual farms may be affected by 

continuous inputs of off-farm feedstocks and how characteristics of digestate residuals 

may vary over time.  Increasing rates of contamination with microplastics and other 

synthetic contaminants as a result of increased food waste inputs is of serious concern. 

Without more effective strategies to reduce or remove contamination, developing 

consumer markets for these materials may not be possible.   

Marketing screw-press separated solids to mushroom growers represents a novel 

application of these materials that has not yet been explored in the United States.  In 

addition, mushroom cultivation with separated solids is one strategy for nutrient recovery 

that skips over land application to achieve a more direct pathway to produce vegetarian 

protein-rich food while reducing the mass of nutrients destined for disposal on 

agricultural lands.  Next steps should continue to explore use of digestate materials for 

cultivation of a more diverse selection of economically-valuable species, while also 

working to develop markets for residual spent mushroom substrate.  Envisioning a 

system where anaerobic digestion for energy production is integrated with aerobic 

decomposition by fungi to produce food, draws inspiration from natural systems and may 

in fact be archetypal of a truly circular nutrient economy. 
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APPENDIX A. Nutritional value and safety of mushroom tissues produced from substrate recipes tested. 

 

Recipe 
Protein Al As B Ca Cd Cr Cu Fe K Mg Mn Ni  P Pb Zn 

mg     
kg-1 

mg 
kg-1 

mg   
kg-1 

mg   
kg-1 

mg 
kg-1 

mg     
kg-1 

mg   
kg-1 

mg 
kg-1 

mg 
kg-1 

mg   
kg-1 

mg 
kg-1 

mg 
kg-1 

mg 
kg-1 

mg 
kg-1 

mg   
kg-1 

mg   
kg-1 

Group 1                                 

R1-Control 145022 64.6 n.d. 6.7 84.9 n.d. n.d. 7.7 123.3 24638 1814 14.9 n.d. 11028 n.d. 71.3 

R2-A 141080 < 5.0 < 0.08 13.3 30.9 < 2.0 < 2.0 14.2 83.0 25313 1542 8.1 < 2.0 10546 < 2.0 58.5 

R2-B 155315 5.9 0.273 40.4 23.3 < 2.0 < 2.0 12.3 58.2 21780 1125 5.4 < 2.0 8669 < 2.0 44.4 

R3-A 164162 < 5.0 n.d. 20.7 17.8 n.d. n.d. 14.1 83.1 23748 1507 7.7 n.d. 10953 n.d. 62.1 

Group 2                                 

R4-Control 175945 19.8 < 0.08 6.5 36.6 < 2.0 < 2.0 11.9 83.9 20584 1242 6.8 < 2.0 5390 < 2.0 68.9 

R5-A 160746 30.7 < 0.08 8.7 58.0 < 2.0 < 2.0 12.6 70.9 21900 1340 7.0 < 2.0 7500 < 2.0 56.6 

R5-B 164688 12.1 < 0.08 5.5 24.7 < 2.0 < 2.0 12.0 70.0 24500 1470 8.0 < 2.0 10400 < 2.0 61.4 

R6-A 154614 21.0 n.d. 12.0 44.1 n.d. n.d. 11.8 82.1 23900 1460 7.9 n.d. 10100 n.d. 59.1 

R6-B 155534 < 5.0 n.d. 19.9 18.4 n.d. n.d. 10.5 62.9 22244 1281 6.5 n.d. 9562 n.d. 51.9 

Range (mg kg-1 
dry mushroom)1 

141080 - 
175945 

< 5.0 
- 64.6 

< 0.08 - 
0.273 

5.5 - 
40.4 

17.8 - 
84.9 < 2.0 < 2.0 

7.7 - 
14.2 

58.2 - 
123.3 

20584 - 
25313 

1125 - 
1814 

5.4 - 
14.9 < 2.0 

5390 - 
11028 < 2.0 

44.4 - 
71.3 

Range (mg kg-1 
fresh 
mushroom)1 

14108 - 
17594 

<0.5 - 
6.5 

< 0.008 
- 0.027 

0.55 - 
4.04 

1.78 - 
8.49 < 0.2 < 0.2 

0.77 - 
1.42 

5.82 - 
12.3 

2058 - 
2531 

113 - 
181 

0.54 - 
1.49 < 0.2 

539 - 
1103 < 0.2 

4.44 - 
7.13 

Max mg per 100 
g fresh serving 1795 0.646 0.003 0.404 0.849 N/A N/A 0.142 1.23 253 18.1 0.149 N/A 110 N/A 0.713 

Recommended dietary intake limits from literature 

RDA or AI      
(mg d-1) 2,3 

5600, 
4600 

ND ND ND 1000 ND 35, 25* 0.9 8, 18 4700 410, 
315  

2.3, 
1.8* 

ND 700 ND 11, 8 

UL (mg d-1) 2,4 ND ND ND 20 2500 0.001$ ND 10 45 No UL 350 11 1.0 4000 0.006 ! 40 

Oral MRL (mg 
kg b.w.-1 d-1) 5,6 - 1.0 i,c 0.005a, 

0.0003c 
0.02 a,i - 0.0005i, 

0.0001c 
0.005i, 

0.0009c 
0.01 a,i - - - - - - - 0.03 i,c 

 

90 



 

91  

 
1 Assume average mushroom tissue moisture = 90% 
2 United States Food and Nutrition Board, Institute of Medicine, National Academies  
3 RDA  =  Recommended Dietary Allowance; AI = Adequate Intake; RDAs and AIs may both be used as goals for individual intake. AI followed by an 
asterisk (*). Values shown for 19-50 years males, females.  RDAs are set to meet the needs of almost all (97 to 98 percent) individuals in a group. The AI 
for life stage and gender groups is believed to cover the needs of all individuals in the group, but lack of data prevent being able to specify with confidence 
the percentage of individuals covered by this intake. 
 
4 UL = Tolerable Upper Limit; The maximum level of daily nutrient intake that is likely to pose no risk of adverse effects. Unless otherwise specified, the 
UL represents total intake from food, water, and supplements. Due to lack of suitable data, ULs could not be established for potassium. In the absence of 
ULs, extra caution may be warranted in consuming levels above recommended intakes. 

5 MRL = Minimum Risk Level (mg kg body weight-1 d-1). For duration, aAcute = 1 to 14 days, iIntermediate = 15 to 364 days, and cChronic = 1 year or 
longer. 

6 Chou, C. H. S. J., Holler, J. A. M. E. S., & De Rosa, C. T. (1998). Minimal risk levels (MRLs) for hazardous substances. J. Clean Technol. Environ. 
Toxicol. Occup. Med, 7(1), 1-24. 
$ EPA Food - Reference dose is 1 x 10-3 mg/kg/day (ATSDR 1999). 
! U.S. Food & Drug ; https://www.fda.gov/Food/FoodborneIllnessContaminants/Metals/ucm557424.htm 
n.d. = not determined 

ND = Not determinable due to lack of data of adverse effects in this age group and concern with regard to lack of ability to handle excess amounts. Source 
of intake should be from food only to prevent high levels of intake 

                                 
2 SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for 
Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for 
Vitamin C, Vitamin E, Selenium, and Carotenoids (2000); Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, 
Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001); Dietary Reference Intakes for Energy, Carbohydrate, 
Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (2002/2005); and Dietary Reference Intakes for Calcium and Vitamin D (2011). 
These reports may be accessed via www.nap.edu.  
6 Chou, C. H. S. J., Holler, J. A. M. E. S., & De Rosa, C. T. (1998). Minimal risk levels (MRLs) for hazardous substances. J. Clean Technol. 
Environ. Toxicol. Occup. Med, 7(1), 1-24. 
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