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ABSTRACT  

In spite of substantial investments in science, technology, engineering, and mathematics 

(STEM) education, low enrollment and high attrition rate among students in these fields 

remain an unmitigated challenge for higher education institutions. In particular, 

underrepresentation of women and minority students with STEM-related college degrees 

replicates itself in the makeup of the workforce, adding another layer to the challenge. 

While most studies examine the relationship between student characteristics and their 

outcomes, in this study, I take a new approach to understand academic pathways as a 

dynamic process of student curricular experiences that influence his/her decision about 

subsequent course-takings and major field of the study. I leverage data mining techniques 

to examine the processes leading to degree completion in STEM fields. Specifically, I 

apply Sequential Pattern Mining and Sequential Clustering to student transcript data from 

a four-year university to identify frequent academic major trajectories and also the most 

frequent course-taking patterns in STEM fields. I also investigate whether there are any 

significant differences between male and female students’ academic major and course-

taking patterns in these fields.  

 

The findings suggest that non-STEM majoring paths are the most frequent academic 

pattern among students, followed by life science trajectories. Engineering and other hard 

science trajectories are much less frequent. The frequency of all STEM trajectories, 

however, declines over time as students switch to non-STEM majors. The switching rate 

from non-STEM to STEM fields overtime is, however, much lower. I also find that male 

and female students follow different academic pathways, and these gender-based 

differences are even more significant within STEM fields.  

  

Students’ course-taking patterns also suggest that taking engineering and computer 

science courses is predominantly a male course-taking behavior, while females are more 

likely to pursue academic pathways in life science. I also find that STEM introductory 

courses - particularly Calculus I, Calculus II and Chemistry I – are gateway courses, that 

serve as potential barriers to pursuing degrees in STEM-related fields for a large number 

of students who showed an initial interest in STEM courses. Female students were more 

likely to switch to non-STEM fields after taking these courses, while male students were 

more likely to drop out of college overall.  

 

In addition to the study’s findings on students’ academic pathways toward attaining a 

college degree in a STEM-related field, this study also shows how data mining 

techniques that leverage data about the sequence of courses students take can be used by 

higher education leaders and researchers to better understand students’ academic progress 

and explore how students navigate and interact with college curriculum. In particular, this 

study demonstrates how these analytic approaches might be used to design and structure 

more effective course taking pathways and develop interventions to improve student 

retention in STEM fields
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CHAPTER 1: INTRODUCTION 

Higher education institutions in the United States face a serious challenge in 

attracting and retaining students in Science, Technology, Engineering, and Mathematics 

(STEM) fields. Evidence shows that the number of college students who intend to pursue 

a degree in STEM fields has been consistently lower than other fields (Hill, Corbett, & 

St. Rose, 2010). Only 15 percent of freshmen students enrolled in the U.S. post-

secondary education in 2011-12 reported that they intended to declare a major in a STEM 

fields (National Science Board, 2016). An additional concern is that roughly half of those 

undergraduates who show an initial interest in a STEM-related major in college switch 

out of these fields within their first two years of study, and very few students who were 

initially non-STEM majors switch to STEM majors (Chen, 2013; Kokkelenberg & Sinha, 

2010). Although low completion and switching rates are not unique to STEM fields, it is 

more concerning in these fields because many STEM leavers are actually high-

performing students who might make valuable additions to STEM workforce (Chen, 

2015; Seymour, 2002).  

In addition to low enrollment and persistence rates, there are significant gender 

and racial gaps in STEM fields - both in terms of the individuals who intend to enroll in 

these fields and those who successfully finish degrees. Evidence suggests that women 

and underrepresented groups do not pursue or complete STEM-related degrees at higher 

rates than their counterparts (Bebe-vroman, Juniewicz, Lucarelli, Fox, Nguyen, & Tjang, 

2017; Bowen, Chingos, & McPherson, 2009; Chen, 2013; George-Jackson, 2016; Hill et 

al., 2010; Huang, Taddese, & Walter, 2000; Seymour & Hewitt, 1997; Simpson, 2001). 
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This raises the question of whether higher education institutions are also capable of 

ensuring equal educational opportunities for all students.  

Past studies that investigated college students’ persistence in STEM fields focused 

primarily on individual and institutional characteristics and their impact on student 

outcomes, particularly existing disparities in enrollment and outcomes among different 

student groups. However, existing research has paid less attention to a student’s academic 

behavior throughout college. There is no doubt that individual and institutional 

characteristics play important roles in determining a student’s academic performance; 

however, such studies offer very little insight into the processes that lead to graduation or 

noncompletion within educational institutions. Understanding this process is an important 

consideration when evaluating differences in student outcomes. A student’s pathway 

toward a degree is a dynamic process of curricular experiences that influence his/her 

decision about subsequent course-takings and major field of the study (Chen, 2013; 

Shapiro & Sax, 2011). Yet, most existing research subscribes to a traditional input/output 

conceptual framing of the problem, and likewise employs analytic approaches that 

describe the relationship between some input-related variables and whether students 

persist toward or complete degrees in STEM fields. In fairness, the rationale for this 

framing and analytic approach is due to the fact that even the most detailed of linear 

modeling techniques do not have the capacity to describe the dynamic processes at work 

that shape the various academic trajectories students take to earn a degree. Therefore, our 

knowledge about what actually happens along students’ academic pathways through 

STEM pipeline is very limited. That is, while students’ coded transcript data detailing 
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their progress toward a degree is collected by higher education institutions, researchers 

have rarely considered using these data to identify the pathways that align with academic 

major selection and successful degree attainment in STEM fields. 

 Studying students’ academic pathways – particularly their course taking behavior 

while in college – could provide valuable insight into the phases of study or sequence of 

courses that comprise students’ experiences. This information can then be used to answer 

questions of how and why students decide to persist toward and complete degrees in 

STEM-related fields. In other words, by examining students’ course taking patterns, we 

could potentially identify courses that function as a road block for different student 

groups pursuing STEM fields, and conversely, identify the paths students take toward 

successfully completing a degree in a STEM field. These patterns may also offer valuable 

information about how students’ academic pathways are related to decisions to leave or 

switching fields within STEM majors. For instance, evidence suggests that there may be 

gender differences among STEM fields (George-Jackson, 2016; Kokkelenberg & Sinha, 

2011; Ost, 2010) – e.g., biological/life science attract more female students than hard 

sciences such as physics, engineering, and computer sciences. Investigating differences in 

course-taking patterns may provide a better understanding of such gender-based patterns 

within STEM fields as well (Kokkelenberg & Sinha, 2011).  

Despite all the potential benefits, students’ academic behavior including major 

and course-taking patterns in educational institutions, in general, and in STEM fields in 

four-year colleges, in particular, has been rarely examined by researchers. This may be 

due to the challenges with empirically mapping these patterns. However, recently, 
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significant progress has been made in different fields to develop and apply new 

methodologies to discover useful patterns in student course taking. These methodologies, 

generally referred to as “Data Mining” are devoted to extracting hidden knowledge from 

vast amounts of daily accumulated data. In the field of education, the application of such 

methods has been mostly limited to E-learning, but rarely applied to traditional 

educational settings (Luan, 2002). A rare exception is the few research projects (e.g., 

Crosta, 2014; Wang, 2016) conducted in community college settings where the 

researches have taken an innovative approach and used data mining techniques to 

understand student course taking patterns.  

This study addresses limitations in current research by applying data mining 

techniques to better understand students’ academic major and course taking patterns in 

STEM fields. Identifying these patterns may not only shed light on course taking paths 

that lead to STEM major selection and ultimate degree attainment, but also identify 

particular types of courses or sequence of courses that may act as gatekeeper, leading 

some students to leave their field by switching to other fields or leaving a university 

altogether.  

Background 

 

Existing studies that investigate college students’ enrollment report a consistent 

low enrollment rate in undergraduate majors in STEM fields (Chen, 2013; Hill et al., 

2010). Depending on the definition of STEM fields and undergraduate STEM majors, 

different enrollment rates have been reported by different studies (Chen, 2013). That said, 

the majority of researchers agree that enrollment rates in STEM-related academic majors 
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are significantly lower than non-STEM fields. For instance, the National Science Board’s 

report on Science and Engineering Indicators (2016) found that STEM majors accounted 

for just 20 percent of all undergraduate students enrolled in U.S. post-secondary 

education during 2011-12 academic year.  

While STEM employment has grown at twice the rate of other non-STEM 

occupations and there are significant economic incentives (e.g., higher wages) for people 

to earn a STEM degree, we have not seen a solid increase in the number of students 

entering STEM fields (Bowen, Chingos, & McPherson, 2009). Lowell, Salzman and 

Bernstein (2009) examined six cohorts of students reaching back to the early 1970 using 

several longitudinal data sets. Their findings affirm that, on average, there have been no 

substantive changes in the proportion of high school graduates who enroll in STEM-

related academic majors between 1972 to 2000. Their study also suggests that high-

performing high school students are more likely to enter STEM fields than their low 

performing counterparts. The most concerning finding, however, is that there has been a 

rapid decline in the enrollment of top achievers in STEM fields from 28.7 percent in the 

1992/97 cohort to 13.8 percent in the 2000/05 cohort.  

In addition to the low enrollment rates in academic STEM majors, a number of 

studies report a gender difference in the share of students who pursue academic majors in 

a STEM-related field. In their longitudinal study, Xie and Shauman (2003) find a large 

gender imbalance among high school seniors intending to major in science and 

engineering in college. For every two males there was only one female who expressed 

interest in an academic major in a STEM-related field. Other studies (e.g., Chen, 2009; 
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Hill et al., 2010) portray a similar picture. According to annual American freshman 

record (Pryor et al., 2010), among first-year college students nationwide, only 17.3 

percent of women report planning to major in a STEM field compared to 32.2 percent 

among men. Similarly, Chen (2013) reports a much higher percentage of STEM 

enrollment for men compared to women (around 33 percent vs. 14 percent), especially in 

engineering, physical sciences, and computer sciences. Other studies confirm the same 

results (e.g., George-Jackson, 2016; Simpson, 2001).  

Another difficulty that institutions of higher education face is retaining students 

who initially intend to complete academic majors in STEM-related fields. The National 

Center for Education Statistics examined college students’ paths into and out of STEM 

fields using several longitudinal data sets found striking results: Between 2003 and 2009, 

48 percent of bachelor’s degree students who pursued an academic major in a STEM-

related left these fields by the spring 2009 (Chen, 2013). Of students who did not 

complete a STEM-related major, half switched their majors to a non-STEM field and the 

rest left postsecondary education without earning a degree. While switching majors is 

common among college students, other studies have found an even higher share of 

students switch out of STEM fields – as many as 50 percent (e.g., Kokkelenberg & Sinha, 

2010). Moreover, completion outcomes vary within STEM fields. A higher rate of 

students in engineering and computer science leave the college without earning a degree 

compared to other STEM fields (Chen, 2013). 

Many studies also find racial/ethnic disparities in persistence and attainment rate 

among students pursuing STEM-related academic majors (Bowen et al., 2009; Chen, 
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2015; Simpson, 2001). The disparity is mostly between Black and Hispanic students and 

their White counterparts. Among racial/ethnic groups, only Asian students have a higher 

persistence rate compared to White students (Bowen et al., 2009; Chen, 2015; George-

Jackson, 2016; Huang, Taddese, & Walter, 2000; Simpson, 2001). Gender disparities in 

STEM persistence, however, have been a subject of debate. While some researchers 

(George-Jackson, 2016; Huang et al., 2000; Seymour & Hewitt, 1997) found a significant 

gap between male and female students in STEM degree completion, others did not find 

such a gap (e.g., Chen, 2013; Kokkelenberg & Sinha, 2011). Such divergent results might 

be explained as a result of differences across STEM fields in persistence toward degree. 

For example, while a larger percentage of men pursue and complete degrees in the hard 

sciences (e.g., physical sciences, engineering, and computer science), women have 

pursued and persisted toward degrees in life science at higher rates than men (George-

Jackson, 2011). For example, Bebe-vroman et al. (2017) found that not only do smaller 

shares of female undergraduates plan to major in computer science than their male peers, 

they are also more likely to leave the major before receiving a degree. This has led some 

to argue that failing to account for differences between men and women in persistence 

patterns, particularly in the soft and hard sciences, can lead to misunderstanding gender 

disparities within STEM fields (George-Jackson, 2016; Kokkelenberg & Sinha, 2011; 

Ost, 2010).  

To summarize, higher education institutions in the US face a real challenge in 

both enrolling and retaining college students in STEM-related academic majors. 

Moreover, there are disparities among different groups of students in both STEM major 
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selection and degree attainment. Minorities and women are less likely to pursue degrees 

and more likely to leave such fields without earning a degree. Moreover, to date, most 

studies that examine enrollment and persistence rates in STEM fields have focused on 

descriptive analysis and have not paid attention to students’ curricular experience and 

how that influences their subsequent course-taking pattern, major selection, and, finally, 

degree attainment.  

Study Overview 

 

The purpose of this study is to examine academic pathways through college 

among students who may be considering a STEM-related major.  First, I describe the 

share of students with declared majors when they first matriculated as a degree seeking 

student at the university. I then explore how this initial distribution of students’ academic 

majors’ changes over time, and the extent to which patterns differ for female and male 

students. Specifically, I consider three research questions: 

1) What major and course-taking patterns are aligned with degree attainment in 

STEM fields? 

2) Are there any significant differences between men and women’s academic major 

and course-taking patterns within STEM fields? 

3) In which phase of their program of study do STEM students switch to other 

fields? 

To answer these questions, I leverage recent developments of data mining 

techniques and apply these strategies to coded undergraduate transcript data at a four-year 

university. My approach to identifying student course-taking patterns is similar to 
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techniques used in market basket analysis to identify costumer shopping behavior. Using 

Sequence Pattern Mining techniques, I create sequences of academic majors and STEM 

related courses a student takes each semester. Then, by clustering those sequences, I 

identify patterns of academic major and course-taking that are common to students who 

successfully pursue the fields and obtain a degree. Such patterns reveal which groups of 

students took similar academic major paths and also which groups of students decided to 

switch to other fields or dropped out of college after declaring a major in STEM fields. In 

terms of students’ course-taking patterns, these methods reveal the sequences of STEM 

courses and the characteristics of student group that stopped taking STEM courses. As a 

result, I identify the so-called “gate-keeper courses” that compel certain groups of 

students not to take any further STEM courses, switching to another field or dropping out 

of the college. Identifying sequential patterns in student decisions about academic majors 

and their course-taking hold great promise for informing higher education policy and 

practice, particularly designing and structuring effective pathways to improve student 

retention in STEM fields.  

The study builds upon and extends existing research in two ways. First, rather 

than look solely at the rates at which students enter, persist, and complete academic 

majors in STEM fields, this study examines students’ actual pathways toward degree, 

taking into consideration the courses taken and differences in course taking patterns 

between female and male students who may be considering an academic major in a 

STEM field at a four-year university. Second, this study leverages new analytic methods 

to sequence course taking patterns – over students’ trajectories in college – to better 
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understand the dynamic processes underlying differences in persistence and completion 

rates in STEM-related fields.  

 

 

 

 

 

 

 

 

 

 

 



 
  

11 

CHAPTER 2: LITERATURE REVIEW 

 

In the past few decades, due to the increasing importance of STEM fields for the 

Nation’s economy, there has been significant investment in improving STEM education 

at different points in the educational pipeline. For example, the National Science 

Foundation has funded multiple projects to revolutionize engineering and computer 

science departments throughout the US (Chen, 2015). This focus and investment, 

consequentially, has attracted researchers from different fields and led to growth in 

research on STEM education. Much of the literature in higher education has been 

descriptive, documenting enrollment, retention, and attrition rates and examining 

association between individual and institutional characteristics and educational 

attainment in these fields. I mentioned these studies in the previous chapter to provide the 

reader with background information on how college students are doing in STEM fields. 

Recently, research in STEM fields has shifted toward finding non-demographic factors 

that contribute to persistence and disparities in STEM fields. Researchers have examined 

a range of contributing factors. In this section, first, I review general factors that 

contribute to college students withdraw from STEM fields. Then, I consider research that 

specifically examines factors that contribute to female students’ under-representation in 

these fields. Finally, since my goal is to look at persistence and disparity in STEM 

through analyzing students’ academic behavior, I look at the research which have taken 

different methodological approach to explain students’ academic behavior. 
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 Factors Contributing to Persistence in STEM Fields 

 

 Research investigating factors that influence students’ decision to leave STEM 

fields may be broadly organized in the following categories: 1) academic preparation; 2) 

institutional factors; and 3) performance in “gate-keeping” STEM courses.  

Academic preparation for college level coursework has been identified as one of 

the key predictors of student persistence toward a college degree in a STEM-related field. 

Numerous studies suggest that indicators of a student’s preparation for college – such as 

taking Advanced Placement (AP) courses in STEM content areas in high school and 

having higher grade point averages and admissions test scores – are associated with 

persistence and degree attainment in STEM fields (Chen, 2013; Griffith, 2010; 

Kokkelenberg & Sinha, 2011; Tyson, Lee, Borman, & Hanson, 2007). For example, 

Kokkelenberg and Sinha (2011) find that taking more STEM AP classes in high school is 

associated with an increased chance of graduation with a STEM degree, and Chen (2013) 

finds that having a high school GPA of 3.5 or higher significantly decreases the chance of 

switching to a non-STEM field.  

Research also suggests that the type of higher education institution a student 

attends may also influence their persistence toward a degree in a STEM-related field 

(Chen, 2013; Griffith, 2010). STEM entrants who first attended highly- or moderately- 

selective institution are more likely to pursue a degree in STEM fields than their peers 

who attended less selective institutions (Chen, 2013). Among selective institutions, those 

with a large graduate-to-undergraduate student ratio and that devote a significant amount 
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of spending to research have lower rates of student persistence toward degrees in STEM 

fields (Griffith, 2010).  

Campus environment may also affect student persistence in STEM fields, 

especially for non-White and female students (Chang, Sharkness, Hurtado, & Newman, 

2014; Hurtado et al., 2007; Marx & Roman, 2002; Ost, 2010). For example, Chang et al. 

(2014) found that institutions that engage students in academic experiences such as 

studying frequently with others, participating in undergraduate research, and involving 

students in academic clubs or organizations increase underrepresented students’ 

persistence in STEM fields. Moreover, Hurtado et al. (2007) found that perceptions of 

hostile racial climates negatively impact minority student adjustment and integration in 

STEM-related academic majors.   

Research on factors determining persistence and graduation from college with a  

STEM-related degree points toward the number of STEM courses taken in the first year 

of study, as well as the type of introductory STEM courses taken (especially math 

courses) in that year, are closely linked to a successful completing a degree in STEM 

fields (Adelman, 2004; Chen, 2015; Crisp, Nora, & Taggart, 2009; George-Jackson, 

2016; Ost, 2010; Rask, 2010; Seymour & Hewitt, 1997). Chen (2013) finds that students 

who persisted in STEM fields earned an average of 18 STEM credits in the first year of 

their study. She also found that a proportionally higher number of those students took 

calculus or other advanced mathematics courses in their first year of study compared to 

their peers who left the fields (81 percent vs. 36 % of STEM leavers who left college and 

57 percent of STEM leavers who switched to non-STEM majors).  
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A student’s performance in entry-level STEM courses in his/her first year of study 

also influences the decision to stay in or leave STEM fields. Research shows that poor 

performance in STEM courses, especially relative to performance in non-STEM courses, 

leads to students’ switching to non-STEM degrees or leave the university entirely (Chen, 

2013; Ost 2010; Rask, 2010). Chen (2013) found that a higher percentage of STEM 

leavers who dropped out of college or switched majors earned at least one grade point 

higher in non-STEM courses than STEM compared to their persistent peers. In another 

study examining high-performing students’ attrition rate in STEM fields, Chen (2015) 

finds that the probability of switching majors for high-performing students was 

associated with poor performance in STEM courses and she suggests that one of the 

motivating factors for students to switch to degrees in non-STEM might be due to their 

experiences in initial STEM courses.  

While a range of factors contribute to students’ persistence toward degrees in 

STEM fields, some researchers argue that factors such as student performance in entry 

STEM courses play a more important role in students’ decisions than do other factors. 

Student performance in entry-level STEM courses that are intended to sort students into 

STEM and non-STEM degrees – i.e., “gatekeeper courses” – have been identified as a 

key indicator of whether a student will successfully graduate with a degree in a STEM 

field (Adelman, 2005; Chang, Cerna, Han, & Sáenz, 2008; Seymour & Hewitt, 1997). 

Research shows that controlling for performance in these courses weakens the effects of 

other factors on the likelihood that a student completes a degree in a STEM field (Ost, 

2010; Rask, 2010). Consequently, some researchers recommended that future research in 
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persistence needs to prioritize exploring students’ STEM coursework in college, 

especially students’ dynamic course-taking process (Chen, 2013 & 2015; Shapiro & Sax, 

2011). To date, however, only a few studies (e.g., Wang, 2016) have considered student 

course taking patterns, particularly the sequence in which courses are taken, and the 

likelihood that students complete a degree in a STEM field. 

Gender Disparity in STEM Fields and Contributing Factors  

 

Despite the fact that during the 2014-15 academic year women made up more 

than half of college students (57percent) nationwide (National Science Foundation, 

2016), females are significantly underrepresented in population of students who obtain a 

college degree in a STEM field, especially in engineering, computer, and physical 

sciences. Based on National Science Foundation report, women made up 18.4 percent of 

the undergraduate population in engineering (National Science Foundation, 2016). This 

underrepresentation is a challenge, with serious consequences for the society and the 

economy. Finding ways to increase women’s participation in STEM fields could benefit 

the fields themselves and the overall economy by bringing more creativity and diversity 

of ideas to the workforce.  

Many attempts have been made to understand factors that contribute to this 

underrepresentation, its persistence, and to find ways to attract more women to these 

professions (Davis et al., 1996; Fox, Sonnert, & Nikiforova, 2009; Griffith, 2010; Hill et 

al., 2010; Hughes, 2011; Seymour, 1995). Researchers have offered a number of theories 

to explain this disparity (Ceci & Williams 2010; Hyde et al., 2008; Lynn & Irwing, 2004; 

Seymour, 1995; Tyson et al., 2007). These include theories that are based on biological 
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difference (e.g., Lynn & Irwing, 2004), academic preparation (e.g., Chen, 2013), negative 

attitude (e.g., Weinburgh, 1995), absence of role model (e.g., Hill et al., 2010), STEM 

curriculum, pedagogy (Davis et al., 1996), and cultural and social stereotypes (e.g., 

Steele, James, & Barnett, 2002). 

For a long time, a deterministic framework, based on the premise of women’s 

intrinsic inability in math and science, was used to explain women’s absence in STEM 

fields (Ceci & Williams, 2010; Lynn & Irwing, 2004). This view, however, has been 

challenged by research that shows comparable aptitude between female and male 

students (Burger et al., 2007; Hyde et al., 2008; Tyson et al., 2007). For example, 

differences in math and science competency within each gender are far larger than the 

average difference between the sexes, and other studies have found very little difference 

in scientific or mathematical ability between the sexes (Blickenstaff, 2005).  

As mentioned earlier, academic preparation in high school is an important 

predictor of STEM persistence in college. Thus, there has been speculation that women’s 

underrepresentation in these fields, especially in math and engineering, might be a result 

of their differential preparation in mathematics and sciences in high school. Various 

studies, however, reject this hypothesis, pointing to the fact that girls earn math and 

science credentials at the same rate as boys do, and frequently even earn better grades in 

high school coursework in these subjects (Tyson et al., 2007; Voyer & Voyer, 2014). 

This suggests that women are at least equally, or perhaps even better prepared, to pursue 

a STEM major in college. 
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 Taken together, existing research suggests that women’s low enrollment in and 

attrition from college degrees in STEM fields cannot be explained by the measure of their 

ability and preparation. This suggests other motivational, social, and institutional factors 

likely explain under-representation of women in the share of students attaining a college 

degree in a STEM field. For instance, some studies have found that girls have a negative 

attitude toward math and science compared to their male peers, and that these negative 

attitudes contribute to their decision not to pursue a college degree in a STEM field 

(Riegle-Crumb, Moore, & Ramos-Wada, 2011; Weinburgh, 1995). Others, however, 

argue that these disparities in attitude and motivation toward science and math could not 

be considered independent factors (Blickenstaff, 2005; Burger et al., 2007; Hill et al., 

2010). Instead, attitude and motivation are the result of sex-role socialization and closely 

tied to other social and environmental factors that make such subjects unattractive to girls 

(Pinel, Warner, & Chua, 2005). 

Drawing on a large body of research, Hill and colleagues (2010) provide evidence 

that negative stereotypes about women’s ability in math and science persist and that they 

significantly impact women’s attitudes, self-assessment, and aspirations in pursuing a 

career in STEM fields. Felder, Felder, Mauney, Hamrin, and Dietz (1995) found that 

female students were more likely than men to attribute their poor performance in STEM 

courses to their own lack of ability, while men were more likely to attribute it to a lack of 

hard work or being treated unfairly. A survey from freshman female college students 

found that, in spite of their academic advantages, females rated their academic ability and 

creativity lower than their male counterparts (Almanac, 2016). There also is evidence that 
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women’s low self-assessment, aspiration, and motivation are in part caused by negative 

interactions they have with their peers and professors. For example, studies have found 

that undergraduate females in STEM courses feel that their faculty and male peers do not 

take them seriously (Neumann, Lathem, & Fitzgerald, 2016; Shapiro & Sax, 2009; 

Sprecher, Brooks, & Avogo, 2013). Such negative interactions are themselves the result 

of implicit bias in associating strength in math and science fields with being male. This, 

in turn, impacts women’s academic aspirations and performance, and consequently their 

persistence toward a degree in STEM fields. 

In addition to these negative stereotypes and biases, there are institutional barriers 

that act as a gender filter that obstruct women’s path in pursuing a major or career in 

STEM (Fox et al., 2009). Women can face a chilling climate in postsecondary 

classrooms, ranging from outright hostility, harassment, and verbal abuse, to calling on 

and encouraging men more often than women (Burger, 2007; Hill et al., 2010). This 

chilling climate lowers even highly-skilled and motivated women’s sense of belonging to 

the academic environment, which leads to their isolation and a feeling intimidation 

among other feelings (Walton et al., 2015). Working in such an unwelcoming climate 

may put women at a higher risk of switching to other fields or even dropping out of 

college (Shapiro & Sax, 2011; Walton, Logel, Peach, Spencer, & Zanna, 2015).  

Pedagogy and curriculum are two other institutional factors that have been 

associated with women deciding not to pursue a degree in a STEM field (Blickenstaff, 

2005; Shapiro & Sax, 2011). Research shows that a competitive and aggressive nature of 

pedagogy in STEM courses that emphasizes individual success rather than collaborative 
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learning may discourage women from taking courses or pursuing a degree in STEM 

fields (Seymour, 1995). Women also report finding the curriculum in STEM fields 

impersonal and irrelevant to human condition, which negatively impacts their academic 

aspirations (Beyer, 2014; Burger, 2007). In addition, introductory courses’ failure to 

provide a holistic view to subject area instead portraying science and engineering as 

highly competitive and masculine domains also may filter women in the curricular 

process and redirect them to non-STEM fields (Blickenstaff, 2005; Fox et al., 2009).  

Finally, the lack of role models for women in STEM fields can discourage women 

from pursuing a degree in these fields. Unfortunately, as Shapiro and Sax (2011) explain, 

due to the fact that female faculty are underrepresented in STEM department, female 

students have limited access to same-sex role models and mentors. This may discourage 

women from pursuing a career in these fields or send a message that women do not 

belong to these fields. In their recent study, Neumann et al. (2016) found that having 

women role models played an important role in women’s persistence in engineering 

departments. Female role models helped women see what being successful looked like 

for a woman like them in engineering. 

In summary, researchers have been able to identify a range of factors that 

contribute to women’s selection, pursuit, and attainment of STEM field degrees. In 

particular, institutional (Fox et al., 2009) and structural barriers play a role in women 

losing interest in STEM majors, especially engineering, computer science, mathematics, 

and physical sciences. These factors are in addition to ones that influence all students’ 

decision, irrespective of their gender, to stay or leave such fields. Together, these factors 
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help explain why women comprise a smaller share of students who enroll in and graduate 

with degrees in STEM fields.  

Student Academic Behavior  

 

One of the characteristics of postsecondary education in the US is the diversity of 

pathways students could follow through their study. Most students entering college do 

not declare their major until the third or the fourth semester (Shapiro & Sax, 2011). 

During the first semesters they take different courses offered by programs and try to find 

their way for declaring a major. Even after declaring a major, it is not unusual for 

students to decide to switch to other majors. We know that a student’s decision to declare 

a major, stay in one, or leave it is influenced by choices made at different points of 

his/her college career, under different circumstances. For example, encountering difficult 

or disengaging courses or getting poor grades in particular courses might cause some 

students to redirect their efforts to another major or sometimes even cause them to drop 

out of the college or transfer to another institution (Adelman, 2006; Chen, 2013; 

Seymore, 2002). That is to say, a student’s curricular experience is a dynamic process 

that influences her/his subsequent course-taking decisions as well as the progress toward 

selecting, or changing, his/her major, and finally, the completion of degree requirements. 

The college curriculum in any given major is an academic plan developed and 

structured by faculty, program directors, and the administration with the goal of 

enhancing students learning and achieving a certain level of literacy in a given field. The 

experience of interaction with the curriculum is a complex and multilayered one 

influenced by different components of the curriculum including content, pedagogy, and 
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instructional resources, the faculty, and other external factors (Cohen & Kisker, 2012). 

Therefore, understanding students’ curricular experience is crucial for evaluating how 

successful the institution has been in fostering students’ learning. Although numerous 

studies have corroborated the importance of examining student academic behavior 

(Adelman, 2005; Chen, 2015; Shapiro & Sax, 2013), few efforts have been made to 

investigate the dynamic feature of experience over time. In existing research, the focus 

has been on pathway analysis, which is based on college students’ persistence 

framework. In such a framework, pathways are conceptualized as outcomes and 

measured with dichotomous (complete/disrupted) variables. They also identify a set of 

proximal variables in their model in the hope of explaining student academic behavior 

throughout the college.  

In recent years, researchers have started applying more advanced methods in 

which pathways are measured in categorical (complete/ part-time/ discontinuous), rather 

than dichotomous variables. They have also included independent variables with several 

data points between college entry and exit to better show students’ academic behavior 

(Chen, 2013, 2015; Ewert, 2010). Although this framework provides valuable 

information, as the researchers themselves acknowledge, these studies have serious 

limitations in capturing the full picture of student behavior. Even the most advanced of 

these methods are not able to reveal the complex interaction between course taking 

experiences across time due to the assumption that is at their foundation, i.e., the linearity 

and uniformity of student behavior (Bahr, 2013). As a result, student pathways towards 

earning a degree and the influence of different pathways on their outcome has remained 
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understudied. We are left with little knowledge about whether taking different pathways 

align with successful outcomes or whether different group of students, such as women, 

who are underrepresented in certain fields such as STEM, are inadvertently led by the 

system to take different pathways that translate to a different degree of success. 

An additional area of problem with studies investigating STEM pathways is that 

they identify STEM students based on their major reported in the beginning of their 

study. However, students often do not declare their major until their junior year. 

Therefore, such studies overlook a considerable number of students who might have 

intended to major in STEM but after difficult experiences with initial STEM courses 

decided to redirect their studies to another major. In persistence studies, these students 

are of great interest and excluding them could lead to misunderstandings. To reach a 

complete and more accurate picture of the STEM pipeline instead of just tracking 

students by their declared major field, researchers could use transcript data, which 

provides a road map of majors and courses taken by each student throughout her/his 

study in college (Shapiro & Sax, 2011).  

There have been a few research efforts that apply new analytical approaches, 

particularly data mining, to examine questions related to academic behavior and try to 

find ways to identify different pathways students take to go through their academic 

programs. Although not all are conducted at the college level or are related to STEM 

fields, they are relevant to this study because of their common goal – i.e., to identify 

students’ academic behavior using detailed student transcript data. I will examine these 

studies below. I will also consider other studies that rely on simple descriptive analysis. 
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The reason I mention them here is due to their innovative approach in using detailed data 

and their influence on course-pattern identification studies. For example, most studies 

conducted by Adelman (1999, 2004, 2006), were very influential in highlighting the 

power of transcript-base analysis. His focus on student academic history inspired new 

lines of research both in community college and four-year college context by others. 

Therefore, it is essential to include them in this review.   

In this section, I will review these studies in more detail, laying out what has been 

done in this field and, more importantly, what is needed to be done to identify students’ 

course-taking patterns and significant differences in course-taking patterns by different 

student groups.  

Student course taking behavior. Friedkin and Thomas (1997) completed one of 

the earliest studies of student course taking behavior and were among the earliest to 

propose the idea that differences in student educational attainment accumulate over time 

and may be understood as arising from differentiated patterns of coursework taken in a 

multiyear sequence of schooling. In their study, the authors develop a theoretical 

rationale for viewing course-taking patterns as student social positions in students’ 

relations with particular teacher and coursework during their high school years. They 

then applied this framework to analyzing a nationally-representative sample of high 

school students who then proceed to college using data from U.S. Department of 

Education’s High School & Beyond Survey. Employing network analysis to the profiles 

of high school students’ coursework, they find distinct profiles that conform to most 

students’ course profiles. Then, they use hierarchical cluster analysis, which results in 
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eight curricular positions of students’ course-taking patterns. Each student is then 

assigned to the closest matching curricular position. After this, Friedkin and Thomas 

(1997) investigate the association between student characteristics with the curricular 

position they have been assigned to, finding out that students’ unique membership to any 

of the eight positions were associated with their demographic status, academic skills, and 

achievement. They conclude that even without a formal system of tracking, by the end of 

their schooling the students would be differentiated with respect to their course-taking 

patterns.  

Heck, Price, and Thomas (2006) extend this study by applying the same analytical 

approach to a set of transcript data from a comprehensive high school instead of using 

surveys from samples of students. Seven distinct course-taking patterns with a high 

degree of fit emerges from their network analysis. Further analysis of the characteristics 

of the student members of the profile suggest that students are dramatically differentiated 

by the seven profiles based on their socioeconomic status, ethnic/racial groups, and their 

academic outcomes, demonstrating wide inequalities in students’ outcomes and 

aspirations.  

The Friedkin et al. (1997) and Heck et al. (2006) studies are exemplary as they 

present a new approach and emphasize the importance of understanding differences in 

students’ educational attainment from the perspective of differentiated patterns of 

coursework in multiyear sequences. Although both studies began with high ambitions to 

include all dimensions of the data in their analysis, in later stages of research they 

dropped the element of time/semester in which a particular course had been taken and 
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also the teacher(s) who taught the course due to the difficulty of handling a large 

multidimensional dataset. To date, however, the conceptual frameworks and analytic 

approaches developed in these studies have not been applied to higher education. 

In another effort, Adelman (1999, 2004, 2005, 2006) has conducted various 

studies in which he uses longitudinal students’ transcript level data to illuminate paths to 

degree completion in two/four-year colleges. Although his studies mostly focus on simple 

descriptive analysis, they have been very influential in highlighting the power of 

transcript data in understanding students’ academic behavior and determinant factors 

contributing to their success. For example, in Answering the Tool Box (1999) and The 

Tool Box Revisited (2006), his transcript-based analysis reveals the determinant role of 

early momentums, such as taking a number of college-level math courses as early as 

possible, on degree completion. In another study, Moving into Town (2005), Adelman 

uses transcript data to classify traditional-age community college students based on their 

academic history and the number of credits they earn from community college. Although 

most of these studies were descriptive, they were influential in inspiring several paths of 

research based on transcript analysis, especially in community college settings.  

Community college’s diverse student population, their institutional flexibility to 

choose how and when to enroll, and their path of studies and transferring to college have 

made it an appealing case to apply pathway analysis. A number of studies in the recent 

years have conducted in community college to identify students’ pathways. Most of these 

studies aim at identifying the typology of its students. Influenced by Adelman’s uses of 

student transcript data, they began applying new methods to transcript data to develop 
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student typology. For example, in The Bird’s Eye View of Community College, Bahr 

(2010) develops a behavior typology based on students’ course-taking patterns and other 

enrollment patterns using K-mean cluster analysis. He identifies six clusters of behavior 

including: transfer, vocational, drop-in, noncredit, experimental, and exploratory. Then, 

by examining the relationship between students’ demographic characteristics and cluster 

membership, he explores whether different group of students have different course-taking 

behavior. In another study, Zeidenberg and Scott (2011) use transcript data from 

Washington State community college system to investigate students’ course-taking 

patterns. They apply Partitioning Around Medoids (PAM) clustering separately to liberal 

arts and career-technical (CTE) students to organize students to groups based on 

similarity of courses they have taken. Their cluster analysis results in 20 solutions of 

course-taking patterns in CTE subsample and 5 solutions in liberal arts. Then, to discover 

what type of students are in each program they examined the demographics and the 

completion and transfer rates of the students within each cluster. The authors conclude 

that clustering would be useful to researchers throughout education who are trying to 

understand student course-taking patterns using a large-scale transcript data. They also 

acknowledge the limitation of their study in analyzing course-taking activity without 

considering their sequential order and plan, in the future, to look in more detail at the 

sequencing of this taking-course activity. 

In another study, Bahr (2013) criticizes the traditional dominant input-output 

analysis approaches in community college students’ research, which is heavily focused 

on examining the relationship between community college students’ characteristics and 
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their outcome. He argues for the necessity of developing a new approach to capture 

various pathways and behaviors. After showing the limited capacity of traditional 

input/output analysis in providing information on how and why some college students fail 

or progress through the college, he presents a new deconstructive approach to illuminate 

community college students’ pathways and the relationship between these pathways and 

student outcomes. Bahr (2013) argues that his new framework deconstructs “the varied 

steps or stages through which students pass from the point of the college entry to a given 

outcome of interest…In other words, this approach constitutes a shift from the focus on 

outcome that has dominated research on community college students to focus on process” 

(p. 145).  

Influenced by Bahr and Aldeman’s studies, and in what can be considered a major 

step forward in the last couple of years, few researchers have started applying more 

advanced analytical techniques to identify patterns that align with degree earning or 

transfer in a community college setting. For example, in Intensity and Attachment: How 

the Chaotic Enrollment Patterns of Community College Students Relate to Educational 

Outcomes, Crosta (2014) tries to identify community college students’ behavior patterns 

using students-level transcript data from several community college campuses. His study 

is similar to other studies in community college that aim at identifying the typology of its 

students. What makes Crosta’s (2014) study different, however, is his focus on clustering 

longitudinal patterns created by intensity and continuity of students’ enrollment instead 

of a set of variables. To identify the patterns, he creates an enrollment vector for each 

student that consists of zeros, ones, and periods for 18 semesters. Using visualization 
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techniques of enrollment patterns, which is very unique to this study, he visualizes the 

entire range of enrollment. Then, using a K-mean clustering technique, the author 

identifies six clusters of enrollment patterns. The clusters emerge only from students’ 

sequential enrollment patterns without using any other information. The results from 

cluster analysis identify Early Leavers as the most common pattern among community 

college followed by Full-time Persisters and Early Persistent Switchers. Crosta’s (2014) 

study is unique in using longitudinal patterns and visualizing those patters in a way that 

really helps to better understand common student enrollment patterns. His study, 

however, does not provide any information about course-taking patterns. That is, the 

question of whether taking specific courses lead to a student’s decision to leave his/her 

studies early or stay in the college remains unattended.  

In another study, Wang (2016) uses Bahr’s deconstructive framework to explore 

course-taking patterns of community college students. Her study is one of the few that 

uses various advanced data mining techniques for exploring students’ course-taking 

patterns. Although other studies use primary data mining techniques such as clustering, 

her study is unique in the fact that it is the first to argue for the necessity of using data 

mining techniques, justifying their application to transcript data. She also uses various 

techniques to provide a comprehensive analysis of community college students’ course-

taking patterns. In this study, Wang (2016) makes a strong argument that due to the 

complex and unstructured nature of transcript data, which consist of tens of courses 

recorded for each student over a number of academic semesters, data mining techniques 

can provide better insights into a student’s academic behavior.  
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The purpose of Wang’s (2016) study is to identify course-taking patterns that 

have been successful in transferring community college students to four-year colleges in 

STEM fields. To achieve this goal, she applies frequent pattern/ association rule mining 

technique to the Beginning Postsecondary Students Longitudinal Study (BPS: 2009) to 

identify frequent course-taking patterns. Every student’s course-taking pattern constitutes 

various itemsets. Each itemset is a set of courses taken by a given student in one 

semester. Using Apriori Algorithm, she identifies the frequent course-taking patterns that 

result in three different outcomes: transfer to STEM, transfer to non-STEM, and non-

transfer. Then, she applies Decision List Algorithm to add other predictors variables, 

such as the dosage of particular courses that have been taken by a student. Finally, to add 

student demographic characteristics to the analysis, Wang (2016) applies Decision Tree 

algorithm to examine the relationship between those characteristics and course-taking 

patterns.   

Wang’s (2016) pattern mining results provide unique insights into community 

college students’ trajectories to STEM transfer pipeline that would have not been 

uncovered by any of the traditional analysis methods. For example, one of the most 

striking results that emerge from her examination of these patterns is that in math-

learning paths, math course-taking during the first semesters does not appear as a 

frequent pattern among transfers to STEM paths. Instead, taking “likely transferable” 

courses during the first semesters, followed by math courses in the subsequent semesters, 

is the most viable path to transfer to STEM. In fact, the math-learning path is the most 

common feature of transfer to non-STEM patterns. Such important information on the 
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patterns that contribute to a successful transfer to STEM could be used by program 

designers and advisors in community colleges to improve and facilitate student outcome. 

The most valuable contribution of the study, however, is highlighting the importance of 

utilizing data mining techniques to analyze rich transcript data that is available to broaden 

our understanding of students’ academic behavior.  

An important study that presents an innovative approach in utilizing data mining 

techniques to student’s map of study, Wang’s (2016) study has its shortcomings. Just like 

most of the previous studies, Wang (2016) fails to take into account the sequential feature 

of a student’s course-taking pattern. A student’s course-taking pattern is a sequential 

pattern, meaning that it is an ordered list of sets of courses taken by him/her over the time 

of study. Ignoring this important feature restricts, and might even distort, our analysis of 

students’ academic behavior.  

Another study that applies new data mining techniques to longitudinal transcript 

data (Beginning Postsecondary Students Longitudinal Study: 2004/2009) to examine 

course taking patterns’ contribution to degree completion at college level is Witteveen 

and Attewell’s (2016). They apply Hidden Markov Model (HMM) to transcript data 

collected from a sample of U.S. four-year college students in order to predict degree 

completion and non-completion. Their goal is to build a model that effectively recognizes 

a graduating or non-graduating student after only one or two years of college transcript 

information. HMM is a new data mining technique used to identify the hidden states that 

are associated with both static observable states and hard-to-observe trajectories leading 

to particular outcome states.  
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Their initial analysis for building the HMM model suggests a combination of six 

to eight variables associated with a “three-state solution” as the most effective model for 

creating a coherent and distinct state description. Initial states for graduating students 

include: state 1: high credits, state 2: high STEM, state 3: STEM/withdrawing. For non-

graduating students the three states are: state A: low activity, state B: low STEM, and 

state C: STEM/high credits. The authors then analyze the probability of moving to future 

states given the knowledge of any current state. With regards to graduating students, the 

results suggest that they rarely take STEM courses in combination with a large number of 

credits. Rather, they withdraw, or they take fewer courses when attending technical 

courses. Their model, however, has difficulties in distinguishing non-graduating students 

and does not offer that much insight into their trajectories.  

Witteveen and Attewell’s (2017) analysis of the association between socio-

economic factors and college states indicates the consistent and significant effect of 

gender, predicting that male students are more likely to be in a “STEM/high credits” 

state. In contrast, other demographic and high school variables are not significant 

predictors of HMM states. Their study’s results offer valuable insights into the complex 

interaction between course-taking experience over time, which again could not be 

captured by traditional linear modeling. Their study also corroborates the need for 

utilizing more advanced data mining techniques such as HMM when detailed transcript 

data is available. 

As this literature review reveals, understanding student course-taking patterns and 

its influence on outcome has attracted more attention in recent years. Many researchers 
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(Adelman, 2005; Bahr, 2013; Chen, 2015; Shapiro & Sax, 2013; Zeidenberg & Scott, 

2011) have issued calls for the use of new analytical approaches to find answers for 

various questions related to college students’ academic trajectories and their influence on 

subsequent outcomes. Such calls, however, have been answered only by few people and, 

as a result, the move toward bringing new approaches to explore these areas of research 

has been slow. In other words, most research in the field is still conducted using 

traditional approaches. To tackle this issue, it is my intention in this study to propose a 

new data mining technique applicable to students’ transcript data in order to identify and 

understand their course taking patterns in STEM fields in a four-year college setting. The 

few studies that aim at a similar goal, that is, identifying student academic trajectories 

and course taking pattern, have mostly focused on community college setting. Four-year 

college students’ academic paths and course-taking patterns, especially in STEM fields, 

have rarely been touched by scholars. Identifying these patterns can help us not only to 

understand paths that lead to STEM major selection and ultimate degree attainment but 

also to identify particular type of courses or sequence of courses that may act as 

gatekeeper, leading some students to leave their field by switching to other fields or 

dropping out of the college.  

  As mentioned above, scholars have debated whether there is a gender disparity 

when it comes to persistence in STEM fields. It has been argued that some of the 

disagreement on the topic might be the result of failing to consider the persistent pattern 

differences between soft and hard sciences (Kokkelenberg & Sinha, 2011; Ost, 2011; 

George-Jackson, 2016). My research approach could offer important insights for us to 
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settle this question. Using data mining techniques, I can find out whether female students 

who decide to pursue a major in STEM fields take significantly different paths compared 

to their male peers and, if so, at what point of their study, or after taking which sequences 

of courses, this departure begins.  
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CHAPTER 3: DATA & METHODS 

 

The purpose of this study is to examine academic pathways through college 

among students who may be considering a STEM-related major. First, I describe the 

share of students with declared majors when they first matriculated as a degree seeking 

student at the university. I then explore how this initial distribution of students’ academic 

majors changes over time, and the extent to which patterns differ for female and male 

students. To do so, I employ two different data mining techniques – Sequential Pattern 

Mining and cluster analysis of academic major sequences. Both techniques provide a 

somewhat different perspective on students’ academic experiences, as well as a useful 

comparison among potential methods for exploring patterns in higher education students’ 

academic major trajectories. Specifically, I consider three research questions: 

1) What major and course-taking patterns are aligned with successful degree 

attainment in STEM fields? 

2) Are there any significant differences between men and women’s academic major 

and course-taking patterns within STEM fields? 

3) In which phase of their program of study, do STEM students switch to other 

fields? 

To answer these questions, I leverage recent developments of data mining 

techniques and apply these strategies to coded undergraduate transcript data at a four-year 

university. My approach in identifying student course-taking patterns is similar to 

techniques used in market basket analysis to identify costumer shopping behavior. Using 

Sequence Pattern Mining techniques, I create sequences of academic majors and STEM 
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related courses a student takes each semester. Then, by clustering those sequences I 

identify patterns of academic major and course-taking that are common to students who 

successfully pursue the fields and obtain a degree. Such patterns could reveal which 

groups of students have taken similar academic major paths and also which groups of 

students have decided to switch to other fields or dropped out of college after declaring a 

major in STEM fields. In terms of students’ course-taking patterns, they will reveal the 

sequences of STEM courses, and the characteristics of student group that stopped taking 

STEM courses. As a result, I can identify the so-called “gate-keeper courses” that compel 

certain groups of students not to take any further STEM courses, switching to another 

field or dropping out of the college. I believe identifying course-taking patterns has a 

great potential policy implication for designing and structuring effective pathways and 

developing efficient interventions to improve student retention in STEM fields. 

Therefore, the study’s findings hold potential to influence decision making by a broad 

group of stakeholders in higher education, including students, educators, and 

administration. 

Data 

 

Full population. Data were provided by the University’s Office of Institutional 

Research and included student transcript information for three cohorts of students of 

students for a period of six years after their initial matriculation to the University (2010, 

2011, and 2012). In total, there were 9,086 students, across the three cohorts. Table 3.1, 

Column 1 describes the demographic characteristics of these students. When we compare 

the makeup of the student body under examination in this study to national averages, a 
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few facts stand out. First, female students comprise 56 percent of the student body in this 

study, a percentage consistent with national trends (Alamance, 2016). Second, in terms of 

racial diversity the makeup the student population considered in this study diverges from 

national averages – i.e., students included in this study were predominantly white (87 

percent). Third, while nationally around 80 percent of students attending public 

universities have state residency, only 31 percent of students in this University were in-

state residents. Finally, 75 percent of students completed their degree within six years of 

matriculation to the university, whereas, nationally, about 60 percent of students 

attending four-year institutions complete a degree within six years (NCES, 2016).   

The data provided by OIR contained detailed transcript records, including a 

record of each course attempted by a student while enrolled at the University (during the 

six year time period considered for the study), for each of concurrent 12 semesters. In 

addition, the transcript data identified a student’s declared academic major in each 

semester and the grade obtained for each course in which a student enrolled. Altogether, 

the dataset contained 415,200 course records for three cohorts of students who attended 

the University between 2010 and 2018.  
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Table 3.1 

 

Descriptive Statistics for 3 Cohorts Entering the College 2010-2012 

 

Demographic Characteristic 
All Students 

(Column 1) 

STEM-Considering 

(Column 2) 

Female 56% 54% 

White 84% 84% 

Black 1% 1% 

Hispanic 4% 3.6% 

Asian 2% 2.5% 

American Indian 0% 0% 

Two or More Races 2.5% 2.7% 

Nonresident Aliens 2.1% 2% 

Unknown 4.3% 3.7% 

State Resident 31% 31% 

Transfer 20% 15% 

Completed Degree 75% 78% 

Total  9,086 4,890 

 

STEM-considering population. There are different definitions of what 

constitutes a STEM field. For example, The National Science Foundation (NSF) has a 

broad definition that even includes social sciences. In this study, however, I use a 

narrower definition suggested by the National Center for Educational Statistics (NCES) 

that classifies the following fields as STEM: mathematics, physical sciences, 

biological/life sciences, computer and information sciences, engineering and engineering 

technologies, and science technologies. A detailed list of majors and course subjects that 

can be classified as STEM majors and courses based on this definition is provided in 

Appendix A. I identified non-STEM courses based on the subject of course provided in 

the data and recoded all of those courses to a non-STEM binary variable. Given the focus 

of this study, I was most interested in students who either declared a major in STEM 
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upon matriculation to the University and also those who did not initially declare a major 

but who demonstrated an initial interest in STEM as evidenced by course taking patterns. 

While it is easy to identify students who declared a STEM major upon entrance, I needed 

to develop a criterion to determine whether a student was considering such declaration or 

switching to STEM. While it is impossible to develop a perfect criterion, it is reasonable 

to assume that a student who considered a STEM major or might switch to one would 

take STEM courses as they weigh their decision. Therefore, I also included in my 

analysis “STEM Considering” students, who took more than two STEM-related courses 

in their first year but who had not initially declared a STEM major. Using this logic, I 

created a second analytic sample, consisting of 4,890 students (2,625 female and 2,265 

male).  I refer to this group of students as “STEM Considering”. 

Student transcript data shows that there were around 750 STEM courses taken by 

students, in 50 subjects. Some of these courses were general introductory STEM courses, 

which a large number of students from different STEM programs took them. These 

courses were of special interest to me since there is discussion in the literature about 

some students leaving the relevant fields after taking them. I included all these courses in 

my analysis by their unique course subject and number. Other courses were only taken by 

students who majored in a specific field. I classified these courses based on their subjects 

and then, depending on whether they were introductory or advanced level courses, I 

assigned them as “Int” or “Adv.” The final list of course categories included in the 

analysis is provided in Appendix C. 
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Analytical Approach 

 

Using Bahr’s (2013) deconstructive approach that calls for an in-depth analysis of 

transcript data to illuminate student academic trajectories and the relationship between 

these varied trajectories and student persistence, I propose a new method to identify 

various academic trajectories that lead to completion of a STEM major, switching or 

leaving the college. We know that a student’s decision to declare a major, stay in one, or 

leave it is influenced by choices made at different point of his/her college career under 

different circumstances. One important factor is how the student interacts with the 

curriculum and his/her experience of such interactions. Detailed student transcripts are an 

important piece of multidimensional data, which can provide us with valuable insights 

into the student’s experience in navigating the curriculum and interacting with it and how 

it influences her/his decision-making process in following different academic paths 

overtime. Some of the pathways lead to progress through the college years and the 

eventual completion of the program of study. Other pathways lead to failure. We know, 

however, very little about the various academic trajectories that students take to go 

through their study and how they influence a student’s outcome. Identifying these paths 

could offer a lot of information about courses or sequence of courses that enable students 

to successfully take a path to choose a major or earn a degree. They can also reveal 

courses that play a gatekeeping role in preventing some group of students from going 

further in their program of study and their decision to switch to a different field or leave 

the college.  
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My analytic approach took into account the multidimensionality of student 

transcript data. To identify academic trajectories, former studies have focused on 

students’ academic majors at the point of entry or the accumulation of courses during the 

program of study. They did not consider the longitudinal sequence of students’ academic 

experience. Using Sequential Pattern Mining, I identify the most frequent patterns for 

academic majors over students’ enrollment periods. This helps us understand how and 

when students change academic majors. Applying this method to students’ course 

profiles, I identify frequent course-taking patterns and patterns that are aligned with 

degree completion. Also, since women have been underrepresented in STEM fields, 

especially in fields such as engineering and computer science, I examine whether female 

and male students follow different academic major and course-taking patterns within 

STEM fields. Using Sequential Pattern Mining techniques, I also identify sequence of 

courses that increase the probability of leaving the program to a non-STEM or dropping 

out of the college.  

Methodology 

 

In the past few decades, and with the emergence of fast-growing technologies that 

have made collecting, storing, and processing large amount of data possible, 

multidimensional data have become available at a large scale for researchers in various 

disciplines such as bioinformatics, finance, geology, and marketing (Dong & Pie, 2008). 

In this context, new methods and techniques have emerged that enable analysts to unpack 

the complicated structure of data and discover, or “mine”, hidden knowledge in large 

datasets (Kantardzic, 2011). In response to such demands, fields such as data mining have 
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rapidly developed, offering researchers new techniques to effectively manage and 

analyze such data (Dong & Pie, 2008).  

Data mining, also known as Knowledge Discovery in Database (KDD), is an 

analytical process of discovering consistent and useful patterns and relationships hidden 

in a large-scale dataset (Dong & Pie, 2008). Unlike traditional hypothesis testing 

designed to verify a priori hypotheses about relationships between variables, data mining 

is used to identify systematic relations between variables when there are no, or 

incomplete, a priori expectations as to the nature of those relationships. Data mining has 

the advantage of imposing very little in the way of prior assumptions about what is in the 

data; rather, it allows the data to tell the researcher what is going on (Han et al., 2011). In 

a typical data mining process, many variables are accounted for and compared, using a 

variety of techniques in the search for systematic useful patterns (Han, Pei, & Kamber, 

2011). 

When it comes to the primary goal of data mining tasks, data mining constitutes a 

range of techniques from descriptive, on one hand, to predictive on the other. On the 

predictive end of the spectrum, the goal is to produce a model that can be used to predict 

unknown or future values of variables of interest. Classification, Regression, and 

Dependency Modeling are examples of predictive data mining tasks (Kantardzic, 2011). 

Descriptive data mining is focused on finding useful interpretable patterns and 

relationships that describes the data. For example, Clustering, Summarization, and 

Change and Deviation Detection are examples of descriptive data mining tasks 

(Kantardzic, 2011). 
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However, data mining techniques are still underutilized in educational research 

(Wang, 2016). Although we now have a new field, called educational data mining, with 

its own association and biannual conferences, most of existing research has been focused 

on E-learning and rarely deals with data from traditional educational settings. In my 

literature review, I found only a few studies that have used data mining techniques for 

research conducted in traditional educational settings (e.g., Witteveen & Attewell, 2017)  

In this study, I used data mining techniques to identify course taking patterns from 

students’ transcript data. Since student transcript data is a sequential, meaning that a 

student took different courses in semester order, the analysis needs to consider this 

sequential ordering of the data. Using pattern mining techniques like frequent item 

mining does not account for sequential data structures, and may fail to discover important 

patterns in the data or find patterns that may not be useful because they ignore the 

sequential relationship between semesters (Fournier-Viger et al., 2017). 

Sequences are one of the important types of data that can be found in many 

domains such as medicine, biology, business, and other fields. For example, sequences 

are used to represent data such as sentences in texts (sequences of words), sequences of 

items purchased by customers in retail stores, and sequences of Web pages visited by 

users (Dong & Pei, 2007).  

Sequential pattern mining is a data mining technique used to identify patterns of 

ordered events within a database (Han et al., 2011). First introduced in 1995 by Rakesh 

Agrawal of IBM’s Almaden Research Center, its original application was in market 

analysis where it was used to predict whether within a certain time period after 
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purchasing a certain product a customer is likely to purchase its sequel (Agrawal & 

Srikant, 1995). Soon, sequential mining techniques were used in different fields such as 

medicine, genetics, and marketing (Mooney & Roddik, 2013). That said, data mining 

techniques in general, and sequential pattern mining in particular, have not been widely 

used in educational research. 

Sequence concepts. The order among the elements of a sequence may be defined 

by time as in event histories, or by physical positioning as in biological sequences or text 

sequences (Dong & Pei, 2007). Assume that I = {i1, i2, i3, …, in} is a set of items. An 

itemset X is a set of items such that X ⊆ I. The notation |X| denote the number of items in 

an itemset X. An itemset X is said to be of length k or a k-itemset if it contains k items 

(|X| = k). A sequence is an ordered list of itemset s=⟨I1, I2, ..., In ⟩ such that Ik ⊆ I (1 ≤ k ≤ 

n). for example, itemset s1={Math I, Physic I, First-Year Seminar , Diversity} contains 

four items, which are courses taken by a student in his/her first semester. The sequence 

{s1, s2, s3, s4, s5, s6, s8} represents the student’s course-taking sequence (profile) for eight 

semesters.  

A sequence sa = ⟨A1, A2, ..., An⟩ is said to be a subset of sequence sb = ⟨B1, B2, ..., 

Bm⟩ if and only if there exist integers 1 ≤ i1 < i2 < ... < in ≤ m such that A1 ⊆ Bi1, A2 ⊆ 

Bi2,...,An ⊆ Bin (denoted as sa ⊑ sb). A given input-sequence database has the following 

fields: sequence-id, event-time, and the items present in the event. It is assumed that no 

sequence has more than one event with the same time-stamp, so the time-stamp may be 

used as the event identifier. The support of a sequence sa, denoted as sup(sa), in a 
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sequence database is defined as the number (or proportion) of input-sequences in the 

database that contain sa (Dong & Pei, 2007).  

 Based on the type of items in a sequence, it can be categorized either as a state 

or event sequence (Ritschard, Gabadinho, Studer, & Müller, 2009). Here, a state, like full 

time residency status, refers to an item that lasts for a specific duration of time, whereas 

an event – e.g., taking a course – refers to an item that happens at a given point of time 

and has no duration. State sequences are useful for studying durations while event 

sequences are used for analyzing the order in which events occur (Ritschard et al., 2009). 

For instance, consider a student’s sequential enrollment profile. If this is a state sequence, 

items could include student’s major, residency status, or enrollment status (full/part time). 

If this is an event sequence, however, items can comprise of the courses a student has 

taken in a specific semester. An important difference between events and states is that 

multiple events can occur at the same time while states are mutually exclusive (Ritschard 

et al., 2009). For example, multiple courses could be taken by a student in a semester 

while he/she can’t have both in-state and out-of-state residency. 

Sequential pattern mining. Sequential pattern mining is the task of finding all 

frequent subsequences in a sequence database that are common to several sequences 

(Slimani & Lazzez, 2013). Those subsequences are called frequent sequential patterns. A 

sequence s is said to be a frequent sequence or a sequential pattern if and only if sup(s) ≥ 

minsup. A minimum support threshold, set by the researcher, is a parameter indicating the 

minimum number of sequences in which a pattern must appear to be considered frequent 

and, thus, to be considered in the search (Founier-Vinger et al., 2016). 
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Numerous algorithms have been designed to discover sequential patterns in 

sequence databases. Some of the most popular ones are GSP (Generalized Sequential 

Patterns), Spade (Sequential Pattern Discovery using Equivalence classes), and 

PrefixSpan (Prefix-projected Sequential pattern mining) (Zhao & Bhowmick, 2003). All 

these sequential pattern mining algorithms take as input a sequence database and a 

minimum support threshold (chosen by the user) and output the set of frequent sequential 

patterns. In general, sequential pattern mining algorithms can be categorized as being 

either depth-first search or breadth-first search algorithms (Founier-Vinger et al., 2016). 

Breadth-first search algorithms such as GSP has been developed around this general idea 

that, if s is not a sequential pattern, we do not search any super-sequence of s, which is 

called Apriori property (Dong & Pei, 2007). A typical breadth-first sequential pattern 

mining method, mines sequential patterns by adopting a candidate subsequence 

generation-and-test approach based on the Apriori property (Dong & Pei, 2007). Given 

the database S and the minimum support threshold minsupport, the software first scans S, 

collects the support for each item, and finds the set of frequent items, that is, frequent 

length-1 subsequences. Then the frequent length-1 subsequence sets are used to generate 

new potential length-2 sequential patterns, called candidate sequences. Then, the 

sequence database is scanned again, and the supports of length-2 subsequences are 

counted. Those sequences passing the minimum support threshold are the length-2 

sequential patterns. Using the length-2 sequential patterns, the set of length-3 candidates 

are generated. In the k-th pass, a sequence is a candidate only if each of its lengths -(k − 

1) subsequences is a sequential pattern found at the (k − 1)-th pass. A new scan of the 
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database collects the support for each candidate sequence and finds the new set of 

sequential patterns. The algorithm terminates when no sequential pattern is found in a 

pass, or when no candidate sequence is generated. The number of scans is at least the 

maximum i-length of sequential patterns. It needs one more scan if the sequential patterns 

obtained in the last scan lead to the generation of new candidates (Dong & Pei, 2007).  

The challenge with breadth-first algorithms is their use of a very large search 

space to generate a huge number of candidate sets and constantly scan the database to 

discover the candidates (Slimani & Lazzez, 2013). To address this problem, depth-first 

algorithms – such as Spade, PrefixSpan, and FreeSpan – have been developed. Depth-

first algorithms explore the search space of patterns by following a different order. 

Instead of generating a large number of candidates, depth-first search categories (e.g., 

PrefixSpan) take a more efficient approach which is focused on counting the frequency of 

the relevant data sets instead of the candidate sets (Dong & Pei, 2007). They scan the 

entire database to match against the whole set of candidates in each pass, and then 

partition the data set to be examined as well as the set of patterns to be examined by 

database projection (Slimani & Lazzez, 2013). Such a divide-and-conquer methodology 

substantially reduces the search space and leads to high performance (Dong & Pei, 2007).  

As my discussion above shows different algorithms utilize different strategies to 

search for sequential patterns efficiently (Zhao & Bhowmick, 2003), they differ in the 

type of database representation they use, how generators determine the next patterns to be 

explored in the search space, and how they count the support of patterns to determine if 

they satisfy the minimum support constraints. Despite the differences, all sequential 
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pattern mining algorithms return the same set of sequential patterns if they are run with 

the same parameter on the same database. Therefore, the difference between the various 

algorithms is not their output, but rather how each algorithm discovers the sequential 

patterns (Founier-Vinger et al., 2016).  

Although sequential pattern mining is very useful in discovering common 

sequential patterns, it has its limitations. An important limitation of this technique is that 

it cannot assess the probability of a pattern followed by another pattern. To address this 

limitation, data mining scientist have developed other sequential rule mining techniques 

that account for the probability that a pattern will be followed (Founier-Vinger et al., 

2016). A sequential rule is a rule of the form X -> Y where X and Y are sets of items. A 

rule X -> Y is interpreted as if items in X occur, then it will be followed by the items in 

Y. To find sequential rules, two measures are generally used: 1) support; and 2) 

confidence. The support of a rule X -> Y is how many sequences contains the items from 

X followed by the items from Y (Founier-Vinger et al., 2016). The confidence of the rule 

is the support of the rule divided by the number of sequences containing the items from X 

(Founier-Vinger et al., 2016). It can be understood as the conditional probabilities 

P(Y|X), expressed as Equations 1 and 2.  

Support (X -> Y) = support(X&Y) = Pr (X & Y)                 (1) 

Confidence (X -> Y) =
Pr(𝑋 &𝑌)

Pr(𝑋)
 = Pr (Y|X)                 (2) 

A sequential rule mining algorithm provides all sequential rules that have a support that 

are no less than threshold minimum (i.e., minsup) set by the researcher. To reduce the 

chance of losing any interesting course-taking pattern, especially broken sequences, I 
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decided to set the minimum support value to the lowest place that algorithm would 

converge, which was 4 percent.  

Many software packages have been developed to execute sequential data mining. 

For the purposes of this study, I utilized TraMineR for applying data mining tasks. 

TraMineR (Trajectory Miner in R) is a R-package for mining, describing and visualizing 

discrete sequence data, especially designed for social science (Gabadinho, Ritschard, 

Müller, & Studer, 2009). I chose TraMineR since it is developed in R and, therefore, it 

has the advantage of its powerful graphical capacities. It is also a free source and its 

functions could be used in combination with R’s other packages. The algorithm 

implemented in TraMineR is an adaptation of the Prefix-Tree-Based search, which is 

considered a depth-based search algorithm (Ritschard et al., 2012). 

Procedures. I explored sequential patterns of majoring and course-taking in two 

separate analyses: 1) trajectories in students’ academic majors; 2) sequential patterns in 

course-taking. 

Trajectories in students’ academic majors. In my analysis, I treated students’ 

academic majors as a state sequence that established a profile of each student’s declared 

academic major for each semester – that is, each profile represents the sequence of a 

student’s major across 12 semesters. Student majors were coded as: 1) EN (engineering); 

2) MA (mathematics); 3) PH (physical sciences); 4) CS (computer science); 5) LF (life 

science); 6) NS (non-STEM); and 7) UN (undeclared).  

As a starting point, I looked at the distribution of students’ majors in each 

semester and generated plots to visually-represent patterns. In particular, I was interested 
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in understanding how pattern frequency in one academic major was related to pattern 

frequency in other academic majors, as well as to changes in students’ major declaration 

(switching academic majors) and the point in time that students dropped out of the 

University. I used TraMineR to calculate transition rates between states, and to compare 

switching rates from STEM fields to non-STEM and also movement among majors 

within STEM. 

Next, and since I was interested in exploring female and male differences in 

majors, particularly within STEM fields, I calculated a gender covariate to explore how 

female and male students’ major distribution patterns differ. Most studies of gender 

differences in STEM fields (e.g., Chen, 2013; Griffith, 2010) looked at differences in 

enrollment or degree completion and have not been able to follow differences in major 

patterns from the beginning of students’ study until the finishing point. They have also 

failed to look at the differences within STEM fields. Integrating a gender covariate into 

the analysis allowed me to investigate whether female and male students follow different 

paths when declaring academic majors.  

 Finally, I used cluster pattern analysis to build a typology of student major 

sequences. This allows me to identify groups of students with similar patterns in 

academic majors over time. To build such a typology, a clustering method is applied to 

aggregate the sequences into a reduced number of groups by measuring how alike two 

sequences are with each other. Clustering is an exploratory data analysis method aimed at 

finding automatically homogeneous groups or clusters in the data. For the purpose of this 

study, I will use the Hierarchical Ward clustering method (Ritschard, 2018), 
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recommended by the software to cluster students’ majoring patterns. Although it is 

difficult to provide a clear-cut solution about the “best” number of clusters in the data, a 

dendrogram plot provided by hierarchical clustering helps assessing the number of 

clusters by cutting a dendrogram at a certain level (Gabadinho et al., 2009). A six clusters 

solution was retained after examining the dendrogram plot of the clustering tree provided 

by Ward clustering method (see Figure 3.1). Once I identified the clusters, I ran a 

distribution analysis for each cluster to identify the most typical patterns that 

characterized the cluster. This analysis, with R’s unique visualization, feature shows the 

distribution of academic majors that belong to each group. It also helps to identify which 

groups of students belong to each major cluster.  

 

Figure 3.1. Hierarchical sequence clustering from the OM distances, Ward method 
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Course taking patterns. To examine course taking patterns I analyzed the 

sequences of events that identify frequent course taking patterns. To do so, I created an 

academic event profile for each student. Each itemset in the sequence represents STEM 

courses a student took in a particular specific semester – e.g., similar to a course 

transaction record for each semester. For example, during the first semester “student 1” 

took three STEM courses – Calculus I, Stat I, and Physics I – and two non-stem courses 

(see Figure 3.2). I do not include the STEM courses in my event since the focus of my 

analysis is on STEM course-taking patterns; in the second semester, he took Calculus II, 

Statistics II, Physic II and Computer Programming courses (see Figure 3.3). 

As a first step in my analysis, I applied Sequential Pattern Mining to find frequent 

course-taking subsequences. To reduce the chance of losing any interesting course-taking 

pattern, especially sequences that leads to switching to non-STEM fields or quitting the 

University, I decided to set the minimum support value to the lowest place that algorithm 

would converge. By setting minsupport threshold to 4 percent only the patterns that 

appear in more than 4 percent of sequences are included in the search for frequent 

patterns. Sequential Pattern Mining finds the most common subsequence of course-taking 

pattern among students who took STEM courses. The results also provide information on 

the number of sequences that contain such a subsequence. I then plotted the results to 

visualize most frequent course-taking patterns.  
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Since I was most interested in courses that occur prior to switching between 

STEM and non-STEM majors or even dropping out of college, I had to identify broken 

 
      Student_id        sex      semester    Courses 

1    1         male    201201    Calculus I, Stat I, Physic I 

2    1         male    201202    Calculus II, Stat II, Physic II, Programming 

3    1         male    201301    Adv Math, Adv Engineering, Chemistry I                               

4    1         male    201302      Adv Engineering, Chemistry II, Physics I,  

5    2        female   201202      Biology I; Stat I, Chemistry I 

 6    2       female   201203      Biology II, Chemistry II,  

 

The course sequence for the student-id #1 is: 

{(Calculus I, Stat I, Physic I), (Calculus II, Stat II, Physic II, Programming), 

(Adv Math, Adv Engineering, Chemistry I), (Engineering, Chemistry II, Physics I)} 

The course sequence for students ID#2 is: 

{(Biology I, Stat I, Chemistry I), (Biology II, Chemistry II)} 

 

 

Figure 3.2 Sample Itemset Sequence for Hypothetical Students 

 

Figure 3.3 Sample Itemset Sequence for Hypothetical Students 
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sequences. To do so, I added a semester to the end of each student’s profiles and looked 

for instances where patterns changed. For example, if a student’s profile had eight 

semesters, I added a 9th semester to his/her profile. Similarly, for a profile with only three 

semesters, the last semester now was the fourth semester. This extra semester was coded 

as ‘exit’ for leaving the college. I added this to the end of all student sequences, which 

means that all students left after their last semester. Then, I dropped this semester from 

the profile of students who have completed their study in STEM fields. Next, I recoded 

this new course to ‘NOSTEM’ for students whose enrollment major was a non-STEM 

field. These were students whose majors required them to take STEM field courses or 

were considering switching to STEM fields but decided to stay in non-STEM field. 

Adding ‘NOSTEM’ to their sequence simply identifies the fact that their broken sequence 

does not mean they quit or switched to non-STEM fields. For students who started with a 

STEM field but completed their study in a non-STEM field, I recoded the new course to 

‘SWITCH’. This approach helped me to identify course-taking patterns for students who 

initially declared a STEM major, but who later switched to a non-STEM or left the 

university. In this way, by examining these broken sequences, I was able to identify 

potential “gate keeping” courses that were taken by students prior either switching majors 

or leaving college altogether.  

To answer my second research question – i.e., whether female students take 

different course-taking patterns than male students – I identified the course-taking 

patterns that were most strongly related with female students. To do so, I used 

TraMineR’s functions to execute discriminatory analysis. The results are subsequences, 
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ordered by decreasing the discriminant power. I then measured the strength of association 

of each subsequence with the considered covariate and subsequently selecting the 

subsequences with the strongest association. The association was measured with the 

Pearson independence Chi-square. I use this function to find which sequence patterns 

best categorizes women.  

Although sequential pattern mining does provide important information on the 

most frequent course-taking subsequences and the number of students whose academic 

profiles contain those subsequences, there is no assessment of the probability that an 

event will be followed by another event. To address this problem, I used sequential rule 

mining to discover sequential rules in students’ course-taking sequences. Such rules 

provide insights into sequential patterns since they give a measure of confidence for their 

occurrence. Since my sequential pattern mining results show that there are specific 

courses present in quitters’ and switchers’ profiles, my goal was to estimate the 

probability of quitting or switching to non-STEM fields for students with particular 

course taking sequences.  
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CHAPTER 4: FINDINGS 

 

The study’s findings are presented in three parts. First, I describe the share of 

students with declared majors when they first matriculated as a degree seeking student at 

the University. I then explore how this initial distribution of students’ academic majors 

changes over time, and the extent to which patterns differ for female and male students. 

To do so, I employ two different data mining techniques – Sequential Pattern Mining and 

cluster analysis of academic major sequences. Both techniques provide a somewhat 

different perspective on students’ trajectories, as well as a useful comparison among 

potential methods for exploring patterns in higher education students’ academic major 

trajectories.  

In the third section, I explore differences in course taking patterns – for all 

students, and separately, for female and male students. This study uses a longitudinal 

approach to identify course-taking patterns. Most previous studies (e.g., Bahr, 2013; 

Wang, 2016) considered the number of STEM courses taken over time, overlooking the 

variations in the sequence of course-taking by the students as they progress along their 

college pathways. Using Sequential Pattern Mining techniques, I am able to identify the 

most frequent course-taking patterns in STEM – considering students’ profiles. It also 

helps to discover the most discriminant course taking patterns between male and female 

STEM-considering students. Finally, Sequential Pattern Mining is employed to discover 

courses/sequence of courses that taking them lead to switching to a non-STEM major or 

dropping out of the University.   
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Distribution of Student Majors at Point of Matriculation 

 

 Total sample. Table 4.1 describes the distribution of academic program majors 

for all students who matriculated to the University during the Fall semester 2010, 2011 

and 2012. Student academic majors represent those declared by students during their first 

semester as a matriculated student.  

 Altogether, about 30% of students declared a major in a STEM field, whereas 

about half of students declared a non-STEM major (51%). Among STEM majors, 19% of 

students declared a major in life sciences and about 7% declared a major in engineering. 

About 1% of students declared a major in computer science and mathematics 

(respectively), and 1.7% declared a major in physical science. For students in the three 

cohorts included in this study, 19% did not declare a major at their point of entry to the 

University.  

 There were notable differences in majors between male and female students. Male 

students were more likely to declare a major in a STEM field – i.e., 35% vs. 26% (male 

vs. female). In contrast, the majority of women (56%) declared a major in a non-STEM 

field, compared to 45% of male students. There were also differences among students 

who declared a STEM major. Women were more likely to declare a major in life science 

than their male peers (22 % vs. 15.2%) and less likely to declare an engineering major 

(2.5% vs. 13.5%). Although for both groups the share of students who declared a major 

in computer science was small, women were less likely to do so than men (0.2% vs. 2%). 

The same was true for physical science – i.e., 1.0% vs. 2.5% (women vs. men).  
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Table 4. 1 

 

Student Academic Major Declared During First Semester as Matriculated Students 

 

Academic Major at Point of Entry Male Female Total 

STEM Majors: 34.6 26.3 29.9 

      

 Computer science 2.2 0.2 1.1 

 Engineering 13.5 2.5 7.3 

 Life Sciences 15.2 22.0 19.0 

 Mathematics 1.2 0.5 0.8 

 Physical Science 2.5 1.1 1.7 

      

Non-STEM Majors 45.4 56.1 51.4 

Undeclared 20.0 17.7 18.7 

      

Total   4,003 5,083 9,086 

 
Note: Statistics are reported for the population of students who matriculated to the University of Vermont 

during the Fall 2010, 2011, and 2012 semesters.  

  

  

STEM-considering students. Table 4.2 describes the distribution of academic 

majors for the subset of students who took more than two STEM-related courses during 

their first year of study at the University. As discussed in Chapter 3, I refer to this group 

of students as “STEM-considering” based on their initial course taking pattern. STEM- 

considering students include those with and without declared majors in STEM, since 

students with non-STEM majors or undeclared majors may have enrolled in STEM-

related courses during their first year of study. Altogether, 4,890 students matriculating to 

the University during 2010, 2011 and 2012 semesters were STEM-considering. This is 

equivalent to about 53% of Fall and Spring semesters matriculating students.  
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 The majority of STEM-considering students declared a STEM major (55%). 

However, about 30% of students who took more than two STEM courses during their 

first year were non-STEM majors, and 14.8% were undeclared majors. Interestingly, 

female STEM-considering students were more likely to declare a non-STEM major than 

their male counterparts (36.5% vs. 21.9, female vs. male). Conversely, male STEM-

considering students were more likely to not declare a major at their point of entry to the 

University than females (12.9% vs. 17.2%, female vs. male).  

 

 

Table 4. 2  

 

Academic Major Declared in First Semester for STEM-Considering Students 

 

Major in Enrolment Male Female Total 

STEM Majors: 60.93 50.61 55.40 

      

 Computer science 3.84 0.46 2.03 

 Engineering 23.91 4.73 13.61 

 Life Science 26.82 42.33 35.15 

 Mathematics 2.12 1.03 1.54 

 Physics 4.24 2.06 3.07 

      

Non-STEM Majors 21.92 36.54 29.76 

Undeclared 17.15 12.85 14.84 

      

Total   2,265 2,625 4,890 
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Graduation rates across academic majors. Table 4.3 presents academic majors, 

at point of entry and also degree conferred at graduation for STEM-considering students 

– that is, the table presents the percentage of STEM-considering students across academic 

majors in their first semester and when students graduated from the University.  

 Overall, more than half of STEM-considering students initially declared a STEM-

related major (55.4%). However, the share of students who actually complete a degree in 

STEM related field is substantially less, just 38.6% of students. This is equivalent to 

about a 30% decrease between students’ first and last semesters. The rate of decline in the 

share of STEM majors between point of entry and graduation is about the same for male 

and females – however, there were fewer female students in STEM majors to start with.  

Among STEM-considering students, students who declared a STEM major at the 

point of entry were most likely to declare a life science major (35.2%) compared to other 

STEM majors; however, just 23.7% graduate with this major. That is to say, about one-

third of students who enter the University declaring a life science major did not graduate 

with this major. By comparison, female students who initially declared a life science 

major were more likely to persist with this major through graduation – i.e., 42.3% of 

STEM-considering female students initially declared a life science major, and 29.9% 

graduated with this major. Whereas for men, just 26.8% of STEM-considering students 

declared a life science major, and only 16.5% graduated with a degree in this major (a 

decline of 39.5%). 

Similarly, while 13.6% of STEM-considering students initially declare an 

engineering major, just about 71% complete their degree in engineering (9.7% of all 
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STEM-considering students). In contrast, over time, the share of STEM-considering 

students with a non-STEM degree grows as students continue their progress toward 

graduation. The share of men and women who initially declare an engineering major, and 

who then complete an engineering degree, is about 70% for both groups. That said, the 

share of women who pursue an engineering degree is considerably less than their male 

peers. Initially, 29.8% of the sample declared a major in a non-STEM field, and 

subsequently 39% of students graduated with a non-STEM major.  

 

Table 4. 3  

 

Academic Major Declared in First Semester and Degree Conferred at Graduation for 

STEM-Considering Students 

 
 Male Female Total 

Academic Major  Enrollment Graduation Enrollment Graduation Enrollment Graduation 

       

STEM Majors 60.9 41.5 50.6 35.3 55.4 38.6 

       

    Computer 

 science 

3.8 3.2 0.5 0.5 2.0 1.7 

    Engineering 23.9 17.0 4.7 3.3 13.6 9.7 

    Life Science 26.8 16.5 42.3 29.9 35.2 23.7 

    Mathematics 2.1 2.9 1.0 1.6 1.5 2.2 

    Physical Science 4.2 1.9 2.1 0.7 3.1 1.3 

       

Non-STEM  21.9 33.4 36.5 43.9 29.8 39.0 

Undeclared 17.2  12.9  14.8  

       

Incomplete  25.2  20.1  22.4 

       

Total Students 2,265 2,625 4,890 

 

 

 

 



 
  

61 

Student Academic Majors Overtime 

 

Figure 4.1 provides a visual summary of STEM-considering students’ academic 

major trajectories over time. It provides a broad overview of majoring patterns, their 

frequencies, how they compare to each other, and how such frequencies relate to 

switching and/or dropping out of the University. This figure covers all 4,890 students in 

my analysis. The sequences represent their term majors for each semester over the course 

of six years. The x-axis is the semester and the y-axis show the sequences’ accumulated 

frequency in percentage of students. Students’ majors have been recoded to seven 

categories: non-STEM, life sciences, engineering, physical science, mathematics, 

computer science, and undeclared respectively denoted as NS, LF, EN, PH, MA, CS, UN. 

Each of these codes are represented with a specific color on the plot. The green represents 

missing majors, meaning that the student did not have any major record, that is to say, the 

student is not enrolled in the University anymore.  

As it is clear from the plot, life science majors dominate majoring patterns within 

STEM fields at the point of entry, attracting more students compared to other STEM 

majors. However, the frequency of this major declines as students go further in their 

study. That is to say, students who enter the University declaring a major in life science 

later switch to other majors, specifically to non-STEM fields. The second most frequent 

pattern in STEM fields is the engineering path. While in comparison to life science, 

engineering has a much lower frequency, even this low frequency declines as the students 

go further in their course of study. Non-STEM majors’ domination, in contrast, grows as 

students continue their study towards graduation, meaning that students are switching 
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from STEM or undeclared majors to non-STEM majors. What this figure suggests is that 

there is a dynamic process at work for how student trajectories develop over 12 

semesters.  

 
Figure 4. 1 Visual Summary of Patterns in Academic Majors for STEM-Considering 

Students (Over 12 Semesters) 

 
Note: The plot represents STEM-considering student majors for each semester over the course of six years 

(12 semesters). The x-axis is the semester and the y-axis show the sequences’ accumulated frequency in 

percentage of students. 

 

 

In the following sections, I will explore this dynamic process with more depth 

using Sequential Pattern Mining and Cluster Pattern Analysis. Using Sequential Pattern 

Mining, I identify the most frequent patterns for academic majors over students’ 

enrollment period. This helps us understand how and when students change academic 

MI
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majors. By comparison, cluster analysis helps to create a student typology according to 

their academic major sequences and analyze group differences within these clusters, 

particularly differences between men and women.  

Pattern analysis. In this first section, I present findings from my sequential 

pattern analysis with STEM-considering students. Specifically, I consider: 1) dominant 

academic major patterns, for the overall sample and by gender; and 2) students’ 

transitions among academic majors.  

 Dominant academic major patterns. Table 4.4 describes the 10 dominant 

academic major patterns for all STEM-considering students identified by Sequential 

Pattern Mining. The 10 dominant patterns cover 43.9% of STEM-considering students in 

the three cohorts included in this study – put another way, this means that more than half 

of students pursued other pathways that did not necessarily conform to some overall trend 

in academic major selection.  

 The first key finding is that nearly one-third of STEM-considering students start 

and complete the same academic major within four years. Specifically, about 14% 

students who initially declared a non-STEM major persisted in a non-STEM major for 

eight semesters. This percentage represents slightly less than half of the students who 

initially declared a non-STEM major (29.8%, Table 4.3). Among STEM fields, 12.3% of 

students who initially declared a life science major completed their major in eight 

semesters; this was just about one-third of the students who initially declared a life 

science major (35.2%, Table 4.3). By comparison, 5.3% of students who initially 

declared an engineering major persisted with this major for eight semesters, or about 60% 
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of students who initially declared an engineering major (13.6%, Table 4.3). Taken 

together, these findings suggest that among students initially declaring a STEM major, 

sizable shares of students are not completing that major in four years.  

Interestingly, the second set of frequent patterns that emerged were for students 

who dropped out of the University after two semesters. About 2% of students who started 

in a non-STEM major dropped out spring of their freshman year, and another 2% of life 

science majors dropped out then as well. Finally, about 1.5% of students who were 

initially undeclared majors switched to a non-STEM major after two semesters, and 

subsequently persisted with a non-STEM major for another six semesters.  

Table 4. 4 

Ten Most Frequent Patterns in Academic Majors among STEM-Considering Students 

Subsequence Frequency Percentage 

Non-STEM / 8 Semester           650  13.7  

Life Science / 8 Semester           583  12.3  

Engineering / 8 Semester           250  5.3  

Non-STEM / 2 Semester           105  2.2  

Life Science / 2 Semester           99  2.1  

Life Science / 6 Semester            97  2.0  

Non-STEM / 6 Semester          86  1.8  

Non-STEM/ 5 Semester- Non-STEM/2 

Semester     
77  1.6  

Undeclared / 2 Semester- Non-STEM /6 

Semester         
70  1.5  

Life Science / 4 semester            68  1.4  

 Total students 2,085  43.9  

Note: This table lists the 10 most frequent patterns identified using Sequential Pattern  

Mining for academic majors among all STEM-considering students. 



 
  

65 

Differences in dominant academic major patterns for female and male students. 

I also find differences in the academic major patterns for female and male STEM-

considering students. The visual comparison of female vs. male majoring pattern 

distribution (Figure 4.2) clearly shows significant differences between male and female 

students’ majoring patterns overtime. As the comparison plot shows, the majority of 

female students who enroll in STEM fields follow a trajectory in life science and very 

few of them follow an engineering path. In contrast, male students follow life science and 

engineering paths at the same rate. Life science and engineering paths also decline for 

both male and female student as they go further in their studies. The male-female 

differential, however, remains significant. 
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Figure 4. 2 Gender Differences in Academic Majors over Time  

 
Note: The plot represents STEM-considering student majors for each semester over the course of six years 

(12 semesters). The x-axis is the semester and the y-axis shows the sequences’ accumulated frequency in 

percentage of students. Majors are denoted as NS: non-STEM, LF: life science, EN: engineering, PH: 

physical science, MA: mathematics, CS: computer science, UN: undeclared 

 

 

 

As was the case above, I focused on the 10 most dominant academic major 

patterns for STEM-considering students (Tables 4.5 and 4.6). Overall, about 28% of male 

STEM-considering students completed within four years the academic major they 

initially declared upon entering the University (see Table 4.4). As was the case for the 

full sample, the three most dominant patterns for male students were for students who 

initially declared a non-STEM major, and among STEM majors those that initially 

declared an engineering or life science major. For male non-STEM majors, less than half 
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persisted with their major for eight semesters (9.6% vs, 21.9%). A similar attrition rate 

was apparent for male students with initially-declared STEM majors – for engineering, 

9.3% of students persisted for eight semesters (of 23.9% who initially declared); and for 

life science, 9.1% persisted (of 26.8% who initially declared).  

For females, 32% persisted with their initial academic major for eight semesters – 

however, these majors were limited to non-STEM and life science. There was no similar 

pattern among females for engineering; that is, female persistence in an engineering 

degree was the eighth dominant pattern for academic majors. For females, 17.1% who 

initially declared a non-STEM major persisted for eight semesters; this is slightly more 

than half of the women who initially declared a non-STEM major. However, for women 

who initially declared a life science major, just about one-third of those who initially 

declared persisted in this major for eight semesters (i.e., 14.9% of 42.3% who initially 

declared), and another 2.7% of females who initially declared as a life science major 

persisted for six semesters.  

The pattern for student dropouts differed for males and females. For males, it was 

a dominant pattern, with nearly 5% of the sample dropping out of two semesters – 2% of 

which were initially non-STEM majors, 1.7% were initially life science majors, and 1.6% 

were engineering majors. About 5% of females also dropped out after two semesters, but 

their initial academic majors were somewhat different, with 2.4% initially declaring a life 

science major and the other 2.4% a non-STEM major.  

Among male STEM-considering students, about 5% of the sample switched from 

an undeclared major to a non-STEM major after their second or third semester. There 
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was no similar pattern for female students. However, 1.6% of females switched from life 

science to non-STEM after two semesters.  

 

Table 4. 5  

Ten Most Frequent Patterns in Academic Majors among STEM-Considering Students: 

Males  

Patterns  Frequency  Percentage  

Non-STEM / 8 Semester           211  9.6  

Engineering / 8 Semester           204  9.3  

Life Science/ 8 Semester           201  9.1  

Non-STEM / 2 Semester           43  2.0  

Life Science / 2 Semester           37  1.7  

Engineering /2 Semester 36  1.6  

Non-STEM/6 Semester          36  1.6  

Undeclared /2 Semester-Non-STEM/6 Semester     36  1.6  

Undeclared /3 Semester-Non-STEM /5 Semester     30  1.4  

Life Science /6 Semester          29  1.3  

Total Students  863 37.6 

Note: This table lists the 10 most frequent patterns identified using Sequential Pattern  

Mining for academic majors among males STEM-considering students. 
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Table 4. 6  

Ten Most Frequent Patterns in Academic Majors among STEM-Considering Students: 

Females   

Patterns  Frequency  Percentage  

Non-STEM /8 Semester            439  17.1  

Life Science /8 Semester            382  14.9  

Life Science /6 Semester             68  2.7  

Non-STEM /5 Semester- Unenrolled /1 Semester-Non-

STEM/ 2 Semester     
66  2.6  

Life Science / 2 Semester            62  2.4  

Non-STEM /2 Semester            62  2.4  

Non-Science /6 Semester             50  2.0  

Engineering /8 Semester 46  1.8  

Life Science /7 Semester             43  1.7  

Life Science /2 Semester-Non-STEM /6 Semester        41  1.6  

Total Students 1.259 49.2 

Note: This table lists the 10 most frequent patterns identified using Sequential Pattern Mining for academic 

majors among female STEM-considering students. 

 

 

 

Switching patterns among academic majors. My distribution analysis of most 

frequent academic patterns demonstrated that not only a lower number of students begin 

their college career with a STEM major, but also those numbers decline over time as a 

result of some leaving STEM for other fields. To arrive at a better understanding of the 

switching patterns among academic majors, with particular attention to students 

switching between STEM and non-STEM majors and within STEM fields, I built three 

transition matrices – one for all STEM-considering students; and two others, for female 

and male STEM-considering students separately. When considering switching between 

academic majors, I look at any changes during the 12 semesters after initial enrollment.  
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Table 4.7 summarizes the primary switching patterns that emerged from the data. 

Since students who majored in engineering, mathematics, physical, or computer science 

comprised a small share of STEM-considering students (10.9%), for this analysis I 

combined students declaring one of these majors into a new general category titled “hard 

sciences.”  

Overall, I find that the share of students switching from STEM to non-STEM 

majors is higher than the share of students switching from non-STEM majors to STEM 

majors (18.7% vs. 1.5%). Specifically, 14.8% of students who initially declared a major 

in the “hard sciences” switched to a non-STEM major sometime over the course of the 

next 12 semesters, and another 5.2% switched from a major in the hard sciences to a life 

science major. Conversely, a very small share of students switched from a non-STEM or 

a life science major to a major in the hard sciences (about 0.5%, respectively). Similarly, 

the share of students who switched from non-STEM to STEM majors was small, just 1% 

of non-STEM students switched to a life science major and 0.5% to a major in the hard 

sciences.  

Switching patterns, however, were considerably different for female and male 

students. Specifically, females were more likely to switch from a major in the hard 

sciences to a non-STEM field, and within STEM majors from the hard sciences to life 

sciences. Female students who majored in the hard sciences left for non-STEM majors at 

a much higher rate than their male peers – 17.7% vs. 13.0% (female vs. male). This is 

notable given the comparatively small number of females who declared a major in the 

hard sciences. When females switched from the hard sciences to another STEM field, 
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they were more likely to declare a life science major than their male counterparts (10.3% 

vs. 3.2%). Female and male students who initially declared a life science major were 

equally likely to switch to a non-STEM major (4% vs. 3.8%). These findings are 

particularly notable given the comparatively small number of females who initially 

declared a major in the hard sciences; that is, females switch to non-STEM fields at 

higher rates and the very few who stay in STEM were more likely to move from 

academic majors in hard science to a life science major.  

Table 4. 7 

 Transitions among Academic Majors over 12 Semesters 

Transition  All students  Female   Male  

Non-STEM    =>   Life Science            1%       1.1%  0.6%  

Non-STEM    =>   Hard Science  0.5%  0.3%  0.6%  

Life Science   =>   Hard Science  0.5%  0.4%  1.2%  

Life Science   =>   Non-STEM  3.9%  4%  3.8%  

Hard Science   =>   Life Science  5.2%  10.3%  3.2%  

Hard Science   =>   Non-STEM  14.8%  17.7%  13.1%  

Note: Hard Science include engineering, computer science, Physical Science, and Mathematics majors.  

 

The findings from Sequential Pattern Mining of students’ academic majors 

suggest that among STEM-considering students who declared a STEM major upon entry, 

a sizable share did complete their major in four years. Also, the findings show that a large 
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number of students pursued a pathway that did not necessarily conform to any of the 

overall trends in academic major selection discussed above. Within STEM, life science 

majoring patterns were the most frequent among STEM-considering students. The 

frequency of such patterns, however, declines over time as students switch to non-STEM 

majors. Even though engineering and other hard science paths are much less frequent, 

they follow a similar pattern of decline as students go through further in their study. The 

findings also reveal that male and female students follow clearly different academic paths 

and that this gender-based difference becomes even more significant within STEM fields. 

That is to say, more female STEM-considering students follow non-STEM paths and the 

number of such students grows as they continue their studies. Within STEM fields, life 

science trajectories enjoy a much higher level of popularity among female students. In 

contrast, engineering is much more popular (the second most frequent pattern) among 

male STEM-considering students. Despite these important differences, the popularity of 

STEM paths declines for both female and male students as they further progress in their 

studies. Transition analysis confirms that, in general, a higher number of students switch 

form STEM to non-STEM compared to the number of students switching otherwise. The 

rate of switching from STEM to non-STEM is even higher for female students. Within 

STEM fields, more students switch from a hard science major to non-STEM compared to 

students who switch from life science. Women comprise most of the switchers from hard 

science to non-STEM majors. All these patterns point out to the fact that the institution is 

struggling to recruit and keep students, especially women, in STEM fields, particularly in 

hard science.  
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Cluster Analysis. Another way to consider students’ academic trajectories is to 

cluster students according to their academic major sequences. Specifically, I used this 

approach to better understand gender differences in academic majors. While Sequential 

Pattern Mining provides the most frequent sequences in academic majors, cluster analysis 

allows us to look within similar groups of students (according to academic major) to 

better understand different decision-making patterns. This allows me to develop a 

typology of students based on academic major– similar to what Adelman (2005) and 

Bahr (2010) did in earlier research. However, I build on these earlier works to take into 

account sequencing in academic major when clustering students, rather than just 

clustering students based on their academic majors at one point in time. 

Cluster analysis identified six student groups with academic majors in: 1) life 

science (Cluster 1); 2) physical science and mathematics (Cluster 4); 3) engineering 

(Cluster 5); 5) computer science (Cluster 6); and 6) non-STEM fields (Cluster 3). The 

procedure also identified a distinct group of students who dropped out of the University 

sometime between their first and twelfth semester enrolled (Cluster 2).  Figure 4.4 depicts 

the distribution of academic majors in each cluster of students that occurred over 12 

semesters.  

Table 4.8 shows the percentage of female and male students who belong to each 

group and Table 4.9 shows the most frequent majoring patterns for each cluster. In what 

follows, I will point out to some of the significant findings that we can derive from each 

cluster, and the two associated tables. Table 4.9 shows that around half of students in life 

science cluster start their study in a major in life science and persist in it for seven or 
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eight semesters. Table 4.8 shows that life sciences are dominated by women, 16% of all 

female students compared to 9% of males. The second cluster, titled “the Quitters” 

represents sequences in which students drops out of the University after a few semesters. 

Based on Table 4.8, 17.5% of the quitters are life science majors who left the University 

after their first or second semester, while 10.2% of them are engineering majors who 

dropped out after the first or the second semester (and sometime even after their fourth 

semester). Around 4% of the Quitters are students who did not declare a major initially 

and left the University after two semesters without ever having selected a major. Table 

4.8 shows that there is a slight gender disparity in this cluster. A total of 10% of male 

students are among the quitters while only 8% of female students belong to this category. 

The third cluster of Figure 4.3 represents non-STEM majors as well as the students who 

switched to non-STEM fields. Around 10% of students in this group did not declare a 

major when enrolled and then switched to a non-STEM major after their first, second, or 

sometimes even third semester of the study. It is important to note that this cluster is 

dominated by female students as well (24% of females vs 16% males). The last three 

clusters presented on Figure 4.3 are hard science major groups (engineering, physical 

science, and mathematics). An initial characteristic that all these three clusters share is 

the much lower number of students, compared to other clusters, that belong to them. 

Additionally, Table 4.8 shows that all these three clusters are dominated by male 

students, female students being significantly underrepresented in all, almost absent in 

computer science.  
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Figure 4. 3 Clusters of Students’ Academic Major  

 
Note: Majors are denoted as NS: non-STEM, LF: life science, EN: engineering, PH: physical science, MA: 

mathematics, CS: computer science, UN: undeclared. 

 

Table 4. 8 

  

Academic Major Clusters with Male and Female Students Membership  

 

Cluster Male Female 

Cluster 1: Life Science 9% 18% 

Cluster 2: Quitters 10% 8% 

Cluster 3: Non-STEM 16% 24% 

Cluster 4: Physics and Mathematics 3% 1% 

Cluster 5: Engineering 7% 2% 

Cluster 6: Computer Science 2% 0% 

 

MI 
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Table 4. 9  

 

Frequent Major Patterns for Each Academic Major Cluster 

 
sequences Counts percent sequences counts percent 

Life Science     Quitters     

LF/8 Semester          583 44.7 NS/2 Semester 105 12.1 

LF/6 Semester          97 7.4 LF/2 Semester 99 11.4 

LF/4 Semester            68 5.2 LF/1 Semester 53 6.1 

LF/7 Semester            55 4.2 NS/4 Semester 49 5.6 

LF/5 Semester-/1-LF/2 

Semester    
32 2.5 EN/2 Semester 43 4.9 

LF/5 Semester            27 2.1 UN/2 Semester 34 3.9 

LF/9 Semester            25 1.9 NS/3 Semester 33 3.8 

LF/3 Semester            24 1.8 EN/4 Semester 27 3.1 
       

Non-STEM     Physics/Math     

NS/8 Semester 650 34.6 PH/8 Semester           24 12.8 

NS/6 Semester 86 4.6 MA/8 Semester          15 8 

NS/5 Semester -/1-NS/2 

Semester 
77 4.1 

EN/3 Semester -MA/5 

Semester 
4 2.1 

UN/2 Semester -NS / 6 

Semester 
70 3.7 PH/6 Semester  4 2.1 

UN/3 Semester -NS/5 

Semester  
55 2.9 

UN/3 Semester -MA/5 

Semester 
4 2.1 

LF/2 Semester -NS/6 

Semester      
54 2.9 

LF/2 Semester -MA/6 

Semester       
3 1.6 

UN/1 Semester -NS/7 

Semester       
50 2.7 

LF/2 Semester -PH/6 

Semester 
3 1.6 

NS/7 Semester  31 1.7 
MA/4 Semester -/1-

MA/3 Semester 
3 1.6 

       

Engineering     Computer Science     

EN/8 Semester 250 59.67 CS/8 Semester 21 20.8 

UN/1 Semester -EN/7 

Semester       
21 5.01 CS/6 Semester 7 6.9 

EN/9 Semester -/3 

Semester            
17 4.06 CS/9 Semester 5 5 

UN/2 Semester -EN/6 

Semester      
15 3.58 

UN/2 Semester -CS/6 

Semester       
4 4 

EN/7 Semester  12 2.86 CS/7 Semester  3 3 

/1-EN/7 Semester 10 2.39 
EN/1 Semester -CS/7 

Semester  
3 3 

EN/10 Semester           7 1.67 
UN/1 Semester -CS/7 

Semester 
3 3 

EN/3 Semester -/1-EN/4 

Semester    
5 1.19 /1-CS/ 5 Semester 2 2 

   Note: Majors are denoted as NS: non-STEM, LF: life science, EN: engineering, PH: physical science, 

MA: mathematics, CS: computer science, UN: undeclared.   
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To conclude, cluster analysis offers a way to group students together based on 

their academic behavior patterns over time without considering any other information 

related to student characteristics. In an ideal situation, there should be no strong 

association between non-academic student characteristics and membership in a cluster. 

That is to say, in an ideal institution we expect students from different racial, ethnic, or 

class backgrounds to be represented roughly equally in all clusters. The results from 

cluster analysis, however, clearly demonstrates that this is not the case. As I have shown, 

female students are over-represented in life science and non-STEM clusters and 

significantly under-represented in engineering and computer science fields. Such 

associations are clear indications of systemic problems that lead to an unlevel playing 

field in which groups of students, like male students, are positioned better compared to 

their female counterparts to pursue certain majors. Unfortunately, since I did not have 

access to other demographic information, such as information on student socioeconomic 

status or their pre-college records, I was unable to determine whether there are other 

characteristics that are strongly associated with certain clusters beyond gender.  

Student Course Taking Over Time 

 

A second purpose for this study was to understand how student course-taking 

experiences related to whether or not they completed a degree in a STEM-related field. 

Most previous studies that have considered course-taking patterns simply look at the 

number of STEM courses taken and the relationship between this number and degrees 

obtained (e.g., Chen, 2013, 2015). This study takes a different approach and looks at the 

actual sequence of courses taken by students and the likelihood that a student completes a 
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degree in a STEM-related field. I accomplish this using Sequential Pattern Mining 

techniques. As a second step, I also developed a typology of students based on their 

course taking behavior using cluster analysis techniques. The resulting typology helps us 

to understand whether specific course taking behaviors are associated with gender – i.e., 

are certain course taking behaviors more likely for women or men.  

Course taking patterns over time. 

 Pattern analysis. In this section, I present findings from my Sequential Pattern 

Analysis for STEM-considering students. Specifically, I consider dominant patterns in 

sequential course taking by students, overall and by gender.  

 Dominant patterns in sequential course taking. First, I examined the most 

frequent course taking patterns among STEM-considering students. The patterns 

represent the sequence in which courses were taken; however, it may be the case that the 

sequence occurs over multiple semesters and the patterns do not necessarily represent 

courses taken in sequential semesters. The purpose of this analysis was to identify 

“broken” sequences that identify course taking patterns that lead to students leaving the 

STEM fields. By broken sequences, I mean the point at which students stop taking 

STEM-related courses or leave the University altogether. I consider three patterns – 1) 

students who continue to take STEM-related courses and finish degree at the University; 

2) “switchers” – i.e., by switchers I mean students who initially declared a STEM major, 

who then after a particular sequence of courses stop taking any STEM classes; and 3) 

“quitters,” who initially declared a STEM major and then leave the University after 

taking a certain sequence of STEM-related courses.  
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 Table 4.10 shows the most 12 frequent course-taking sequences, sorted by 

frequency (support). That is to say, 33% of all students chose to take chemistry and 

calculus concurrently. None of the 12 most frequent course-taking patterns identify 

sequences where students switch to non-STEM course taking, or “quitters”. The most 

frequent course taking sequence is Calculus I and then Calculus II, with about 40% of 

STEM-considering students completing that sequence. The second most frequent pattern 

was for students to take Calculus I and Chemistry I concurrently; about one-third of 

students followed this pattern. About 30% of students took Chemistry I and then Calculus 

II (29%), and another 28% took Chemistry I and then Chemistry II. About 26% of 

students took an Introductory Science course followed by another Introductory Science 

course. Finally, one-quarter students took Calculus I and Chemistry I concurrently and 

then followed up with Calculus II (25%).  
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Table 4. 10 

  

Most Frequent Course-taking Pattern 

 

Sequence Support Count 

Calculus I → Calculus II 39.9% 1,900 

(Calculus I, Chemistry I)*  33.4% 1,588 

Chemistry I → Calculus II  28.7% 1,365 

Chemistry I → Chemistry II  28.4% 1,352 

Science Introductory → Science 

Introductory  
26.0% 1,236 

(Calculus I, Chemistry I)* → 

Calculus II  
25.3% 1,202 

Calculus I→ Science Introductory 23.4% 1,113 

Calculus I → Science Advanced  23.3% 1,110 

Calculus I → Statistics 141 23.2% 1,103 

Chemistry I → Science Advanced  22.4% 1,067 

Science Advanced → Science 

Advanced 
21.6% 1,028 

Calculus I → Chemistry II  20.6% 981 

Note: Science introductory courses includes a range of introductory level science courses (<=100 level) that 

students might take early on in their academic careers. Science advanced courses are comprised of general 

science courses at the 200 level or above.  * notes courses that are taken concurrently. The patterns 

represent the sequence in which courses were taken; however, it may be the case that the sequence occurs 

over multiple semesters and the patterns do not necessarily represent courses taken in sequential semesters. 

 

 

Since I was most interested in identifying the course taking patterns that preceded 

an initially-declared STEM major to switch to a non-STEM major, I looked for sequences 

in course taking that occurred prior to switching to a non-STEM major. Table 4.11 lists 

the most common course taking patterns for students who switched majors or quit from 

the University after taking these courses. There are several notable patterns. First, it 
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appears that course taking sequences that involve Calculus I, Calculus II, and Chemistry I 

occur more frequently among students who were initial STEM majors who then switch to 

non-STEM majors. Altogether, about 13% of students who initially declared a STEM 

major and who took Calculus course work switched to a non-STEM major. Specifically, 

about 5% of students who initially-declared a STEM major switched to a non-STEM 

major after taking Calculus I, and 8% of students who took Calculus I and then Calculus 

II later switched to a non-STEM major. This equates to about 603 students (over three 

cohorts) who were initial STEM majors that did not graduate with a STEM-related 

degree. Additionally, about 5% of students who took Chemistry I later switched to a non-

STEM major (this equates to 206 students, across three cohorts), and 6% of students who 

took Calculus I and Chemistry I concurrently also switched to a non-STEM major (this 

equates to 285 students, across three cohorts). Interestingly, there were similar patterns 

among initial STEM majors who subsequently left the University. Six percent of students 

who took Chemistry I subsequently left the University, and 7.8% of students who took 

Chemistry I and Calculus I concurrently also left.  About 6% of students who initially 

declared a STEM major left the University after taking Calculus I, and 6.3% of students 

who took Calculus I and then Calculus II left.  

Taken together, these findings suggest that the introductory Calculus sequence 

and Chemistry I are pivotal courses for whether students continue to pursue a STEM-

related degree or leave the University altogether.  
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Table 4. 11 

 

Course-Taking Patterns for STEM Majors Who Subsequently Switched Majors or 

Dropped Out of University 

Sequence Support Count 

(Calculus I) → (Calculus II) → (Switch)  7.7% 367 

(Calculus I) → (Switch)  5.0% 236 

(Calculus I) → (Calculus II) → (Quit)  6.3% 299 

(Calculus I) → (Quit)  5.3% 270 

(Chemistry I) → (Switch)  4.5% 206 

(Calculus I, Chemistry I)* → (Switch)  6.0% 285 

(Chemistry I) → (Quit)  5.9% 280 

(Calculus I, Chemistry I)* → (Quit)  7.8% 372 

 
Note: “SWITCH” identifies course taking patterns for students who initially declared a STEM major, and 

then after a particular sequence of courses stop taking any STEM classes. “QUIT” identifies course taking 

patterns for students who initially declared a STEM major and then left the University after taking a certain 

sequence of STEM-related courses. A complete list of full course titles alongside their designated code 

appears in Appendix C. * notes courses that are taken concurrently. The patterns represent the sequence in 

which courses were taken; however, it may be the case that the sequence occurs over multiple semesters 

and the patterns do not necessarily represent courses taken in sequential semesters. 

 

 

Results for sequential rule mining. Although Sequential Pattern Mining does 

provide important information on the most frequent course-taking subsequences and the 

number of students whose academic profiles contain such subsequences, there is no 

assessment of the probability that a pattern will occur. To address this problem, I used 

sequential rule mining to discover sequential rules in students’ course-taking sequences. 

These rules provide interesting insights into sequential patterns by giving a measure of 

confidence of whether a sequence of course-taking pattern would occur. For example, a 

rule such as (Calculus I) => (Calculus II) with a 45% confidence means that we can 
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predict that a student taking Calculus I will later take Calculus II with a 40% confidence. 

The rule mining analysis returns a large number of rules alongside measures of their 

confidence and minimum support. Since I am specifically interested in rules that include 

switching or quitting out of the University, I focus only on rules that can predict when a 

specific course is taken, whether it is likely to be followed by switching the major or 

leaving the University. From Sequential Pattern Mining results, I know that there are 

specific courses are more frequent in quitters’ or switchers’ course-taking patterns. 

Therefore, I focus on the rules containing such courses followed by quitting or switching.  

 

 

Table 4. 12  

 

Course-taking Rules for STEM-Considering Students Who Switched Majors or Left the 

University 

 

Rules Support 
Confidence 

(Probability) 

(Calculus I, Chemistry I) => (Quit) 381 24% 

(Calculus I) => (Quit)  598 20% 

(Chemistry I) => (Quit) 537 21% 

(Calculus I) - (Calculus II) => (Switch)   378 20% 

(Calculus I) => (Switch) 627 20% 

(Chemistry I) => (Switch) 414 16% 

(Calculous II) => (Quit) 369 16% 

(Calculus I) - (Calculus II) => (Quit)   303 15% 

 

 

Table 4.12 shows the confidence and support measure of course-taking rules for 

switching to non-STEM or leaving the University. The results show that the probability 
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of dropping out of the University after taking Calculus I is 20%. The probability is even 

higher for students who take Chemistry I (21%). The highest probability of dropping out 

of the University is when a student takes both Calculus I and Chemistry I at the same 

semester. The probability of dropping out of the University for such students is around 

24%. Also, the probability of dropping out of the University after taking Calculus I 

followed by Calculus II is around 16%. These results confirm that there are gatekeeper 

courses such as the ones mentioned above that contribute significantly to a student’s 

decision not only to leave their potential STEM major but also to drop out of the 

University all together.  

Interestingly, these are the same courses that might also lead to switching to a 

non-STEM major. The results show that a student who takes Calculus I has a 20% chance 

of leaving his/her field to a non-STEM major. There is the similar chance of switching to 

non-STEM fields after taking Chemistry I. The highest probability of switching to non-

STEM, however, belongs to students who take Calculus I followed by calculus II. These 

students have a 19% chance of switching from a STEM to a non-STEM major. In other 

words, taking introductory mathematics courses is directly related to leaving STEM fields 

for a non-STEM major.  

Student performance in gatekeeping courses. As a follow up step, I looked at 

student grades for selected courses to better understand how course taking patterns might 

contribute to students’ decisions to switch to a non-STEM major or leave the University. 

In this analysis, I considered what appears to be three key potential gate keeping courses: 

Calculus I, Calculus II, and Chemistry I. As noted above, there appears to be consistent 
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patterns for switching away from STEM majors and quitting the University that occur 

after taking these courses. One potential reason for this could be student performance in 

these classes.  

Overall performance in gate keeping courses. Table 4.13 describes the 

percentage of STEM-considering students who received specific letter grades for 

Calculus I or withdrew from the class prior to receiving a grade. Overall, 84% of students 

who took Calculus I passed the course with a grade of C or above, and about 5% 

withdrew. However, among STEM-considering students who ultimately graduated with a 

STEM-related degree, almost 90% passed the course with a letter grade of C or above 

and 40% receive A’s. This is in contrast to students who were initially a STEM major and 

later switched to a non-STEM major and those that later left the University after having 

taken Calculus I. Among quitters, only 65% passed, just 19% received A’s, and 10% 

failed the course and another 10% withdrew. The pattern was less clear for switchers – 

that said, on average, switchers received lower grades in Calculus I compared to students 

who graduated with STEM majors.  

Table 4.14 considers student grades for Calculus II. Here we find that about 84% 

of STEM-considering students pass this course with a grade of C or better; however, 9% 

of students withdraw the course. Again, there are descriptive differences in grades among 

students who graduate with a STEM major, those that switch away from STEM majors, 

and those that leave the University. Ninety percent of students who graduate with a 

STEM degree, who also take Calculus II, pass the course and 6% of these students 

withdrew. In contrast, students who left the University were more likely to have failed or 
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withdrew from the course (12% and 16%, respectively). Quitters who passed the course 

also, on average, received lower passing grades. Among switchers 82% passed the course 

but did so with lower average grades – for example, just 22% received A’s (compared to 

37% of STEM graduates). Also, about 13% of switchers withdrew from the course 

(compared to 6% of STEM graduates).  

Table 4.15 presents the distribution of grades for Chemistry I. Overall, 78% of 

STEM-considering students who took this course passed with a grade of C or better, and 

9% withdrew from the course. However, among students who graduated with STEM-

related degrees, 88% passed the course – although just 14% received A’s, and 6% 

withdrew. By contrast, among students who left the University, 58% passed the course –

with just 4% of students receiving an A. Eleven percent of students who quit the 

University failed this course and another 16% withdrew. This suggest that nearly 150 

students across three cohorts left the University after failing or withdrawing from this 

course. Although 71% of switchers passed the course, however, 13% of switchers 

withdrew before its completion. Taken together, the descriptive patterns in student grades 

in these three courses suggest that student performance (i.e., grades) may be a 

contributing factor to STEM-considering students’ decisions to pursue a STEM-related 

degree, as well as whether they decide to remain at the University.  

 



 

 
  

 

 

Table 4. 13  

Distribution of Grades for Calculus I 

 
Calculus I Overall STEM Graduates Switchers Quitters  

Grade total male female total male 
femal

e 
total male female total male female 

 

A 33% 27% 40% 40% 34% 46% 27% 21% 35% 19% 16% 25%  

B 31% 32% 29% 32% 34% 30% 32% 33% 25% 24% 23% 28%  

C 20% 22% 17% 17% 29% 16% 24% 26% 21% 22% 26% 17%  

D 8% 8% 6% 5% 5% 5% 9% 10% 7% 15% 15% 13%  

F 4% 5% 3% 2% 2% 1% 3% 4% 2% 10% 11% 10%  

W 5% 6% 5% 4% 4% 4% 5% 5% 5% 10% 11% 8%  

Total  3,267 1,734 1,533 1,911 972 939 683 353 330 673 409 264  

 

 

 

Table 4. 14  

Distribution of Grades for Calculus II 

 

Calculus II Overall STEM Graduates Switchers Quitters 

Grade total male female total male female Total male female total male female 

A 31% 26% 39% 37% 32% 45% 22% 18% 27% 18% 14% 27% 

B 33% 34% 31% 34% 37% 32% 34% 32% 35% 23% 24% 21% 

C 20% 22% 18% 18% 21% 15% 24% 28% 20% 24% 23% 25% 

D 4% 5% 3% 3% 3% 2% 6% 5% 6% 10% 12% 5% 

F 3% 3% 2% 1% 1% 1% 2% 3% 1% 10% 12% 6% 

W 9% 9% 8% 6% 7% 6% 11% 13% 8% 16% 16% 15% 

Total 2,537 1,464 1,079 1,673 945 728 459 253 206 411 266 145 

8
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Table 4. 15  

Distribution of Grades for Chemistry I 

 

Chemistry I Overall STEM Graduates Switchers Quitters 

Grade total male female total male female total male female total male female 

A 10% 10% 11% 14% 14% 11% 4% 3% 5% 4% 3% 6% 

B 31% 31% 32% 38% 39% 37% 26% 23% 29% 16% 16% 17% 

C 37% 29% 26% 36% 37% 36% 41% 44% 39% 38% 39% 35% 

D 9% 10% 7% 6% 5% 5% 12% 14% 10% 15% 16% 14% 

F 3% 4% 3% 1% 1% 1% 3% 3% 3% 11% 11% 11% 

W 9% 8% 11% 6% 4% 8% 13% 13% 14% 16% 16% 17% 

Total 2,572 1,310 1,262 1,583 786 797 424 192 232 565 332 233 
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Gender differences in performance. Descriptively, average grades in Calculus I 

were different for female and male STEM-considering students. Eighty-six percent of 

female students passed Calculus I with a grade of C or higher, while 72% of male 

students passed with similar grades. That said, nearly 40% of female STEM-considering 

students received an A grade, while 27% males received an A. A similar pattern was 

apparent for Calculus II (Table 4.14). Overall, among STEM-considering students, 

females were slightly more likely to pass Calculus II than their male counterparts (88% 

vs. 82%, female vs. male). However, for Chemistry I, female and male students were 

equally likely to pass the course with a grade of C or better. All that said, while there 

were general differences among male and female STEM-considering students in the 

grades received in Calculus I, Calculus II and Chemistry I, there were no discernible 

patterns that suggested that grades contributed to gender differences (described above) in 

the share of women and men who switched from a STEM-related majors to a non-STEM 

degrees. In Tables 4.13-4.15 we see comparable distributions in grades among men and 

women who were STEM graduates, switchers, and quitters.   

 Gender differences in dominant course taking patterns. To get a better 

understanding about gender differences in course-taking patterns I used discriminant 

subsequent analysis to investigate whether there is an association between student’s 

gender and course taking patterns. Pearson independent Chi-square is applied to measure 

the strength of association of each subsequence with the covariate (gender) and then 

selects the subsequences with the strongest association. This analytic approach identifies 

the most different course taking patterns between female and male students who initially 
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declared a STEM major. The frequencies of all 20 subsequences that significantly 

discriminate for the gender at (p< 0.01) level are plotted in Figure 4.4. The colors used 

for the bars in the figure indicate the sign and significance of the associated Pearson 

residual. 

 

 

Figure 4. 4. Course taking subsequences that discriminate gender at the 1% level 

Note: Blue: Positive 0.01 and Red: Negative 0.01 

 

 

Table 4.16 presents the most discriminating course-taking subsequences in 

decreasing order of their discriminant power with the frequencies for male and female 

students. The most discriminant one is the one with the highest Chi-square. As the table 

shows, most of the top 20 discriminant course taking patterns include at least one 

engineering or computer science course. Men are also more likely to take Calculus I 

(CAL 0I) and Introductory Engineering (EM INT) concurrently (20% male vs. 3% 

female), or Calculus I (CAL 0I) and then Introductory Computer Science (CS INT) (24% 

male vs. 6% female). Similarly, Calculus III (MA 121) also is more likely to appear in a 

Male Female 
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course taking sequence among male students than female students. For example, 24% of 

male students took Calculus II followed by Calculus III (MA 121), while only 6% of 

female students followed such course-taking pattern. This finding is consistent with the 

differences in academic majors between male and female students discussed above. That 

said, discriminant analysis only gives me the most discriminant course taking patterns, 

but it does not tell me if there are courses taking patterns that females are more likely to 

take than male students. To answer this question, in the next section I use cluster analysis 

to investigate whether students’ course-taking pattern is divided along gender line.  

 

Table 4. 16  

 

Course taking subsequences that discriminate gender at the 1% level 

 
Subsequence Support Chi-2 Freq. Male Freq. Female 

(EM INT) → (EM INT) 0.14 424 0.26 0.05 

(EM INT, EM INT)* 0.13 360 0.22 0.04 

(CH 031, EM INT)* 0.12 345 0.22 0.04 

(CH 031) → (EM INT) 0.12 342 0.22 0.04 

(CAL 0I, EM INT)* 0.11 337 0.20 0.03 

(CAL 0I) → (CS INT) 0.15 333 0.24 0.06 

(EM INT) → (EM INT, EM INT)* 0.11 332 0.20 0.04 

(EM INT) → (CS INT) 0.12 318 0.20 0.04 

(EM INT, EM INT)* → (EM INT) 0.11 316 0.19 0.03 

(EM INT) → (EM INT) → (EM INT) 0.11 312 0.20 0.04 

(CS INT, EM INT)* 0.11 312 0.19 0.04 

(CAL 0I) → (EM INT) 0.10 308 0.19 0.03 

(CH 031, EM INT)* → (EM INT) 0.11 306 0.19 0.04 

(EM INT) → (MA ADV) 0.12 305 0.21 0.04 

(CAL 0I, CH 031, EM INT)* 0.10 305 0.18 0.03 

(EM INT, PH INT)* 0.11 304 0.20 0.04 

(CAL II) → (MA 121) 0.14 303 0.24 0.06 

(CH 031) → (MA 121) 0.12 298 0.20 0.04 

(EM INT) → (ST ADV) 0.11 296 0.19 0.04 

(EM INT) → (CA L II) 0.09 295 0.17 0.02 

Note: A complete list of full course titles alongside their designated code appears in Appendix C.  

* notes courses that are taken concurrently.  
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 Cluster analysis. I developed a typology of students based on their course taking 

behavior using cluster analysis techniques. The resulting typology helps us to understand 

whether specific course taking behaviors are associated with gender – i.e., are certain 

course taking behaviors more likely for women or men. 

 To develop the clusters, I computed the normalized OME (Optimal Matching 

Event) dissimilarity matrix for all STEM-considering students. This resulted in a 

dendrogram plot clustering tree (see Figure 4.6). This plot identifies 12 groups of 

students who have similar course taking patterns. To better understand each group’s 

course taking behavior, I looked within clusters to find the most frequent course sequence 

patterns. I gave each cluster a name that described the dominant course taking patterns 

contained in that cluster, and then I identified the share of students in each cluster that 

were male and female. Appendix D lists the most frequent course sequencing patterns by 

cluster.  

Table 4.17 summarizes the 12 clusters and the distribution of male and female 

students within each cluster. The three sequential course taking clusters with the most 

STEM-considering students were: 1) Non-STEM and Switchers (14%); 2) Switchers 

(13%); and 3) Non-STEM (11%). Altogether, these three clusters are comprised of 38% 

of STEM-considering students. Two clusters describe student course taking patterns for 

students who left the University (i.e., Quitters 1 and 2; 10% and 5%, respectively). Four 

clusters identified 19% of students with course taking patterns in in life science or related 

subfield. Ten percent of students were identified by course sequences related to an 

engineering major.  
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Table 4.17 

 

Student Clusters Based on Course Taking Patterns 

  

Clusters 

 

Total Students 

(%/n) 

 

Male 

(%/n) 

 

Female 

(%/n) 

 

% Difference 

Between 

Male/Female 

Non-STEM and Switchers 14% (646) 6% (272) 8% (374) 2% (172) 

Switchers 13% (606) 6% (282) 7% (324) 1% (42) 

Non-STEM 11% (553) 2% (101) 9% (452) 7% (351) 

Engineering 10% (576) 8% (389) 2% (87) 6% (302) 

Quitter 1 10% (523) 5% (227) 5% (251) ~ 0% 

Life Science 10% (472) 4% (207) 6% (265) 2% (58) 

Life science/Agriculture 7% (314) 2% (86) 5% (228) 3% (142) 

Math and Computer Science 7% (328) 5% (225) 2% (103) 3% (112) 

Life Science, with Chemistry and 

Biology 
7% (316 3% (141) 4% (175) 2% (34) 

Life Science/Food Science 5% (226) 1% (32) 4% (194) 3% (162) 

Quitter 2 5% (249) 4% (204) 1% (45) 3% (159) 

Nursing and Health Science 
 

2% (95) 1% (33) 1% (62) ~ 0% 

Total 4890 2,265 2,625  

 

 

In an ideal situation, male and female students should be equally distributed 

across course taking pattern clusters. But what I find is that some course taking patterns  

are comprised of more male or female students. Specifically, the six course taking 

clusters that were most dissimilar in female and male membership were: 1) Engineering; 

2) Non-STEM; 3) Food Science; 4) Agriculture; 5) Math & Computer Science; and 6) 

Quitter 2. For example, while the engineering cluster is comprised of 10% of STEM-
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considering students, 8% of these students are male and just 2% are female. Conversely, 

in the non-STEM cluster comprised of 11% of students, 9% of these students are female 

and only 2% are male. Interestingly, the clusters that captured course taking patterns 

related to life science tended to have more females than males (e.g., food science, 4% vs. 

1%, female vs. male). Finally, female students have more presence in the clusters that 

capture course-taking patterns leading to switching to a non-STEM fields whereas male 

students are more likely to belong to clusters that capture a pattern of dropping out of the 

University. Taken together, these findings are consistent with differences between male 

and female declared academic majors. That is, male students tend to be more represented 

in engineering course taking patterns, while women are more likely to pursue course 

taking patterns in life science. 

To conclude, using Sequential Pattern Mining techniques, I was able to identify 

the most frequent patterns in STEM-considering students’ course taking sequences. The 

findings revealed that introductory courses in mathematics and sciences, like Calculus I, 

Calculus II, Chemistry I, and others are among the most frequent courses taken by 

STEM-considering students. More specifically, my findings show that Calculus I, 

Calculus II, and Chemistry I are frequently present in broken course taking patterns, i.e., 

patterns in which a student who initially declared a STEM major later switches or drops 

out of the University. This leads to the conclusion that these courses might be acting as 

gatekeepers, discouraging students from taking more STEM courses and pushing them to 

move to other fields or even to drop out of the University. Furthermore, my investigation 

of student performance patterns in these courses leads me to believe that student 



 

 
  

95 

performance (i.e., grades) may be a contributing factor in STEM-considering students’ 

decision whether to switch out of a STEM-related degree or even to drop out of the 

University all together.  

My findings also point to a strong association between gender and course-taking 

patterns. Taking engineering and computer science courses is a significant male course-

taking behavior, for example. Clustering students’ course-taking patterns allowed me to 

identify additional course taking patterns in which gender seems to play a significant role. 

Female students, for example, mostly follow course taking patterns that are heavy in life 

science. Women are also slightly overrepresented in clusters with course-taking patterns 

that lead to switching to non-STEM. Male students, in contrast, are overrepresented in 

course-taking clusters that lead to quitting from the University. Interestingly, I did not see 

a significant difference in the distribution of grades between men and women who were 

STEM graduates, switchers, and quitters. More extensive research is needed to 

understand why more women are leaving STEM fields for non-STEM fields in spite of 

the fact that there is no significant difference between their performance and that of their 

male counterparts. Having said that, what my results highlight is the fact that any 

narrative that tries to explain away this disparity by taking recourse in the issue of poor 

academic performance is simplistic and based on unwarranted assumptions. 
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CHAPTER 5: DISCUSSION 

 

In spite of all the investment in the last few decades on STEM education, low 

enrollment and high attrition rate among students in these fields remain an unmitigated 

challenge for institutions of higher education. The underrepresentation of women and 

minority students in such fields replicates itself in the makeup of the workforce, adding 

another layer to the challenge. Although previous research has provided valuable 

information about enrollment and attrition rates and insightful analysis of some of the 

factors contributing to such patterns, there are still many questions that remain 

unanswered. We know that a student’s decision to declare a major, stay in one, or leave it 

is influenced by choices made at different points of his/her college career under different 

circumstances. One important factor is how the student interacts with the curriculum and 

his/her experience of such interactions. The college curriculum in any given major is an 

academic plan developed and structured by faculty, program directors, and the 

administration with the goal of enhancing students’ learning and achieving a certain level 

of literacy in a given field. Whether such plans are successful in reaching their goals 

depends, in part, on how the student experiences them. The experience of interaction with 

the curriculum is a complex and multilayered one influenced by different components of 

the curriculum including content, pedagogy, and instructional resources, the faculty, and 

other external factors (Cohen & Kisker, 2012). Given the complexity of this experience 

and variety of factors influencing it, it is impossible to fully capture this experience. 

There have been efforts, however, to capture some aspects of this experience using tools 

such as course evaluations, surveys, enrollment history, etc. Detailed student transcripts 
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are an important piece of multidimensional data that can be used for this purpose. The 

transcript is like a history map of the student’s academic progress. If properly analyzed, it 

can provide us with valuable insights into the student’s experience in navigating the 

curriculum and interacting with it and how it influences in her/his decision-making 

process in following different academic paths overtime.  

The methodological approach used in this study was a first attempt to apply data 

mining methods to use rich multidimensional data to enhance our understanding of 

student academic behavior/paths and determine identifiable patterns that emerge from the 

actual course-taking experiences of the students as they progress through their study. The 

identified patterns help us understand the ways in which the college’s curriculum might 

help or hinder student progress in STEM fields and how it can favor student groups who 

already dominate such field, leading to further marginalization of underrepresented 

groups such as women and/or racial/ethnic minorities. In the rest of this chapter, I will 

synthesize the study’s findings. This is followed by a discussion the study’s implication. 

The Unpopularity of STEM Trajectories  

The descriptive statistics presented in this study reaffirms that STEM majors are 

much less popular than non-STEM majors. Despite the allure and promise of economic 

success for STEM graduates, most of the students in this sample chose to not pursue 

degrees on STEM fields. Among the minority of students who chose to pursue degrees in 

STEM fields, life science was the most popular field. By contrast, a comparatively 

smaller share of students pursued a major in other STEM fields such as engineering or 

computer science. Low enrollment patterns in STEM fields in general, and in hard 
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sciences in particular, are consistent with findings from other national studies (Chen, 

2013; Pryor et al., 2010; Snyder & Dillow, 2011). 

Not only STEM fields are unpopular, as discussed above, at the point of entry to 

college, but also, trajectory analysis reveals, this unpopularity increases as students go 

further in their studies. That is to say, even for the students who enter college with the 

intention to study in STEM fields, many of them later change their minds and switch to a 

non-STEM field. A similar pattern has been confirmed in previous studies that have 

examined the problem of student persistence in STEM (Chen, 2013, 2015; Kokkelenberg 

& Sinha, 2010). All these studies clearly show that more students switch from STEM to 

non-STEM compared to the other way around (e.g., Chen, 2015; Griffith, 2010). None of 

these studies, however, were able to look at student trajectories over time, and/or follow 

the students’ major status for each point of their study throughout their college career 

until they graduate or drop out. Another shortcoming of the previous studies has been 

their reliance on reported majors (mostly self-reports), which makes their findings less 

accurate and reliable. My approach offers a remedy for this shortcoming. My detailed 

analysis of transition patterns shows that 19% of the students switch from STEM fields to 

non-STEM fields compared to only 1.5% of non-STEMs switching to a STEM field. 

Finally, my study also reveals a significant difference in student majoring 

trajectories within STEM paths. As stated before, compared to life sciences, hard science 

majors (such as engineering and computer science) are much less popular among students 

at the point of entry. In addition, their unpopularity grows as students go further in their 

studies. Although student attrition of any major/department can be a cause for concern for 
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certain constituencies, the results of this study point out to a particularly serious area of 

national concern given the fact that majors such as engineering and computer science 

have been identified by the federal government as areas of needs. Attracting enough 

students and keeping them in these fields are essential for the development of a skilled 

workforce in the national level that can help the nation compete in the 21st century global 

economy  

Female vs. Male Major Trajectory Differences 

 

Another important finding of this study is the detailed patterns of difference that it 

reveals between female and male trajectories in STEM. The results show that female and 

male students follow clearly different majoring paths in general, and within STEM fields 

in particular. More females follow non-STEM paths and their numbers even grow larger 

as they continue to make progress in their studies. Within STEM fields, life science 

trajectories have much higher popularity in general, as discussed above. This pattern 

seems to be driven largely by female students, who have a clear preference for life 

sciences over hard sciences such as engineering and computer science. For male students, 

on the other hand, soft and hard science trajectories seem to be distributed more equally. 

In spite of the clear patterns discussed, since most of the previous studies on the subject 

have been unable to track students’ majoring patterns overtime, some have expressed 

doubts about whether a meaningful gender disparity exists in terms of persistence in 

STEM fields. This study’s unique methodology, however, allows us to do disparity 

analysis for both STEM in general and for specific STEM fields in particular. The results 

suggest that, at least for the institution represented in this study, there is a gender 
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disparity when it comes to student interest in life sciences in comparison to hard sciences. 

The results show that women leave hard sciences for non-STEM majors with a higher 

rate compared to men. In addition, even those women who stay in STEM fields switch to 

life sciences in higher numbers compared to their male counterparts. This is a clear 

testimony to the fact that the institution under study has failed to recruit and keep women 

in STEM and particularly in hard sciences even though job prospects and the prospect of 

receiving a better compensation package are higher in such fields compare to non-STEM 

fields (Xie, Fang, & Shauman, 2015). As Hill and colleagues (2010) argue, if we lived in 

an ideal society in which bias and stereotypes against women in such fields did not exist, 

we could interpret these results merely as a reflection of females finding their passion in 

fields other than males. The society in which we live, however, is far from ideal and we 

know that women’s hesitation to enter and staying in these fields is influenced negatively 

by cultural, social, and institutional factors that create major hurdles in the path of women 

who would potentially be highly successful in such fields (Fox et al., 2009). In such a 

situation, the least our institutions can do is, after acknowledging the problem, invest 

time, energy, and financial resources to find creative ways to decrease the impact of such 

overarching factors to the extent possible.  

Gatekeeper Courses 

 

To better understand how student course-taking patterns contribute to their 

decision to leave or stay in STEM fields, I conducted sequential pattern analysis in my 

study. This analysis helps to identify course taking patterns that are most frequently 

followed by STEM students as well as the students who switch to other fields or 
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eventually leave the college. The results show that specific introductory courses in 

mathematics, that is, Calculus I and Calculus, II, as well as Chemistry I, play a critical 

role in overall student persistence in STEM fields in this institution. The specific courses 

mentioned above also appear repeatedly in course taking patterns of students who choose 

to leave STEM fields for other majors or to drop out of college. These findings suggest 

that these courses might be acting like a gatekeeper for STEM, blocking many students 

from making progress in their pursuit of their chosen STEM major and pushing them to 

transition to other fields or even drop out of college. 

 The results of my analysis align with previous studies that focus on the 

relationship between taking introductory STEM courses and the dropout or the switching 

rate (e.g., Chen, 2013, 2015; George-Jackson, 2011; Griffith, 2010). These studies, 

however, were unable to identify the exact culprit courses. Rather, their analysis is based 

on some initial speculation and conjecture on the part of the authors. An assumption is 

made, for example, that math introductory courses are probably hindering students from 

going further in their course of study. Based on this assumption, the authors focus on the 

relationship between taking introductory math courses and the student dropout or switch 

rates in their analysis of the data. In other words, whereas in my methodology the 

relationship between specific courses and the dropout or switch rate directly emerges 

from the data set analysis, previous studies have had to make assumptions about possible 

relationships between a category of courses (introductory math) and the student dropout 

or switch rate.  
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To understand and examine student course-taking patterns in more depth, I have 

used clustering, which allows for similar course-taking patterns to emerge, helping us to 

identify distinct groups. Analyzing these groups’ course-taking patterns provides 

important insights into their behavior. For example, my analysis reveals that students who 

switch to non-STEM fields have similar course-taking patterns and can be thus clustered 

in a group called “the Switchers.” If we look at this group’s frequent course-taking 

patterns, we find that Calculus I followed by Calculus II is the most frequent pattern of 

course taking followed by its members. In contrast, Chemistry I and other introductory 

science courses have a less significant presence in this group’s course-taking patterns. 

Another group that clustering allows us to identify based on their similar course taking 

patterns is “the Quitters,” consisting of students who eventually drop out of college after 

having declared a STEM major. Among the members of this group, Calculus I and 

Chemistry I, taken together, is among the most common course-taking patterns. The 

identification of such specific patterns allows us to focus our attention on specific courses 

that seem to be co-related with STEM attrition and possibly launch more in-depth studies 

in order to find what exactly is causing the problem.  

Another key dimension of emerging clusters that need to be discussed is how 

gender dynamics interact with them. Looking at the Switcher group for example, my 

results are clear that the number of women associated with this group is slightly more 

than men. In contrast, male students had more presence in the Quitter group, which 

consists of students who drop out of college. More importantly, my analysis of student 

performance levels reveals an important gap between the two genders and the possible 
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reasons why they leave STEM for other fields. My findings show that female students’ 

performance in a number of introductory STEM courses is meaningfully different than 

that of male students.  

For example, focusing on the Switchers, a large number of male members of this 

group withdrew or failed in Calculus II while a considerable number of women Switchers 

attained grade A in this course. This important difference leads us towards a preliminary 

conclusion: That women’s decision to leave STEM might have less to do with them 

finding the courses hard and their lower than expected academic performance and more 

to do with other factors that are related to broader cultural issues rather than the course 

content. These results align with other studies in the field that demonstrate that high 

achiever students, especially women, are still prone to leave STEM fields for other 

majors (Brainard & Carlin, 1998; Chen, 2015; Lowell et al., 2009).  

Shifting focus to the issue of performance among the Quitters, my results clearly 

show that student performance in Chemistry I, which is a course that appears frequently 

in the Quitters course-taking patterns, does not follow the same pattern. Most students in 

this group, irrespective of their gender, performed poorly in this course. This adds an 

additional layer of nuance to our discussions. The results overall suggest that there are 

specific courses that have a significant function in hindering or blocking student progress 

in STEM trajectories. Having said that, it appears that not all these courses function in the 

same way. Rather, they might contribute to the student decision not to pursue a STEM 

major, or a college degree, in different ways.  
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Finally, the associate rule mining analysis provided even more insight into the 

predictability of a student’s decision to leave the fields after taking the gatekeeper 

courses. Taking Chemistry I and Calculus I together, for example, has the most 

predictability power when it comes to STEM students making the decision to leave the 

University without earning a degree (24%). The probability of leaving the fields for a 

non-STEM field after taking Calculus I is around 20%. Even when a student decides to 

stay in this field after taking Calculus I, there is still the same chance of switching to 

another field after taking Calculus II. Needless to say, these are high probabilities. If we 

want to improve student retention rates in STEM fields, the results are really useful in 

pinpointing exactly where the problem needs to be tackled for the most effective results.   

Implications 

 

Major implications of this study can be classified and discussed under two broad 

categories: conceptual and empirical. Conceptually, the study provides us with a new 

framework for considering student academic trajectories in STEM fields, and empirically, 

the study contributes to existing knowledge about student course taking patterns and 

academic major selection, and potential differences between male and female students.  

Conceptual implications. Most studies examining student pathways in STEM 

pipelines have focused on student outcomes and their relationship to some individual and 

institutional factors and have not described students’ academic experiences or progress. 

In short, existing studies provide a snapshot of student experience, but tell us little how 

students interact with the college curriculum as they progress toward degree. In fact, past 

research has repeatedly suggested that more work is needed to understand student 
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curricular experience throughout the STEM pipeline and have called for developing new 

methodologies to enable researchers to focus on the process rather than outcome and 

investigate how it influences student decision-making (Bahr, 2013; Chen; 2013; Shapiro 

& Sax, 2009).  

In contrast, this study conceptualizes student experiences differently. Specifically, 

rather than considering student experiences as a collection of courses taken, this study 

reconceptualizes student experience as a process, with sequential pathways through the 

curriculum toward a degree. To do so, the study leverages detailed transcript data to 

deepen our understanding of student curricular experiences seen as process as they make 

progress in their studies.  

In doing so, the study conceptualizes student experiences as a multidimensional 

process, evidenced in the sequential structure of transcript data. This allows us to 

describe the dynamic process evidenced in how students proceed toward degree – both in 

terms of the sequence of courses taken and also the ebb and flow of when and which 

students identify academic majors. Most prior studies fail to conceptualize, or describe, 

the sequential nature of a student’s academic experience and none describe the 

subsequent variations in majoring or course-taking patterns that manifest themselves as 

the students make progress along their pathway. For example, previous studies that have 

examined major transition in STEM pipeline have been unable, due to the limitations of 

their methodology, to track student majoring trajectories at each point of time throughout 

their college career, relying only on major reports gathered in few data points in their 
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study. The results are unreliable and inaccurate because many changes could happen 

between those data points, a shortcoming that my study remedies.  

Second, this study broadly conceptualizes student course taking in STEM, 

allowing us to examine how students move among the full complement of STEM-related 

courses and majors offered at the University. While a number of studies have been 

conducted with the aim of investigating patterns in order to discover how student 

curricular experience influences the STEM pipeline (e.g., Bahr, 2013; Wang, 2016), most 

considered only one or two subjects at a time. In contrast, my study examines a more 

complete set of courses taken by the totality of students during their whole college career. 

While caution must be exercised against generalizing the results that were achieved  

based on a case study, the analytic approach I have offered here provides researchers with 

a universal tool that enables them to thoroughly examine the impact of a designed 

curriculum on student decision-making patterns, whether to stay in the path he/she began 

at the point of entry or leave the field, or even leave the college without earning any 

degree.  

Complementing the re-conceptualization of student experiences, the study adopts 

an innovative analytic approach to describing students’ sequential pathways to degree 

completion. The new method, which is a data mining technique, has a number of 

advantages for studying student experiences with the curriculum. It requires minimal 

assumptions about student behavior and decision-making process as they interact with the 

curriculum, allowing for a more comprehensive picture of student pathways – and, one 

that maps more closely to actual student experiences. In contrast, most previous research 
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examining STEM pipelines have used methods that, in essence, assume linearity and 

uniformity of student behavior (Bahr, 2013). The assumption of linearity, for example, is 

at work when some of these studies draw a relationship between student persistence 

outcomes and some individual and institutional characteristics. Recognizing the 

complexity of student experience, however, in this study I have been able to identify 

actual patterns that emerge out of each student’s complete course-taking patterns without 

imposing such assumptions. 

More importantly, the new method introduced here has a unique visualization tool 

that provides us with a visual representation of the entire range of student trajectories. To 

quote Tukey, “The greatest value of pictures is when it forces us to notice things that we 

never expect to see”. The visual plots created by this tool help us to interpret the resulting 

patterns and students majoring trajectory changes in different points of time, compare 

male and female trajectories, and link them to their decisions (such as switching from 

STEM to non-STEM or within STEM) and outcomes. Visual representation can also be 

extremely useful in facilitating better understanding and communication among the 

faculty, program directors, and other stakeholders on how STEM students’ trajectories 

are changing over time and how different group of students are following different paths.  

Empirical implications. Based on the most frequent course-taking patterns 

identified for students who switch to a non-STEM major, we can identify introductory 

math courses such as Calculus I and II as gatekeepers that impede student progress in 

STEM. Additionally, we know that some of these leavers, especially women, perform 

academically well in these courses. Taken together, these results suggest that particular 
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elements of the STEM curriculum, especially some introductory courses, are 

discouraging students from continuing their study in such field. The implication being 

that STEM programs need to evaluate their curriculum, especially their introductory 

courses, to find out what elements and conditions are to blame for the students’ decision 

to leave the fields.  

My study also identifies course-taking pattern that lead to drop out for this 

institution. For example, in the case of the college understudy, taking Chemistry I and 

Calculus I together is the strongest predictor of the probability of dropping out of college. 

When it comes to Chemistry I, additional analysis reveals that most students who later 

drop out have had a poor performance in this course. More specifically, when the course 

is offered, it usually trims around 20% of the students. A usual interpretation of this 

trimming rate is that only 80% of the enrolled students on average are prepared to 

continue their study in STEM. An alternative way of looking at the rather high trimming 

rate of the course might be that a good number of students who intend to enroll in this 

course need extra preparation beforehand. In sum, my study’s findings show that there 

are clear challenges when it comes to student experience with some specific introductory 

courses in STEM. Based on the observed patterns, universities may wish to reevaluate 

their curricula, particularly introductory course offerings.  

 Finally, this study demonstrates how data mining can be used to consider 

students’ academic progress and explore how their students are navigating and interacting 

with curriculum. It can highlight and identify the exact phases of study in which the 

students are more at risk of leaving the programs, allowing for the people who are 
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involved in running the program to make timely and effective interventions to prevent 

attrition. It can also help academic advisors to identify course-taking patterns that put 

specific groups of students at the risk of dropping out or switching to other fields. They 

can advise the students to take some particularly challenging courses in a specific 

sequence or to take preparatory introductory courses beforehand.  

Limitation of the Study and Recommendations for Future Research 

 

Students’ course-taking patterns are influenced by different factors such as their 

relationship with particular instructors, the amount of course work, time table, the 

classroom climate, etc. An ideal analysis model would take all these factors into account. 

Due to the limitations of available data, however, this study is not able to include all the 

relevant factors. The data provided by the University, for example, does not include a 

complete list of course instructors. Even when we do have access to the relevant data, 

including some of them requires additional or different tools of analysis that are not 

available yet. For example, to include information about faculty in my analysis requires 

the deployment of a hierarchical sequential pattern mining, which is still under 

development. As another example, including available information about student cohorts 

who take a specific course together requires an additional layer of social network analysis 

which is beyond the scope of this study.  

Although the data mining techniques employed here provide us with valuable 

information regarding student academic pathways and their course-taking pattern, it is 

important to note that these patterns or rules are not causal in nature. In other words, we 

cannot draw a causal inference from patterns or rules provided by data mining techniques 
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here. Additional empirical research needs to be conducted for such causal relationships to 

be established between student course taking patterns and their academic outcomes. 

The method proposed here was applied only to data from the institution with 

limited racial and ethnic diversity in its student body. Future research could apply this 

method to a large and more diverse institution to find out how course-taking patterns vary 

among students coming from different ethnic and/or racial background. From previous 

research, we know that Black and Hispanic students have very low enrollment and high 

attrition rates in STEM fields. This method could be applied to find out whether there is 

race-based course-taking patterns that increase the probability of leaving the fields or 

dropping out of college. In addition, my data did not provide information about students’ 

financial aid situation or their socioeconomic status, which previous research have 

strongly associated with attrition rate in these fields. Future research could investigate 

course-taking patterns for students with different SES or financial aid status to better 

understand their academic behavior. 

Another limitation of this study was that I did not have access to previous 

performance records of the students (like high school or middle school performance 

records). We know from prior studies that such records are important for the study of 

student performance levels at college. Students who have been academically less 

prepared in their K-12 years are more likely to switch out of STEM or leave college all 

together. Future research could incorporate the study of student academic preparation 

prior to their arrival at college and explore whether more prepared students take different 

paths to obtaining a degree in STEM or not and how this preparedness affects their 
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outcome. One can also explore whether certain course-taking patterns are more likely to 

block less prepared students from pursuing a degree in STEM fields. The results could be 

used by advisors to help less prepared students to take courses in a pattern that could 

potentially help them to progress more successfully in their course of study. 

Finally, since this study was conducted at one university, its findings cannot be 

generalized. It would be interesting to apply this method to data from a nationally 

representative transcript data. Majoring and course-taking patterns identified by such data 

will allow us to draw more general conclusions about STEM fields and students’ course-

taking patterns in these fields at the national level. For example, one of the gatekeeper 

courses found in this study is Chemistry I. A natural question is whether this course 

functions in this particular way only at this particular institution or is it symptomatic of a 

larger pattern throughout many other colleges and universities.  
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APPENDIX A 

 

List of UVM’s STEM Majors Based on NCES Definition of STEM fields 

 

Description Major 

Computer Science Computer Science 

Complex Systems & Data Science Computer Science 

Computer Sci & Info Systems Computer Science 

Clinical & Translational Sci Computer Science 

Data Science Computer Science 

Bioengineering Engineering 

Biomedical Engineering Engineering 

Civil Engineering Engineering 

CE Certificate Engineering 

Civil & Environmental Engr Engineering 

Engr - Bioengineering Engineering 

Engineering Physistry Engineering 

Electrical Engineering Engineering 

Environmental Engineering Engineering 

Engineering - General Engineering 

Engineering Management Engineering 

Engineering Engineering 

Engineering Physics Engineering 

Mechanical Engineering Engineering 

Medical Lab Tech Engineering 

Mfg & Mgt Engineering Engineering 

Animal & Food Sciences Life Science 

Agriculture Life Science 

Agricultural BioPHYSistry Life Science 

Agricultural Economics Life Science 

Agricultural Educ Life Science 

Agriculture Engr Life Science 

Anatomy & Neurobiology Life Science 

Animal Science Life Science 

Anml Sci & Food & Nutr Science Life Science 

Applied Tech - Ag Engr Life Science 

BioPHYSistry Life Science 

BioPHYSical Science Life Science 

Biology Life Science 

Biostatistics Life Science 

Biological Science Life Science 

Biomedical Technology Life Science 

Botany Life Science 

Biological Sciences Life Science 
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Cell Biology Life Science 

Cell & Molec Biology Life Science 

Cellular, Molecular&Biomed Sci Life Science 

Dairy Foods Life Science 

Dental Hygiene Life Science 

Dietetics Life Science 

Dietetics,Nutrition&Food Sci Life Science 

Dairy Technology Life Science 

Ecological Agriculture Life Science 

Forestry Life Science 

Food Systems Life Science 

General Ag Studies Life Science 

Human Nutrition & Foods Life Science 

Lab Animal Tech Life Science 

Microbio & Biophys Life Science 

Medical Microbiology Life Science 

Medical Life Science 

Medical Technology Life Science 

Molecular Genetics Life Science 

Microbiology Life Science 

Medical Laboratory Sciences Life Science 

Medical Laboratory Science Life Science 

Micro & Molec Genetics Life Science 

Neuroscience Life Science 

Nutrition & Food Sciences Life Science 

Nuclear Medicine Technology Life Science 

Nutritional Sciences Life Science 

Pathology Life Science 

Plant Biology Life Science 

Pharmacology Life Science 

Physiology & Biophysics Life Science 

Plant & Soil Science Life Science 

Physical Therapy Life Science 

Radiation Therapy Life Science 

Radiologic Technology Life Science 

Wildlife & Fisheries Biology Life Science 

Wildlife Biology Life Science 

Zoology Life Science 

Mathematics: VMI Mathematics 

Mathematical Sciences Mathematics 

Mathematics Mathematics 

Statistics Mathematics 

Geology Physical Science 

Materials Science Physical Science 
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PHYSistry Physical Science 

PhysiComputer Science Physical Science 

Physical Sciences Physical Science 

Chemistry Physical Science 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
  

123 

APPENDIX B 

 

List of UVM’s STEM Course Subjects Based on NCES Definition of STEM Fields 

 
Course Subject Name frequency percent 

ANNB ANATOMY & NEUROBIOLOGY 84 0.1 

ANPS ANATOMY/PHYSIOLOGY  1,826 2.16 

ASCI ANIMAL SCIENCE  3,600 4.27 

ASTR ASTRONOMY 721 0.85 

BCOR BIOCORE 4,248 5.03 

BIOC BIOCHEMISTRY 949 1.12 

BIOL BIOLOGY 3,846 4.56 

BSCI BIOLOGICAL SCIENCES 12 0.01 

CALS Agriculture & Life Science 2,037 2.41 

CE 

CIVIL & ENVIRONMENTAL 

ENGR  3,321 3.93 

CEMS Engr & Math Sciences 154 0.18 

CHEM CHEMISTRY 8,996 10.66 

CIS 

COMPUTER INFORMATION 

SYSTEMS 3 0 

CLBI CELL BIOLOGY  23 0.03 

CS COMPUTER SCIENCE  3,736 4.43 

CSYS COMPLEX SYSTEMS  17 0.02 

CTS 

CLINICAL&TRANSLATIONAL 

SCIENCE  2 0 

EE ELECTRICAL ENGINEERING  2,161 2.56 

EMGT ENGINEERING MANAGEMENT 1 0 

ENGR ENGINEERING  979 1.16 

ENSC ENVIRONMENTAL SCIENCES 1,424 1.69 

FS FOOD SYSTEMS  13 0.02 

GEOL GEOLOGY 1,359 1.61 

HLTH HEALTH (HLTH)  2,267 2.69 

HSCI HEALTH SCIENCES (HSCI) 3 0 

MAED 

MATHEMATICS FOR 

EDUCATORS  2 0 

MATH MATHEMATICS  10,675 12.65 

ME MECHANICAL ENGINEERING  5,753 6.82 

MLRS 

MEDICAL LAB & RADIATION 

SCI  659 0.78 

MLS 

MEDICAL LABORATORY 

SCIENCE  560 0.66 

MMG MICR & MOLECULAR GENETICS  1,658 1.96 
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MPBP 

MOLECULAR PHYSIOLOGY & 

BIOPHYS  42 0.05 

NFS Nutrition and Food Science 6,568 7.78 

NMT 

NUCLEAR MEDICINE 

TECHNOLOGY  212 0.25 

NSCI Neuroscience 552 0.65 

PATH PATHOLOGY 104 0.12 

PBIO PLANT BIOLOGY  623 0.74 

PHRM PHARMACOLOGY 4,367 5.17 

PHYS PHYSICS 1,299 1.54 

PSS PLANT & SOIL SCIENCE  2,427 2.88 

PSYS PSYCHOLOGICAL SCIENCE  421 0.5 

RADT RADIATION THERAPY  276 0.33 

STAT STATISTICS 4,753 5.63 

WFB 

WILDLIFE & FISHERIES 

BIOLOGY  1,669 1.98 
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APPENDIX C 

 

STEM Course List by their Codes in Analysis 

 
Course Name frequency percent 

     AG ADV Advanced Agriculture 6008 7.19 

     AG INT Intermediate Agriculture 3276 3.92 

     BC 011 Exploring Biology 1146 1.37 

     BC 012 Exploring Biology 1007 1.21 

     BC 101 Genetics 840 1.01 

     BC 102 Ecology and Evolution 553 0.66 

     BC 103 Molecular and Cell Biology 505 0.6 

     BC ADV Advanced Biology 45 0.05 

     BC INT Intermediate Biology 110 0.13 

     BI 001 Principles of Biology 651 0.78 

     BI 002 Principles of Biology 687 0.82 

     BI ADV Advanced Biology 1723 2.06 

     BI INT Intermediate Biology 715 0.86 

     CAL 0I Calculus I 3198 3.83 

     CAL II Calculus I 2512 3.01 

     CH 023 Outline of General Chemistry 858 1.03 

     CH 026 Outline of Organic & Biochemistry 629 0.75 

     CH 031 General Chemistry 1 2545 3.05 

     CH 032 General Chemistry 2 1475 1.77 

     CH 141 Organic Chemistry 1 980 1.17 

     CH 142 Organic Chemistry 2 782 0.94 

     CH ADV Advanced Chemistry 1017 1.22 

     CH INT Intermediate Chemistry 622 0.74 

     CS ADV Advanced Computer Science 1845 2.21 

     CS INT Intermediate Computer Science 1826 2.19 

     EM ADV Advanced Engineering 7193 8.61 

     EM INT Intermediate Engineering 5154 6.17 

     MA 009 College Algebra 345 0.41 

     MA 052 Fundamentals of Mathematics 304 0.36 

     MA 121 Calculus III 892 1.07 

     MA ADV Advanced Mathematics 2379 2.85 

     MA INT Intermediate Mathematics 901 1.08 

     NF 043 Fundamentals of Nutrition 1191 1.43 

     NF 053 Basic Concepts of Foods 355 0.42 

     NF 063 Obesity: What, Why, What to Do? 294 0.35 

     NF ADV Advanced Nutrition & Food Science 3172 3.8 
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     NF INT Intermediate Nutrition & Food Science 1529 1.83 

     NH ADV Advanced Nursing and Health 2557 3.06 

     NH INT Intermediate Nursing and Health 1383 1.66 

     PH 011 Elementary Physics 488 0.58 

     PH 012 Elementary Physics 386 0.46 

     PH 021 Introductory Lab I 452 0.54 

     PH 022 Introductory Lab II 387 0.46 

     PH 051 Fundamentals of Physics I 188 0.23 

     PH 152 Fundamentals of Physics II 120 0.14 

     PH ADV Advanced Physics 1032 1.24 

     PH INT Intermediate Physics 1294 1.55 

     SC ADV Advanced Science 7042 8.43 

     SC INT Intermediate Science 4243 5.08 

     ST 111 Elements of Statistics 1179 1.41 

     ST 141 Basic Statistical Methods 1 1525 1.83 

     ST ADV Advanced Statistics 1700 2.04 

     ST INT Intermediate Statistics 291 0.35 
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APPENDIX D 

12 Students Clusters with the most Frequent Course Taking Patterns 

 

sequences Support Count sequences Support Count 

Non-STEM and Switchers 

  
Switchers   

(CAL 0I) → (CAL II) 0.48 357 (CAL 0I) → (SWITCH) 59% 355 

(CAL 0I) → (SWITCH) 0.40 301 (CAL 0I) → (CAL II) 52% 314 

(CAL 0I) → (NOSTEM) 0.39 289 (SC INT) → (SWITCH) 38% 232 

(CAL 0I) → (ST 141) 0.33 247 (CAL II) → (SWITCH) 36% 218 

(CAL 0I) → (SC INT) 0.32 240 (CH 031) → (SWITCH) 36% 217 

(SC INT) → (SWITCH) 0.28 210 (CAL 0I) → (ST 141) 35% 213 

(CAL 0I, CH 031) 0.25 188 (CAL 0I) → (SC INT) 34% 204 

(CAL II)-(NOSTEM) 0.25 187 
(CAL 0I) → (CAL II) → 

(SWITCH) 
33% 202 

(CAL II) → (SWITCH) 0.24 181    

Non-STEM   Engineering   

(NF 043) → (NOSTEM) 0.79 438 
(EM INT, EM INT) → (EM 

ADV, EM INT) → (EM ADV) 
0.89 425 

(CH 023) → (NOSTEM) 0.73 405 
(EM INT) → (EM INT, EM INT) 

→ (EM INT) → (EM ADV) 
0.89 424 

(NF 043) → (SC INT) 0.72 399 (MA ADV) → (EM INT) 0.89 424 

(SC INT) → (SC INT) 0.72 398 
(EM INT) → (EM ADV) → (EM 

ADV) → (EM ADV) → (EM 
0.89 423 

(SC INT) → (NOSTEM) 0.70 389 (MA 121) → (EM ADV) 0.89 423 

(CH 023) → (SC INT) 0.67 369 
(MA 121) → (EM ADV, EM 

ADV) 
0.89 423 

(NF 043) → (SC INT) → 

(NOSTEM) 
0.66 363 

(MA 121) → (EM ADV, EM 

ADV, EM ADV) 
0.89 423 

(ST 111) → (NOSTEM) 0.65 361 
(MA 121) → (EM ADV, EM 

ADV, EM ADV) → (EM ADV) 
0.89 423 

      

Quitters   Life Science/Food Science   

(CAL 0I) → (QU 100) 66% 315 (NF ADV, NF ADV) 1.00 226 

(CH 031) → (QU 100) 58% 279 (NF ADV) → (NF ADV) 1.00 226 

(CAL 0I, CH 031) 46% 218 
(NF ADV, NF ADV) → (NF 

ADV) 
1.00 225 

(CAL 0I, CH 031) → (QU 100) 42% 199 
(NF ADV) → (NF ADV, NF 

ADV) 
1.00 225 

(BC 011) → (QU 100) 41%  198 (NF INT) → (NF ADV) 1.00 225 

(BC 011, CH 031) 38% 180 
(NF INT) → (NF ADV, NF 

ADV) 
1.00 225 

(CAL 0I) → (CAL II) 37% 179 (AG ADV) → (NF ADV) 0.99 224 

Life Science/Agriculture   Math and Computer Science   

(AG ADV, AG ADV) → 

(AG 
1.00 286 (MA ADV) → (MA ADV) 0.67 208 
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(AG ADV) → (AG ADV) 1.00 286 (MA 121) → (MA ADV) 0.63 198 

(AG ADV) → (AG ADV, 

AG ADV) 
0.99 284 (CAL II) → (MA ADV) 0.62 193 

(AG ADV, AG ADV) → 

(AG ADV) 
0.98 281 (CAL 0I) → (Cal II) 0.61 190 

(AG ADV) → (AG ADV) 

→ (AG ADV) 
0.98 281 (CS INT) → (CS ADV) 0.59 183 

(AG ADV, AG ADV) → 

(AG ADV, AG ADV) 
0.97 277 (CS INT) → (MA ADV) 0.58 182 

(AG ADV) → (AG ADV) 

→ (AG ADV, AG ADV) 
0.97 277 (CAL 0I) → (CS INT) 0.58 180 

(AG ADV) → (AG ADV, 

AG ADV) → (AG ADV) 
0.96 274 (CAL II) → (CS INT) 0.57 179 

(AG ADV) → (AG ADV) 

→ (AG ADV) → (AG 

ADV) 

0.95 271 (CAL II) → (MA 121) 0.56 174 

(AG ADV, AG ADV, AG 

ADV) 
0.94 286 (MA ADV) → (MA ADV) 0.67 208 

Nursing and Health science   Quitter 2   

(NH ADV, NH ADV) 1.00 110 (EM INT) → (EM INT) 0.73 181 

(NH ADV) → (NH ADV) 1.00 110 (CAL 0I, CH 031) 0.71 177 

(NH ADV) → (NH ADV, 

NH ADV) 
1.00 110 (CH 031, EM INT) 0.71 176 

(NH ADV, NH ADV) → 

(NH ADV) 
0.98 108 (CAL 0I, EM INT) 0.67 168 

(NH ADV) → (NH ADV) 

→ (NH ADV) 
0.97 107 (CH 031) → (EM INT) 0.65 161 

(NH ADV) → (NH ADV) 

→ (NH ADV, NH ADV) 
0.97 107 (EM INT, PH INT) → 0.64 160 

(NH ADV, NH ADV) → 

(NH ADV, NH ADV) 
0.96 106 (CAL 0I, CH 031, EM INT) 0.62 154 

(NH ADV) → (NH ADV, 

NH ADV) → (NH ADV) 
0.96 106 (EM INT) → (PH INT) 0.62 154 

(NH ADV, SC ADV) 0.95 105 (CH 031) → (PH INT) 0.61 153 

(NH ADV) → (NH ADV, 

NH ADV) 
0.95 104 (EM INT) → (QU 100) 0.59 148 

Life Science with Chemistry 

and Biology 
  Life Science   

(BC 101) → (BI ADV) 0.90 316 (SC ADV) → (SC ADV) 0.92 544 

(CH 032) → (CH 141) 0.89 312 (SC ADV, SC ADV) 0.87 516 

(CH 031) → (CH 032) 0.87 306 

(SC ADV) → (SC ADV, SC 

ADV) 0.84 500 

(CH 141) → (BI ADV) 0.86 303 

(SC ADV) → (SC ADV) → 

(SC ADV) 0.82 485 

(CH 031) → (CH 141) 0.85 299 (CAL 0I) → (SC ADV) 0.75 443 

(CH 032) → (BI ADV) 0.85 299 

(SC ADV, SC ADV) → (SC 

ADV) 0.74 441 

(CH 031) → (BC 101) 0.85 298 

(SC ADV) → (SC ADV) → 

(SC ADV, SC ADV) 0.73 435 

(CH 141) → (CH 142) 0.85 298 

(CAL 0I) → (SC ADV) → (SC 

ADV) 0.70 415 
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