
University of Vermont University of Vermont 

UVM ScholarWorks UVM ScholarWorks 

Graduate College Dissertations and Theses Dissertations and Theses 

2020 

Applications Of Wearable Sensors In Delivering Biologically Applications Of Wearable Sensors In Delivering Biologically 

Relevant Signals Relevant Signals 

Jordyn Scism 
University of Vermont 

Follow this and additional works at: https://scholarworks.uvm.edu/graddis 

 Part of the Psychiatric and Mental Health Commons 

Recommended Citation Recommended Citation 
Scism, Jordyn, "Applications Of Wearable Sensors In Delivering Biologically Relevant Signals" (2020). 
Graduate College Dissertations and Theses. 1313. 
https://scholarworks.uvm.edu/graddis/1313 

This Thesis is brought to you for free and open access by the Dissertations and Theses at UVM ScholarWorks. It 
has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of 
UVM ScholarWorks. For more information, please contact scholarworks@uvm.edu. 

https://scholarworks.uvm.edu/
https://scholarworks.uvm.edu/graddis
https://scholarworks.uvm.edu/etds
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/711?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis/1313?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1313&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uvm.edu


APPLICATIONS OF WEARABLE SENSORS IN DELIVERING BIOLOGICALLY 

RELEVANT SIGNALS 

 

 

 

 

 

A Thesis Presented 

 

 

by 

 

Jordyn E. Scism 

 

to 

 

The Faculty of the Graduate College 

 

of 

 

The University of Vermont 

 

 

 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of Master of Science 

Specializing in Biomedical Engineering 

 

August, 2020 

 

 
Defense Date:  July 10th, 2020 

Thesis Examination Committee: 

 

Ryan McGinnis, M.D., Advisor 

Eric Hernandez, Ph.D., Chairperson 

Jason Bates, Ph.D. 

Jeff Frolik, Ph.D. 

Cynthia J. Forehand, Ph.D., Dean of the Graduate College 

  



ABSTRACT 

 

 

With continued advancements in wearable technologies, the applications for their 

use are growing. Wearable sensors can be found in smart watches, fitness trackers, and 

even our cellphones. The common applications in everyday life are usually step counting, 

activity tracking, and heart rate monitoring. However, researchers have developed ways 

to use these similar sensors for clinically relevant diagnostic measures, as well as, 

improved athletic training and performance. Two areas of interest for the use of wearable 

sensors are mental health diagnostics in children and heart rate monitoring during intense 

physical activity from new locations, which are discussed further in this thesis. 

 

About 20% of children will experience an anxiety or depressive disorder. These 

disorders, if left untreated, can lead to comorbidity, substance abuse, and even suicide. 

Current methods for diagnosis are time consuming and only offered to those most at risk 

(i.e., reported or referred by a teacher, doctor, or parent). For the children that do get 

referred to a specialist, the process is often inaccurate. Researchers began using mood 

induction task to observe behavioral responses to specific stimuli in hopes to improve the 

accuracy of diagnostics. However, these methods involve long hours of training and 

watching videos of the activities. Recently, a few studies have focused on using wearable 

sensors during mood induction tasks in hopes to pick up on relevant movements to 

distinguish those with and without an internalizing disorder. The first study presented in 

this thesis focuses on using wearable inertial measurement units during the ‘Bubbles’ 

mood induction task. A decision tree was developed to identify children with 

internalizing disorders, accuracy of this model was 71% based on leave-one-subject-out 

cross validation. 

 

The second study focuses on estimating heart rate using wearable 

photoplethysmography sensors at multiple body locations. Heart rate is an important vital 

sign used across a variety of contexts. For example, athletes use heart rate to determine 

whether they are hitting their desired heart rate zones during training and doctors can use 

heart rate as an early indicator of disease. With the advancements made in wearables, 

photoplethysmography can now be used to collect signals from devices anywhere on the 

body. However, estimating heart rate accurately during periods of intense physical 

activity remains a challenge due to signal corruption cause by motion artifacts. This study 

focuses on evaluating algorithms for accurately estimating heart rate from 

photoplethysmograms and determining the optimal body location for wear. A phase 

vocoder and Wiener filtering approach was used to estimate heart rate from the forearm, 

shank, and sacrum. The algorithm estimated heart rate to within 6.2 6.9, and 6.7 beats 

per minute average absolute error for the forearm, shank, and sacrum, respectively, across 

a wide variety of physical activities selected to induce varying levels of motion artifact. 

These results represent a 26.1%, 18.3%, 21.0% improvement from the estimates of an 

Apple Watch for the forearm, shank, and sacrum, respectively.
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 CHAPTER 1: INTRODUCTION 

1.1. Background 

Wearable sensors have the ability to collect an array of health-related data outside 

of research settings, and for long periods of time. Using sensor-based measures to 

understand the human body allows bias to be taken out of the data collected, and 

therefore, the diagnosis of diseases, disorders, and injuries. Wearable sensors also give 

the opportunity to remotely access data collected, analyze data in real-time, and observe 

pattern changes over time. This is extremely important during these times, where we are 

trying to have as little contact with other humans as possible. The remainder of this 

Chapter discusses different types of wearable sensors, their measurement modalities, and 

how they have been used in research and practice. 

Inertial measurement units (IMUs), containing an accelerometer and gyroscope, 

are common wearables for obtaining information about the way people move. Many 

studies use these modalities for gait analysis [1]–[3]. These sensors have been 

incorporated into devices that can be worn almost anywhere on the body. This gives 

researchers more freedom when designing studies. They have also been paired with 

electrodes for electromyography (EMG), which captures the muscle activations 

underlying body movements [4]. 

Electrodes and optical sensors are also being incorporated into wearable sensors 

for capturing electrocardiographs (ECGs) and photoplethysmographs (PPGs), 

respectively [5]. PPG and ECGs are able to give important information about HR, heart 

rate variability (HRV), lung health, and heart health [6]–[10]. These measures are often 

important for doctors, as well as athletes. 
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More recently, new band aid or patch-like wearable sensors have been developed 

that are equipped with IMUs, ECGs, and/or PPGs. With the ability to have one or more 

of these tools in a small sensor that can be placed anywhere on the body, more data can 

be collected and used for answering research questions. These devices have become the 

heart of new approaches for point-of-care diagnostics [11]–[14], fitness tracking [6]–[8], 

gait analysis [1]–[3], continuous monitoring of patient activities [15], [16], would healing 

[17], and more feasible analysis of disease progression in Multiple Sclerosis (MS), 

Huntington’s (HD), and Parkinson’s disease (PD) [1], [2]. 

Wearable sensors have the ability to change the healthcare system, both in terms 

of treatment and rehabilitation methods, as well as diagnostic measures. With the ability 

to collect more data remotely, people living in rural areas may be able to have more 

access to specialist healthcare services and receive the quality of care currently 

experienced by people living in more urban environments [18], [19]. 

 

1.2. Wearables in Healthcare 

Many researchers have become interested in using wearable sensors for diagnosing 

diseases/disorders, monitoring the progression of a disease/disorder, or for tracking 

responses to rehabilitation or medication [1], [3], [20]–[25]. The following two subsections 

discuss the use of wearable sensors in monitoring (1.2.1) and diagnosing (1.2.2) diseases 

and disorders. 
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1.2.1. Monitoring  

Wearable sensors have become popular for monitoring patients with different 

diseases to assess disease progression, safety (i.e., fall risks), rehabilitation, and treatment 

efficacy [26]. People with MS, HD, and PD are at increased risk of falling [20]–[23], [27]. 

Studies using wearable IMUs are being conducted to determine when a person may be at a 

higher risk of falling and alerting them so they can make an informed decision to either 

stop what they are doing or be more cautious about their activities. This is important since 

falling can lead to other injuries, especially in older populations [26].  

Other work has been done to monitor bipolar disorders [28]–[30]. Self- or parent-

reports are often used for monitoring mental health disorders which often introduce biases 

[28], [29], [31]. Wearable sensors have become more popular in monitoring bipolar mood 

shifts since they can capture biologically relevant responses opposed to having the patient 

report their own symptoms. Studies have looked into collecting physiological signals like 

HR, body posture, activity recognition and respiration rates [28], [30]. Another study 

looked at using smart phone data to determine states and state changes in bipolar patients 

[29]. Understanding changes in patterns, like movement, social media usage, talking on the 

phone, and voice characteristics, throughout the day or week can collect important changes 

that may not be reported in a self-assessment or questionnaire [29]. In regards to bipolar 

disorders, wearables are able to reliably identify key changes in states that are not 

identifiable from self-assessments making them more reliable for monitoring the disorder 

so proper treatment can be made. 
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1.2.2. Diagnosing 

The key to treating many diseases and disorders is to intervene early. Mental health 

disorders [32]–[34], arthritis [35], Alzheimer’s [36], and congenital heart disease [37] are 

just a few examples where early diagnosis and intervention can have a huge effect in the 

way the disease progresses and is treated. With the ability to continuously monitor patient 

vitals and symptoms outside of a clinic or laboratory setting, data is able to capture 

important information that may not be seen at the doctor’s office like an arrhythmia [38] 

or changes in blood pressure and blood oxygen saturation [39]. 

Mental health disorders, like anxiety and depression, can lead to suicide which is a 

potentially preventable issue if patients have early interventions [40]. Similarly to bipolar 

disorder, other mental health disorders are diagnosed and monitored through interviews 

and parent- and self-reports [31], [41], [42]. In attempts to minimize the bias involved in 

diagnosing children with these disorders, wearable sensors have been used to capture 

motion and voice responses during mood induction tasks (i.e., tasks developed to induce 

specific moods in the subject) [11]–[14]. These studies measure Negative valance in 

children (i.e., a term used to describe subdomains of anxiety and fear) [31] by startling the 

children with a fake snake [11], [13], [14] or making the children give a presentation in 

which they will be judged on how interesting it is [12]. While the tasks may seem intense, 

these studies show promising results for identifying children with anxiety and depression. 

Overall, wearable sensors have the ability to capture relevant biological markers 

and responses outside of a laboratory setting. They have fast processing times and little to 

no human bias in them. This gives healthcare providers more access to important 



 5 

information which allows for better point-of-care diagnostics and better treatment 

regimens.  

 

1.3. Wearables in Athletic Performance 

Recently, researchers have begun to evaluate the performance of wearable sensors 

during intense physical activities [43]–[46]. HR training has shown promising results in 

building endurance and overall aerobic fitness [6], [47]. Current methods for estimating 

HR during intense physical activities use PPG and accelerometry [48]–[51]. The studies 

also used clip- and belt-worn sensors which limit the location for wear. These studies are 

limited to collected PPG data from the wrist [49], [50], [52]–[55], finger [56], ear and 

forehead [57], and hip [51]. With these limited locations for wear, and having the sensor 

be attached by a clip or band, these sensor types may not be feasible for use in real-time 

practice or games where there is contact, but they could still be a useful tool for individual 

training. 

With the ability to measure HR, HRV, motion, and forces from small wearable 

sensors, coaches, athletes, and athletic trainers could personalize workouts and trainings 

for specific needs and wants. Now, biofluidic skin sensors have the ability to analyze sweat 

composition, giving information about dehydration [58] which can benefit the athletes 

from cramping and losing energy during games or practices.  Not only does this allow for 

optimal training methods, it can also decrease the risk of an injury for the athlete.   
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1.4. Gap Analysis 

Wearables have been used to monitor and diagnose patients in lab and remotely, as 

well as track fitness and safety measures for athletes. These applications focus on common 

and pressing disease and disorders like MS, PD, HD [20]–[23], [27], COVID-19 [59]–[62], 

and heart disease [37], [62]. In athletics, most focus is on sensors for monitoring fitness 

activities in a gym [47], [63], [64] or using sensors to understand the impacts athletes 

encounter during game play and practice [65]–[68].  

 

1.4.1. Childhood Mental Health 

Some research has begun to use wearable sensors to monitor and diagnose mental 

health disorders like bipolar disorder [28], [29], [69], and anxiety and depression [11]–

[14]. While the studies for identifying internalizing disorders in children have promising 

results, they focus on measuring reactions during task designed to induce fear and anxiety 

in the children [11], [11]–[14]. While these studies have used wearables to identify children 

with internalizing disorder, no one has looked at using mood induction tasks meant to 

induce positivity and feelings of joy in children for identification. 

 

1.4.2. Athletic Performance 

Wearables are also slowly starting to make their way into professional athletics, but 

accurate measures need to be made with these sensors. In attempts to collect and clean data 

during sports, researchers have looked at motion artifact cancellation algorithms to clean 

PPG signals [49]–[51], [55], [56], [70]. These studies use wearables to estimate HR during 
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intense physical activities through motion artifact cancellation methods, but new locations 

for sensor wear to estimate HR from has not been explored. 

 

1.5. Objectives 

This thesis will look into fulfilling the two gaps stated above through two different 

studies. First, the use of wearable sensors paired with machine learning and a positive mood 

induction task to aid in the diagnosis of internalizing disorders (i.e., anxiety and depression 

collectively) in children, and second, to determine new locations for accurate HR 

estimation using a wearable PPG and IMU sensor during intense physical activity. These 

objectives can be further specified by the following: 

1. Children with and without internalizing disorders will wear IMUs secured by 

elastic bands during a positive valance mood induction task. Features will be 

extracted from the data collected to build a decision tree to classify the 

subjects into those with a disorder and those without. Statistical analyses will 

be done to determine the specificity, sensitivity, and accuracy of the model. 

The model performance will be compared to that of the Child Behavioral 

Checklist (CBCL), which is commonly used in practice [71]. 

2. New wearable PPG plus IMU sensors will be worn in multiple body location 

during a series of physical activities. Two ECG and one additional PPG sensor 

will also be worn to validate three HR estimation algorithms. The three 

algorithms will estimate HR and be compared to the Polar H10 chest strap, 

which is a commercial wearable ECG that is the current gold standard [72]. 

After validation, the optimal location for PPG collection will be determined. 
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These two studies will be discussed further in Chapters 2 and 3 and have the potential to 

advance wearable-enabled point-of-care diagnostics and remote health and performance 

monitoring. Both studies utilize new technologies for identifying subjective (internalizing 

disorders) and objective (heart rate) measures in humans. 

 

1.6. Thesis Outline 

The remainder of this thesis describes the two studies mentioned above. Chapter 2 

discusses the use of wearable sensors paired with machine learning to identify children 

with internalizing disorders. The subsections of Chapter 2 discuss the background of 

childhood internalizing disorders, how they are diagnosed in practice and research, 

previous works, the methods of the conducted study, results and discussion, and 

conclusions and future works.  

Chapter 3 follows a similar structure to Chapter 2 but discusses the use of wearable 

sensors and motion artifact cancellation algorithms to determine HR from PPG and 

accelerometer data at various new body locations. Again, a background on HR estimation 

is described, followed by how wearable sensors are used in practice and research for 

estimating HR for medical and athletic purposes. Next, the methods of the study are 

described, followed by the results and a discussion of them, and a conclusion with future 

work. Finally, the thesis is concluded in Chapter 4 with an overview of the works discussed 

and concluding remarks made about the research process. 
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CHAPTER 2: DIAGNOSIS OF INTERNALIZING DISORDERS IN CHILDREN 

USING WEARABLE SENSORS 

2.1. Introduction 

2.1.1. Background 

Internalizing disorders (i.e., anxiety and depression) can develop early in life. 

Approximately 10.3% of children ages 3-17 have been diagnosed with anxiety and or 

depression in the U.S. [40]. However, approximately 20% of children will experience a 

depressive or anxiety disorder [73]. Of those diagnosed with depression, about three in 

four of them will also have anxiety, and one in two will have behavioral problems [40]. 

Children with anxiety are also likely to have behavioral problems and/or depression 

(approximately one in three for both) [40]. 

If left untreated, these disorders can lead to severe health problems [73] including 

chronic psychopathology, substance abuse [74], increased risk for suicide [75], and 

functional impairment [76]. Suicide is a potentially preventable issue, but it is the second 

leading cause of death for those between 10-34 years old [77]. It is imperative that these 

disorders are identified at an early age so that interventions can be applied when brain 

plasticity, and thus the likelihood of successes, is greatest.    

 

2.1.2. Internalizing Diagnostics in Practice 

Diagnosis for these disorders in children is usually conducted by clinicians who 

analyze multi-informant reports from the child them self, their parent or guardian, and 

any teachers the child may have [78]. There are incredibly long wait lists and periods for 

these services (approximately 96 days once referred [71]), and only the most affected 
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children (e.g., those with behavioral problems) are ever referred to see a 

psychiatrist/psychologist for assessment. 

The multi-informant reports used have shown limitations. Since the reports are 

based on parental assessment of the child, they are often inaccurate [41], and when the 

child is at a young age (under 8 years old), their response can be unreliable [79]. With 

these limitations, it is hard to accurately diagnose children, and in turn, to give them 

proper treatment. To overcome this, research is being conducted using mood induction 

tasks to understand how children with a disorder may react differently to specific stimuli 

compared to children without a disorder [13], [73], [80]. 

 

2.1.3. Internalizing Diagnostics in Research 

The National Institute of Mental Health has developed the Research Domain 

Criteria (RDoC) for examination of mental health. While the RDoC is a good framework, 

its use in psychological research has been limited because there was no way to assess the 

domains in children. In 2017, Waxler developed a behavioral battery assessment to 

measure Positive and Negative valance domains of the RDoC in preschool children. Her 

work focused on using ‘Mood Induction Tasks’ adapted from the LAB-TAB task and 

Trier-Social Stress Task for Children (TSST-C). These tasks were behaviorally coded by 

trained coders who had to achieve an intra-correlation coefficient of 0.7 or higher with a 

trainer before coding independently. This took a lot of time to achieve and there were 

multiple training steps to accomplish. Even with the trained coding, coders were not 

reliably able to diagnose children with internalizing disorders [31]. 
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Other than the work from Waxler [31], studies have used questionnaires and fMRI 

scans in researching internalizing disorders and other mental health disorders [81]–[87]. 

All of these studies used machine learning to diagnose children with an array of disorders 

from internalizing and externalizing disorders diagnosable by the CBCL [83], [84], [87], 

post-traumatic stress disorder (PTSD) [88], Autism [86], and schizophrenia [85]. While 

these studies had promising results, most of them used fMRI scans as the new measure 

for diagnosing these disorders [81]–[84], which are not a feasible tool for this kind of 

diagnostics. MRI scans are time consuming and expensive, and not all insurance 

companies cover the costs. The other studies use questionnaires to determine the 

diagnosis and these have similar problems to the CBCL and behavior coding because 

they involve parent-reports and have natural human bias in the decision [86]–[88]. While 

these methods may be feasible for research, they are not feasible to be used in practice 

or as a screening tool. 

 

2.1.4. Wearable Sensors in Internalizing Diagnostics Research 

The use of wearables has just recently been introduced into research for diagnosing 

internalizing disorders. Within the past three years, wearable IMU sensors have been paired 

with machine learning to create accurate models for determining children with and without 

internalizing diagnosis [11], [13], [14], [73]. Wearables have also been used in attempts to 

distinguish bipolar disorder from ADHD [69]. All of these studies use supervised machine 

learning methods on data collected from wearables or audio recordings to determine the 

diagnosis of each subject. These studies showed promising results with accuracies around 
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80% suggesting that wearables and machine learning could be used to develop and 

effective tool for detecting internalizing disorders. 

 

2.1.5. Gap Analysis 

While previous works have used wearable sensors to help diagnose internalizing 

disorders in children, these studies have focused on tasks that measure Negative valance in 

the children [11]–[14]. Negative valance is the phenotypic expression of negativity and 

adverse motivation with five subdomains including anxiety and fear [31]. In these studies, 

the subjects perform the ‘Snake Task’ and ‘Speech Task’ during wearable sensor 

instrumented mood induction tasks [11]–[14], [73]. The Snake Task involves bringing the 

child into a dimly lit room, startling them with a fake snake, and then allowing them to 

touch the snake to ensure they know it’s fake. Afterwards, the child is allowed free play 

time and a debriefing session [11], [13], [14]. The Speech Task involves having the child 

prepare a three-minute speech in which they will be judged on how interesting it is. They 

are given three-minutes to prepare and are interrupted with a buzzer twice during the speech 

to tell them the remaining time [12]. While these studies have had promising results, they 

focus on tasks that are intended to induce anxiety and fear into the children [11]–[14].  

The study discussed in this chapter presents a method to identify internalizing 

disorders using a task to measure Positive valance, the ‘Bubbles Task.’ While this task does 

involve additional equipment to the IMUs, it is only an inexpensive bubble machine and 

bubble solution, not a terrarium, fake snake, or video camera like the previous studies [11]–

[14]. Since the task measures Positive valence, it is intended to induce positive feelings 

like joy and reward, not negative feelings like fear and anxiety [31]. 
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2.1.6. Objectives 

The objectives of this study are first, to determine wearable sensor derived 

measures that best correlate with childhood internalizing symptoms, and second, to 

establish the accuracy of a machine-learning based method for classifying internalizing 

diagnosis in children.  

 

2.2. Methods 

2.2.1. Participants and Recruitment 

 Data were collected from a total of 63 (57% female) children and their primary 

caregivers (95.2% mothers) in a clinical research space at the University of Michigan. To 

be eligible for the study, participants had to speak fluent English and be between the ages 

of three and eight with a primary caregiver over the age of 18. Exclusion criteria included 

children suspected or diagnosed with a developmental disorder, having a serious medical 

condition, or taking medications that affect the central nervous system. Participants for 

this study were recruited from an ongoing study (Bonding Between Mothers and 

Children, PI: Maria Muzik) or from flyers posted around the community and at the 

University of Michigan Depression Center. A subset of this dataset, specifically the 

‘Bubbles Task’, was used to complete the following study. 

 

2.2.2. Data Collection 

 Subjects and their primary caregivers were brought into the university-based 

laboratory at the University of Michigan and provided written consent to complete an array 

of tasks. Studies were approved by the University of Michigan Institutional Review Board 
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(HUM00091788; HUM00033838). The children were equipped with two belt-worn IMUs 

(3-Space Sensor, YEI Technology, Portsmouth, OH, USA) – one secured around the head 

and the other around the sacrum (see Figure 1). These sensors were used to collect 

acceleration and angular velocity during the array of mood induction tasks. 

 

Figure 1. IMU locations on the subject for each task. 

 The task this study focuses on, the ‘Bubbles Task’, is a mood induction task 

intended to induce a positive feeling and emotions of joy. The task is designed to measure 

Positive valance, which is a term to describe phenotypic expressions of positivity and 

approach motivation [31]. The duration of this task was approximately 180 seconds. 

During the task, administers led the subjects into a room with a bubble machine on a table. 

The bubble machine was used to limit the negative emotions that could come from 

personally blowing bubbles from a wand, since the child may not be able to do it 

themselves. With the machine on, the administer gave scripted statements to encourage 
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positive emotions and behavior such as, “Try to pop the bubbles,” and, “Look at how fun 

this is.” 

 

2.2.3. Clinical Measures 

While at the lab, the children and caregivers also completed the Child Behavior 

Checklist (CBCL) questionnaire and a clinical interview. The CBCL is parent-completed 

and designed to assess child problem behavior in both clinical and research settings [31], 

[89], [90]. The CBCL consists of 120 items relating to child behavior across multiple 

domains and the frequency each item occurs. The CBCL has well established validity and 

reliability (see [90]). It takes about 15-minutes to complete and results in a global T-score 

relating to internalizing, externalizing, and total problems. The scale also results in scores 

for disorder-based subscales including Anxiety/Depression, Attention 

Deficit/Hyperactivity, and Oppositional Defiant Disorder. Only scales available in both 

versions (ages 1.5-5 and 6-18) were used in subsequent analyses. Subject demographic 

information including race, gender, and family income was also collected. 

The diagnostic interview was conducted by trained clinical psychology doctoral 

students or postdoctoral fellows and lasted about 1-2 hours with each child’s caregiver. A 

version of The Schedule for Affective Disorders and Schizophrenia for School Aged 

Children and Lifetime Version (K-SADS-PL) which is validated for ages 6-18 and 

modified for preschoolers was used in this study [91]. This interview explored past and 

current symptoms of the child’s psychiatric disorders. Interviewers were supervised on at 

least a monthly basis by a licensed psychologist or psychiatrist and all cases were reviewed 

by all clinicians and their supervisor. The final diagnoses were a result of clinical consensus 
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using the best estimate procedures [92] based on the child and parent report, family history, 

and other self-report symptom checklists. The K-SADS is considered the gold-standard but 

is not commonly used in the 1-hour unstructured interviews conducted in practice. 

 

2.2.4. Signal Processing and Feature Extraction 

 During the mood induction task, the children’s motions were measured by 

acceleration (m/s2) and angular velocity (radians/s) using two belt-worn IMUs. The data 

were sampled at approximately 300 Hz, down-sampled to 100 Hz, and low-pass filtered 

using a fourth-order Butterworth IIR filter (cutoff of 20 Hz) in software prior to use.  

 Of the N=63 subjects, N=48 (60.4% female) had useable headband data during the 

Bubbles Task. Data were unusable if the child removed or turned off the device during the 

activity, or if data were not labeled properly once downloaded. While the task was intended 

to be 180 seconds, only 150 seconds of the data were used to maximize the number of 

subjects with usable data. 

 IMU data from the head were separated into two phases during the task, the Initial 

(first 30 seconds) and Sustained (130-150 seconds) phase (see Figure 2), and signal features 

were extracted from the vector magnitude of acceleration and angular velocity.  
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Figure 2. Raw acceleration from a subject's headband sensor. Orange lines show Initial and 

Sustained phase cutoffs. 

Signal features included mean, root mean square (RMS), skewness, kurtosis, range, 

maximum, minimum, standard deviation, peak to RMS amplitude, signal power within 

frequency bands, and the location and height of peaks in the power spectrum and 

autocorrelation of the signal. This yielded 29 features for each signal (i.e., acceleration and 

angular velocity), resulting in a total of 58 features from each of the two phases. In addition 

to the two phases, the data were classified into segments of motion (when the child was 

actively playing with bubbles) and no motion (when the child stopped for a period of time). 

Child motion was determined by creating an envelope of the data through filters, full-wave 
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rectification and applying a threshold the amplitude of data needed to exceed to be 

considered motion.  

 Next, the start and stop timestamps of each motion segment were extracted for 

further feature extraction. Features extracted from these motion segments included total 

duration of motion, average duration of motion segments, standard deviation, skewness 

and kurtosis of motion segments, maximum and minimum of motion segments, and median 

of the motion segments. This yielded an additional eight features for each signal, resulting 

in a total of 16 features overall. With both sets of features (Initial/Sustained and overall 

motion), a total of 74 features were available to characterize each subject’s motion. These 

features were used in a supervised learning environment to determine each subject’s 

internalizing diagnosis. 

 

2.2.5. Statistical Model for Identifying Internalizing Diagnosis 

 Supervised learning was used to train classification models relating IMU-derived 

features to the internalizing diagnosis as established via the K-SADS-PL with clinical 

consensus. Performance of the classifiers were established using a leave-one-subject-out 

(LOSO) cross-validation. This process partitions features from all but one subject (i.e., 47 

of 48 subjects) into a training set before converting to z-scores and performing a Davies-

Bouldin Index based feature selection to yield ten features with zero mean and unit variance 

that best discriminate between diagnostic groups. The score threshold used to determine 

diagnosis of each iteration was Youden’s Index [93] based on the ROC curve of the training 

data. 
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 The selected features (from the Initial/Sustained phases) were then used to train a 

decision tree classifier for predicting if the one remaining test subject has an internalizing 

diagnosis or not. This process was repeated until the diagnosis of each subject had been 

predicted. A visualization of this process can be seen in Figure 3. 

 

Figure 3. Flow chart of the process for training and testing the decision tree algorithm. 

This was again repeated for the Initial/Sustained phases with the additional motion segment 

features added, but the Davies-Bouldin Index yielded 13 features.  

  The model performances were then assessed in several ways. The accuracy, 

sensitivity, and specificity were calculated for both the Initial and Sustained models and 

for the CBCL measures. The receiver operating characteristic (ROC) curve, which plots 

true positive rate against false positive rate, was plotted and the area under the ROC curve 

(AUC) was used to assess the discriminative ability of the classifiers [94]. Correlations 

between CBCL measures including Internalizing, Depression, and Anxiety Problems, as 

well as somatic symptoms (e.g., extreme focusing on physical pain [95]) because they are 
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common in children with internalizing disorders, and selected model features were also 

calculated. 

  A permutation test was also done to test the models’ classification error rates (error 

rate = number of incorrect predictions/total number of predictions = 1 - classification 

accuracy) against random chance. To complete this test, the distribution of error rates for 

each model was approximated as a beta distribution parameterized by the number of 

incorrect predictions and total number of observations, as indicated in [96], [97], and 

randomly sampled 100 possible error rates from this distribution. Next, the model training 

procedure previously described was again repeated for 100 random permutations of the 

diagnostic labels and computed the classification error rate each time. Finally, a Mann-

Whitney U-Test was used to determine if the error rates of the classification models were 

statistically different from random chance. 

 

2.3. Results and Discussion 

2.3.1. Results 

 Figure 4 shows the results from the permutation test for the decision tree models 

developed using features from the Initial+Motion and Sustained+Motion phases of the 

Bubbles Task. The error rates for the models developed are shown in blue and those due to 

random chance are in gray. The Initial+Motion model did not have statistically better error 

rates than random chance; however, the Sustained+Motion model did (p-value < 0.001). 
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Figure 4. Error rates from the developed decision tree models (blue) compared to those due to 

random chance (gray).  

Although the Initial+Motion model did not have better error rates than random chance, it 

was still compared to the Sustained+Motion model, which was the best performing model 

developed. The receiver operating curves (ROC) for the Initial+Motion and 

Sustained+Motion models are shown in Figure 5 reports the true and false positive rates. 

The AUC for the Initial+Motion and Sustained+Motion models were 0.39 and 0.81, 

respectively. 
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Figure 5. ROC curves for the decision tree models using Initial/Sustained features and motion 

segment features. 

To better visualize the data values of the chosen features, violin plots were created for both 

the subjects with and without a diagnosis (see Figure 6). These plots compare the z-scores 

of each diagnosis for each selected feature of the Sustained+Motion model. The feature 

values for those without a diagnosis are represented in the dark blue violin plots and the 

feature values for those with a diagnosis are in the light blue violin plots. 
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Figure 6. Violin plots of the selected features z-scores for both subjects without an internalizing 

disorder (dark blue) and with an internalizing disorder (light blue) from the Sustained+Motion 

model. The plots with a red asterisk above them were determined, from a Mann-Whitney U-Test, to 

be statistically significantly different between diagnostic groups. 

The features selected for the Sustained+Motion model (see Table 1) can be formed into 

three categories: Power, Intensity, and Frequency. 
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Table 1. Sustained+Motion model selected features with respective category. Features with 

an asterisk note those statistically significantly different between diagnostic groups.  

Feature Label Feature Category 

F1* Mean (Acc.) Intensity 

F2* Skewness (Acc.) Intensity 

F3* Covariance of height at 0 (Acc.) Intensity 

F4* Covariance of height at 1st peak 

(Acc.) 

Power 

F5 Spectral frequency location of 

3rd highest peak (Acc.) 

Frequency 

F6* Total time in motion (Acc.) Intensity 

F7 Skewness of motion segments 

(Acc.) 

Intensity 

F8* Peak-to-RMS (Ang. Vel.) Intensity 

F9 Spectral frequency location of 

2nd highest peak (Acc.) 

Frequency 

F10 Spectral frequency location of 

5th highest peak (Acc.) 

Frequency 

F11* Kurtosis (Acc.) Frequency 

F12 Maximum (Ang. Vel.) Intensity 

F13 Range (Ang. Vel.) Intensity 

  

The accuracy, sensitivity, specificity and AUC for the CBCL measures at two 

thresholds can be seen in  

Table 2. These values can be compared to the accuracy, sensitivity, specificity and 

AUC from the models developed (Table 3). 
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Table 2. CBCL measures for accuracy, sensitivity, specificity and AUC. 

CBCL Accuracy Sensitivity Specificity AUC 

Cutoff 70 55 70 55 70 55 70, 55 

Internalizing 0.70 0.72 0.00 0.29 1.00 0.91 0.83 

Anxiety 

Problems 

0.77 0.70 0.21 0.43 1.00 0.82 0.80 

Depressive 

Problems 

0.77 0.73 0.21 0.43 1.00 0.85 0.78 

 

Table 3. Developed models’ accuracy, sensitivity, specificity and AUC. 

 Accuracy Sensitivity Specificity AUC 

Initial  0.52 0.36 0.59 0.39 

Sustained 0.75 0.64 0.79 0.81 

 

The correlations computed between selected features and the CBCL measures 

(Internalizing Problems, Depression Problems, Anxiety Problems, and Somatic 

Symptoms) with significant correlations can be seen in Table 4. 
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Table 4. Sustained+Motion selected features with significant correlations to CBCL 

measures. 

Feature CBCL Measure P-value 

Acceleration skewness Depression Problems 0.037 

Acceleration kurtosis Depression Problems 0.0097 

Acceleration skewness Somatic Symptoms 0.043 

Acceleration covariance of height at 0 Somatic Symptoms 0.03 

Acceleration kurtosis Somatic Symptoms 0.037 

Acceleration spectral frequency location of 2nd highest 

peak 

Somatic Symptoms 0.013 

Acceleration spectral frequency location of 3rd highest 

peak 

Somatic Symptoms 0.019 

 

 

2.3.2. Discussion 

 With the need for a more accessible and reliable screening tool for psychopathology 

in young children, the results presented above suggest that methods similar to these could 

fulfill that need. In comparison to the questionnaire-based parent-reported CBCL the 

wearable IMU derived Sustained+Motion model had similar accuracy (0.75 vs. 0.70-77), 

higher sensitivity (0.64 vs. 0.00-0.43), and slightly lower specificity (0.79 vs. 0.82-1.00). 

The AUC was relatively similar between the model and CBCL (0.81 vs. 0.78-0.83). The 

model developed has similar performance to the CBCL but uses a single wearable sensor, 

a bubble machine, and takes three minutes to collect the data. That is less time than it 

usually takes for a parent or caregiver to complete the CBCL and it is more sensitive.  
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 Figure 6 shows clear differences in the mean values of the diagnostic groups from 

over half of the selected features, and the permutation test (Figure 4) showed the model 

was statistically better than what would be expected by random chance (p-value < 0.001 

determined by Mann-Whitney U-Test). Also, some of the selected features are correlated 

with the subdomains of the CBCL including depression problems and somatic symptoms. 

In most of the features (8 out of 13), the subjects with an internalizing disorder had lower 

z-scores which may suggest for the correlations to the CBCL’s depression problems since 

it has been suggested that people in a depressive state may move less than those who are 

not [29]. Differences in sustained response to positive stimuli between individuals with and 

without internalizing disorders has been demonstrated previously in older subjects, 

providing support for these results [80].  

 Other machine learning models developed for mental health diagnosis have also 

had similar results [12]–[14], [73]. These studies saw similar accuracies (75-81%) to that 

presented in this study. The results from studies suggest that wearables and machine 

learning provide similar results to the CBCL and could be used as an easy, accessible, and 

quick way to screen for mental health disorders in children. 

 While the results presented are promising, this study is not without limitations. One 

limitation to this study is the small sample size of subjects. This work should be further 

validated and reproduced with data collected from a larger sample size and more balanced 

diagnoses (this set only had 14 subjects with a diagnosis). A broader sample set would 

more accurately represent the population and those at risk for developing internalizing 

disorders. It could also allow for the examination of which disorder type, if any, has more 

of a response to positive valance activities compared to the other.  
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2.4. Conclusion and Future Work 

2.4.1. Conclusion 

 The results presented suggest that wearable sensor data capturing a child’s motion 

for 150 seconds while playing with bubbles can be used to identify young children with an 

internalizing disorder with high sensitivity. If implemented into an easy-to-use app, this 

model could be used as an inexpensive screening tool in pediatric offices, after the initial 

purchase of an IMU. Being inexpensive (after the initial cost of the IMUs) is important 

since almost 90% of children live in low-income and middle-income countries [42]. This 

could change the stigma around mental health and increase the accessibility of getting help 

early on and when appropriate.  

 

2.4.2. Future Work 

 As mentioned above, future work should focus on correcting the limitations to this 

study, which includes a larger, more balance sample. This work would increase the validity 

of the results presented. It would also give a better representation to the population at risk 

and if one disorder is more identifiable by the Bubbles Task. 

 The next chapter of this thesis will discuss another application of wearable sensors 

in providing more relevant biological signals for health monitoring, including HR. With 

the additional measure of HR, even more information could be collected to help diagnose 

children with internalizing disorders, especially since they are disorders that typically 

reflect inward and have a sympathetic nervous system response [98], [99]. However, it has 

proven to be a challenge to estimate accurate HRs during intense physical activities due to 

motion artifacts [49].  
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 The remainder of this thesis will discuss a method to remove motion artifacts from 

PPG signals. It also explores new body locations for measurement, which may be more 

comfortable for longer wear, and do not rely on a belt or clip to be adhered close enough 

to the skin’s surface for good signal quality. 
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CHAPTER 3: HEART RATE ESTIMATION USING WEARABLE PPG 

SENSORS 

3.1. Introduction 

3.1.1. Background 

 While the movement-based measurements of Chapter 2 capture important 

information during the Bubbles Task, they do not reveal the child’s physiological response. 

Changes in HR [100] and heart rate variability (HRV) have previously been linked to 

anxiety and depression during social-evaluation tasks [99]. For example, low resting high 

frequency HRV has been associated with symptoms of anxiety and depression [99].  

 Measures of HR and HRV are also important vital signs that can be used to evaluate 

fitness, lung health, and heart health more broadly [6]–[10]. These measures are often 

captured using PPG [101], which is typically worn at the wrist [49], [50], [53]–[55], and 

subject to substantial movement artifact. Movement artifacts are corruptions in the PPG 

signals due to activities like brushing teeth, washing dishes, intense physical activities and 

other activities people may participate in throughout the day.  

 To obtain an accurate measurement of HR and HRV, motion artifacts are required 

to be removed from the signals. Previous works conducted to minimize the effect of motion 

artifact on PPG signals leverage accelerometer and/or gyroscope data with the idea that 

those signals can be used to identify the motion artifacts in the PPG signal, so that it can 

be removed [7], [49]–[51], [53]–[55], [57], [102]. However, these studies considered data 

from sensors secured to the wrist [49], [50], [53]–[55], ear and forehead [57], hip [51], and 

finger [56]. 

 



 31 

 

3.1.2. Wearable Sensors for Measuring Athletic Performance 

Currently, there are off-the-shelf wearable sensors for fitness tracking available in 

stores (i.e., Apple Watch, Fitbit, Polar, etc.). These technologies use PPG or ECG Sensors 

to obtain HR during physical activity. These are typically used for personal use, but some 

gyms like Orange Theory Fitness have adopted wearable sensors for their members to use 

in classes to optimize their workouts [63]. Other companies, like Myzone, are also using 

HR sensors to help members maximize their workouts [64]. These companies use research 

that shows HR intensity-based group fitness significantly alters aerobic fitness, body 

composition and overall health if followed [47]. The wearable sensors help their members 

hit target HR zones to maximize their workouts since they can see their HR in real-time.  

  Although these sensing modalities are commercially used, it is difficult to get 

accurate PPG measurements during intense physical activity due to soft tissue artifacts and 

discontinuous contact between the sensor and skin [52]. In attempts to improve the 

accuracy and reliability of PPG sensors, research is being done to reduce the effects of 

these artifacts [51], [52], [55], [56], [102]. A lot of research focus has also been on sensors 

to measure stress and strain on the body during training and performance and sweat or other 

biofluid composition during workouts [43], [45], [103].  

 

3.1.4. Previous Work 

Previous work in developing robust motion artifact cancellation has focused on clip 

or band worn sensors [51], [55], [56], [102], [102]. These sensors limit the locations of 

wear on the body and can have a poor adherence to the skin, making it harder to get a clear 
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PPG reading. Many of these studies also use acceleration or gyroscope data to remove 

corrupted frequencies from the PPG signals [49], [56], [102]. The ability to have all of the 

hardware in one small sensor would make the research more feasible and wear more 

comfortable. Motion artifact cancellation algorithms have been developed and work for 

band and clip type sensors, but to my knowledge, there has not been research done on 

validating them with patch-like sensors that have the ability to be worn anywhere on the 

body. 

 

3.1.5. Hardware Overview 

Epicore Biosystems, Inc. has recently developed a wearable band aid-like sensor 

equipped with an IMU and PPG sensor called the AIM System. The sensor is made out of 

a low durometer silicone and can be adhered anywhere on the skin using adhesives. Within 

the silicone device there are three sensors: an accelerometer, gyroscope, and optical with 

specification described in Table 5. 

Table 5. Sensor specifications embedded in AIM System device. 

Sensor Range Resolution Sampling 

Accelerometer 2, 4, 8, 16g 16-bit per axis 50-500 Hz 

Gyroscope 250, 500, 1000, 

2000/s 

16-bit per axis 50-500 Hz 

Optical 528-nm (Green LED) 19-bits 100-1000 Hz 

 

The AIM system has a 1 G-Bit (128 MB) memory capacity and Bluetooth 5 

communication compatibility. It is powered by a lithium polymer, rechargeable battery (10 

mAh) and can go from 10% to 90% battery level in 1-hour of charging. Epicore Biosystems 

designed all of this to fit into one small, flexible device which can be seen in Figure 7. 



 33 

 

Figure 7. Epicore Biosystem, Inc.'s AIM System wearable sensor with dimensions. 

 

3.1.6. Objectives 

With the new hardware developed by Epicore Biosystems, Inc., the objectives of 

this study are first, to process and validate HR estimation algorithms using PPG during 

intense physical activity, and second, to determine new locations for extracting HR from 

PPG sensors on the body. These can be further specified by the following: 

1. To design and execute a protocol that includes intense physical activated to 

induce motion artifacts into the PPG data. With this corrupted data, three HR 

estimation approaches will be applied to the data collected during each activity. 
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The estimated HRs will be validated using the Polar H10 chest strap, which is 

considered the gold standard hardware for HR tracking [72]. 

2. During each activity, PPG sensors will be worn at three new body locations: 

forearm, shank, and sacrum. The error from each location will be calculated and 

compared to determine new locations of wear on the body that still provide 

accurate results. 

 

3.2. Methods 

3.2.1. Subjects 

Data were collected from a total of 8 healthy adults in a research laboratory setting 

at the University of Vermont. To be eligible for the study, participants had to have no 

known cardiac arrhythmias, musculoskeletal injuries, and be between the ages of 18 and 

29. Subjects were recruited through the M-Sense Research Group at the University of 

Vermont. 

 

3.2.2. Data Collection 

 Participants were brought into the university-based laboratory where they filled out 

a written consent form to participate in an array of tasks. Activities were approved by the 

local Institutional Review Board. Each participant was equipped with a 3-lead ECG 

(Biostamp, MC10, Lexington, MA, USA) in lead III configuration placed on the chest, an 

ECG chest strap (Polar H10, Polar Electro Inc., Bethpage, NY, USA), a PPG sensor (Apple 

Watch, Apple Inc., Cupertino, CA, USA) on the right wrist, and 3 PPG+IMU sensors (AIM 

System, Epicore Biosystems Inc., Cambridge, MA, USA) placed on the inner right 
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forearm, right tibial plateau, and sacrum (see Figure 8). These sensors were used to collect 

an array of ECG, PPG and accelerometer recordings during the tasks. 

 

Figure 8. Sensors each subject was equipped with and their locations (orange-Aim System, blue-

Apple Watch, green-Biostamp, black-Polar H10). 

 

 After being equipped with the sensors, the subjects were instructed to complete the 

following array of tasks: 1-minute standing calibration, five air squats, ten calf raises, ten 

push-ups (knee push-ups were acceptable), 30 seconds of jumping jacks, three 1-minute 

trials of walking on a treadmill (each trial at a different self-selected pace of slow, 

comfortable, and fast), three 1-minute trials of running on a treadmill (each trial at a 

different self-selected pace of slow, comfortable, and fast), and 1.5-minutes of sitting. 

Following the data collection, sensors were removed from the subject, cleaned, and data 

were downloaded for processing. 
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3.2.3. Signal Processing 

Preprocessing 

 Of the eight subjects, only six (50% female) had useable data. Data were unusable 

if it had not successfully recorded and saved on its device (i.e., Polar H10, AIM System, 

or Biostamp). Data were sampled at approximately 250 Hz for the Biostamp, 100 Hz for 

the Epicore PPG and 250 Hz for the accelerometer. All data were processed using 

MATLAB 2018a. 

 Next, each subject’s data from all sensors were divided into each activity. Start and 

stop timestamps were recorded using the MC10 Biostamp system. Since each sample from 

each measurement technology had an associated absolute timestamp, the start and end 

times from each activity recorded by the Biostamp system could be used to identify data 

corresponding to each trial. Once the data were segmented by activity, a Pan-Tompkins 

algorithm [104] was used to calculate the HR from the Biostamp 3-lead ECG sensor. The 

Polar H10 and Apple Watch output HRs, so no further processing was needed to be done. 

 The average HR was calculated for the Biostamp estimates, Polar H10 and Apple 

Watch for each subject and trial. The PPG signals from the AIM System were further 

processed using three HR estimate methods: Ensemble Empirical Mode Decomposition 

with Principal Component Analysis (EEMD-PCA) [105], Spectral Estimation and Median 

Filtering [48], and Weiner Filtering, Phase Vocoder and Viterbi Decoding (WFPH+VD) 

[50]. 
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Method 1: EEMD-PCA Approach [105] 

 The EEMD-PCA approach was developed by Motin et al. in 2018. This method 

involves decomposing the raw PPG signal into intrinsic mode functions (IMFs) using 

EEMD. Next, the IMFs containing artifacts are automatically identified and rejected. The 

FFT of remaining IMFs are then used to calculate HR and respiratory rate (RR). Frequency 

ranges between 0.75 and 2.5 Hz are grouped for HR. Principle component analysis (PCA) 

was performed on the remained IMFs in the HR group. The principle components (PCs) 

were arranged so the first PC contained most of the variation present in the IMFs. The first 

PC was then used to determine HR. 

 

Method 2: Spectral Estimation and Median Filter Approach [48] 

 Next, a motion artifact cancellation technique from the same authors of the EEMD-

PCA approach was used. This approach involves a simple spectral analysis and median 

filter to improve the HR estimation. To further explain this technique, an 8 second window 

with 75% overlap is used across the PPG and three channels of acceleration; however, since 

the Polar H10 outputs a HR every second, an overlap over 87.5% was used instead. During 

each window, the signals are filtered using a fourth-order Butterworth filter and down-

sampled to 25 Hz. Next, the FFT of each signal is taken. The dominant frequencies of the 

PPG are compared to the dominant frequencies of each channel of acceleration. Any 

dominant PPG frequencies within 1 Hz of the dominant acceleration frequencies was 

discarded. The remaining dominant frequency was used to calculate HR. 

 Each successive estimated HR was compared to that from the previous window. If 

the two HRs were too far apart (i.e., more than 30 BPM difference), the next dominant 
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uncorrupted peak from the PPG’s FFT was used for the estimate. Also, the HR estimate 

could not be the same for more than two consecutive windows. If it was estimated for more 

than two, the next dominant uncorrupted peak was used for estimation. Once the HRs were 

estimated for each window, a median filter was used to smooth out the results. 

 

Method 3: WFPV+VD Approach [50] 

 The final motion artifact method applied to the PPG data was developed by Temko 

in 2017. This author provided open-source code from their study [106]. This method 

involves using a Wiener filter, phase vocoder, and Viterbi decoding to estimate an accurate 

HR from a motion artifact corrupted signal. The method uses an 8 second window with a 

step size of 2 seconds; however, since the Polar H10 outputs a HR every second, a step 

size of 1 second was used. 

 During each window, the PPG and each channel of acceleration was filtered using 

a fourth-order Butterworth filter and down-sampled to 25 Hz. The Discrete Time Fourier 

Transform (DTFT) was also taken of each signal. Next, a Weiner filter was applied to the 

windows. According to Temko, the Weiner filter acts as a signal-to-noise attenuator since 

frequencies more likely to be corrupted by noise are given less importance when 

determining HR. The frequencies more likely to be corrupted by noise are found from the 

DTFT of the three channels of acceleration. Next, the estimated HR from the Weiner filter 

is refined using the Phase Vocoder technique which involves calculating the instantaneous 

frequency of the signal during each window. Finally, Viterbi decoding is used for final 

offline post-processing. 
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3.2.4. Validation 

 After estimating the HR for all subject, locations, and activities using the three 

methods mentioned above, the average absolute error was calculated between the estimated 

HRs and those obtained from the Polar H10 since it is considered the gold standard 

wearable ECG [72]. However, since the EEMD-PCA approach only provides a single HR 

estimate for each trial, the average HR was calculated for each trial from the other 

estimation methods and compared to the average Polar H10, Apple Watch, and Biostamp 

as well. The average absolute error was calculated between each sensor and trial and the 

Polar H10 data using the following equation: 

1

𝑁
∗∑|𝑡𝑟𝑢𝑡ℎ(𝑖) − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛(𝑖)|

𝑁

𝑖=1

 

Where N is the number of samples, truth is the Polar H10 data and estimation is the HR 

outputted from the Apple Watch, Biostamp or AIM system data after the artifact 

cancellation method. 

 

3.3. Results and Discussion 

3.3.1. Results 

From the methods described above, the WFPD+VD [50] method outperformed 

both the EEMD-PCA [105] and Spectral Frequency with Median filtering approaches [48]. 

Figure 9, Figure 10, and Figure 11 show boxplots of the average absolute error at each 

location during each activity. 
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Figure 9. Average absolute forearm errors for the EEMD-PCA (blue), Spectral Frequency (green) 

and WFPD+VD (red) method during each trial. 
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Figure 10. Average absolute shank errors for the EEMD-PCA (blue), Spectral Frequency (green) 

and WFPD+VD (red) method during each trial. 
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Figure 11. Average absolute sacrum errors for the EEMD-PCA (blue), Spectral Frequency (green) 

and WFPD+VD (red) method during each trial. 

The average absolute error from the Pan-Tompkins algorithm used on the ECG data 

from the Biostamp sensor and the Apple Watch results can also be seen in boxplots below 

(Figure 12) with respect to the best performing location and method.  
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Figure 12. Average absolute errors for the Apple Watch (blue), WFPV+VD for the forearm (red), 

and Biostamp (green) sensors during each trial. 

In total comparison, the average absolute error was calculated for each subject for 

each trial and location. It was then compared across all methods and forms of data 

collection modalities (i.e., the different types of sensors). These results can be seen in Table 

6. 
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Table 6. Average Absolute Errors of each HR estimation method (1: EEMD-PCA, 2: 

Spectral Frequency, and 3: WFPV+VD) at each location for all sensors and trials. 

Average Absolute Error Per Trial 

Activity Forearm Shank Sacrum Biostamp Apple 

1 2 3 1 2 3 1 2 3 

Standing 

Calibration 

9.6 60.8 3.3 14.3 61.9 2.5 7.6 62.7 5.6 48.1 6.3 

Squats 5.5 83.4 4.2 5.9 78.0 3.6 3.3 76.0 2.8 25.0 NA 

Calf raises 6.8 83.9 5.2 12.5 80.6 5.2 7.3 80.4 9.7 26.6 39.7 

Push ups 6.2 78.8 7.0 8.9 87.8 8.5 4.7 92.6 5.2 51.5 NA 

Jumping 

jacks 

6.5 86.4 4.3 10.2 50.4 7.3 5.3 65.8 7.6 35.4 7.6 

Slow walk 12.3 62.7 7.9 12.1 58.2 6.4 5.5 67.2 2.8 13.5 6.3 

Comfortable 

walk 

12.9 50.4 5.3 16.5 46.2 6.4 12.3 37.9 6.3 18.3 2.5 

Fast walk 7.7 45.8 6.1 10.0 52.2 12.9 8.5 64.5 4.7 21.3 4.6 

Slow run 13.9 31.8 9.2 8.5 64.1 3.5 10.4 59.7 7.9 23.9 2.2 

Comfortable 

run 

5.2 25.7 5.3 5.6 64.1 4.1 15.0 66.2 4.1 36.1 NA 

Fast run 12.5 23.7 5.6 14.8 81.3 10.9 19.9 64.6 5.9 28.8 2.1 

Sitting 28.0 58.7 11.4 18.6 49.4 11.4 11.9 57.8 17.2 45.4 4.5 

Total 10.6 57.7 6.2 11.5 64.5 6.9 9.3 66.3 6.7 31.2 8.4 

 

Figure 12 and Table 6 showed some trials, including Air Squats, Jumping Jacks, and 

Comfortable Running, where the Apple Watch did not collect data for any subjects. This 

was further investigated, and the number of missed trials by the Apple Watch can be seen 

in Table 7 below. 
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Table 7. Number of missed trials by the Apple Watch. 

Activity 

Number of missed 

trials 

Standing 

Calibration 3 

Squats 6 

Calf raises 5 

Push ups 6 

Jumping jacks 4 

Slow walk 3 

Comfortable walk 3 

Fast walk 5 

Slow run 4 

Comfortable run 6 

Fast run 4 

Sitting 0 

 

The Polar H10 also missed 12 seconds worth of data during subject 7’s Sitting Trial. The 

missed recordings corresponding estimates were discarded when calculating average HR 

during the trial. 

 

3.3.2. Discussion 

The results above suggest that the WFPD+VD approach [50] was the most robust 

for estimating HR during intense physical activity using the AIM System data. With the 

intense physical activities performed in this study, there were large motion artifacts. With 

the Spectral Frequency method [48], dominant PPG frequencies too close to dominant 

acceleration frequencies were discarded. It has been noted that during cyclical motions, 

like running and walking, that the frequency of steps can be similar to the frequency of HR, 

which may provide reasoning as to why it did not perform as expected [107]. These results 
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also suggest that the forearm is an ideal place for these new wearable PPG sensors to be 

worn, although the shank and sacrum also perform with similar errors. 

This method also outperforms the Pan-Tompkins method [104] used on the 

Biostamp ECG data, and most of the Apple Watch HR estimates. The Pan-Tompkins 

method likely gave false reportings of HR due to the motion artifacts in the data since no 

cancellation algorithm was applied to this data. However, with the artifact cancellation, the 

PPG data is more reliable than the ECG data without a more advanced algorithm. Also, 

when importing the Apple Watch data, many trials had missing data (Table 7). No sampling 

rate for the Apple Watch PPG could be found other than “hundreds of samples a second,” 

so interpolation could not be used to fill in missing data. With so many missing trials from 

the Apple Watch, especially in the activities that used more arm/wrist movements, it likely 

had trouble remaining in good contact with the subject’s skin or the quality was not good 

enough for their algorithms to estimate a HR.  

It is also surprising to see the Polar H10 have some missing data. This occurred 

during the sitting trial for subject 7. The sitting trial occurred last in the series of exercises 

and some subjects, including subject 1 who had to be discarded from the study since the 

Polar H10 did not collect any data for them, mentioned they noticed the Polar H10 device 

was sliding during some tasks. This may have been due to the use of the M-XXL band size 

used for this study, and Polar does sell a XS-S size as well.  

The results of this study also show that the forearm, shank, and sacrum have 

relatively similar performance making all of them a new location to collect PPG data from. 

With this discovery, PPG and accelerometer data could be collected at the sacrum or shank 

to give not only HR information, but also information about gait biomechanics. This could 
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be beneficial for athletes and trainers who want to know more about technique, fitness, and 

forces experienced during real-time games or events and in training. These new locations 

also open up opportunities for many new research studies like fall risk detection and gait 

analysis. 

While the two main objectives were fulfilled, this study still had some limitations. 

The first limitation was the small sample size. Only eight subjects were able to be recruited 

with only six having usable data for a majority of the trials and locations. The subjects were 

also all healthy adults with no known cardiovascular or musculoskeletal issues. Another 

limitation was the exercises being constrained to the laboratory setting, especially for the 

treadmill trials. It has been noted that walking and running kinematics have been 

substantially different when on a treadmill versus overground [108]. 

 

3.4. Conclusion and Future Work 

3.4.1. Conclusion 

This study provides evidence that PPG can be collected at locations other than the 

finger, wrist, ear, and forehead and provide relevant results. The results showed an average 

of 26.1%, 18.3%, and 21.0% improvement in estimating HR at the forearm, shank, and 

sacrum, respectively, compared to the Apple Watch data from all trials of this study. This 

work provides the foundation to further explore how well the AIM System hardware can 

track HR comfortably, during intense physical activities and other potential locations. The 

HR algorithm could be integrated into an app for use with the system since the hardware 

includes an accelerometer and PPG sensor all in one device. This would make future 
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research with the AIM System more feasible, and it could potentially become a tool used 

in the fitness and athletic training. 

 

3.4.2. Future Work 

Future work should focus on validating the algorithms with more subjects and data. 

A more diverse sample set in regard to subjects and exercises would also strengthen the 

results reported in this thesis. Another addition to this work would be to develop a novel 

technique for cancelling motion artifacts in PPG for the AIM System. Since the AIM 

System has an IMU and PPG all onboard, and the methods used in this paper did not, a 

novel algorithm to cancel motion artifacts for this new type of hardware would be 

beneficial.  

After a more in-depth validation, this system could be applied to the work discussed 

in Chapter 2. With accurate HR estimations, this technology could be used to help 

understand diseases and disorders that affect the parasympathetic nervous system, along 

with musculoskeletal disorders as well. With the ability to measure full gait metrics and 

HR measures, many new studies could be conducted. 
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CHAPTER 4: CONCLUDING REMARKS 

4.1. Internalizing Disorder Identification in Children 

Wearable IMUs show promise in being used to screen children for internalizing 

disorders by having them play with a bubble machine for three minutes. The results from 

this study are also supported by previous research that also uses mood induction tasks and 

machine learning to identify internalizing disorders in children [11]–[14]. With an accuracy 

of 75%, and high sensitivity, this model performs well compared to the current 

questionnaire (CBCL) which could potentially be used as a screening tool. This provides a 

low-cost option, after the initial purchase of wearable IMUs and a bubble machine, to be 

used in pediatric offices as a screening tool. This could allow for more children with 

internalizing disorders to get help early on and dismantle the stigma around mental health 

disorders. 

 

4.2. HR Estimation from New Body Locations 

Additional physiological measure like HR could potentially strengthen the results 

found in the childhood internalizing disorder study. The second study, and new wearable 

sensor tool, of HR estimation during intense physical activities at new body locations has 

the potential to be used in studies like the one just mentioned. With average absolute error 

rates of 6.2, 6.9, and 6.7 BPM at the forearm, shank, and sacrum, respectively, compared 

to the gold standard Polar H10 chest strap, the results show promise for patch-like 

wearables with photoplethysmography and accelerometry to be useful in accurately 

estimating HR. With the ability for these patch-like sensors to be worn anywhere, there is 

a large set of applications for this sensor. This type of hardware also allows for good skin 
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contact through an array of exercises which maximized the signal quality and ability for 

HR estimation compared to devices like the Apple Watch (methods presented had a 26.1%, 

18.3%, and 21.0% improvement on average at the forearm, shank, and sacrum, 

respectively, compared to the Apple Watch) and other clip- or band-worn sensors that can 

move freely about the skin.  

 

4.3. Current and Future Work 

With the current global pandemic caused by COVID-19, researchers have been 

putting efforts into finding ways to monitoring symptoms. Wearable devices now have 

many sensing abilities and can keep track of HR, sleep durations and disturbances, 

temperature, and more, making them a useful tool for tracking symptoms [59], [109]. The 

coronavirus has three main symptoms of respiratory distress, fever, and coughing, which 

can all be monitored with wearable sensors [109]. Monitoring of these symptoms, and 

tracking the data, can give a larger, clearer picture of what is going on. It also allowed 

healthcare providers to stay connected with patients who may already have underlying 

health problems, like cardiac arrhythmias, and continue treatment with minimal contact 

[60]. 

Researchers have also been looking for quick, effective, low cost ways to diagnose 

people with the novel coronavirus as well. Two companies, Cardea Bio [110] and 

Hememics Biotechnologies [111], have been putting efforts towards developing 

semiconductor biosensor chips that rapidly detect viral RNA, antibodies, or antigens from 

a nasal swap or blood test sample [112]. Cardea Bio has developed a hand-held biosensor 

chip that rapidly detects and identifies disease markers. This chip allows for testing to be 
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done outside of the lab, and it can test for multiple different molecular signals at once 

allowing to differentiate between someone who has COVID-19 or simply the influenza 

[110], [113]. Similarly, Hememics Biotechnologies created a hand-held testing device that 

can test for up to 17 different pathogens using a single drop of blood or nasal swab [61]. 

Hememics’ technology also allows for the data to be uploaded to a cloud-based system 

which allows for mapping of the outbreaks geographically and can be used as a screening 

tool before travel or returning back to work [61], [111]. 

With current efforts focused on the global pandemic, future work for the studies 

presented in this thesis (Chapters 2 and 3) should focus on validation with larger sample 

sizes. With the framework for these new tools in place, larger, more diverse sample sizes 

could provide insight into where more improvement could be made in both studies. It 

would also make the methods and studies conducted more reliable. 

 

4.4. Conclusion 

Overall, the work in this thesis provides new applications for wearable sensors to 

be used in delivering reliable biologically and physiologically relevant signals. These new 

tools limit the amount of human bias injected into the measurement and results, which can 

be used to improve diagnostic measures, monitoring of diseases and disorders, and tracking 

athletic performance for safety and training measures.  
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