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ABSTRACT 
 

Given the unprecedented increases in atmospheric carbon dioxide and its 
projected negative impacts on organismal ecology and physiology, it is crucial to 
understand if and how organisms will withstand such environmental changes. Due to the 
oceans’ service as a carbon sink, marine organisms face the added stressor of ocean 
acidification (OA), the process by which carbon dioxide mixes with water and decreases 
pH while simultaneously depleting the seawater of calcium carbonate. Marine organisms 
that rely on calcium carbonate for exoskeleton development are considered particularly 
vulnerable to OA, though previous results vary among species, leading to the question of 
who the real ‘winners’ and ‘losers’ will be in the face of increasing OA. Strongylocentrotus 
purpuratus, the purple sea urchin, is one such calcifying organism whose ability to respond 
to OA is relatively well studied in the past decade, but its future success still remains largely 
unclear. Within their natural habitat of the California Current Marine Ecosystem (CCME), 
there exists not only more extreme mean sea surface pH values as compared to the open 
ocean, but also high spatial and temporal variability due to a natural phenomenon known 
as upwelling. My thesis research aims to use theoretical and experimental tools from 
population genetics, experimental evolution, and ecological genomics to determine if 
developing purple sea urchins have the genetic capacity and physiological capability to 
respond to future OA in both static and variable extreme pH conditions. Low (pH 7.5) and 
extreme (pH 7.0) pH conditions led to decreased survival, with variability helping recover 
survival in those treatments. However, this recovery came with a trade-off: survivors in the 
extreme variable treatment were significantly smaller in body size compared to their static 
counterpart. Further, my work shows that purple urchins have the genomic capacity to 
respond uniquely to both extreme and variable pH conditions. While these results may be 
promising for the early life stages of the purple sea urchin, the carry-over effects of future 
low pH in the CCME on surviving larvae undergoing metamorphosis and developing into 
reproductive adulthood remain to be studied, as do the responses of marine species with 
lower levels of standing genetic variation in the face of increasing OA and pH variability 
in the CCME. 
 
 



 

ii 

CITATIONS 

 
Material from this thesis has been published in the following form: 
 
Garrett, A. D.; Brennan, R.S.; Steinhart, A.L.; Pelletier, A.M.; Pespeni, M.H.. (2020). 
Unique genomic and phenotypic responses to extreme and variable pH conditions in 
purple sea urchin larvae. Journal of Integrative and Comparative Biology, 60, 318-331. 
 
 

 



 

iii 

 
DEDICATIONS 

 
 
 

I dedicate this thesis to the women in my life who have made me the woman I am today 

spiritually, personally, and/or academically: my dear and most wonderful mother Jamie 

S. Mayer  (‘Momma’), my beloved and missed grandmothers, Eloise M. Terry and 

Dorothy ‘Dottie’ J. Fay, my ‘spiritual mom’ and dear friend Kerri A. Jones, and my 

most amazing graduate and undergraduate advisors who have inspired me beyond 

words and will continue to do so every day of my life, Melissa H. Pespeni and Cheryl 

A. Logan. Thank you all, from the bottom of my heart, for being my role models and 

for your endless encouragement and support.



 

iv 

ACKNOWLEDGEMENTS 

 

I am extremely grateful for all of the love, encouragement, and support shown to me 

over the years and would like to take this moment to thank several people. First and 

foremost, I thank God, for I know I would not be here without Him and am so grateful 

for the life and opportunities I have had both within and outside of academia. The good 

times have brought me smiles and laughter, and the bad times have helped shape and 

refine me into who I am today as both a young woman and a scientist. I also thank my 

‘Momma’ for loving me unconditionally and always supporting and praying for me. 

You are my role model, and I love you dearly. You are without a doubt the best mother 

ever. Thank you to all of my parents for believing in me and encouraging me to do and 

be my best. To Joseph and Kayla: thank you for your love and support. You both have 

believed in me and helped motivate me to successfully complete this thesis, along with 

our parents, and I’m grateful for you both and love all of my family very much. Then 

there are the friends who I chose to be family and who chose me to be theirs. Kevin, 

you are one of my best friends and have changed my life for the better; I cherish and 

respect you greatly. Thank you for your grace, love, kindness, and friendship, and for 

bringing me to a place where I could heal and grow into the person I’ve always wanted 

to be, the person the Lord made me to be. And thank you to Sandi for your part in my 

healing and growth as well and for being such a great role model. Kerri, I am so blessed 

by your mentorship and friendship and love you dearly – thank you so much for your 

prayers, wisdom, kindness, and role in my growth. You have blessed my life 

immensely. To my other best friends – Sarah, Kami, Kyndra, Luiza, and Erin – I love 

you all like sisters and feel so blessed to know your beautiful souls. Thank you for your 

support and encouragement. A shoutout to the Mersino family as well – much love to 

‘Scobbit’ and Elisabeth and your daughters. Thank you for your sweet friendships. 

Thank you to all of my friends who have invested in my life and allowed me to invest 

in theirs. I thank my church family as well, both the SBC Open Table and Q.U.E.E.N.S. 

groups for your prayers, encouragement, and support both in my thesis as well as in my 

personal life. You are like family; thank you for blessing my life (and a special 



 

v 

shoutout to Kelsey). Thank you to my East Coast family (Leigh, Ellen, and Laura) and 

my East Coast grandparents (Bill & Jean). You’ve all loved and supported me 

throughout the years in VT as well as after I left, and I love you all very much and look 

forward to my next visit. To my other dear VT friends, Rebecca and Caitlin & Chris – I 

love you all, I cherish our memories together, and I look forward to a future VT visit 

again someday. Thank you to my colleagues in the Pespeni lab and at my current 

workplace for your support over the years. You are all amazing scientists that I’ve had 

the privilege to get to work with, and I have a lot of respect for all of you. Further, I 

thank my coauthors for their contributions in publishing this thesis research. Dr. Reid 

Brennan helped with coding, data analysis, and manuscript revisions, and was always 

available to answer questions and discuss ideas. Anya Steinhart and Aubrey Pelletier 

helped with experimental implementation and collection and analysis for the 

morphometric and survival data, respectively. Finally, I thank my wonderful graduate 

advisor, Dr. Melissa Pespeni, who helped with experimental design and 

implementation, data analysis, and manuscript revisions. I remember my first day in 

your office as your first graduate student – getting to work with you was so unreal to 

me. I remember telling you I felt like I was talking to a rockstar. Here we are all these 

years later, and I still see you this way. You are an inspiring and absolutely amazing 

scientist. Thank you for everything you’ve done for me – I will never forget. 

 



 

vi 

TABLE OF CONTENTS 

Page 

DEDICATIONS………………………………………………………………………iii 

ACKNOWLEDGMENTS…………………………………………………………….iv 

INTRODUCTORY LITERATURE REVIEW………………………………………..1 

CHAPTER 1: UNIQUE GENOMIC AND PHENOTYPIC RESPONSES TO 

EXTREME AND VARIABLE PH CONDITIONS IN PURPLE SEA URCHIN 

LARVAE………………………………………………………………………………7 

BIBLIOGRAPHY……………………………………………………………………..37 

 

 

 

 

 

  



 

1 

INTRODUCTORY LITERATURE REVIEW 

 

Increases in atmospheric carbon dioxide since pre-industrial times has 

consequently led to global changes in our climate, including more frequent climate 

extremes as well as increases in variability (IPCC 2020, Rackley 2017, Vázquez et al., 

2017), the latter which is thought to be of even more importance than simply increased 

averages of climate variables (Katz & Brown 1992). Such drastic changes in an 

organisms’ environment can lead to physiological and evolutionary consequences 

(Vázquez et al., 2017). On the other hand, experiencing more extreme and variable 

environmental conditions can lead to genetic or physiological priming of individuals and 

subsequent growth or persistence of their populations, serving as a form of evolutionary 

rescue (Carlson et al., 2014) and leading to rapid adaptation if enough natural standing 

genetic variation exists in a population (Lande & Shannon 1996). In order for this rapid 

adaptation to occur and ultimately for populations to persist, early life history stages of 

the organisms that make up the population must be able to reach sexual maturity and 

reproduce, a situation that is further complicated when organisms are placed under more 

extreme and varying environmental conditions, particularly those outside of their natural 

range. This complication is due to the general phenotypic link between early and later life 

history stages, or ‘carry-over’ effects, where the phenotype of earlier developmental 

stages has an impact on the later life history stages of an organism, such as seen in marine 

invertebrates that experience different and more extreme dynamics as larvae in the 

pelagic before settling down as relatively sessile adults in the benthic (Marshall & 

Morgan 2011). Any negative impacts from extreme or variable environmental events on 
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earlier life history stages can have downstream negative consequences on later 

developmental stages, leading to a decline in reproductive individuals within a population 

and ultimately threatening population persistence. 

Given the unprecedented increases in atmospheric carbon dioxide and its 

projected negative impacts on organismal ecology and physiology, it is crucial to 

understand if and how organisms of different life history stages will withstand such 

environmental changes. Ocean acidification (OA) is one such resultant global change 

phenomenon that marine invertebrates of different life history stages experience, where 

carbon dioxide mixes with sea surface water and decreases its pH while simultaneously 

depleting the seawater of natural calcium carbonate (Doney et al., 2009). The associated 

decrease in pH has been shown to disrupt acid-base physiology in a variety of marine 

organisms (Fabry et al., 2008, Esbaugh et al., 2012), and the simultaneous depletion of 

calcium carbonate exacerbates the negative impacts of OA particularly on calcifying 

marine invertebrates that rely on naturally available carbonate to grow and maintain 

structural integrity. This has been shown to be particularly difficult for early life stages of 

calcifying marine invertebrates (Kurihara 2008, Kroeker et al., 2010). Similar to the 

concept of trying to determine the ‘winners’ and ‘losers’ under increasing climate change 

(Somero 2010), it is important to determine which calcifying species, if any, will be able 

to ‘win’ against an ocean increasing in its absorption of carbon dioxide. While migration 

and acclimatization are two ways in which some species may be able to tolerate current 

increases in OA, the real ‘winners’ under increasing OA will be those who can survive 

early life history stages and adapt at a rapid enough pace, as the oceans are not only 
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increasing in acidity over time, but also the rate of increase of OA itself is increasing 

(Doney et al., 2009). 

 Rapid adaptation in an acidifying ocean, as with any other selective pressure, 

requires the existence of ample standing genetic variation underlying phenotypic 

variation on which selection can act (Sunday et al., 2014). In order for evolution to occur, 

this variation needs to be heritable (Lynch & Walsh 1998, Sunday et al., 2014) and will 

result in differential fecundity, whereby some organisms within a population will have 

alleles that allow their survival in lower pH and/or carbonate saturation and those 

individuals will go on to reproduce and pass on these alleles to the next generation. Thus, 

the frequency of these alleles in the population will change over time, a standard 

definition of evolution in population genetic theory (Nielsen & Slatkin 2013), with a 

presumed increase in frequency of alleles that are adaptive. Relatively few studies have 

measured changes in allele frequencies in response to selective pressures in natural 

populations to link adaptive phenotypes to genotypes (Schlötterer et al., 2015). For 

example, few but significant changes in allele frequencies were found in stick insects 

transplanted to different host plants, allowing for particular genomic loci under selection 

to be detected, in addition to observed phenotypic changes in color (Gompert et al., 

2014). Genomic targets of selection have also been determined and functionally validated 

in Drosophila that underlie their adaptation to Drosophila C virus (Martins et al., 2014). 

Further, recent studies have shown rapid selection in action linked to underlying genomic 

loci, with increases in allele frequency of a mutation linked to survival in mice across 14 

months (Barrett et al., 2019) and genomic differentiation and signatures of local 
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adaptation in several loci involved in nervous system functions in green anole lizards 

after just one extreme winter season (Campbell-Staton et al., 2017). 

In marine organisms, few studies to date have measured allele frequency changes 

or identified genetic targets of selection in response to OA. However, of the work that has 

been done, significant allele frequency changes have been found for loci in genes 

involved in oxidative phosphorylation, RNA transcription, and ribosomal structure in 

copepods and biomineralization, ion homeostasis, and lipid metabolism in urchins (De 

Wit et al., 2016, Pespeni et al., 2013a, Brennan et al., 2019). For most marine organisms 

experiencing OA as a selective pressure, their ability to rapidly adapt is challenged by 

their longer generation times, where the next reproductive generation may not come for 

2-3 years at least. With high standing genetic variation, though, and high levels of gene 

flow coupled with selection, adaptive alleles for OA can be maintained in natural 

populations (Pespeni et al., 2013b, Pespeni and Palumbi 2013), though concern remains 

as to whether or not marine organisms can adapt fast enough to keep pace with increasing 

global change (Calosi et al., 2016). Thus, studying a marine invertebrate that is likely to 

be negatively impacted by OA (i.e., marine calcifiers) while also having a long 

generation time makes it highly challenging to conduct evolution experiments in the lab, 

at least in terms of looking for genetic variation that is heritable or changes in allele 

frequencies over multiple generations (Sunday et al., 2014). However, while accurately 

being able to estimate heritability of traits and additive genetic variance is rather 

infeasible with most marine life (Lynch & Walsh 1998, Kelly et al., 2013), previous work 

has shown that experimental selection can be conducted in the lab for a marine calcifier, 

the purple sea urchin (Strongylocentrotus purpuratus) within a single generation, 
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allowing for the identification of genes targeted by selection in response to acidification 

(Pespeni et al., 2013a, Brennan et al., 2019) and thus a better understanding of how some 

marine species may adapt to increasing OA. 

 The purple sea urchin provides a great system for determining targets of 

selection at early life history stages in a marine calcifier responding to extreme and 

varying OA, having served for many years as a model ‘non-model’ marine species. S. 

purpuratus is a key grazer and kelp forest ecosystem engineer as well as a valuable 

fishery (Pearse 2006). In addition to its ecological and economic values, the purple sea 

urchin is increasingly used for OA studies due to its residence within the California 

Current Marine Ecosystem (CCME), renowned for its lower and more variable pH 

conditions from a natural phenomenon known as upwelling, and within this system has a 

wide geographic range extending from Alaska to Baja California, Mexico (Rogers-

Bennett 2007). With such a broad range in this current system, there is a high amount of 

gene flow present, such that broadscale population structure is essentially nonexistent 

(Palumbi & Wilson 1990). One reason it has been so useful over the past couple decades 

in evolutionary and developmental biology studies is its abundant genetic resources that 

are available, with its genome published since 2006 (Sodergren et al., 2006). 

Additionally, the purple urchin genome is highly polymorphic (4-5% genome-wide 

variation, Sodergren et al., 2006) and their standing genetic variation high in nature, 

providing ample genomic loci on which selection can act and thus a useful system for 

understanding molecular mechanisms important for adaptation. Additionally, the ease of 

bringing urchins into a lab, spawning them to release millions of eggs and sperm, and 

controlling fertilization crosses allows for the capturing of their natural genetic variation 
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in the lab and the ability to create replicate populations for experimental evolution 

studies, as urchin larvae are small and allow for a large N in replicate culturing vessels. 

Methods have also been established for growing purple urchin larvae and inducing 

metamorphosis (Strathmann 2017, Pespeni et al., 2013a), allowing for the study of 

different critical early life history stages. This is important in terms of studying a marine 

calcifier’s response to OA, since early life history stages of calcifiers may be more 

sensitive when responding to decreases in pH and carbonate as these organisms try to 

develop into adulthood (Kurihara 2008). All in all, this species and study system can be 

used to elucidate genomic and physiological capabilities of calcifying marine larvae in 

extreme and variable pH conditions, as experienced within the CCME and exacerbated 

by increasing OA. 

 In my thesis research, I test the hypotheses that low and extreme static pH 

conditions result in a decrease in pluteus larval sea urchin 1) survival and 2) growth, with 

pH variability rescuing the decreases seen in static pH conditions. Further, I predict that 

there will be both shared and unique genomic responses to static and variable pH 

conditions, with some loci responding uniquely to low and extreme static and variable pH 

conditions and not just increased or more extreme changes within the same loci. 
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CHAPTER 1: UNIQUE GENOMIC AND PHENOTYPIC RESPONSES TO 

EXTREME AND VARIABLE PH CONDITIONS IN PURPLE URCHIN 

LARVAE 

 

Abstract 

Environmental variation experienced by a species across space and time can promote the 

maintenance of genetic diversity that may be adaptive in future global change conditions. 

Selection experiments have shown that purple sea urchin, Strongylocentrotus purpuratus, 

populations have adaptive genetic variation for surviving pH conditions at the “edge” (pH 

7.5) of conditions experienced in nature. However, little is known about whether 

populations have genetic variation for surviving low-pH events beyond those currently 

experienced in nature or how variation in pH conditions affects organismal and genetic 

responses. Here, we quantified  survival, growth, and allele frequency shifts in 

experimentally selected developing purple sea urchin larvae in static and variable 

conditions at three pH levels: pH 8.1 (control), pH 7.5 (edge-of-range), and pH 7.0 

(extreme). Variable treatments recovered body size relative to static treatments, but 

resulted in higher mortality, suggesting a potential tradeoff between survival and growth 

under pH stress. However, within each pH level, allele frequency changes were 

overlapping between static and variable conditions, suggesting a shared genetic basis 

underlying survival to mean pH regardless of variability. In contrast, genetic responses to 

pH 7.5 (edge) versus pH 7.0 (extreme) conditions were distinct, indicating a unique 
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genetic basis of survival. In addition, loci under selection were more likely to be in 

exonic regions than regulatory, indicating that selection targeted protein-coding variation. 

Loci under selection in variable pH 7.5 conditions, more similar to conditions 

periodically experienced in nature, performed functions related to lipid biosynthesis and 

metabolism, while loci under selection in static pH 7.0 conditions performed functions 

related to transmembrane and mitochondrial processes. While these results are promising 

in that purple sea urchin populations possess genetic variation for surviving extreme pH 

conditions not currently experienced in nature, they caution that increased acidification 

does not result in a linear response but elicits unique physiological stresses and survival 

mechanisms. 
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Introduction 

The annual average global atmospheric carbon dioxide concentration recently 

reached 417ppm, likely the highest level in the past 20 million years (Rackley 2017; 

IPCC 2019). Consequently, global climate is changing, with alterations not only in mean 

conditions, but also in the variability and frequency of extreme events (Rahmstorf and 

Coumou 2011; Kwiatkowski and Orr 2018; McNeil and Sasse 2016). This increase in 

variability is driving novel conditions that exceed previous extremes (Easterling et al. 

2000). For organisms to persist under these drastic changes, physiological and genetic 

responses will be required (Somero 2010,; Hoffmann and Sgrò 2011; Vázquez et al. 

2017). However, whether populations have the adaptive potential to survive conditions 

beyond those currently experienced in nature remains a critical area of investigation for 

understanding species resilience (Lande and Shannon 1996; Flanagan et al. 2018). 

Further, it is unclear if environmental variation attenuates or exacerbates physiological 

stress and if adaptation to fluctuating versus static conditions uses the same adaptive 

genetic variation. 

While much of our understanding of fitness in variable environments draws from 

studies on temperature variation (Beardmore and Levine 1963; Long 1970; Estay et al. 

2011; Folguera et al. 2011; Bozinovic et al. 2011; Shama 2017), other factors are 

simultaneously shifting due to human activities. Oceans, in particular, are becoming more 

acidic due to the dissolution of atmospheric carbon dioxide into sea surface waters, 

declining by an approximate range of 0.017-0.027 pH units per decade since the late 

1980s (IPCC 2019). This process, known as ocean acidification (OA), decreases ocean 

pH while simultaneously depleting the seawater of natural carbonate, the building block 
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for calcium carbonate (Doney et al. 2009), creating a physiologically challenging 

environment for many species. Maintaining acid-base balance is essential to maintain 

cellular functioning, and alterations to environmental pH require energetically costly 

intracellular compensation (Fabry et al. 2008; Esbaugh et al. 2012; Stumpp et al. 2012; 

Mangan et al. 2017). Organisms that develop calcareous skeletons or shells are faced 

with the additional difficulty of laying down and maintaining these structures under 

biochemically unfavorable conditions, which can lead to negative impacts on growth and 

survival (Byrne et al. 2013; Kroeker et al. 2010). However, some marine environments 

experience natural fluctuations in pH across space and time. In the California Current 

Marine Ecosystem (CCME), upwelling can drive diurnal fluctuations of up to 0.67 pH 

units, reaching the low open ocean pH levels predicted for the end-of-the-century (Yu et 

al. 2011; Evans et al. 2013; Chan et al. 2017; IPCC 2019). Coupled with increasing 

atmospheric carbon dioxide, sea surface waters within the CCME frequently experience 

lower pH conditions than 8.1, the open ocean average (Chan et al. 2017). Consequently, 

populations within this system harbor physiological mechanisms and genetic variation to 

tolerate low pH events (Evans et al. 2013; Pespeni et al. 2013a; Brennan et al. 2019), 

making them an ideal model to understand how adaptation will likely proceed as pH 

continues to decrease. 

Our understanding of how variable pH conditions that mirror natural conditions 

may impact species persistence and performance is limited. Previous work has shown 

both negative and positive effects of pH fluctuations on organismal performance and 

appears to depend on factors such as the species, population origin, or trait of interest. 

Particularly interesting is a potential rescue effect, or mitigation, where pH variability 
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may improve a suite of characteristics including behavior in non-calcifiers (Jarrold et al. 

2017) and survivorship (Dufault et al. 2012)  and growth in calcifiers (Frieder et al. 

2014). Conversely, growth in some calcifying species has been shown to be negatively 

impacted by varying pH (Li et al. 2016, Price et al. 2012). Thus, while impacts of static 

low pH on marine calcifiers are generally accepted as negative, impacts of fluctuating pH 

appear to be less conclusive. For most calcifying species that reside specifically in pH-

fluctuating environments like the CCME, questions remain as to what role naturally-

varying pH will play in species’ responses to OA as they reach the edge of their current 

natural low pH range and more rapidly and frequently encounter extreme levels beyond 

their current range.  

We focus on the ecologically and economically important calcifying species 

resident to the CCME, the purple sea urchin, Strongylocentrotus purpuratus. This species 

inhabits a broad range across the west coast of North America where it experiences 

natural fluctuations in pH geographically and temporally (Evans et al. 2013; Pespeni et 

al. 2013b), with diurnal fluctuations as great a range as 0.8 pH units and lowest pH values 

measured at 7.43 pH units (Chan et al. 2017). Previous work has shown that S. 

purpuratus harbors adaptive standing genetic variation to rapidly adapt to low pH 

conditions that fall within the range typically experienced in nature (Pespeni et al. 2013a; 

Brennan et al. 2019). Further, this species can be readily spawned in the lab, generating 

hundreds of thousands of offspring harnessing the high genetic variation found in the 

wild. By rearing replicate pools of these larvae in a selective environment, we can 

identify genetic variants that shift in frequency consistently across replicates, thus 

identifying the standing genetic variation and related physiological functions that enable 
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survival across a single generation (Pespeni et al. 2013a; Brennan et al. 2019). Single 

generation experiments are extremely useful for this long-lived species that requires two 

years before reaching reproductive maturity (Leahy 1986). 

Here, we use S. purpuratus to conduct a single-generation selection experiment to 

identify the genetic variation underlying adaptation to static and fluctuating low pH 

conditions. Specifically, we leverage variable and static selection regimes at pH 

conditions that fall within and outside the range typically experienced by this species in 

the wild to address the following objectives: (1) test the prediction that variability in low 

and extreme pH ‘rescues’ larval phenotypes, resulting in higher larval survival and larger 

body size compared to their static counterparts, (2) determine if mean pH, regardless of 

variability, drives selective responses, and (3) determine if larvae can use the same 

genomic and physiological machinery to survive as pH stress extends beyond the range 

experienced in nature. 

 

Methods 

  

Sea urchin collection & experiment 

In June 2018, 25 adult S. purpuratus (14 females and 11 males) were collected 

from San Diego, CA and shipped overnight to the University of Vermont. While the 

frequency and magnitude of low static and fluctuating pH events in the southern part of 

the CCME is notably less than that of more northern regions (Hofmann et al. 2011, Yu et 

al. 2011; Evans et al. 2013), previous work has shown that purple urchin have high gene 

flow of low pH-adaptive genetic variants throughout the CCME (Palumbi and Wilson 
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1990). Further, recent work utilizing a similar experimental system and sourcing adults 

from the same location has shown there are low pH-adaptive alleles for responding to 

levels at the edge of this species’ low pH range (Brennan et al. 2019). Immediately upon 

arrival, adults were induced to spawn by injecting 0.5M KCl into the peristome 

(Strathmann 2017, Brennan et al. 2019). Eggs were filtered over 215-micron mesh and 

density was determined to partition 70,000 eggs from each female into each of 3 static pH 

conditions: 8.1, 7.5, and 7.0 (210,000 eggs/female). The first two pH conditions were 

chosen to represent different degrees of pH in the environment frequently encountered by 

this species in the wild. The control pH condition (8.1) represents a benign treatment that 

reflects the current average open ocean pH conditions (Chan et al. 2017). Similarly, the 

intermediate pH condition (7.5) is at the edge of the pH range that purple sea urchin 

naturally experience in the CCME (Evans et al. 2013; Chan et al. 2017), but is also equal 

to the predicted end-of-century open ocean pH levels should carbon emissions continue 

‘business as usual’ (IPCC 2019). The extreme low pH condition (7.0) falls outside of the 

range typically experienced in the wild. However, continued decreases in ocean pH mean 

that fluctuations in low pH will continue to reach levels below which sea urchin have 

experienced previously. For example, recent pH levels have dropped below 7.5, 

indicating that new extreme lows are beginning to occur (Chan et al. 2017). Therefore, 

we chose the extreme pH of 7.0 in order to understand how this species may respond to a 

novel, potentially impending, pH condition. Eggs for both the static and variable 

culturing treatments were fertilized in their respective static pH counterparts, with evenly 

pooled sperm from all males in 22-micron filtered, UV-sterilized seawater at 14°C with a 

salinity of 31ppt. 
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After verifying approximately >95% fertilization success (determined by the 

appearance of the fertilization envelope a few minutes after the addition of sperm), 

fertilized eggs were pooled across all females within each of the three static pH 

conditions (980,000 eggs per static pH condition). At 24 hours post fertilization (“day 

1”), hatched blastula larvae were sampled from the three static pH pools (Nreplicates = 6; 

11,250 eggs per pH), and remaining blastulae were seeded into replicate culturing vessels 

(Nreplicates = 6; 11,250 eggs per 3.7L vessel; seeding density: 3 larvae/mL) for each of the 

six different pH regimes: one control and two treatments that remained at a static pH (pH 

8.1, pH 7.5, and pH 7.0) and 3 variable treatments that varied by 0.6 pH units over the 

course of 24 hours (pH 8.1 to 7.5, pH 7.8 to 7.2, and pH 7.3 to 6.7) (Fig. 1A), the daily 

change in pH that occurs during upwelling season in the CCME (Evans et al. 2013; Chan 

et al. 2017). It is important to note that the variable pH 8.1 treatment is meant to mimic 

the pH range commonly experienced in the CCME during upwelling (8.1 to 7.5) and has 

a mean pH of 7.8, whereas the edge and extreme varying pH treatments vary by the same 

amount but with the means matching their static edge and extreme pH treatment 

counterparts (pH 7.5 and pH 7.0).  

 

Experimental system & water chemistry 

Larvae were reared in a custom-designed, recirculating larval culturing system 

that allowed for continuous water movement set to a flow rate of 0.5 mL/sec from the top 

of each replicate culturing vessel exiting through a mesh covered cylinder in the bottom 

third of the vessel. The vessel design and flow rate were experimentally determined to 

minimize congregation of larvae at the outflow. For optimal water chemistry, 22-micron 
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filtered natural seawater was brought to UVM from the University of New Hampshire 

Coastal Marine Laboratory and UV-sterilized upon arrival. Seawater was maintained at a 

temperature of 14°C with a salinity of 31ppt. pH and temperature were measured by 

computer-monitored Hamilton Polilyte pH probes that were calibrated with three Thermo 

Scientific Orion pH buffers (4.01, 7.00, and 10.01). pH levels were controlled through 

communication between the pH probe, a computer system (RCK systems, San Diego, 

CA) and a solenoid valve that would release pure CO2 gas through airstone bubblers 

measured and dosed every 10 seconds to maintain static or follow programmed variable 

pH conditions. Temperature was maintained by heat exchangers attached to the header 

tanks. CO2 scrubbers were attached to the protein skimmers in the sump tanks for the pH 

8.1 static (control) and variable treatment in order to help maintain control pH conditions 

for the former and to help pH increase when scheduled for the latter. Additional water 

chemistry measurements were taken on days 1, 4, and 7 post-fertilization (Table S1), with 

temperature, salinity, and pH measured around the same time of day and water collected 

and sealed for follow-up titration to determine total alkalinity (TA). TA was measured 

with a Mettler Toledo G10S Titrator, standardized to Andrew Dicksons’ seawater 

standards (Dickson 2010). All of these water chemistry measurements were entered into 

the CO2Sys_v.2.1 program to calculate pCO2 (Pierrot et al. 2006). On days 3 and 5 post-

fertilization, recirculation was paused, and larvae were fed 1000 cells/mL each of 

Dunaliella spp. and Rhodomonas spp. (Brennan et al., 2019; Pespeni et al., 2013a) and 

allowed to feed for one hour before recirculation resumed. Larvae were reared in the 

culture vessels until 7 days old, the pluteus larval stage, at which point they were sampled 

for morphometric, survival, and genomic analyses (below). 
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Fig. 1: (A) pH measurements from the larval culturing system day 1 post-fertilization to 

end of the experiment (day 7 post-fertilization), recorded every 15 minutes from each of 

the 6 header tanks. The darker colors show the three static treatments (pH 8.1, 7.5, and 

7.0) and the lighter colors show their varying counterparts. See legend in B. (B) Tukey 

boxplot of survival (percentage) after seven days of development in each treatment 

(n=12-18 survival estimates per pH condition). Letters above each boxplot indicate 

results from post hoc tests where different letters indicate significantly different groups. 

(C) Total body length (micrometers) of sampled surviving larvae (n=48-55 measurements 

per pH condition) after seven days of development. 

 

Morphometrics & survival estimates 

Seven-day old plutei were preserved in calcium carbonate-buffered formalin in seawater, 

and then photographed for morphometric analysis as in Brennan et al. 2019 (n=48-55 per 

pH condition). Total body length, represented as the midline body length extended to the 

top of the arms, was measured using ImageJ software (Schneider et al., 2012), calibrated 

with a stage micrometer. Data analysis was conducted in R (R Core Team, 2015) via a 

generalized linear model, with the family parameter set to ‘gaussian’ and pH as the main 

effect. 
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            To estimate survival to day 7, culturing vessels were gently stirred, then three 

samples of 33mL were collected from each vessel and preserved in calcium carbonate-

buffered formalin in seawater. Based on the starting density of 3 larvae/mL, 100% 

survival would yield ~100 larvae in 33 mL. Estimated percent survival was thus 

calculated based on the number of larvae counted over the expected 100 larvae for each 

of the three replicate samples per vessel. Larvae were considered to be alive if they had 

the pluteus larval developmental form, regardless of the number of arms, as low pH has 

been shown to cause developmental delay in urchins (Kurihara and Shirayama 2004). 

Abnormal larvae were minimal and not included in the alive count. Data analysis was 

conducted in R via a logistic regression using the glm function, with the response variable 

(survival) represented as two counts: ‘alive’ or ‘dead’ and pH treatment as the main 

effect. Post hoc comparisons were conducted using Tukey’s Multiple Comparison of 

Means in the multcomp package (Hothorn et al., 2008). 

  

DNA sequencing, processing, mapping, & SNP-calling 

Four replicate pools of starting larval populations (day 1, n=11,250 larvae) per 

initial static pH condition (pH 8.1, pH 7.5, and pH 7.0) as well as the pools of surviving 

larvae (day 7, n= approximately 1000 to 3000 larvae) from each of the 6 culture vessels 

per pH condition, were collected and spun down to remove excess seawater, flash frozen 

in liquid nitrogen, and stored at -80 ℃ until extractions for genomic analyses. DNA was 

extracted with a Zymo ZR-Duet DNA/RNA MiniPrep Plus Kit (Zymo, Irvine, CA, USA). 

DNA was shipped over dry ice to Rapid Genomics (Gainesville, FL, USA) for library 

preparation and capture-sequencing with 46,316 custom 120bp probes, with two probes 
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designed per gene based on the S. purpuratus genome v.3.1: one in an exonic region and 

the other in a putative regulatory region falling with 1000bp upstream of the transcription 

start site. Samples were barcoded, pooled, and then sequenced as 150bp paired-end reads 

on a single Illumina HiSeqX lane. 

            Raw DNA reads had Illumina adapters removed and were quality filtered with 

trimmomatic-0.36 (Bolger et al. 2014) accepting final reads >35bp in length. Filtered 

reads were mapped to the S. purpuratus genome v. 3.1 (build 7, echinobase.org) with 

BWA-MEM (Li 2013). SNPs were called using Varscan (Koboldt et al., 2012), resulting 

in 19,529,443 SNPs that were then further filtered in R (R Core Team, 2015) by depth 

(>30, Ferretti et al. 2013), minor allele frequency (0.025), and a high coverage filter of 3 

times the median coverage. This resulted in 54,427 high-quality SNPs for downstream 

analyses. 

 Principal Components Analysis was used to visualize variation across all 

identified SNPs among treatments and days. Significance among groups was tested using 

PERMANOVA implemented using the adonis function in the vegan package (v2.4-2). 

Cochran-Mantel-Haenszel (CMH) tests were used to identify specific loci with consistent 

changes in allele frequencies across replicates between pairs of groups with replicates 

randomly downsampled to four to have matched numbers of replicates for all contrasts. 

The CMH statistical test  is an accurate method for identification of loci with changes in 

allele frequency in response to experimental selection (Vlachos et al. 2019). The test 

relies on sufficient replication; simulation studies show that the four replicates per 

condition should result in sufficient power to identify selected loci (Kofler and 

Schlötterer 2014). We tested for differences in allele frequency relative to both the day 1, 
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pH 8.1 samples and the day 7, pH 8.1 static samples. Results from all contrasts are 

presented in Table S2. We focus downstream analyses using the contrasts to day 7, pH 

8.1 static samples to control for potential changes in allele frequency due to lab 

adaptation. Linkage disequilibrium decays quickly in S. purpuratus, over a few hundred 

base pairs (Brennan et al. 2019). As such, we considered loci associated with each gene 

region (combining coding and regulatory regions for a given gene) to be independent, 

resulting in 4,548 independent regions. Given the low linkage disequilibrium, the number 

of independent regions represents the number of independent tests. We thus used a 

stringent Bonferroni correction to adjust for multiple testing, where 0.05/4548 resulted in 

a p-value threshold of 1.1 x 10-5. To test for correlations of changes in allele frequency 

within and between the low and extreme static and variable pH conditions, we used 

Pearson’s Correlation. Finally, loci were categorized as exonic (synonymous, non-

synonymous), intronic, promoter, or intergenic and linked to genes using SnpEff 

(Cingolani et al. 2012). 𝜒2 tests were used to test if any group contained significantly 

more loci responding to selection than expected by chance. Loci significantly changing in 

allele frequency for each treatment were tested for functional enrichment of gene 

ontology (GO) categories. GO terms for annotated genes were downloaded from 

EchinoBase (www.echinobase.org). TOPGO v. 2.36.0 was used to test for significant 

enrichment of function categories using the weight algorithm and limited to terms that 

had at least 5 annotated genes (Alexa et al. 2006). Similarity among significant GO terms 

(P < 0.05) was calculated with GOSemSim in R using Wang’s method, which calculates 

similarity based on the topology of the GO graph structure (Yu et al. 2010). This 

similarity measure was converted to a dissimilarity matrix, hierarchically clustered, and 
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plotted using ggdendro in R (de Vries and Ripley 2016).  

Code and details to reproduce all analyses are available at: 

https://github.com/PespeniLab/spoa_static_vs_variable. 

  

Results 

 

Survival and morphometrics 

pH condition had a significant effect on both larval survival and body size where 

lower pH, generally, resulted in higher mortality and smaller body size. Larval survival 

(n=12-18 samples per pH treatment) decreased by 20% after 7 days in the static pH 7.5 

(edge) and pH 7.0 (extreme) conditions, compared to the static control, pH 8.1 (Fig. 1B, p 

< 0.001). No difference was found in survival between the edge and extreme static 

conditions (P = 0.44). Under the pH 7.5 selection regime, variability improved survival 

relative to static conditions such that survival  was comparable to control static conditions 

(pH 8.1). A similar mitigation was observed for pH 7.0 under variable conditions, which 

was increased compared to its static counterpart (Fig. 1B, P < 0.001), though survival did 

not improve to match control conditions. In agreement with survival results, total body 

length of 7-day plutei showed a similar reduction as pH decreased, from a mean size of 

319 micrometers to 230 and 175 micrometers for the static pH 7.5 and 7.0 conditions, 

respectively (Fig. 1C, P < 0.001). However, variable conditions did not result in the same 

pattern of recovery. In contrast, variable conditions had either similar sized (pH 7.5, 

mean = 225 micrometers) or smaller individuals (pH 8.1 and 7.0, mean = 268 and 151 

micrometers, respectively) than their static counterparts (Fig. 1C, P < 0.001).  
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Genomic Analyses 

Genome-wide allele frequency estimates across all 54,427 high quality SNPs 

identified from pooled, capture-sequenced genomic DNA showed low variation among 

replicates within each treatment group using Principal Components Analysis (PCA, Fig. 

2A). Samples clustered separately according to mean pH and day of sampling 

(PERMANOVA, P < 0.05), where samples moved sequentially further in PC space from 

the day 1, pH 8.1 control as the low pH condition intensified. Accordingly, the largest 

differences observed were between day 1 control static condition and day 7, pH 7.0 (Fig. 

2A). Static and variable treatments within a pH overlapped in their distributions except 

for pH 7.0 (PERMANOVA, P = 0.04), suggesting stronger selection in response to mean 

pH rather than variability. Despite broad differences in allele frequencies and high levels 

of mortality, no differences in estimates of nucleotide diversity were observed among day 

or treatment groups (Table S3). 

 

Fig. 2: (A) Principal component analysis of the 54,427 high quality SNPs for the six pH 

conditions and two sampled time periods. Color indicates pH condition in the bottom 

portion of the legend key, where dark colors are static and light are variable. Shapes 
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(circle or triangle) denote which day post-fertilization; circles are samples from day one 

of development and triangles from samples after seven days of development. (B) Venn 

diagram of loci with significant changes in allele frequency in response to selection at pH 

7.5 and 7.0 for static and variable conditions (compared to day 7, static pH 8.1).  

 

 

Fig. 3: Number of loci significantly changing in frequency in different regions of the 

genome. P-values in the top right corners indicate corrected significance from 𝜒2  tests 

where values are FDR corrected to account for multiple testing. Within each panel, 

expected values are from 𝜒2  tests and observed values are the actual counts of significant 

loci. Error bars for observed values represent the 95% confidence interval calculated with 

the Clopper-Pearson method (Clopper and Pearson 1934). Asterisks indicate groups with 

a significantly greater number of loci than expected by chance (corresponding grey bar), 

as determined by binomial post-hoc tests. Note that we have chosen to collapse 

synonymous and non-synonymous loci in exonic regions as linkage disequilibrium 

extends at least 100 bp (Brennan et al. 2019) inhibiting identification of specific loci 
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targeted by selection. See Fig. S1 for these loci separated. 

 

 

 

CMH tests identified loci consistently responding to pH selection after 7 days of 

development compared to the day 7, static pH 8.1. Across the treatments, decreasing pH 

resulted in a greater number of loci with significant changes in allele frequencies relative 

to the static pH 8.1 control, a pattern that agrees with the increasing distance in principle 

component space as pH decreases. We observed limited changes in allele frequency 

between the static pH 8.1 and variable (mean pH 7.8) conditions, with only 6 divergent 

loci (P < 1.1 x 10-5 ). More divergence was observed in pH 7.5 with 24 and 34 pH-

selected loci for static and variable treatments, respectively (Fig. 2B). However, of these 

loci, only 4 were overlapping (7.4% of pH 7.5 selected loci). We observed the largest 

degree of allelic divergence from the control at  pH 7.0 with 602 and 253 significant loci 

in the respective static and variable treatments and 106 overlapping variants between 

them (14.2% of the pH 7.0 selected loci; Fig. 2B). Between the pH treatments, we 

observed little overlap in responsive loci (1% of static selected loci; 0.3% of variable 

selected loci; Fig. 2B), indicating the genetic responses to different degrees of pH stress 

were largely unique. Finally, we found that loci in exonic regions were more likely to be 

targets of selection than loci in promoter, intronic, or intergenic regions (𝜒2df=3 = 100, P < 

0.001; Fig. 3). This pattern was driven by pH 7.0 variable and static (P < 0.001) and pH 

7.5 variable (P = 0.055), though both pH 7.5 static and pH 8.1 follow a similar trend (Fig. 

3).              
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Fig. 4: Correlation between loci showing significant changes in allele frequency (P < 1.1 

x 10-5) in response to selection in different treatments. Change in allele frequency for all 

plots are relative to frequencies of day 7, static pH 8.1 static at day 7. Color and shape 

indicate each treatment while loci significant for both treatments (‘overlapping’) in each 

panel are represented by yellow diamonds. (A) within pH 7.0, static versus variable (r = 

0.54). (B) within pH 7.5, static versus variable (r = 0.21). (C) within static, pH 7.0 versus 

pH 7.5 (r = 0.47). (D) within variable, pH 7.0 versus pH 7.5 (r = 0.25). 
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We observed correlated changes in allele frequencies within and between pH 

conditions (Fig. 4). Within pH 7.0, changes in allele frequency in response to static and 

variable conditions were strongly correlated (Pearson’s r = 0.54; Fig. 4A). Conversely, 

static and variable responses within pH 7.5 showed a weaker correlation (r = 0.21; Fig. 

4B). Comparing static and variable responses between pH 7.0 and 7.5 revealed different 

patterns. Changes in frequency in response to static pH were strongly correlated between 

pH 7.5 and 7.0 (r = 0.47; Fig. 4C) but the correlation between the variable treatments was 

much weaker (r = 0.25; Fig 4D).  

 

Fig. 5: Gene ontology enrichment results for biological processes. Checks indicate 

enrichment (Padj < 0.05) for significant changes in allele frequency for loci in the 

category (row) in response to the treatment indicated (column). GO terms are clustered 

by similarity according to their topology in the GO graph structure. See methods for 

details. 
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            Functional enrichment analyses revealed unique and shared biological processes 

subject to selection among the experimental groups (Fig. 5). See Figure S1 and tables S4-

S8 for enrichment results for cellular components, molecular function, and for day 1 (D1) 

vs. day 7 (D7) comparisons. The variable pH 8.1 treatment (mean pH 7.8) was enriched 

for one category related to hormone-mediated signaling. In response to pH 7.5 

conditions, the majority of categories enriched for changes in allele frequency were 

involved in the biosynthesis, metabolism, transportation, or modification of lipids. Three 

categories were shared between the pH 7.5 static and variable conditions, all related to 

phosphatidylinositol metabolism, signaling, and phosphorylation. In response to extreme 

pH 7.0 conditions, allele frequency changes were also enriched for lipid and phospholipid 

processes. However, there were several processes unique to pH 7.0, including 

transmembrane and mitochondrial processes, and RNA processing. Though the pH 7.0 

static and variable treatments had overlapping and correlated genetic responses (Figs. 2B 

and 4A), only one GO term overlapped between the two treatments: cellular protein 

complex disassembly. In static and variable pH 7.0 conditions, selection 

disproportionately targeted exonic regions. Consistent with overall enrichment in these 

conditions, selected exonic loci in static pH 7.0 included immune responses (Table S9) 

while exonic loci in variable pH 7.0 were enriched for vesicle transport and metabolic 

processes (Table S10). Static conditions at different pH shared enrichment for immune 

responses, while the variable conditions shared no common functional categories. 

Interestingly, there were similar numbers of enriched categories for surviving pH 7.0 and 

pH 7.5, despite the 10-fold greater number of loci changing in allele frequency in 

response to the more extreme pH environment. 
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Discussion 

We find that as seawater acidification increases in intensity, both the 

physiological (Fig. 1) and genomic (Figs. 2-4) consequences become more extreme. In 

particular, when pH conditions extend beyond what is currently experienced in nature, 

the adverse effects on the survival and growth of developing sea urchin larvae are most 

pronounced. We demonstrate that while fluctuating pH conditions can reduce mortality 

relative to static conditions, the same effect is not seen for body size. Yet, we 

simultaneously show that adaptive genetic variation for extreme and fluctuating pH is 

present in wild populations. Loci targeted by selection were disproportionately found in 

genes related to lipid metabolism (pH 7.5) and membrane function (pH 7.0) and in exonic 

regions, indicating that changes to protein function enabled survival particularly in 

extreme pH 7.0 conditions. Importantly, the genetic responses to pH 7.5 (edge) and pH 

7.0 (extreme) conditions were unique, indicating that the physiological processes 

enabling persistence are similarly unique. This suggests that changes along the 

logarithmic pH scale do not elicit a linear physiological response. Further, the distinct 

responses suggest that adaptation to gradual decreases in average pH may not facilitate 

persistence to extreme pH conditions, a hypothesis that warrants further investigation. 

 

Tradeoff between survival and growth 

        S. purpuratus relies on amorphous calcium carbonate to lay down its skeleton during 

development (Addadi et al. 2003; Politi et al. 2008; Vidavsky et al. 2014) and, as pH 

decreases, the increase in energetic demands to develop skeletal structure leads to 

developmental abnormalities and higher mortality rates (Stumpp et al. 2012; Pan et al. 
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2015). Accordingly, the increased mortality and decreased size with increasing pH stress 

observed here (Fig. 1A) match expectations from previous work that has also shown 

reductions in size and survival under decreased pH conditions (Kurihara 2008; Ries et al. 

2009; Stumpp et al. 2012). However, we find that fluctuating pH drives higher survival, 

but not body size (Fig. 1B,C), partially matching our predictions. Previous work has 

identified both positive (Dufault et al. 2012) and negative (Mangan et al. 2017; Onitsuka 

et al. 2018; Chan and Tong 2020) impacts of pH fluctuations on survival and growth. For 

purple sea urchin, fluctuations in pH may serve as a buffer, where periodic exposure to 

less stressful pH conditions enable more typical development that increases survival. 

Alternatively, a fluctuating environment is regularly experienced during the spawning 

season (Miller and Emlet 1997) and may represent the conditions to which individuals 

are adapted and thus best able to survive.  

Our results suggest that, for early-in-development larvae, smaller body size may 

enable increased survival under low pH conditions; fluctuating conditions increase 

survival but decrease body size relative to static treatments (Fig. 1B,C). Decreasing pH 

consistently results in smaller larvae through development for S. purpuratus, among other 

sea urchin species as well (Yu et al. 2011; Suwa et al. 2013; Pespeni et al. 2013a; 

Brennan et al. 2019), but the adaptive significance of this change has been unclear. 

Larvae under low pH dedicate much of their energy to acid-base balance at the cost of 

growth (Stumpp et al. 2012; Pan et al. 2015). We hypothesize that smaller size and lower 

growth under low pH conditions decreases the total energy budget and allows for 

increased survival. Further, the success of metamorphosis is dependent on lipid energy 

reserves, which may be similarly increased by reducing size during development (Sewell 
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2005; Byrne et al. 2008). This is further corroborated by our GO enrichment results, 

which show increasing enrichment for genes related to lipid metabolism as pH decreases 

(Fig. 5).While small size during development may increase early survival or success of 

metamorphosis, it could also reduce overall population fitness. For example small larvae 

experience higher predation rates (Allen 2008), and may develop into smaller, less fecund 

adults (Dupont et al. 2013). Future work should address the consequences of reduced 

body size on energetic demands, survival, metamorphosis, and adult fitness in S. 

purpuratus. 

             

Surviving in pH 7.5 (edge) versus pH 7.0 (extreme) conditions 

Previous work has shown that populations of S. purpuratus harbor sufficient 

standing genetic variation to respond to static pH levels within (pH 7.8) and at the edge 

(pH 7.5) of their current range (Pespeni et al. 2013a; Brennan et al. 2019). Here, we 

demonstrate how adaptation may proceed as pH begins to extend beyond what is 

currently experienced in the wild. We find that responses to pH conditions beyond the 

natural range (pH 7.0) are not merely more extreme changes in allele frequency at the 

loci underlying adaptation to pH conditions within the natural range of pH variability (pH 

7.5). Rather, selection targets a unique set of loci (Fig. 4B). Under extreme static pH 

conditions, we find selected loci in gene functions related to immune response, cell 

adhesion, mitochondrial gene expression, and lipid metabolism (Fig. 5). Immune 

response under extremely stressful conditions is not unexpected (Bibby et al. 2008; 

Brothers et al. 2016), especially in such an energetically-costly environment as low pH 

for calcifying larvae that need to maintain acid-base physiology (Stumpp et al. 2012; Pan 
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et al. 2015). Indeed, perhaps the enrichment for mitochondrial gene expression is being 

used by larvae under extreme conditions for energy allocation in order to pay the cost of 

surviving and maintaining cellular processes in novel pH conditions. 

Loci under selection at the edge of the natural pH range (pH 7.5) are unique from 

those responding to pH 7.0 but overlap in a number of gene functions including immune 

response and lipid metabolism. Lipids are important for cellular membrane structure and 

serve as critical energy stores for calcifying marine invertebrates (Sewell 2005; Schoepf 

et al. 2013). Indeed, gene functions related to lipid metabolic processes were the only 

ones enriched to varying degrees across all of the edge and extreme pH treatments (Fig. 

5). Lipid energy allocation in sea urchins is essential for successful metamorphosis, as 

metamorphosing larvae spend weeks nutritionally reliant on the lipid stores from the 

pluteus larval stage (Sewell 2005). Thus, high enrichment for lipid metabolism may 

confer a selective advantage for larvae subjected to low pH levels at the edge of their 

range. While we see no difference in survival between pH 7.5  and pH 7.0 static 

conditions (Fig 1B), the noticeably lower enrichment of lipid metabolism in static pH 7.0 

conditions compared to static pH 7.5 suggests that genetic variation in lipid metabolism 

genes was critical for survival in pH 7.5. Without selection for these alleles, larvae in pH 

7.0 may accrue a greater metabolic cost of pH stress resulting in negative carryover 

effects to later life history stages, such as metamorphosis and juvenile survival. Finally, 

for static pH 7.5, we observe unique enrichment for gene functions related to chemotaxis. 

Chemotaxis is especially important for phagocytes in sea urchin, which make up the 

majority of the coelomocytes, the first line of cellular defense in the sea urchin innate 

immune system (Smith et al. 2006), and have been shown to be negatively impacted by 
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acidification (Brothers et al. 2016).  

 

Surviving static versus fluctuating pH conditions 

Our findings suggest that genetic responses to variability are similar to static 

conditions (Fig 4); response to selection is correlated between the regimes, and related 

genetic mechanisms are used to respond to static and variable conditions. Considering the 

high amount of environmental variation in the CCME, along with the high levels of 

standing genetic variation found in this species (Sodergren et al. 2006; Pespeni and 

Palumbi 2013c), one explanation is that previous selection in fluctuating pH has led to 

genetic variation that is adaptive in pH-variable environments and similar mechanisms 

are used to survive static conditions with the same mean pH. We find enrichment in pH 

7.0 (extreme) variable conditions for loci in genes related to lipid metabolism, ribosomal 

and RNA structure, and mitochondria structure and transport (Fig. 5). Previous OA 

research in copepods has shown multigenerational selection on ribosomal structure and 

oxidative phosphorylation, a key metabolic process that produces ATP and occurs within 

the mitochondria (De Wit et al. 2016).  

The extreme variable pH 7.0 treatment exhibited a trade-off between survival and 

growth, with high survival in the pH 7.0 variable conditions compared to the pH 7.0 

static, but at the cost of reduced size in surviving larvae. Integrating organismal and gene 

function results, purple urchin larvae may focus on energy production and allocation in 

order to survive extreme fluctuating pH conditions, putting more energy into survival 

over development. Differential energy allocation has been found previously in S. 

purpuratus (Pan et al. 2015) and multiple calcifying marine gastropod species, which use 
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‘dwarfing’ as an adaptive strategy to tolerate low pH (Garilli et al. 2015). Metabolomic 

work in another marine calcifier, Pocillopora damicornis coral, conveys the importance 

of cellular structure and maintenance for survival under pH stress, and suggests the 

energetic expense of this could come at a cost on growth (Sogin et al. 2016). Overall, 

while there is limited overlap in the specific functional categories enriched for static and 

variable pH conditions, enriched functions serve a shared purpose: maintenance of 

structural integrity and regulation of metabolism to simultaneously manage development, 

growth, and survival as pH decreases and/or fluctuates. 

 

Conclusion 

Understanding the genetic and phenotypic responses of organisms to their environment is 

pertinent, especially in a rapidly changing climate characterized by increases in extreme 

and variable conditions. Here, we show that purple sea urchins have greater adaptive 

potential than previously thought, with genetic variation available to respond to extreme 

static and variable pH conditions. pH variability, while leading to survivors with smaller 

bodies, did increase larval survival. High levels of standing genetic variation, coupled 

with natural variation in pH conditions across space and time, appear to promote the 

maintenance of adaptive potential for purple sea urchin populations. Future studies, 

however, should explore carryover effects to later life history stages and across 

generations and test the hypothesis that these factors promote adaptive potential to global 

change conditions in a broader phylogenetic framework. Ultimately, environmental 

change may be buffered against for species that have sufficient genetic variation for 

responding to such change. 
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Supplemental Figures and Tables 

 

Fig. S1: Number of loci significantly changing in frequency in different regions of the 

genome, where exonic regions are split into synonymous and non-synonymous sites. P-

values in the top right corners indicate corrected significance from 𝜒2 tests where values 

are FDR corrected to account for multiple testing. Within each panel, expected values are 

from 𝜒2 tests and observed values are the actual counts of significant loci. Error bars for 

observed values represent the 95% confidence interval calculated with the Clopper-

Pearson method. Asterisks indicate groups with a significantly greater number of loci 

than expected by chance (corresponding grey bar), as determined by binomial post-hoc 

tests. 
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Table S1: Water chemistry data recorded on days 1, 4, and 7 post-fertilization. A water 

sample was taken from each of the six pH condition header tanks, with temperature, pH, 

and salinity recorded immediately while total alkalinity (TA) was measured via titration 

and then pCO2 calculated from CO2Sys. 

 

Table S2: Number of significant loci from the CMH tests. Comparisons were done 

between all of the different days and pH conditions, comparing to both the day 1, 8.1S 

(top row) and day 7, 8.1S (bottom row). 

 

Table S3: Nucleotide diversity results for all of the different days and pH conditions. 

 

Table S4: Gene ontology enrichment results for (A) molecular functions and (B) 

cellular components. Checks indicate enrichment (Padj < 0.05) for significant changes in 
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allele frequency for loci in the category (row) in response to the treatment indicated 

(column). GO terms are clustered by similarity according to their topology in the GO 

graph structure. 

(A) 

 

(B) 

 

*Note: Supplemental Tables S5-S10 are text files that can be found online with the 

corresponding publication of this thesis (citation found on page ii of this thesis). 
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