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ABSTRACT 
In the dairy industry, a common way of adding energy to the diet is in the form 

of fermentable starch. However, an overabundance of fermentable carbohydrates can 
cause a buildup of volatile fatty acids that exceed the buffering capacity of the rumen. 
These changes can lead to negative health consequences such as subacute rumen acidosis 
and milk fat depression. Not only does a cow need readily fermentable sources of energy 
in her diet, but she also needs physically effective structural carbohydrates. 

Fiber has been a difficult portion of the diet to characterize as both the chemical 
and physical properties are important for the maintenance of animal health and to support 
requirements for proper production. The physical nature of fiber can be described using 
the measurement physically effective neutral detergent fiber (peNDF). This describes the 
fraction of dietary fiber that stimulates chewing and forms the rumen digesta mat. The 
chemical nature of fiber can be described in multiple terms, but to describe the 
undegradable fraction, a measure named undegradable neutral detergent fiber after 240-
h of fermentation (uNDF240) was developed. This fraction is important to characterize 
because of its effect on gut fill, degradation, and passage dynamics in the rumen. 
Research has observed a relationship between uNDF240 and peNDF. Combining these 
two characteristics into one measurement could give nutritionists a more useful 
measurement when balancing diets for dairy cattle. This measurement is the physically 
effective uNDF240 (peuNDF240). But, in order to fully implement this measurement in 
ration balancing, there must be more research on how peuNDF240 affects dry matter 
intake (DMI) and milk responses. 

The primary goal of this thesis research was to observe the interactions between 
rumen fermentable starch (RFS) and peuNDF240 in the rumen. The focal study (Chapter 
2) investigated the effects of RFS and peuNDF240 on DMI, lactation performance, 
behavior, and the rumen environment of lactating Holstein dairy cows. The four diets 
were: 1) low peuNDF240 (6.4% of DM), low RFS (16.7% of DM); 2) low peuNDF240 
(6.1% of DM), high RFS (19.2% of DM); 3) high peuNDF240 (8.6% of DM), low RFS 
(16.9% of DM); and 4) high peuNDF240 (8.0% of DM), high RFS (19.0% of DM). Cows 
fed higher peuNDF240 diets consumed less DMI as a percentage of body weight than 
cows fed lower peuNDF240 diets. Cows fed diets containing higher RFS produced less 
milk fat and 3.5% fat-corrected milk (FCM) than cows fed lower RFS. Lower 
peuNDF240 diets resulted in lower de novo and mixed origin fatty acids in milk fat and 
a greater degree of unsaturation. Overall, higher RFS diets tended to reduce the efficiency 
of FCM production (FCM/DMI) compared with lower RFS diets. There was no effect of 
peuNDF240 or RFS on eating or ruminating time per day, but higher RFS diets reduced 
meal length and increased daily meal bouts. The lower RFS diets reduced 
acetate:propionate ratios, but there was no effect of treatment on measures of rumen pH. 
Diets with higher RFS tended to increase rumen pool size of starch while higher 
peuNDF240 diets increased pool size of uNDF240 although there were few dietary 
effects on rumen turnover of starch or uNDF240. Lower peuNDF240 diets resulted in 
greater total tract NDF digestibility than higher peuNDF240 diets.  Even low to moderate 
RFS can elicit milk fat depression when dietary peuNDF240 is low and ranging between 
6.0 and 8.6% of DM.
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CHAPTER 1: LITERATURE REVIEW 

1.1. Introduction 

The interaction between fiber and starch in the rumen has been well documented 

in the scientific literature (el-Shazly et al., 1961; Mertens and Loften, 1980; Sarwar et 

al., 1992; Van Soest, 1994; Beauchemin, 2007). However, there is still needed 

information on how fiber of differing degradability and particle size interacts with 

fermentable starch in the rumen, and what combinations elicit the best response from 

cows fed starchy, highly digestible diets. As we have learned previously from Smith 

(2019), the physical nature of fiber influences its rumen degradability. A measure that 

combined ration particle size and fiber undegradability predicted dry matter intake (DMI) 

better than either measure alone (Smith, 2019). We need to understand how a combined 

measurement interacts with different concentrations of rumen fermentable starch (RFS), 

and how they together influence DMI, chewing response, lactation performance, and 

rumen dynamics. This information will allow the industry to better formulate diets for 

high producing lactating dairy cows using today’s dynamic nutrition models. 

1.2. Characterizing physically effective undegradable fiber 

1.2.1. What is fiber? 

Fiber varies widely in bioavailability to the microbial population within the 

rumen and can be defined as the slowly degrading or undegradable fraction of feeds that 

occupies space in the animal’s gastrointestinal tract (Van Soest, 1994; Mertens, 1997). 

Fiber is often classified chemically by its covalent linkages, but this simple approach 

fails to capture the complex physical and chemical makeup of the plant cell wall. To 

better understand fiber, it should be considered a macromolecule with large-scale 
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organization instead of an entity made of chemical linkages (Van Soest, 1994). The 

polysaccharides that are associated with the plant cell wall may be ether-linked or not 

linked to the lignified core (Van Soest, 1994). The differentiation of linkages to the 

lignified core is based on both biological composition of the plant and nutritional 

availability for the animal (Van Soest, 1994). The structural carbohydrates that are linked 

to the core via covalent linkages are partially or incompletely fermented in the rumen 

and are the structures that make up the primary cell wall matrix (Van Soest, 1994).  

Hemicellulose, cellulose, and lignin comprise the different polysaccharides and 

polyphenolics in the cell wall matrix, respectively. Hemicellulose content varies widely 

among different plant species and is a heterogeneous mixture of polysaccharides with β 

1-4 linkages in the core polymer with a variety of glycosidic bonds that link sugars to 

their backbone (Van Soest, 1994). Hemicellulose has a close relationship with lignin, and 

its degradability correlates directly to cellulose and to lignin (Van Soest, 1994). 

Hemicellulose is held in place by cross-links with lignin, making up the secondary cell 

wall, generally making it insoluble unless it is delignified (Van Soest, 1994).  

Cellulose, like hemicellulose, contains β 1-4 glucan linkages, which combine, to 

some degree, with hemicellulose and lignin in the plant cell wall structure (Van Soest, 

1994). Cellulose is the most abundant carbohydrate in the world. However, while it 

constitutes a major proportion of the cell wall’s structure, its concentration is not a 

reliable measurement of cell wall degradability or undegradability (Van Soest, 1994). 

Lignin, unlike hemicellulose and cellulose, is not as simple to define. There are 

varying definitions based on scientific discipline and nomenclature (Van Soest, 1994). 

In simplest terms, lignin is a major plant phenolic polymer that gives rigidity to the plant, 
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and creates a hydrophobic barrier to degradation (Van Soest, 1994; Jung et al., 2012). 

This rigidity provides resistance to abiotic and biotic stressors like disease, insects, cold 

temperatures, and drought conditions (Buxton and Redfearn, 1997). Lignin is a necessary 

evolutionary adaption for the plant, and so there are limitations to how little lignin a plant 

can contain (Buxton and Redfearn, 1997).  

Concentration of a given polymer in the cell wall is not always a useful 

measurement of fiber or its degradability. It is here that the problem with measuring 

meaningful attributes of fiber in the plant and estimating how they will affect 

degradability in the cow begins. The amount of lignin present, even though it is the major 

component affecting degradability, is not always an acceptable measurement of 

undegradability. The amount of hemicellulose present is not an acceptable measurement 

of potentially degradable fiber. In addition, separately measuring hemicellulose and 

cellulose does not provide a meaningful interpretation of fiber degradability either. The 

attempt to measure fiber using chemical methods has been a topic of discussion for dairy 

nutritionists for the last 100 years (Hall and Mertens, 2017). Fiber is difficult to 

categorize as both the chemical and physical characteristics affect rumen function and 

fermentation, metabolism, and therefore production of the cow (Hall and Mertens, 2017). 

The degree of lignification in the plant cell wall dictates the degree of degradability in 

the rumen, but its physical structure is just as important to consider when measuring 

degradability (Van Soest, 1994). Finding a measurement that considers both the fiber 

content and its degradability is important for ration formulation and improving 

predictions of animal response to a specific diet.  

1.2.2 What are the chemical characteristics of fiber? 
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The early 1960s and late 70s were a break-through time for fiber nutrition. Van 

Soest first published a comprehensive chemical fractionation system for forages in 1967. 

This gave nutritionists a way to chemically analyze forage samples and utilize these 

measurements in a nutritionally relevant way. In the Van Soest system, the forage dry 

matter is separated into two categories based on its solubility in neutral detergent 

solution. This approach separates the cell wall of the plant from the plant cellular contents 

(Van Soest, 1967).  

Insoluble fiber, or the cell wall constituents, forms the rumen digesta mat and 

therefore stimulates rumen function. This portion is measured as neutral detergent fiber 

(NDF), named after the solution it is boiled in (neutral detergent solution), and it 

primarily measures the amount of hemicellulose, cellulose, and lignin in the plant cell 

wall (Van Soest et al., 1991). The NDF usually accounts for around 30-80% of the 

organic matter in most forages (Buxton and Redfearn, 1997). Unlike NDF, the second 

fraction containing the plant cell’s cellular contents, otherwise known as neutral 

detergent solubles (NDS), is almost 98% digestible for most forages (Van Soest, 1994). 

In the plant, NDS is primarily water-soluble carbohydrates, protein, and fat (Van Soest, 

1994). The NDF of feed is highly related to degradability because it is less degradable 

than the cell contents and its degradability varies in relation to lignification. This is an 

important concept because NDF content and the large difference in degradability 

between NDF and NDS is the most important influencer of how a feed or diet will affect 

animal performance, specifically DMI (Mertens, 2015). 

Generally, when NDF content in the diet increases, DMI decreases because of 

limits to rumen distension (Allen, 2000). This limitation results from the decrease in the 
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rate of digesta removal, passage, and breakdown of forage with higher NDF content 

(Allen, 2000). The reticulorumen (RR) is the main site at which distension regulates DMI 

in ruminants. Distension in this area stimulates mechanoreceptors in the muscle layer of 

the RR, concentrated in the reticulum and the cranial sac of the rumen (Allen 2000, Van 

Soest 1994). These stretch and tension receptors send feedback to the brain satiety center 

to trigger meal cessation. The extent that distension affects the DMI of lactating cows 

depends on the animal’s stage in lactation and energy requirements (Allen, 2000). Cows 

that are in a lipolytic state during early lactation are more likely to be affected by the 

chemical regulation of feed intake instead of distension (Allen and Piatonni, et al., 2013). 

This association between NDF and DMI was explored in a study that fed four 

diets with different roughage concentrations that linearly increased in 10% increments 

from 40 to 70% roughage (Jiang et al., 2017). As roughage increased in the diet, so did 

NDF content while DM of the diet was kept constant. The NDF ranged from 35.4% of 

DM in the diet with 40% roughage to 43.4% of DM in the diet with 70% roughage. As a 

result, DMI linear decreased by 4 kg/d as NDF content increased from 35.4 to 43.4% 

(Jiang et al., 2017).  

Even though the NDF fraction has consistent effects on DMI, its degradability 

can vary substantially. The degradability of the NDF fraction is highly variable because 

different growing conditions can have an influence on degradability (Van Soest, 1994). 

During maturation, several grass cell types become more lignified and cross-linked, and 

environmental stress can have a significant effect on maturation (Buxton and Redfearn, 

1997). In general, the degradability of a forage is influenced by its maturity so any 

environmental or agronomic factors that impact the maturity of the forage will impact 
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the degree of lignification (Buxton, 1996). Specifically, environmental factors such as 

increases in temperature are what cause year-to-year and seasonal variations in forage 

quality (Buxton, 1996). A rise in ambient temperature will increase the maturation of the 

plant and will lower forage quality when compared to the same forage grown at normal 

temperatures and harvested at the same morphological stage (Buxton, 1996). On average, 

a 1° C increase in temperature will decrease degradability of cool season forages by 3-7 

g/kg, and this is attributed to an increase in NDF concentrations and lignification 

(Buxton, 1996).  

The NDF system quickly became popular within the dairy industry because of its 

ability to measure the cell wall constituents that stimulate rumination and fill in the 

rumen. However, NDF alone does not account for all of the variability observed in intake 

and milk production of dairy cattle (Mertens, 2015). The NDF fraction also does not 

represent a class of chemical components that is homogenous (Raffrenato and Van 

Amburgh, 2010). However, the variability within NDF is much less than its difference 

from NDS (Mertens, 2015). Mertens (1997) stated that formulating rations solely based 

on NDF will not account for differences in digestion and passage of fiber, but it is still 

incredibly valuable when separating feed into two categories of digestible (NDS) and 

potentially degradable (highly variable) feed (NDF; Mertens, 2015). To accurately 

predict how a cow will react to a diet, the degradability of the NDF present is also 

necessary because the degradability of NDF dictates animal performance independent of 

the dietary NDF concentration (Mertens, 2009; Raffrenato and Van Amburgh, 2010). 

However, the non-uniform characteristics of NDF degradability dictate that NDF has 

fractions with different degradation properties (Mertens, 2015). 
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1.2.3 NDF fractionation 

Neutral detergent fiber can be fractioned into two main categories: potentially 

degradable (pdNDF) and indigestible (iNDF). Waldo et al. (1972) first described this 

theoretical distinction between digestible and indigestible cell wall fractions in 1972. As 

previously stated, the degree of cross-linking with lignin is the greatest deterrent to rumen 

NDF degradability, and therefore, it has the greatest influence on in vivo degradation in 

the rumen (Van Soest, 1994). The iNDF is comprised of hemicellulose and cellulose that 

are highly associated with lignin and are therefore unable to break down in the rumen 

regardless of the amount of time it ferments (Van Soest, 1994). This transformative 

discovery allowed for the development of fiber digestion models because the pdNDF 

fraction (i.e., NDF – iNDF) follows first-order degradation kinetics and rates and extents 

of NDF degradation can be easily calculated. Consequently, the concept of iNDF and 

pdNDF has been used in fiber research and model development for the last 45 years 

(Mertens, 2015). The problem is that iNDF is a theoretical term and cannot actually be 

measured because it requires an infinite amount of time, and so an approximation of 

iNDF, termed undegradable NDF (uNDF), was created (Mertens, 2016; Raffrenato et al., 

2018). Undegradable NDF is a laboratory estimation of iNDF based on specific 

fermentation lengths. Research has been done to evaluate what time point should be used 

to represent the residue remaining after complete fermentation in the rumen. Recently, 

Raffrenato et al. (2018) have specified that a 240-h in vitro fermentation appears to be 

adequate. To determine this, Raffrenato et al. (2018) analyzed 102 forages of different 

species for amylase- and sodium sulfite-treated NDF reported on an organic matter basis 

(aNDFom) and uNDF using different time points between 12- and 504-h. Their goal was 
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to reach a point in fermentation where the weight of the residue did not significantly 

change with additional fermentation time (Cotanch et al., 2014). The difference in 

aNDFom disappearance was not detected in any fermentation time past the 240-h time 

point. Furthermore, to test if degradable aNDFom was depleted at the 240-h time point, 

a Student’s t-distribution was used to make a paired comparison between the means and 

showed that there was no difference between the 240- and 504-h time points. This 

allowed for the practical fractionation of NDF into uNDF and pdNDF by commercial 

feed testing laboratories (Raffrenato and Van Amburgh, 2010).  

Mertens has hypothesized that NDF degradation is more accurately predicted 

when pdNDF is assumed to be the sum of two degradable pools, fast and slow fermenting 

NDF (Mertens, 1977). Raffrenato and Van Amburgh (2010) have since confirmed this 

theory. They modeled the disappearance rate of 35 different forage samples from 0- to 

240-h of fermentation (Raffrenato and Van Amburgh, 2010). They observed that, by 30-

h the fast pool of NDF was mostly exhausted, and by 120-h the slow pool was exhausted, 

leaving the undigested pool after 240-h (uNDF240; Raffrenato and Van Amburgh, 2010). 

Making this distinction between the two pools is important because the degradation rate 

of pdNDF appears to affect meal patterns and DMI together with uNDF240 (Cotanch et 

al., 2014). 

The uNDF240 content is highly correlated to the DMI limitations of the cow 

(Mertens, 2016). The uNDF240 fraction influences DMI because of its effect on gut fill, 

digestion dynamics, and passage dynamics in the rumen (Cotanch et al., 2014). 

According to Cotanch et al. (2014), rumen fill is a function of dietary uNDF240, slowly 

fermenting NDF, and undegraded fast-pool NDF, and the total mass of uNDF240 within 
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the rumen establishes a baseline of fill. This helps improve estimations of DMI because, 

in a diet, there is a maximum, or how much uNDF240 a cow can consume before filling 

her rumen, and a minimum, or how much uNDF240 is required to maintain rumen fill 

and digestive efficiency (Cotanch et al., 2014). There can be greater DMI when there is 

greater turnover since rumen space results from turnover of the fast, slow, and uNDF240 

pools (Cotanch et al, 2014). However, in a diet with greater uNDF240, rumen turnover 

rate decreases, retention time in the rumen increases, and this restricts DMI. This effect 

was observed in a study that assessed feeding diets with either lower (50%) or higher 

(65%) forage content and differing forage NDF source (conventional corn silage vs. 

brown midrib (BMR) corn silage; Miller et al., 2021). The difference in forage NDF 

source caused a difference in uNDF240 between the diets, where the conventional corn 

silage was around 9% of ration DM and the BMR corn silage was around 7% of ration 

DM. The BMR corn silage, or the low uNDF240 diet, increased DMI when fed at a higher 

forage content (67%) compared to the conventional corn silage diet fed at the same forage 

content (Miller et al., 2021). In addition, the DMI as a percentage of body weight 

increased for cows fed the low uNDF240 diet in a higher forage diet compared to the 

high uNDF240 diet. This response was due to less uNDF240, hence higher degradable 

NDF, which allowed for greater turnover in the rumen, and therefore greater intake. The 

diets with BMR corn silage, or lower uNDF240, also caused a reduction in rumen digesta 

volume and mass across forage inclusion levels.  

1.2.4 What are the physical characteristics of fiber? 

The degradability of NDF is a necessary component for predicting the DMI and 

milk production of the cow. However, degradability of a forage is not the only variable 
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accounted for when predicting the production potential of a cow when fed a specific diet 

(Mertens, 1997). The physical characteristics of fiber, such as particle size and density, 

are also important as they also contribute to the wide variation observed in lactation 

performance that is not accounted for simply by NDF content (Van Soest, 1994; Mertens 

1997). Physical characteristics of fiber can influence rumen fermentation, milk fat 

production, and animal health independently of chemical composition (Mertens, 1997). 

Consequently, a measurement for particle size was needed that could be determined 

quantitatively using repeatable laboratory methods (Mertens, 1997). 

One definition of the effectiveness of fiber is the ability of the fiber to maintain 

rumen and animal health (Mertens, 1997). Physically effective NDF (peNDF) is a 

measurement that relates to the physical characteristics, specifically particle size, that 

influences the chewing activity and rumen digesta mat development of the animal 

(Mertens, 1997). This means that the peNDF relates to a feed’s ability to form the rumen 

mat and the pattern of rumination that maintains rumen pH (Mertens, 1997). This 

measurement provides consistency in the measurement of physically effectiveness 

because it takes into account the two variables that affect chewing the most: the NDF 

content and the particle size, and minimizes the animal variation (Mertens, 1997). The 

peNDF was developed as a metric to indicate the chewing activity based on known 

associations with both the NDF content of the diet and the physical effectiveness factor 

(pef). The pef is a scale that defines physical effectiveness as a reference for which all 

feeds are comparable against a hypothetical standard (Mertens, 1997). This hypothetical 

standard would elicit the maximum amount of chewing per kg of NDF, specifically a 

long grass hay with 100% NDF and a pef of 1.0 (Mertens, 1997). The pef is on a 
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theoretical scale of 0 to 1 where 0 means the NDF does not stimulate chewing, and 1 

elicits the maximum chewing response (Mertens, 1997). Mertens (1997) suggested that 

only the fiber particles that were large enough to stay in the rumen and require chewing 

should be related to peNDF. The hypothesis was that particles that do not require or 

stimulate chewing would appear in the feces because they have escaped the rumen (Poppi 

et al., 1985). It was concluded that particles that fall below the 1.18-mm sieve with dry 

vertical sieving have the potential to escape from the rumen and do not stimulate the cow 

to chew, and so the particles that are retained on and above the 1.18-mm sieve are 

considered physically effective (Poppi et al., 1985). An on-farm pef value for silages and 

chopped dry forages can be determined on as-fed basis using the Penn State Particle 

Separator, but it must be adapted with a 4-mm sieve that provides pef values similar to 

the standard dry sieving method (Poppi et al., 1985; Cotanch et al., 2010). When the 4-

mm sieve is used, the peNDF is commonly referred to as peNDF4.0mm to differentiate 

between when the 4-mm sieve for the Penn State Particle Separator is used and when a 

dry vertical sieve is used (1.18-mm sieve).  

In 1997, Mertens gathered information from 45 studies that had applicable 

particle size data in a meta-analysis. His goal was to develop a system that evaluates the 

effectiveness of fiber in feeds and define the effective fiber requirements of dairy cattle 

(Mertens, 1997). Mertens (1997) developed correlations between chewing activity and 

the amount of peNDF in a forage using a regression analysis. An r2 of 0.76 to 0.81 was 

calculated between total chewing activities, including rumination, and peNDF once 

outliers and experiments were corrected for in the regression (Mertens, 1997).  
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Mertens further hypothesized a link between rumination and rumen pH, based on 

salivary buffer secretion, and this link aided in establishing a set requirement of peNDF 

for dairy cattle (Mertens, 1997). He found that there was a strong positive relationship 

(r2 = 0.71) between dietary peNDF and rumen pH (Mertens, 1997). Based on regression 

analysis, a peNDF intake of 4.40 kg/d or a concentration of 22.3% of ration DM was 

required to maintain a rumen pH of 6.0 (Mertens, 1997). However, to maintain 3.5% fat-

corrected milk (FCM) during mid-lactation for Holstein cows, the concentration of 

peNDF should be closer to 19% of ration DM (Mertens, 1997). These differences in 

requirement represent the difficulty in defining a set requirement of fiber characteristics 

in the diet of lactating cows. There may be an optimal peNDF depending on the situation 

and the goal. The cows in the data set were in early to mid-lactation, so the author 

hypothesized that maintaining FCM during this stage of lactation may be a more accurate 

indicator of the minimum requirements for peNDF for dairy cows compared to rumen 

pH (Mertens, 1997). Although the peNDF system mostly relates to the particle size of 

the diet, it explains a large amount of the variation in chewing activity, rumen pH, and 

milk fat depending on the forage used (Grant et al., 2018). Both the amount and the 

effectiveness of the fiber has an effect on the metabolism and chewing behavior of the 

animal (Mertens, 1997).  

It is key to remember that the physical characteristics of the diet drastically affect 

the amount of the time the cow will spend consuming feed (Jiang et al., 2017). For 

example, to evaluate the ability of a forage to mitigate subacute rumen acidosis by 

promoting chewing activity and saliva secretion, a study used four treatment diets with 

increasing forage inclusions ranging from 40, 50, 60 and 70% roughage (Jiang et al., 
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2017). Consequently, the peNDF4.0mm increased with increasing forage inclusion, 

ranging from 14.9, 19.2, 23.9, and 29.0 for the 40, 50, 60, and 70% roughage diets, 

respectively. As peNDF4.0mm in the diets increased, there was a linear increase in daily 

chewing time as an effect of increased eating time rather than ruminating (Jiang et al., 

2017). As dietary roughage inclusion increased, the contribution of rumination to daily 

chewing decreased from 60 to 42%. The increase in daily chewing time was mainly a 

result of prolonged time spent eating per meal. There was also an increase in total 

chewing time per kilogram of NDF intake as the dietary roughage inclusion increased. 

Eating rate (g of DM/min) decreased with increased roughage inclusion, but ensalivation 

of ingested feed (mL/g of DM) increased causing saliva secretion rate to be unaffected 

by diet (Jiang et al., 2017).  

Although peNDF has a strong effect on the DMI and chewing response of the 

cow, commonly, there is no response in milk yield (Allen and Grant, 2000; Farmer et al., 

2014; Smith, 2019). As seen in Allen and Grant (2000), as peNDF increases, fiber 

utilization increases in the rumen, resulting in similar milk yields compared with a diet 

with lower peNDF. A similar effect was observed in Farmer et al. (2014) where the 

treatment diets involved feeding lower starch diets (21%) with decreasing forage content 

(52, 47, 43, and 39% of ration DM). As corn silage and haycrop silage was removed from 

the diet, chopped wheat straw was added to maintain chewing activity, but the peNDF 

was still reduced as forage in the diet decreased. As expected, the DMI increased as 

forage content and peNDF decreased, but there was no statistical difference in milk 

production (Farmer et al., 2014). There was also no statistical difference in milk 

composition in this study. Different peNDF content often affects the milk fat content 
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because of its effect on eating and rumination. According to Mertens (1997), both eating 

and ruminating increases saliva production, and both the rumen pH and the pattern of 

fermentation is a function of the production of buffer from the saliva. This effect was 

observed in a study that fed TMR with three different sizes of alfalfa measured as 

geometric mean of particle size: long (7.83 mm), medium (4.04 mm), or fine (1.14 mm) 

(Yansari et al., 2004). The peNDF of the TMR decreased as the length of the alfalfa 

decreased. The diet with fine alfalfa had a significant reduction in rumen mean retention 

time and a significant increase in rumen passage rate compared to the diets with long and 

medium length alfalfa (Yansari et al., 2004). This resulted in significantly greater DMI, 

lower pH, and lower total chewing activity for the diet with fine alfalfa. This 

corresponded to a significant difference in milk fat yield (Yansari et al., 2004). The diet 

with fine alfalfa had a significantly lower milk fat produced compared to the diets that 

used long and medium length alfalfa (Yansari et al., 2004).  

1.2.5 Utilizing both the physical and chemical nature of fiber 

Within the peNDF system, there is an assumption that all fiber elicits the same 

chewing response no matter the forage type (Mertens, 1997). However, this is not always 

the case. Grant (2010) characterized that different forages can have different fragilities 

(Grant, 2010).  Fragility was defined as the rate of reduction in particle size when a feed 

is ball milled (Grant, 2010). A study evaluating four forages was designed to observe 

how fragility affected the pef values to give a more accurate prediction of the cow’s 

chewing response (Grant, 2010). The first comparison examined two hays with either 

low NDF degradability and low fragility or high NDF degradability and high fragility. 

The second comparison assessed two forages with either high or low fragilities that had 
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similar NDF degradability. The basis behind this research was the assumption that 

different forages of similar particle size would stimulate different chewing responses 

from the cow based on the forage’s anatomical and chemical differences such as cell wall 

thickness or lignin content and cell wall degradability (Grant, 2010; Van Soest, 1994). 

When comparing hays lower in NDF degradability and fragility to the hay with higher 

NDF degradability and fragility, the hay with lower NDF degradability and fragility 

resulted in a greater chewing response. When comparing the two hays with similar NDF 

degradability but different fragilities, there was little difference in chewing response. 

These data show that the degradability of fiber can influence its physical effectiveness 

(Grant, 2010).  

Smith (2019) proposed a way of combining the physical as well as the chemical 

nature of fiber into a single measurement. This new term was calculated by multiplying 

the pef of a feed or diet by the uNDF240 content of the feed or diet and was named 

physically effective undegradable NDF after 240-h of in vitro fermentation 

(peuNDF240). This simple calculation quantitatively predicted the uNDF240 content of 

the physically effective fraction, or the portion of undegradable fiber that stays in the 

rumen for chewing and particle size reduction. (Smith, 2019). Using a five-study 

database, Miller et al. (2020) conducted a regression analysis that further looked into the 

relationships between uNDF240, particle size, and their combination. This database 

showed that when combining the pef and the uNDF240, there was a stronger r2 compared 

to either measurement individually when predicting DMI and energy-corrected milk in 

high producing Holstein cows fed primarily silage-based diets.  

1.2.6 Conclusions for fiber 
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Fiber is sibylline. It is difficult to measure and conceptualize, yet it has extreme 

importance to the health and productivity of the cow. The degree of degradability is an 

evolutionary adaptation for plant survival that increases rigidity and impenetrability, and 

this has negative effects on the ruminant ingesting it. The chemical as well as the physical 

nature of fiber have effects on the cow and understanding how these two characteristics 

work together will give needed information to nutritionists who are formulating diets. 

However, the relationship between fiber and other major components of the diet is also 

important to understand, specifically starch and its rumen fermentability.   

1.3 Rumen fermentable starch: moderation and balance 

1.3.1. What is starch and what makes it fermentable? 

An important goal in dairy cattle nutrition is to maximize the energy intake of the 

cow to enhance the amount of milk she can produce. A common approach in achieving 

this goal is to increase the energy density of the diet by adding energy in the form of 

starch (Oba and Allen, 2003a).  

Starch is the most essential carbohydrate reserve in plants. However, not all starch 

is the same and its conformational characteristics relate to varying levels of 

fermentability, or substrate breakdown by microorganisms, in the rumen (Huntington, 

1997).  The fermentability of grain in the rumen is affected by two main factors: the 

physical characteristics of the plant, and the degree of processing prior to feeding 

(Giuberti et al., 2014). 

Natural variation in fermentability exists among different grain types. For 

example, wheat is more fermentable than barley, barley is more fermentable than corn, 

and corn is more fermentable than sorghum (Van Soest, 1994; Huntington, 1997). To 
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further support this, a meta-analysis evaluating the effect of cereal grain type noted that, 

compared to corn, the starch provided by barley and wheat were 17 and 25% more 

digestible, respectively (Ferraretto et al., 2013).  

These differences in fermentability are associated with the anatomy and 

composition of the plant. In the seed, starch is stored within the endosperm and is used 

as an energy source to aid in germination and early growth of the young plant. Within 

the endosperm, there are also lipids found both on the surface and inside the starch 

granule ranging from 15-55% of the fraction (Giuberti et al., 2014). Along with starch 

and fat, proteins, known as prolamins, are located within and surrounding the endosperm. 

Prolamins are storage proteins and have the ability to decrease starch fermentability due 

to the hydrophobic protein matrix encapsulating the endosperm that acts as a physical 

barrier to rumen bacteria (Giuberti et al., 2014). The type and location of prolamins are 

responsible for large differences in starch digestion (Giuberti et al., 2014). For example, 

corn contains a larger percentage of zeins, a type of storage protein. The rumen 

environment results in a very slow zein degradation rate, therefore higher zein levels in 

the diet relate negatively to rumen starch digestibility (Giuberti et al., 2014). 

Within the endosperm, there are two polymers of starch: amylose and 

amylopectin. Conformational characteristics of these polymers influence solubility. 

Amylose is made of long linear chains of glucose residues that have strong intermolecular 

association. This makes them less soluble and reduces digestion potential when amylose 

content in grains is high.  Amylose can also join with lipids to form amylose-lipid 

complexes that make the starch granule denser and less accessible to microbial 

fermentation (Giuberti et al., 2014). Alternatively, amylopectin consists of highly 
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branched glucan chains that increase solubility; therefore, it has more surface area for 

bacterial attachment (Martin and Smith, 1995; Van Soest, 1994). Characterizing kernel 

vitreousness is a tool used to assess the type of corn endosperm by characterizing the 

ratio of floury to vitreous endosperm (Giuberti et al., 2014). The greater vitreousness of 

the kernel corresponds with less floury endosperm, reduced starch fermentability, and, 

in corn, it is visually identifiable (Lopes et al., 2009; Giuberti et al., 2014). There is a 

higher concentration of prolamin proteins in corn types with more vitreous endosperm, 

which is the reason increased vitreousness decreases rumen starch fermentability and 

total tract digestibility (Lopes et al., 2009). In a study evaluating the effect of type of corn 

endosperm on nutrient digestibility, starch digestibility was 6.3% greater for cows fed 

diets containing 0% vitreous endosperm and on average 5.2% less prolamin as a 

percentage of DM (Lopes et al., 2009). Vitreousness also corresponds to maturity at 

harvest with more mature grains having a more vitreous kernel (Giuberti et al., 2014). 

The potential for enzymatic hydrolysis decreases as vitreousness in the endosperm 

increases due to an increase in secondary intermolecular bonding (Giuberti et al., 2014). 

The pericarp surrounds the grain kernel, which surrounds the endosperm; it acts 

as a protective barrier and is resistant to bacterial attachment and fermentation 

(Huntington, 1997). Because of this structure, the outer layer of the seed must be broken 

to make the grain more readily available to the microbes to increase fermentability 

through chemical or physical processing. Decreasing the particle size of grains increases 

the surface area and allows for bacterial attachment and enzymatic breakdown, 

increasing rumen fermentability (Huntington, 1997). A 2013 meta-analysis found that 

coarser processing in dry or ensiled corn would decrease total tract starch digestibility 
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due to the increased passage rate of denser, coarser particles into the lower 

gastrointestinal tract (Ferraretto et al., 2013). For dry ground corn (DGC), coarser 

processing decreased total tract starch digestibility from 93.3 to 77.7% and for ensiled 

corn, coarser processing decreased total tract starch digestibility from 95.2 to 89.5% 

(Ferraretto et al., 2013).  

When the whole grain is intact, it is almost completely indigestible to ruminants 

because the pericarp protects it from bacterial attachment in the rumen (Yang et al., 

2000). This is the basis behind the different processing and conservation methods. 

Processing methods make the grain more fermentable by exposing the soft endosperm 

within the seed to the microorganisms within the rumen (Van Soest, 1994). Processing 

methods include cold processing, adding dry heat, and hydrothermal processes. These 

processes work by breaking open the protein matrix, making the endosperm more 

available, and inevitably, reducing the particle size. The potential for starch digestion is 

inversely related to particle size because of the increase in surface area for enzymatic 

hydrolysis (Giuberti et al., 2014). Other methods change the structure of the starch 

granule including methods like high-moisture ensiling that gelatinize and rupture the 

starch granule. There are different advantages and disadvantages to using different 

methods, and some elicit higher animal performance when using one method instead of 

the other (Mathison, 1996). A meta-analysis compared the effect of corn grain harvesting 

and processing methods using 102 different trials. For corn, it was observed that 

compared to dry grinding, starch became more fermentable with ensiling and steam 

treatments (Ferraretto et al., 2013). This is because gelatinization during steam treatments 

increases fermentability by breaking the hydrogen bonds in the polymers using moist 
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heat, disrupting the protein matrix (Van Soest, 1994), and proteolysis during ensiling 

breaks down the protein matrix (Firkins et al., 2001; Oba and Allen 2003b). For example, 

Oba and Allen (2003b) observed that there was a 13.6%/h greater rate of starch digestion 

when substituting high-moisture corn (HMC) for DGC in high starch diets (Oba and 

Allen, 2003b).  

1.3.2. Effect of rumen fermentable starch on rumen dynamics and total tract 

digestibility 

As rumen starch digestibility increases, so does total tract starch digestibility 

(TTD). Specifically, according to a meta-analysis of different corn grain types and 

harvesting methods, for every 3.36% increase in rumen starch digestibility, there was a 

1% increase in starch TTD measured as a percentage of intake (Ferraretto et al., 2013). 

Rumen fermentable starch digestibility can range from 50-90% of starch intake, while 

post rumen digestion can range from 6-44% (Allen, 2000; Firkins, 2001). Although it is 

more efficient for fermentation of starch to occur in the rumen, post-rumen absorption 

and fermentation will compensate for the differences in rumen digestion for different 

grain types. This causes less variability in TTD between grain types and their 

conservation methods (Allen, 2000; Ferraretto et al., 2013). A majority of this variability 

within the rumen has to do with the grain type and the degree of processing the grain 

undergoes. 

In the rumen, amylolytic bacteria can either loosely or tightly attach to the grain 

particle. These bacteria work together to produce enzymes that hydrolyze the α 1-4 bonds 

of amylose and the α 1-6 bonds of amylopectin (Huntington, 1997). Increasing the 

opportunity for bacterial attachment by utilizing different processing methods allows for 
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greater rumen digestion of the starch granules. Cereal grain source affects the degree of 

rumen digestibility of starch. Starch in corn is 54.1% rumen digestible, while barley is 

70.6%, and wheat is 78.9%. Specifically, when looking at corn grain harvesting and 

processing methods, starch is numerically more rumen digestible when it is ensiled 

(64.1%) compared to when it is steam-treated (58.5%) or dry rolled, ground or cracked 

(53.5%; Ferraretto et al., 2013). Greater rumen digestibility also corresponded to greater 

starch TTD for the ensiled and steam-treated corn grain compared to dry ground corn 

because of the breakdown of the protein matrix prior to ingestion (Ferrareto et al., 2013). 

However, when looking at the TTD of the earlier mentioned cereal grain types, they had 

significantly different rumen starch digestibility, but there was no statistical difference 

in TTD of starch (Ferraretto et al., 2013). 

Starch digestion is not only related to grain type and processing method, but also 

to passage rate and intake. Increasing levels of intake correspond to an increase in rumen 

turnover rate of both the liquid and solid form of the digesta (Ferraretto et al., 2013; Van 

Soest, 1994). A study using two processing methods with two starch concentrations 

reported a greater passage rate of DGC compared to the HMC for both high (32%) and 

low (21%) starch concentrations (Oba and Allen, 2003b). However, there was a tendency 

for this relationship to be greater in the higher starch diets compared to low starch diets. 

The authors hypothesized that this was due to greater DMI in the high starch diets and 

because of the differences in physical characteristics between DGC and HMC. 

This increase in passage rate due to an increase in intake is thought to decrease 

starch TTD because of the reduced time for starch hydrolysis in the rumen (Ferraretto et 

al., 2013). However, depending on the grain type and processing method, the reduction 
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in rumen digestion of starch may be compensated for in the lower gastrointestinal tract, 

although there will be an inefficient use of microbial protein as it will pass into the feces 

(Allen, 2000).  

1.3.3 Effect of rumen fermentable starch on pH and fermentation 

Different grain types and conservation methods can affect rumen pH. A study 

using mid-lactation Holstein cows observed that when ground HMC was replaced with 

dry-cracked corn, there was a decrease in mean rumen pH from 5.82 to 5.67 and an 

increase in the hours per day when pH was <5.8 from 4.4 to 6.4 h (Krause and Combs, 

2003). Another study observed that when feeding steam-rolled barley to Holstein cows, 

there was a linear drop in pH as the processing of the barley increased (Yang et al., 2000). 

These declines in rumen pH are associated with greater production of volatile fatty acids 

(VFA) from the microorganisms fermenting starch in the rumen. Greater content of 

starch and RFS will decrease the acetate:propionate ratio because of the increase in the 

molar proportion of propionate (Firkins et al., 2006). A study that increased 

fermentability of diets by substituting refined corn for dry cracked shelled corn, while 

maintaining a similar starch content, altered the pattern of VFA. The increased 

fermentability resulted in a decrease in acetate molar percentage and an increase in 

propionate molar percentage, ultimately decreasing the acetate:propionate ratio (Krause 

et al., 2003).  

Highly fermentable diets have a greater risk of causing subacute rumen acidosis 

(SARA) in the cow. Rapid production of VFA will disturb the intrarumen acid-base 

balance causing a subsequent drop in rumen pH (Penner et al., 2011). If the pH nadir is 

sufficiently severe and prolonged, SARA will ensue (Humer et al., 2017). Currently, 
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there is a controversy surrounding the definition of SARA due to the lack of clinical 

symptoms, but one accepted guideline states that there is a higher risk of SARA if the 

rumen pH is below 5.8 for more than four to six hours per day (Humer et al., 2017).  

There has been extensive research on the consequences of SARA on host health 

due to the damage that occurs within the rumen epithelium resulting from increased 

acidity. A healthy rumen epithelium is the key to the stability of the animal’s energy 

balance through the metabolism and transport of rumen synthesized VFA (Steele et al., 

2009). Steele et al. (2009) observed substantial negative effects of the rumen stratified 

squamous epithelium (SSE) during SARA. They used light microscopy on the rumen 

papillae of a non-lactating dairy cow transitioning from a high forage (100% of DM) to 

a high grain (75% of DM) diet to categorize the morphological alterations in the rumen 

epithelium during the initial stages of rumen acidosis. They observed that the stratum 

corneum had evidence of sloughing, weakening its protective barrier function. They also 

observed that cellular adhesion in the stratum corneum and stratum spinosum were 

weakened (Steele et al., 2009). The sloughing of protective barrier cells and the 

weakening of cellular junctions shows that there may be rapid structural change to the 

rumen epithelium during SARA that compromises the integrity of the SSE, increasing its 

permeability (Steele et al., 2009).  

An increase in permeability can be detrimental for the ruminant because the 

degradation of cell junctions allows for microbes and lipopolysaccharide (LPS), a 

bacterial endotoxin, to bypass the protective barrier of the SSE to enter portal circulation 

(Steele et al., 2009). Lipopolysaccharide is a constituent of the outer membrane of gram-

negative bacteria, which are the major bacterial type of fiber-digesting microbes (Van 
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Soest, 1994).  Although LPS are bound to the outer membrane, they are released when 

the gram-negative bacteria lyse due to the drop in pH (Plaizier et al., 2012). Once LPS is 

in its free form, it is toxic and capable of evoking an immune response once it enters the 

blood circulation (Plaizier et al., 2012). This breach makes dairy cattle with SARA more 

susceptible to secondary disturbances such as liver abscesses and laminitis due to the 

translocation of free LPS (Beauchemin, 2007; Humer et al., 2017; Plaizier et al., 2012).  

1.3.4 Effect of rumen fermentable starch on intake and meal bouts 

The first conceptualization of a link between feed intake and the oxidation of 

fuels in the liver was in 1963 by Russek (Russek, 1963). He proposed that glucoreceptors 

in the liver were the influencing factors in the feeding behavior of dogs (cited by Allen 

et al., 2009). Since then, this theory, now known as the hepatic oxidation theory, has 

evolved into the idea that a signal stimulated by the oxidation of fuels in the liver reaches 

the brain and causes satiety (Allen et al., 2009). This process has been documented 

extensively in nonruminant animals such as rats and guinea pigs (Forbes, 1988). 

However, this theory proves challenging to apply to ruminant animals because of the way 

rumen fermentation changes the substrates that the liver oxidizes, as well as the timing 

of delivery for those substrates (Allen et al., 2009).  

The ruminant is different from a monogastric in many ways. Most monogastrics 

have steady meals throughout the day, causing a consistent pattern of substrate 

breakdown, glycogen breakdown, and gluconeogenesis regulation. Ruminants have a 

chronic upregulation of gluconeogenesis because the rapid breakdown of glucose in the 

rumen impedes the amount of glucose flowing to the small intestine. Metabolically, 

ruminants rely heavily on the end products of fermentation, specifically VFA, from the 
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rumen that provide precursors for glucose, amino acids, and fatty acids. Different diets 

result in differing patterns of VFA that reflect substrate composition and fermentability. 

Specifically, when diets have a large amount of RFS, there is an increase in the proportion 

of propionate relative to acetate (Firkins et al., 2006). 

Propionate is the primary glucose precursor for ruminants and appears to be more 

hypophagic than lactate or absorbed glucose (Allen, 2000). Propionate is thought to be 

the signal that stimulates satiety for ruminants since it is rapidly metabolizable, can 

stimulate hepatic oxidation in the liver, and is the primary end product of starch 

fermentation. However, the mechanism is not fully understood and infusion of propionate 

has resulted in inconsistent hypophagic responses due to hypothesized threshold 

responses (Allen, 2000; Oba and Allen, 2003a; Allen et al., 2009). In a study by Oba and 

Allen (2003a), DMI was not affected by lower rates of propionate infusion, but infusion 

did increase plasma glucose concentration. They hypothesized that when a considerable 

amount of incoming propionate is utilized for glucose synthesis, it does not have a 

hypophagic effect. However, as propionate infusion rates were increased, the effect on 

plasma glucose concentration decreased, suggesting that once the glucose demand from 

the body is met, then the use of propionate for gluconeogenesis decreases, causing a 

reduction in DMI (Oba and Allen, 2003a). 

Diets that are more fermentable have inconsistent effects on DMI in the literature. 

In a review by Allen (2000) comparing studies that used grains varying in starch 

digestibility, three out of the ten comparisons saw, on average, a 3 kg/d reduction in DMI 

when substituting more fermentable starch sources in the diets. The author hypothesized 

that this was due to increased propionate production and a shorter meal length and size 
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(Allen, 2000). However, seven out of the ten experiments saw no effect on DMI. The 

author hypothesized that the differences observed across the ten studies might be from 

the pattern of absorbed metabolic fuels, their clearance from the blood, or the animal’s 

own threshold to the diets. The hypophagic effects of highly fermentable diets is also 

more likely to affect cows in a lipolytic state (Allen, 2000). Albornoz and Allen (2018) 

evaluated the combined effects of dietary starch concentration and starch fermentability 

in the early postpartum cows. The starch treatments used DGC or HMC to manipulate 

fermentability and concentration (22 vs. 28%) by altering concentration of corn grain and 

soyhulls. They saw that there was a decrease in DMI when the higher fermentable starch 

source (HMC) was fed no matter the starch concentration but saw a greater reduction in 

DMI when HMC was fed at a higher concentration in the diet (Albornoz and Allen, 

2018). They saw no effect of starch concentration on DMI but hypothesized that this was 

due to the same forage NDF in the treatment diets that added a filling effect to the lower 

starch (22%) diets (Albornoz and Allen, 2018). It is likely that as lactation progresses 

and the lipolytic state diminished, distension in the rumen rather than hepatic oxidation 

in the liver would take over as the principal intake inhibitor (Allen and Piantoni, 2013).  

The pattern of fuel oxidation is a main regulator of feeding behavior (Allen et al., 

2009). As previously stated, the pattern of VFA traveling to the liver for oxidation is at 

a constant state because of the retention of digesta in the rumen and the grazing meal 

patterns of cattle. After meals and ingestion of new substrate, microorganisms rapidly 

produce VFA and the VFA are then absorbed through the rumen wall and into portal 

blood circulation (Allen et al., 2009).  For example, a more extensively processed grain, 

like HMC, can reduce meal size and therefore decrease intake (Oba and Allen 2003a). 
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Specifically, when HMC was fed in a high starch diet (32% of DM), there was a 1.7 kg/d 

decrease in DMI. This reduction in DMI was due to a reduction in meal size for cows fed 

the high starch, HMC treatment by 0.4 kg per meal. They hypothesized that this effect 

was due to greater rumen fermentation and propionate production. The type of grain used 

has also shown an effect. For example, starch from wheat and barley reduce intake more 

than diets that use corn and this relates to the availability of starch (Allen et al., 2009). 

Starch from wheat and barley are more readily fermentable in the rumen and therefore 

should produce more propionate at a faster rate compared to corn. McCarthy et al. (1989) 

evaluated the effects of different energy and protein sources using either ground-shelled 

corn (around 45% of diet) or steam-rolled barley (around 50% of diet) found a similar 

association. They found that diets that used ground-shelled corn as its energy source had 

a greater DMI response compared to diets with steam-rolled barley by almost 4 kg per 

day (McCarthy et al., 1989). They also observed greater production of VFA in diets with 

barley, and a trend for diets with barley to have a greater molar proportion of propionate. 

The authors hypothesized that these differences were due to barley’s increased levels of 

RFS compared to corn-based diets.  

1.3.6 Effect of rumen fermentable starch on lactation performance 

A high producing dairy cow requires up to three to six times as much energy as a 

cow at maintenance because of the energy demands from lactation (Church, 1988). An 

easy way to meet these energy demands is to add highly fermentable carbohydrates or 

starch sources to the diet to produce VFA. Propionate is the main VFA produced by the 

fermentation of starch (Van Soest, 1994). However, adding highly fermentable starch 

sources can cause milk fat content to decrease. In a meta-analysis looking at the effect of 
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different grain type and corn grain processing methods on lactation performance in dairy 

cows, for every 1% increase in RFS concentration there was a 0.02% reduction in milk 

fat (Ferraretto et al., 2013).  

Low milk fat in ruminants has been thoroughly investigated since its first mention 

in 1885 (cited by Van Soest, 1994), and has been a challenging syndrome to characterize 

because of its interrelationship with digestive processes and tissue metabolism (Bauman 

and Griinari, 2003).  There are a number of theories to explain the phenomenon, but they 

all begin with the same basis of alteration in rumen microbial processes.  

There is a clear relationship between milk fat yield and the production of VFA in 

the rumen, and the proportion of VFA produced correlates directly with the microbial 

populations present within the rumen (Van Soest, 1994). When there is more readily 

available starch for the amylolytic bacteria to breakdown, the population of amylolytic 

bacteria will increase, causing greater production of propionate, which decreases the 

rumen pH, inevitably decreasing activity of fibrolytic bacteria present in the rumen. Fiber 

fermentation produces acetate and butyrate, but simply producing less of these important 

VFA is not the cause of the depression in milk fat. Besides a decrease in fat content of 

milk, there is also a notable increase in unsaturation (Bauman and Griinari, 2003). This 

is peculiar because under normal circumstances, fatty acids are biohydrogenated to a 

more saturated form (Van Soest, 1994).  

Biohydrogenation is a process performed in the rumen by the microbes to dispose 

of hydrogen from the reducing environment of the rumen. Through this process, the 

microbes add hydrogen to free fatty acid double bonds, and this hydrogenation occurs 

rapidly after ingestion. If fully saturated, all double bonds will convert to single bonds. 
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However, saturation is normally not fully complete in the rumen and a variety of fatty 

acid intermediates are a consequence (Church, 1988; Van Soest, 1994). Trans-10 18:1 is 

an intermediate in the biohydrogenation of linoleic and linolenic acid. This major trans-

octadecenoic acid is a potent inhibitor of milk fat synthesis and has been shown to 

increase in milk fat during milk fat depression (MFD). An increase in trans-10 C18:1 is 

the result of a change in microbial processes that change the pathways of 

biohydrogenation and requires a dietary supply of unsaturated fatty acids (Bauman and 

Griinari, 2003). In a study that used either DGC or HMC, when feeding HMC, a more 

fermentable source, there was a reduction in milk fat percentage (Bradford and Allen, 

2004). They also saw that the HMC treatment had increased concentration of unsaturated 

fatty acids in the milk, specifically trans-10 18:1 (Bradford and Allen, 2004). 

In the case of diets with high fermentable starch, a depression in pH and a shift 

in VFA production is often observed with the change in microbial processes described 

above. The results from Griinari et al. (1999) showed that a lower pH results in 

incomplete biohydrogenation of fatty acids and an increase in trans-10 isomers. 

Therefore, it has been assumed that a consequence of SARA is MFD. In a study, 

replacing HMC for DGC in diets with either high or low starch (21% v. 32% starch), 

observed that the addition of HMC to high starch diets, results in decreased fat yield 

changes in rumen pH (Oba and Allen, 2003a). The study did not measure RFS in these 

diets, but the diets with HMC would be expected to have more RFS than diets with DGC 

because of likely increased fermentability. The results from these studies suggest that 

due to higher fermentability, there was less completion of rumen biohydrogenation, 
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increasing the production of trans-10 18:1 fatty acid isomer in the rumen, leading to 

MFD without any change in rumen pH.  

Milk fat is not the only component in milk composition affected by an increase 

in RFS. There has also been an association with increased propionate and microbial 

protein production allowing for an increased amount of amino acids available for milk 

protein production in the mammary gland (Firkins et al., 2006). Microbial protein 

supplies the ruminant with their essential amino acids, which the dairy cow utilizes for 

milk protein synthesis (DePeters and Cant, 1990; Firkins et al., 2006). In a meta-analysis 

comparing corn grain harvesting and processing methods effect on milk components, 

they observed an increase in milk protein when dietary starch concentrations were 

increased (Ferrareto et al., 2013). Firkins et al. (2001) observed a similar pattern in a 

previous review.  

1.3.7 Conclusions for starch 

Rumen fermentable starch is an important component of any dairy cattle ration. 

It provides energy to the high producing animal in the form of propionate, but the 

fermentability of these rations requires consideration. Negative effects on the animal’s 

health and production will occur if the diet is too fermentable. Understanding how the 

fiber component of the diet can work with or against RFS to have either positive or 

negative effects on the animal is an important concept in ruminant nutrition to understand 

to formulate diets for the high producing dairy cow.  

1.4. Interactions between fiber and starch: associative effects 

We often focus on specific measurements of the diet and this has helped to fine 

tune our understanding and ability to predict and understand responses to changing 
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metrics in the diet, but the diet is composed of multiple chemical and physical factors 

that interact. Interactions among feeds is a common occurrence in nutrition and are 

known as associative effects (Van Soest, 1994). By definition an associative effect is a 

feed interaction that can cause a positive or a negative effect on the animal’s productivity 

that often leads to an under- or overvaluation of the animal’s performance on the diet 

(Van Soest, 1994). More simply, an associative effect occurs when digestion or intake of 

one feed is not independent of another, showing a nonlinear result (Niderkorn and 

Baumont, 2009). Associative effects can occur to varying degrees depending on the 

combination of feed types in the diet, and so the composition and physical characteristics 

of the diet as a whole should be considered when determining animal response (Van 

Soest, 1994). For example, a figure in Van Soest’s Nutritional Ecology of the Ruminant 

(1994) illustrates the associative effects that occur when poor quality feed is substituted 

for high quality feed as shown in Figure 1. He explains that in different situations 

substituting poor quality for high quality feed can have either a positive or a negative 

effect. When substituting wheat straw with protein, there will be a positive effect because 

of the increase in nitrogen availability of the microbial population in the rumen. This 

allows for better utilization of the straw. However, when supplementing a high grain diet 

with a pelleted or finely chopped forage, there will be a negative effect, especially for 

rumen pH. Either way, the expected digestibility (the dashed line) will be different from 

the actual outcome. 
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Figure 1.1 Associative effects occur when poor quality feed (B) is substituted 

for high quality feed (A). The dashed line represented the expected digestibility, while 

the positive and negative effects are represented by the upper and lower curved lines, 

respectively. (Van Soest, 1994). 

Formulating rations is a balancing act between the different fractions of the diet 

that can cause associative effects. As previously discussed, high producing dairy cows 

require enough energy in their diets to reach their full production potential, but fiber is 

also essential for these animals to function at a high level. Inadequate levels of fiber, 

specifically peNDF, coupled with high levels of energy in the form of RFS is associated 

with SARA and MFD, while too much fiber and low RFS is associated with low feed 

intake and low milk production. 

This balancing act between RFS and fiber can also be thought of as a balance 

between the production of VFA and the neutralization and removal of VFA 

(Beauchemin, 2007). In other words, a balance between high feed intake, rapidly 

fermentable carbohydrates, increased acid production, and neutralization through 
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buffering, absorption of VFA through the rumen wall, and passage of digesta from the 

rumen (Beauchemin, 2007). All of these factors will affect the pH of the rumen 

(Beauchemin, 2007). Early research in this field has focused on in vitro work. This 

technique is used to study rate and extent of digestion and provides a lower cost option 

that is rapid and repeatable compared to live animal trials (Church, 1988).  

To understand the depression in fiber degradability when starch is added to 

forage-based diets, an in vitro study was designed to look at forage degradation kinetics 

(Mertens and Loften, 1980). The authors hypothesized that measuring NDF degradation 

kinetics would reveal the factors in forage fiber fermentation that were most affected by 

starch addition (Mertens and Loften, 1980). The treatments consisted of four forages: 

alfalfa, bermudagrass, fescue, and orchardgrass; and two starches: corn and wheat grain. 

There were four different inclusions of starch ranging from 0 to 80% as fed, while the 

acid detergent fiber and crude protein contents were held constant across diets. This study 

suggested that starch inclusion increased lag time prior to NDF degradation in vitro 

(Mertens and Loften, 1980). However, they found discrepancies between in vitro and in 

vivo fiber degradability because this effect cannot explain the extent of the depression in 

fiber degradability seen in in vivo studies. The authors hypothesized that this was due to 

differences in pH between the in vitro and in vivo systems (Mertens and Loften, 1980). 

The pH never dropped below 6.8 in the continuous culture system throughout the study, 

while a wide range of pH is observed in live animals. Rumen degradation of fibrous 

components is dependent on the pH of the rumen environment. Degradation is severely 

reduced at a pH that is below 6.2 and is considered insignificant below 6.0 (Stewart, 

1977; Dixon and Stockdale, 1999). Knowing this, the authors hypothesized that the acidic 
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conditions in the rumen when adding fermentable starch causes a reduction in fiber 

degradability because of the reduction in cellulolytic activity (Mertens and Loften, 1980). 

Later work building on this topic concluded that not only does low pH reduce degradation 

and digestion rates in the rumen, but the addition of starch will intensify these negative 

effects (Grant and Mertens, 1992). 

It is thought that adding fermentable starch to the rumen causes a cascade of 

effects that decreases the degradability of fibrous material (Dixon and Stockdale, 1999). 

Fermentation of substrates produces VFA. This decreases the pH when VFA production 

and concentration are often increased due to the rapid fermentation of starch coupled 

with a reduction in VFA transfer across the rumen wall. The decrease in rumen pH 

decreases the growth of cellulolytic rumen bacteria, therefore decreasing fiber 

degradation (Dixon and Stockdale, 1999).  

A reduction in rumen pH is not the only deterrent to fiber degradation. When 

forage and starch are fed together in a diet, the rumen’s fibrolytic bacteria are forced to 

compete for substrates that microbes utilize for growth such as nitrogen (Dixon and 

Stockdale, 1999). Rate of availability of substrates for energy and amino acids limits the 

rate of microbial growth in the rumen (Dixon and Stockdale, 1999). These growth 

substrates are going to be preferentially used by microorganisms that ferment starch, so 

fiber-degrading microorganisms are the most negatively affected (Dixon and Stockdale, 

1999).  In an in vitro suspension of rumen fluid, the degradation of cellulose was 

decreased with the addition of starch in the form of corn (el-Shazly et al., 1961). When 

urea was added to the suspension, there was less of decrease in degradation of cellulose 

(el-Shazly et al., 1961). This information shows that nitrogen is a limiting growth 
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substrate for fibroyltic bacteria. Fiber is degraded much slower compared to starch by 

the microbial ecosystem (Dixon and Stockdale, 1999). Following the ingestion of a diet 

with both forages and starch, substrates used for microbial growth are more likely to be 

utilized by starch digesting bacteria first. This leaves the fiber degrading bacteria to 

deteriorate and deplete (Dixon and Stockdale, 1999). 

Even though in vitro studies have their benefits, they restrict observations and do 

not allow for the observation of the animal’s response on digesta outflow, intake, or 

performance (Niderkorn and Baumont, 2009). An in vivo approach allows for a whole 

animal look at the interaction, and this approach is required to validate any observation 

that is observed in an in vitro experiment (Niderkorn and Baumont, 2009). A study 

designed to examine the potential of replacing soy hulls for forage fiber and to evaluate 

replacing soy hulls for corn grain, looked at lactation performance, rumen characteristics, 

and total tract digestibility (Sarwar et al., 1992). As NDF from forage decreased 

(replacement of forage for soy hulls), there was a linear increase in total VFA 

concentration, linear reduction in acetate to propionate ratio, and a reduction in pH. This 

corresponded to a decrease in organic matter total tract digestibility because the decrease 

in pH decreased the proportion of potentially digestible material in the rumen (Sarwar et 

al., 1992). However, there was no effect on lactation performance when replacing forage 

NDF for soy hulls.  

On the other hand, when replacing soy hulls for corn grain (decreasing the 

nonstructural carbohydrate component in the diets); there was a higher acetate:propionate 

that the authors related to a higher rumen pH. This corresponded to a linear increase in 

NDF digestibility. The authors hypothesize this is due to a decrease in negative 
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associative effects in the rumen (Sarwar et al., 1992). There was also a tendency for milk 

production to increase when feeding less nonstructural carbohydrates, and there was a 

linear increase in milk fat production and feed efficiency (FCM/net energy for lactation). 

1.5 Objectives and hypothesis 

It is important to understand how fiber will interact with RFS when formulating 

diets for peuNDF240. When a diet is low in peuNDF240, how will the fermentability of 

the diet affect the productivity of the animal? Will negative associative effects occur 

when the fermentability of the diet is too high? The objective of this study was to evaluate 

the effect of two dietary concentrations of peuNDF240 and two dietary concentrations of 

RFS on DMI, lactation performance, chewing behavior, rumen fermentation, rumen 

turnover, and total tract nutrient digestibility of high-producing Holstein cows. We 

hypothesized that diets that have lower peuNDF240 will have negative associative effects 

from starch and fiber interactions like milk fat depression, subacute rumen acidosis, and 

a decrease in NDF degradability. However, when diets have higher peuNDF240, these 

negative associative effects will be mitigated at moderate rumen fermentable starch 

content. 
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CHAPTER 2: EFFECTS OF PHYSICALLY EFFECTIVE UNDEGRADABLE 

NEUTRAL DETERGENT FIBER AND RUMEN FERMENTABLE STARCH 

ON INTAKE, LACTATION PERFORMANCE, RUMEN FERMENTATION, 

RUMEN DIGESTA CHARACTERISTICS, AND NUTRIENT DIGESTIBILITY 

OF LACTATING HOLSTEIN COWS 

2.1. Abstract 

Sixteen multiparous Holstein cows were used in a 4 x 4 replicated Latin square 

design with a 2 x 2 factorial arrangement of treatments to evaluate the effect of feeding 

different dietary concentrations of physically effective undegradable neutral detergent 

fiber after 240-h of fermentation (peuNDF240) and rumen fermentable starch (RFS; 7-h 

in vitro starch digestibility) on dry matter intake (DMI), milk yield and composition, 

chewing behavior, rumen pH, volatile fatty acids, rumen digesta turnover, and total tract 

nutrient digestibility. Within period, the adaptation period was d 1 to 18 while the 

collection period was d 19 to 28. Diets differed in peuNDF240 and RFS by inclusion of 

either brown midrib or conventional corn silage hybrids and varying the concentration of 

corn meal and beet pulp. The peuNDF240 was measured as the uNDF240 content of the 

physically effective fraction (retained on 1.18-mm screen with dry vertical sieving) of 

the ration. Analyzed treatment composition was: 1) low peuNDF240 (6.4% of DM), low 

RFS (16.7% of DM); 2) low peuNDF240 (6.1% of DM), high RFS (19.2% of DM); 3) 

high peuNDF240 (8.6% of DM), low RFS (16.9% of DM); and 4) high peuNDF240 

(8.0% of DM), high RFS (19.0% of DM). Data were summarized by collection period 

and analyzed with fixed effects of RFS, peuNDF240, and the interaction of peuNDF240 

and RFS within a square, and period using the MIXED procedure of Statistical Analysis 



43 

System. Significance was declared at P ≤ 0.05 and a trend was declared at 0.05 < P ≤ 

0.10. Cows fed higher peuNDF240 diets consumed less DMI as a percentage of body 

weight than cows fed lower peuNDF240 (P = 0.04). Additionally, the higher peuNDF240 

diets resulted in greater uNDF240 intake while the higher RFS diets increased starch 

intake as expected. Cows fed diets containing higher RFS produced less milk fat and 

3.5% fat-corrected milk (FCM) than cows fed lower RFS (P = 0.01). Lower peuNDF240 

diets resulted in lower mixed origin fatty acids in milk fat (P = 0.008) and a greater degree 

of unsaturation (P = 0.005). Overall, higher RFS diets tended to reduce the efficiency of 

FCM production (FCM/DMI) compared with lower RFS diets (P = 0.06). There was no 

effect of peuNDF240 or RFS on eating or ruminating time per day, but higher RFS diets 

reduced meal length (P = 0.05) and increased daily meal bouts (P = 0.04). Reflecting 

changes in milk fat, the lower RFS diets reduced acetate:propionate ratios (P = 0.05) 

whereas the higher peuNDF240 diets increased isovalerate molar proportion (P = 

<0.001). There was no effect of treatment on measures of rumen pH. Diets with higher 

RFS tended to increase rumen pool size of starch (P = 0.06) while higher peuNDF240 

diets increased pool size of uNDF240 (P = 0.06) although there were few dietary effects 

on rumen turnover of starch or uNDF240. Lower peuNDF240 diets resulted in greater 

total tract NDF digestibility than higher peuNDF240 diets (P = 0.002). Feeding 

moderately high levels of RFS (19% of ration DM) depresses FCM production when 

diets contain relatively low concentrations of uNDF240 and peuNDF240.  

2.2 Introduction 

Carbohydrates make up approximately 70% of diets fed to lactating dairy cows 

and are the major source of energy for both the rumen microbiota and the cow (NRC, 
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2001). Carbohydrates can be broadly classified as either structural or nonstructural based 

on their location in the plant, and the more common of these two fractions used in diet 

formulation are fiber and starch.  

The NDF content of forages and TMR quantifies, but does not explain all, of the 

variation in DMI as source and content of NDF in the ration varies (Van Soest, 1994). 

The chemical composition, rumen degradability, and particle size characteristics of NDF 

all affect cow responses to forage (Mertens, 1997). The NDF is comprised of an 

undegradable and potentially degradable fraction. The potentially degradable fraction 

can be separated into a fast and slow fermenting pool (Raffrenato et al., 2018). The 

indigestible component of NDF is measured as undegradable NDF (ash-corrected) after 

a 240-h in vitro fermentation (uNDF240om) and represents the remaining NDF residue 

after complete fermentation (Mertens, 2016; Raffrenato et al., 2018).  The amount of 

uNDF240om is highly negatively correlated to DMI in the cow because of the effect on 

gut fill, as well as degradation and passage dynamics in the rumen (Mertens, 2016; Miller 

et al., 2021). Greater rumen turnover of the fast fermenting, slow fermenting, and 

uNDF240om pools allows for greater DMI, but greater uNDF240om in the diet decreases 

turnover rate of NDF within the rumen because the retention time of digesta is increased 

(Miller et al., 2021).  

Although too much dietary aNDFom and uNDF240om can limit DMI, too little 

may compromise rumen health and digestive efficiency. Diets with uNDF240om greater 

than 10.0% of DM are more likely to limit DMI due to gut fill limitations (Miller et al., 

2020).  But there is little information about the lower end of this range. Previous research 

with cows fed diets containing less than 30% NDF (DM basis) indicates an increased risk 
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of subacute rumen acidosis (SARA) because of the increase in turnover rate and DMI, 

but research is needed to understand how lower uNDF240om affects rumen pH, 

fermentation, and digesta turnover (Raffrenato et al., 2018).  

In addition to NDF degradability, forage particle size can also influence rumen 

fermentation and animal health (Mertens, 1997). The dairy cow requires physically 

effective fiber which influences chewing activity and rumen digesta mat development 

(Mertens, 1997). Diets that are higher in physically effective NDF (peNDF) increase the 

amount of eating and ruminating time, or total chewing time because of a larger particle 

size or physical effectiveness factor (pef; Jiang et al., 2017; Smith, 2019). In diets 

comprised of dry forages and silages, particle size has a greater effect on eating time 

compared to ruminating time when it is long (i.e, 50 mm) because the cow must break 

down the diet to a swallowable size of 10 to 11 mm (Schadt et al., 2012). Once the diet 

reaches the rumen it is a relatively uniform size. However, shorter feed particle sizes (i.e., 

13 mm) have a greater effect on rumination because they are not long enough to stimulate 

regurgitation (Schadt et al., 2012). This can negatively impact rumen pH because there 

will be a decrease in saliva production associated with rumination (Zebeli et al., 2012).  

A five-study database that consisted of corn silage and haycrop silage-based diets 

was developed to understand the relationship that uNDF240 and pef have with DMI and 

energy-corrected milk (Miller et al., 2020).  This database consisted of a range in 

uNDF240 of 5.5 to 11.5% and a peuNDF240 of 4.0 to 7.3% (Miller et al., 2020).  By 

combining both the physical and chemical aspects of the diet by multiplying the pef by 

the uNDF240om, a new measurement of physically effective uNDF240om (peuNDF240) 

was created to better describe the fiber characteristics of a forage or TMR (Smith, 2019; 
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Miller et al., 2020). The authors noted that peuNDF240 was better able to predict DMI 

compared to using uNDF240 alone (R2 = 0.60 vs. 0.32, respectively; Miller et al., 2020). 

A similar pattern was observed for energy-corrected milk (ECM) as peuNDF240 

increased predictability of ECM compared to uNDF240 alone (R2=0.78 vs. 0.58, 

respectively Miller et al., 2020).  

Interactions among feed ingredients, known as associative effects, are well 

known occurrences in nutrition (Van Soest, 1994). An associative effect can cause either 

a positive or negative effect on animal productivity meaning one feed is not independent 

of another, showing a nonlinear result (Niderkorn and Baumont, 2009).  Specifically, 

interactions between starch on rumen fiber degradation and peNDF requirements are well 

known. An in vitro study observed an increase in lag times prior to NDF degradation 

with an increased inclusion of starch (Mertens and Loften, 1980). Subsequent research 

in vivo has shown that as the fermentability of starch increased, SARA can occur, milk 

fat can decrease, and NDF degradation can decrease (Bradford and Allen, 2004; Agle et 

al., 2010; Albornoz et al., 2019). A better understanding of how starch and fiber interact 

in the rumen is needed so nutritionists can improve the delivery of energy to the animal. 

Diets formulated to contain more physically effective fiber can be used to 

mitigate lower rumen pH in diets that are highly fermentable. Diets that have a 

peuNDF240 of 4.0% of DM are more likely to be lower in forage, or at least have less 

undegradable forage like straw, hay, or haycrop silage. In past research on the physical 

and/or chemical characteristics or fiber, starch has been held constant so there is little 

information on how negative associate effects would affect the cow. There is needed 

information on how different rumen fermentable starch contents influence rumen 
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dynamics in diets that differ in peuNDF240 content. Specifically, when peuNDF240 

content is on the lower end of what would be fed in the industry (~4.0%), will moderate 

rumen fermentable starch have negative effects on the animal?  

The objective of this study was to evaluate the effect of two dietary concentrations 

of peuNDF240 and two dietary concentrations of rumen fermentable starch (RFS) on 

DMI, lactation performance, feeding behavior, rumen fermentation, rumen turnover, and 

total tract digestibility of high-producing Holstein cows. We hypothesized that diets that 

have lower peuNDF240 will have negative associative effects like milk fat depression, 

subacute rumen acidosis, and a decrease in NDF degradability when diets have only 

moderate rumen fermentable starch contents. However, when diets have higher 

peuNDF240, these negative associative effects will be mitigated at moderate rumen 

fermentable starch contents. 

2.3. Material and Methods 

This study was conducted at the William H. Miner Agricultural Research Institute 

in Chazy, NY. All experimental procedures involving cows were approved by the 

William H. Miner Agricultural Research Institute Animal Care and Use Committee 

(ACUC# 2017AUR02).  

2.3.1 Experimental design and management of cows 

Sixteen lactating Holstein cows (8 rumen cannulated) that were 85 ± 15 DIM 

were enrolled, blocked by parity, DIM, and milk production and were used in a replicated 

4 × 4 Latin Square design with a 2 × 2 factorial arrangement of treatments. The study 

had four 28 d periods. Each square was conducted concurrently with the first 18 d of the 

period serving as an adaptation period and the last 10-d serving as the collection period.  
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The objective was to evaluate the effect of lower or higher concentrations of 

peuNDF240 and lower or higher concentrations of RFS using 2 x 2 factors (Table 2.1). 

The four diets were formulated with either lower or higher concentration of peuNDF240 

by using either brown midrib-3 (BMR) or conventional corn silages (CON), and the RFS 

concentration varied with lower or higher corn meal inclusion (Table 2.2). Prior to the 

start of the study, the corn silages and the timothy hay were spot sampled and analyzed 

using wet chemistry analysis [CPM Plus; Cumberland Valley Analytical Services 

(CVAS), Inc., Waynesboro, PA] to provide initial nutrient composition values. Feed 

library values were used for nutrient composition of grain mix ingredients, beet pulp, 

corn meal, and wheat straw for ration formulation (AMTS.Cattle.Professional, 

Agricultural Modeling & Training systems, LLC, Groton, NY; version 4.8; Table 2.3). 

The four dietary treatments were: (1) lower RFS and lower peuNDF240: (2) 

higher RFS and lower peuNDF240: (3) lower RFS and higher peuNDF240: and (4) 

higher RFS and higher peuNDF240.   Diets (Table 2.1) were formulated for high 

producing lactating Holstein cows producing 61 kg of milk/d, consuming 29 kg of DM/d, 

and weighing 795 kg using a commercial ration formulation platform with Cornell Net 

Carbohydrate Protein System biology (AMTS).   

 Cows were fed a TMR for ad libitum intake (approximately 1.10 x expected 

intake) once daily at 1400 h.  Diets were mixed and delivered daily with a Super Data 

Ranger (American Calan, Inc., Northwood, NH). Cows were housed in a tie-stall barn 

equipped with individual feed boxes. Cows were removed from the stalls three times 

daily (0430, 1230, and 2030 h) for milking in a double-twelve parallel milking parlor 

(Xpressway Parallel Stall System; Bou-Matic, Madison, WI). Cows were moved through 
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an animal handling area at the beginning and end of each period after the 1230 h milking 

for body weight determination. 

2.3.2. Data collection, sampling procedures, and analytical methods  

Feed Ingredients and Diets. During the adaptation period, forages, diets, and orts 

were collected three times per week. Grain mixes were collected once per week. A 

portion of each sample was dried in a forced-air oven at 105°C for 18 to 24 h for DM 

determination. Diets were adjusted for changes in DM content of the feed ingredients 

when a feed ingredient DM value was outside the normal range (mean ± 1.2 standard 

deviations used, in general, as the normal range). 

During the collection period, feed ingredients, diets, and orts were collected daily, 

stored frozen at -20°C, and then composited by collection period by combining equal 

volumes from each portion of the daily as-fed samples. A portion of each sample was 

dried in a forced-air oven at 105°C for 18 to 24 h. The composites of feed ingredients 

were analyzed for chemical composition using wet chemistry analysis [CPM Plus; 

Cumberland Valley Analytical Services (CVAS), Inc., Waynesboro, PA]. Analyses 

included DM, ash (method 942.05; AOAC International, 2012), OM (method 942.05; 

AOAC International, 2012), CP (method 990.03; AOAC International, 2012), soluble 

protein according to Krishnamoorthy et al. (1982), ether extract (method 2003.05; AOAC 

International, 2012), ADF (method 973.18; AOAC International, 2012), NDF using α-

amylase on OM basis (Van Soest et al., 1991), ADL (Goering and Van Soest, 1970), 

starch according to Hall (2009), sugar as ethanol soluble carbohydrates according to 

DuBois et al. (1956), and minerals (method 985.01; AOAC International, 2012). 
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A portion of the forage and diet composite samples was used to determine particle 

size distribution on an as-fed basis using a Penn State Particle Separator (Lammers et al., 

1996) modified to include a 4-mm screen. A portion of the period composite samples for 

forages and grain mixes was also used to determine particle size distribution on a DM 

basis (55°C) by dry vertical sieving (Ro-Tap testing sieve shaker model B; W. S. Tyler 

Combustion Engineering, Inc., Mentor, OH) for 10 min.  

Undegraded NDF, on an OM basis, for 30-, 120-, and 240-h time points 

(uNDF30om, uNDF120om, uNDF240om) for forages and 12-, 72-, and 120-h time 

points (uNDF12om, uNDF72om, uNDF120om) for the corn meal, grain mixes, and beet 

pulp were assessed using an in vitro rumen fermentation system (Raffrenato et al., 2019). 

Fermentation analysis was determined on the forage composite samples (CVAS). Starch 

digestibility at 7-h (Starch D; CVAS) was determined on the composite samples of corn 

silage, TMR, and corn meal. The RFS of the diet was calculated by multiplying the Starch 

D by the starch content in the composited TMR samples. The calculated peuNDF240 

was achieved by multiplying pef by the uNDF240om content of the diet (Smith, 2019) 

which assumes an equal distribution of uNDF240om across all sizes of particles in the 

diet. 

A study composite was made of all diets where all four periods within diet were 

combined into one sample on an AF basis. A portion of the study composite for each diet 

was used to determine analyzed peuNDF240 by directly measuring the uNDF240om 

content in the portion of the diet that was retained on the ≥1.18 mm sieve. This approach 

does not assume an equal distribution of uNDF240 across all particle size fractions of the 

diet unlike the calculated peuNDF240.  Each composite sample was separated using dry 
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vertical sieving (Ro-Tap), and then separated at the 1.18-mm sieve. This gave two 

separate samples, the physically effective portion of the diet and the non-physically 

effective portion of the diet. The physically effective samples were used to conduct 

fermentation analysis using an in vitro rumen fermentation system for 240-h (Raffrenato 

et al., 2019).  

Dry Matter Intake. Individual DMI was determined by recording feed offered 

and refused daily. Samples of diets and orts were collected on d 19 to 28, composited by 

period and cow, and a portion of each composited sample was dried in a forced-air oven 

at 105°C for 18 to 24 h for DM determination.  

Milk Yield and Composition. Milk yield was recorded electronically at each 

milking (ProVantage Information Management System; Bou-Matic, Madison, WI). Milk 

samples from six consecutive milkings for each cow were collected on d 25 and 26 of 

each period. The milk samples were analyzed for fat, true protein, lactose (anhydrous), 

solids nonfat, urea nitrogen, and de novo, mixed, and preformed fatty acids by mid-

infrared procedures (CombiScope FTIR 300 Hp; Delta Instruments, Drachten, The 

Netherlands; Wojciechowski and Barbano, 2016; Wojciechowski et al., 2016; Woolpert 

et al., 2016). Somatic cell count was analyzed by flow cytometry (CombiScope FTIR 

300 Hp, Delta Instruments, Drachten, The Netherlands). Milk samples were composited 

mathematically by day, after analysis, in proportion to milk yield at each sampling within 

a day. Somatic cell count was transformed and analyzed as SCS according to Shook et 

al. (1993) using the equation: SCS = log2(SCC/100) + 3 where SCC is in units of 1,000 

cells/mL. Fat-corrected (3.5%) milk was calculated as 0.4324 × kg of milk + 16.216 × 

kg of fat (Hutjens, 2005). Solids-corrected milk (SCM) was calculated according to 
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Tyrrell and Reid (1965): [(12.3 × kg of fat) + (6.56 × kg of solids non-fat) – (0.0752 × 

kg of milk)]. Energy-corrected milk was calculated using a formula modified to account 

for use of true protein instead of total protein (Tyrrell and Reid, 1965; as cited by Mark 

Stephenson, University of Wisconsin; 

https://dairymarkets.org/PubPod/Reference/Library/Energy%20Corrected%20Milk): 

0.327 × kg of milk + 12.95 × kg of fat + 7.65 × kg of true protein. 

Feed Efficiency. On d 20 through 28 of each period, DMI and milk production 

data was averaged over the period and used to calculate feed efficiency. Feed efficiency 

(kg/kg) was expressed as milk/DMI, FCM/DMI, ECM/DMI, and SCM/DMI.   

Body Weight and Body Condition Score. Body weight was measured (Allweigh 

computerized scale; Allweigh Scale System Inc., Red Deer, AB, Canada) and BCS was 

assigned in 0.25-unit increments on a 1 to 5 scale (Ferguson et al., 1994) at the end of 

each period. Three individuals assigned BCS independently at each time of scoring 

throughout the study. 

Total Tract Nutrient Digestibility. Total tract digestibility was determined on d 

19 to 22 of each period by collecting diet, ort, and fecal samples. Representative samples 

of the diets were taken and composited by treatment and period (Harvatine and Allen, 

2006). Representative samples of the orts were collected for each cow and composited 

by cow by period. Fecal grab samples were collected on d 20 to 22 for each period so 

that every 3 h in a 24-h period was represented (eight samples total). Fecal samples from 

each cow were composited by combining approximately 112 mL of wet feces from each 

time point and for each period.  
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Samples of diets, orts, and feces were frozen at -20°C until further analysis. 

Composited samples were dried in a forced-air oven at 55°C for 48 h, ground to pass 

through a 1-mm screen (Wiley mill; Arthur H. Thomas, Philadelphia, PA), and submitted 

for chemical analysis (CVAS).  Composite samples of diets (by period), orts (by cow and 

period), and feces (by cow and period) were analyzed for DM, ash, aNDFom, starch, and 

uNDF240 (Van Soest et al., 1991; Hall, 2009; method 942.05, AOAC International, 

2012; method 973.18, AOAC International, 2012). Undegraded NDF residue in diets, 

orts, and feces was quantified as NDF content of samples following an in vitro rumen 

fermentation (Raffrenato et al., 2017) in buffered rumen media for 240-h.  The uNDF240 

value was used as an internal marker. Total tract digestibility was calculated by the ratio 

technique using the concentrations of the nutrients and uNDF240 in the diet and feces. 

The nutrient content of the diet used in the digestibility calculation was adjusted for each 

cow based on the nutrient composition of the diet offered and refused. 

Rumen Fermentation. Rumen pH was measured in the rumen cannulated cows 

(n = 8) with an indwelling rumen pH/ORP/REDOX measurement system (Penner et al., 

2006; LRCpH; Dascor, Escondido, CA) at 1-min intervals for a 96-h period from d 23 to 

26 of each period. Rumen pH measurements were averaged over a 10-min period within 

day and summarized as mean pH, minimum pH, maximum pH, pH range, the area that 

the pH curve was below a pH of 5.8 and 6.0, and minutes per day that pH was below 5.8 

and 6.0.  

Samples of rumen fluid (approximately 500 mL) were collected by hand grab 

method from beneath the rumen digesta mat at 4 h intervals for 24-h starting at feeding 

time on d 26 of each period. Feeding and the associated sampling times were staggered 



54 

by 10-min between squares of cows to allow for collection of samples at desired times.  

Samples were strained though 4 layers of cheesecloth. A portion of each sample of rumen 

fluid (approximately 40 mL) was frozen and stored at -20°C until analysis for VFA molar 

proportions (Bulletin 856B; Supelco, Inc., Bellefonte, PA). Volatile fatty acid molar 

proportions were determined by gas chromatography with use of a Varian CP-3800 gas 

chromatograph (Varian, Inc., Palo Alto, CA) equipped with a flame-ionization detector 

and an 80/120 Carbopack B-DA/4% Carbowax 20M column (Supelco, Inc., Bellefonte, 

PA). Ten mL of rumen fluid was added to 100 µL of concentrated HCl and frozen at -

20°C until analysis of rumen NH3-N concentration using a colorimeter (Chaney and 

Marback, 1962).  

Chewing Behavior. Cows were monitored for chewing activity (i.e., eating and 

ruminating) and posture (i.e., standing and lying) every 5 min for 72-h (d 23 to 25). Total 

time, in minutes, spent on each activity for each day was quantified by multiplying the 

total number of observations for that activity by 5 min. Number of bouts and the length 

of bout of eating and ruminating were recorded. A bout was defined as at least two 

consecutive observations of eating or ruminating behavior not interrupted by more than 

four observations, or 20-min, of a different behavior (Black et al., 2016). 

Rumen Evacuations and Analysis of Pool Size and Turnover. Rumen contents 

of rumen cannulated cows (n = 8) were evacuated manually through the ruminal cannula. 

To ensure that cows experienced the same interval of time between rumen evacuations, 

feeding and the associated sampling times were staggered between squares of cows. The 

first group was evacuated 3.5 h after feeding on d 27 and 20.5 h after feeding on d 28. 

The second group of cows were evacuated 4.5 h after feeding on d 27 and 19.5 h after 
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feeding on d 28. Rumen content mass and volume were determined.  During the 

evacuation, approximately 10% of the contents was subsampled and squeezed through a 

nylon screen (1-mm pore size) to separate solid and liquid phases and each phase as 

weighed.  

Aliquots (~300 g) from both the solid and liquid phases were collected.  

Remaining rumen contents were returned to the cow within 60 min of initiating the 

evacuation. Subsamples of each phase were frozen at -20°C, dried at 55°C, ground 

(solids: 1-mm screen; Wiley mill; liquid: 2-mm screen, UDY Cyclone Sample Mill; UDY 

Corp., Fort Collins, CO), and recombined based on the proportion of DM of each phase. 

The recombined ruminal contents were analyzed for ash (modified method 942.05; 

AOAC International, 2012; 4-h at 600°C), aNDFom (as described previously), 

uNDF240om, and starch (Hall, 2009; Raffrenato et al., 2018; CVAS).  

Rumen pool size of OM, aNDFom, uNDF240om, and starch were calculated as 

the product of the DM mass of the rumen contents and the nutrient content of the rumen 

contents. Rumen turnover rate (%/h) of OM, aNDFom, uNDF240om, and starch were 

calculated as [100 ´ (intake of nutrient/rumen pool of nutrient)/24] (Voelker and Allen, 

2008). Nutrient intake was calculated using DMI from d 27 and 28 and the nutrient 

content of the diets from d 20 to 28. Rumen turnover time (h) was calculated as 1/[rumen 

turnover rate (%/h)/100]. 

Statistical Analysis. Statistical computations were performed using the Statistical 

Analysis System (SAS; version 9.4; SAS Institute Inc., Cary, NC). Data from the analysis 

of feed ingredients and diets were analyzed using the MEANS procedure of SAS and are 

reported as descriptive statistics (mean ± standard deviation).  
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Data were checked for homogeneity of variance and normality assumptions using 

Shapiro-Wilk and Levene’s test.  All available data collected during the last 10-d of each 

period (DMI, milk yield and composition, feed efficiency, BW, BCS, and rumen pH) 

were analyzed as a replicated Latin square design with a 2 x 2 factorial arrangement of 

treatments. The model included fixed effects of RFS, peuNDF240, and RFS × 

peuNDF240 interaction, period, and square using the MIXED procedure of SAS. Cow 

within square was a random effect. Repeated measurements of performance data from 

collection period (i.e., DMI, milk yield and composition, BW, BCS, and rumen pH) were 

reduced to period means for each cow before statistical analysis. The data for ammonia 

and VFA were analyzed using repeated measures of time using the MIXED procedure of 

SAS. This model included the effect of RFS, peuNDF240, and RFS × peuNDF240 

interaction, period, hour, and also the interaction of RFS × peuNDF240 and hour. Cow 

within replicated square was included as a random effect. Least squares means were 

separated using the Tukey’s procedure when a significant F-test (P £ 0.05) was detected. 

Significance was declared at P ≤ 0.05 and trends at 0.05 < P ≤ 0.10. 

Data from 14 of 16 cows enrolled in the study were used for statistical analysis. 

One non-cannulated cow did not finish the study due to severe mastitis in the third period 

that was caused by Klebsiella (Quality Milk Production Services, Ithaca, NY) and her 

data was not included in final dataset. One cannulated cow was removed from the dataset 

due to two mastitis incidences during two of the sampling periods caused by Klebsiella 

in which she was not sampled but at the time was not removed from the study. 

2.4 Results and Discussion 

2.4.1 Dietary and ingredient nutrient composition 
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Table 2.1 presents the formulated ingredient composition of the four treatment 

diets. All diets contained 47.6% of DM as corn silage and included either BMR corn 

silage (low peuNDF240 diets) or CON corn silage (high peuNDF240 diets). All diets 

contained 7.90% of DM as timothy hay and 1.59% of DM as chopped wheat straw. The 

ratio of beet pulp and corn meal varied among diets to achieve the targeted concentration 

of dietary starch and RFS for each diet. The two grain mixes (lower RFS grain mix and 

higher RFS grain mix; Table 2.1) were formulated to keep other dietary nutrient fractions 

similar across the four diets.  

The goal of the study was to have the higher peuNDF240om diets have uNDF240 

content within the range of 8.8 to 11.5% of DM as shown in Table 2.2 and the lower 

peuNDF240om diets were targeted to have approximately 7.0% uNDF240. Table 2.3 

contains the analyzed chemical composition of the ingredients fed to cows throughout 

the study. The uNDF240om content of the CON corn silage during the study was lower 

than what was estimated when the diets were formulated. Therefore, the resulting 

uNDF240om for all four experimental diets averaged 7.03 ± 0.96% of DM.  

Across diets, we aimed to keep aNDFom, pef, and peNDF similar which is in 

Table 2.4 for the dietary ingredients and Table 2.5 for the diets. The aNDFom for the 

diets was 32.9 ± 0.5% of DM approximately. The pef was 0.58 ± 0.02 and the peNDF 

were 19.1 ± 0.5% of DM approximately. Results from Smith (2019) showed that 

calculated peuNDF240 value could be a useful measurement in integrating the effects of 

particle size and NDF undegradability into one measurement to more accurately predict 

DMI and ECM.  
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Calculated peuNDF240 values for the treatment diets are in Table 2.5 and 

averaged 4.09 ± 0.11% of DM. Although they are similar, the calculated peuNDF240 is 

an accurate depiction of these diets. When comparing the diets to the Miller et al. (2020) 

database, the diets were at the lower calculated peuNDF240 range. The diets fit the 

pattern of increased DMI and ECM with lower peuNDF240. However, to separate these 

diets based on their fiber characteristics, an analyzed peuNDF240 was used. We 

hypothesized that these diets did not have a uNDF240 content that was uniformly 

distributed across the different particle sizes. This would explain why there were 

treatment differences based on the fiber characteristics of the diet, discussed later. 

Analyzing the peuNDF240 directly aided in distinguishing the uniformity of the 

uNDF240 content that the calculated peuNDF240 was unable to detect.  

There is little information about differences in uniformity of uNDF240 across a 

diet or a forage and more research is needed in this area. In previous work on uNDF240, 

the distribution of uNDF240 was assumed to be similar across particle sizes within diets. 

In this study, this appeared to not be a correct assumption, and it was assessed whether 

uNDF240om was uniformly distributed above the 1.18-mm sieve by directly measuring 

the uNDF240 of the physically effective fraction (Poppi et al., 1985). Since uNDF240om 

was not uniformly distributed in this present study, a calculation of peuNDF240 (i.e., pef 

× uNDF240) did not capture the true undegradability of the physically effective fraction 

to the degree that was necessary to differentiate between the diets. The analyzed 

peuNDF240 is reported in Table 2.6. For the lower analyzed peuNDF240 diets, the 

peuNDF240 averaged 6.21 ± 0.14% of DM, and for the higher peuNDF240 diets, the 

peuNDF240 averaged 8.30 ± 0.30% of DM.  This approach is a more accurate 
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measurement for these treatment diets compared to a calculation that assumes equal 

distribution of uNDF240om across all particle sizes because it detects more specific 

differences in the chemical and physical characteristics of these diets.  

During the study, the CON (36.8 ± 0.4% of DM) and BMR (37.9 ± 2.7% of DM) 

corn silages were lower in starch than what was used for initial formulation (40 and 41% 

of DM, respectively). This resulted in a reduction in starch content and RFS in all of the 

diets. The calculated chemical composition of starch in the diets averaged 20.8 ± 0.1 and 

24.7 ± 0.1% of DM for the low and high RFS diets, respectively. This resulted in an RFS 

of 16.8 ± 0.1% of DM for the lower RFS diets and 19.1 ± 0.1% of DM for the higher 

RFS diets. Although the starch content of the treatment diets was not as high as we had 

formulated for, there was still a 4 percentage-unit difference between the higher and 

lower RFS diets for starch content and a 2.5%-unit difference between RFS levels. 

2.4.2 Dry matter intake 

There were no interactions between peuNDF240 and RFS for DMI, represented 

as either kilograms per day or as a percentage of BW per day, among the four diets as 

shown in Table 2.7 (P > 0.10).  However, there was a significant effect of peuNDF240 

on DMI as a percentage of BW with cows fed the lower peuNDF240 diets consuming 

more than the cows on the higher peuNDF240 diets (4.22 ± 0.02 vs. 4.30 ± 0.02 % of 

BW/d; P = 0.04). This was expected as the higher peuNDF240 diets would have a greater 

amount of undegradable feed in the pef which could limit intake and passage rate (Allen, 

2000). A cow is limited by how much physical space she has available in her rumen and 

is affected by the particle size and the undegradable fiber portion of the diet (Van Soest, 

1994; Allen, 2000).  
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Research evaluating the effect of fiber degradability on intake has consistently 

shown that a more degradable diet will increase DMI because of a reduction in rumen 

and digestive tract fill (Block et al., 1981; Mertens, 1997; Oba and Allen 1999; Tine et 

al., 2001). Recent research has compared BMR, a corn silage hybrid bred to have lower 

lignin content, and conventional corn silage to study how diets with greater NDF 

degradability affects DMI (Gencoglu et al., 2008). A review found that, on average, there 

was a 1.2 kg/d increase in DMI when more degradable diets were fed (Gencoglu et al., 

2008). In contrast, other studies (Frenchick et al., 1976; Sommerfeldt et al., 1979) have 

not observed increases in DMI, most likely due to differences in stage of lactation, diet 

composition, or similar degradabilities of the corn silages, which may be the case with 

the present study. There was a small numerically but significant effect of peuNDF240 on 

BW where the cows fed the higher peuNDF240 diets weighed, on average, 8 kg more. 

There was no effect on BCS. 

Starch fermentability can also influence DMI. In a meta-analysis that evaluated 

the effect of diet on short-term feed intake regulation, daily DMI of lactating cows in 3 

out of 10 comparisons observed a significant increase in DMI when diets with greater 

rumen starch fermentability was fed (Allen, 2000). This effect was speculated to be 

caused by increased VFA production, specifically propionate (Allen, 2000). The 10 

studies had a range of 19 to 45% of DM in starch content. The diets that resulted in a 

decrease in DMI had a starch content of 29 to 45% which would be considered high for 

typical formulations for high producing dairy cows in the US.  The diets in the current 

study had moderate starch content, less than 25% of DM, and RFS was less than 20% 

and had no effect (P > 0.10) of RFS level on DMI. Potentially, there was not a high 
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enough inclusion of starch for RFS to cause a difference in DMI. However, a study that 

replaced dry cracked shelled corn with refined corn starch to increase the fermentability 

of the diets also saw no significant difference in DMI with increased fermentability and 

the starch content of their diets were much higher, around 29 to 32% of DM (Krause et 

al., 2003). We hypothesize that with little restrictions from the fiber portion of the diet 

and a relatively low starch and RFS content, it would be expected that all four of the 

treatment diets would not impact DMI. 

For NDF, starch, and uNDF240 intake (kg/d and % of BW) there were no 

significant interactions between peuNDF240 and RFS. However, cows fed the higher 

RFS diet had lower NDF intake as a percentage of BW (P = 0.03) but greater starch 

intake (P < 0.0001).  There was an effect of peuNDF240 on uNDF240 intake with cows 

fed the higher peuNDF240 diets having greater uNDF240 intake (P < 0.0001). Based on 

the dietary composition of the diets in this study, these results were expected.   

2.4.3 Milk yield, composition, and feed efficiency 

There were no significant interactions between peuNDF240 and RFS on milk 

yield or composition. Milk yield was greater for cows fed the lower peuNDF240 diets by 

only 0.8 kg (52.6 ± 0.6 vs. 51.4 ± 0 kg/d; P = 0.01; Table 2.8). A review of 11 different 

studies that compared diets with differing fiber degradability noted that, on average, milk 

yield was 1.7 kg/d greater for cows fed diets that had 11.5% greater NDF degradability 

(Gencoglu et al., 2008). The authors attributed the increase in milk yield to the increase 

in DMI. In the present study there were no differences in DMI so the difference in milk 

yield was a result of a different factor. It is a possibility that the slight decrease in milk 

yield was due to greater uNDF in the diets with higher peuNDF240 because the greater 
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uNDF240 in the larger particles took longer to leave the rumen leading to overall less 

fermentable material in the rumen. 

There was a significant effect of peuNDF240 on milk fat percentage (P = 0.05; 

Table 2.8). The cows fed diets with higher peuNDF240 had a greater fat percentage 

compared to the cows fed diets with lower peuNDF240 (3.67 ± 0.07 vs. 3.54 ± 0.05%). 

Previous observed has found that, in diets with higher uNDF240, cows had greater milk 

fat percentage was attributed to elevated rumen pH and the fermentation of fiber (Fustini 

et al., 2017). The peNDF of a diet has been related to the maintenance of milk fat 

percentages, and research that decreased peNDF observed a decrease in milk fat 

percentage (Mertens, 1997; Yansari et al., 2004). This decreased milk fat percentage is 

related to the reduction of chewing behavior and rumen pH with less peNDF content 

(Mertens, 1997). With this information, diets that have greater uNDF240 in the 

physically effective fraction would be expected to have a significantly greater milk fat 

percentage compared to diets with less peuNDF240.  

There was a main effect of RFS on fat yield (P = 0.01), FCM (P = 0.01), SCM (P 

= 0.03), ECM (P = 0.02), and a trend for an effect of RFS on percent (P = 0.06). On 

average, there was less FCM, SCM, ECM, and fat as a percent produced by the cows fed 

the diets with higher RFS (Table 2.8). Typically, feeding diets higher in fermentable 

carbohydrates like corn grain reduces milk fat by reducing the amount of fatty acids that 

have 6- to 16-carbons and increasing the amount of 18-carbon unsaturated fatty acids, 

otherwise known as milk fat depression (MFD; Jenkins and McGuire, 2006). The diets 

in the present study had relatively moderate to low starch and RFS content across diets. 

Nonetheless, this concentration of RFS was sufficient to reduce milk fat yield. This 
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indicates that lactating dairy cows are sensitive to the fermentability of starch in the diet, 

especially when the uNDF240 content of the diet is low (~7% of DM). In a meta-analysis 

that evaluated the effects of corn grain type and corn grain-processing methods on 

lactation performance in dairy cows, it was observed that for every 1% increase in RFS 

concentration in the diet there was a 0.02% reduction in milk fat percentage (Ferraretto 

et al., 2013). Using this calculation, there would be an average difference of 0.05% 

between the milk fat percentage of the diets with lower and higher RFS because there is 

a 2.5% difference between the RFS contents in these diets (Ferraretto et al., 2013). When 

comparing diets, there was a trend for RFS to affect milk fat percentage when cows fed 

the diets with greater RFS tended to have less milk fat percentage compared to diets with 

less RFS (3.54 ± 0.06% vs. 3.67 ± 0.08%). The 2.5% increase in RFS resulted in a 0.13% 

difference in milk fat percent in the present study, so for every 1% increase in RFS there 

was an increase of 0.05%. This reduction of milk fat percentage with the increase in RFS 

is almost double the average response that was observed by Ferraretto et al. (2013). This 

adds greater evidence that when diets are as low in uNDF240 and peuNDF240, the cow 

is exceedingly sensitive to the fermentability of the diet.  

Changes in milk fat in response to varying concentrations of fermentability of 

starch have been observed across a range of diets.  Cows fed diets with 32% starch and 

either dry-ground corn or high-moisture corn experienced a 15% reduction in milk fat 

(3.59 vs. 3.05%) when the high-moisture corn diet was fed because of the increased 

fermentability (Oba and Allen, 2003a). The results from Oba and Allen (2003b) suggest 

that due to higher fermentability, there was less complete rumen biohydrogenation, 

increasing the production of trans-10 C 18:1 fatty acid isomer in the rumen, leading to 
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MFD (Oba and Allen, 2003a). In the current study, a similar occurrence of reduced 

biohydrogenation may have occurred, but we did not measure biohydrogenation 

intermediates. In the future, there may be value in monitoring the ratio of uNDF240 

and(or) peuNDF240 relative to RFS as a useful indicator for MFD. Based on the data 

(Table 2.8), diets could be associated with lower milk fat percent (<3.75%) when the 

ratio of uNDF240:RFS is at or below 0.43 and when the ratio of peuNDf240:RFS is at 

or below 0.51. These ratios were obtained from the nutrient composition of the treatment 

diets. When the uNDF240 and peuNDF240 content, 7.3 and 8.6 respectively, is divided 

by the RFS (16.9) of the high peuNDF240 and low RFS diet, you get a baseline. The 

high peuNDF240 and low RFS diet has a milk fat percent of 3.74. So, it gives a general 

idea of where the increase in risk of MFD is when looking at the uNDF240:RFS or 

peuNDF240:RFS 

Changes in mixed and preformed milk fatty acids mirrored the observed 

reductions in milk fat percentage. There was a significant (P = 0.008) effect of 

peuNDF240 on mixed origin fatty acid concentration (g/100 g milk) with cows fed the 

lower peuNDF240 diets having lower mixed origin fatty acid concentration. When cows 

begin to experience MFD, mixed origin fatty acids are often the first group of fatty acids 

to decrease (Barbano et al., 2018). The shift in the fatty acid profile of milk has a two-

phase response (Harvatine and Bauman, 2011). During the first phase, the decrease in 

milk fat synthesis involves an equal depression in de novo synthesis and preformed 

uptake in the mammary gland, and the second involves only a decrease in de novo 

synthesis (Harvatine and Bauman, 2011).  



65 

The unsaturated fatty acid index followed a similar pattern to milk fat percentage 

(i.e., more unsaturation with lower milk fat percentage), where there was a significant 

effect of peuNDF240 (P = 0.005). Barbano et al. (2018) indicated that increases in 

unsaturation is an early sign of the onset of CLA-mediated milk fat depression and 

suggested that to achieve a 3.75% milk fat the degree of unsaturation should stay below 

0.31 double bonds per fatty acid when looking at bulk tank samples. In the current study, 

none of the diets supported a milk fat percentage above 3.75%, but the unsaturation for 

all diets were between 0.280 and 0.295 double bonds/fatty acid. An additional 

consideration is the concentration of mixed origin fatty acids in a bulk tank sample, which 

has been suggested to be above 1.40 g/100 g milk to achieve a milk fat percentage of 

above 3.75% (Barbano et al., 2018).  In the current study, only one diet had mixed origin 

fatty acids at or above 1.40 g/100 g milk. The high peuNDF240 and low RFS diet had 

1.43 g/100 g milk of mixed origin fatty acid, but the high peuNDF240 diets as a whole 

averaged 1.41 ± 0.03 g/100 g milk. It’s important to acknowledge that this isn’t a perfect 

comparison as these are averages from specific cows compared to bulk tank samples of 

multiple cows in different stages of lactation. When the mixed origin + de novo fatty acid 

groups were combined, there was a difference in peuNDF240 where the cows fed the 

higher peuNDF240 diets had greater de novo and mixed origin fatty acids compared to 

cows fed the lower peuNDF240 diets (2.11 ± 0.04 g/100 g milk vs. 2.21 ± 0.03 g/100 g 

milk; P = 0.03). This shows that the difference in mixed origin fatty acids is driven by 

de novo synthesis. Ruminants utilize acetate as a carbon source for fatty acid synthesis 

in the mammary gland (Bauman and Griinari, 2003). Diets with higher peuNDF240 have 

more undegradable material in the physically effective fraction meaning that the longer 
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particles need to be broken down to a specific size to leave the rumen. The longer 

particles will stay in the rumen longer and retain potentially degradable fiber longer, 

allowing for more microbial degradation (Allen, 2000). This allows for more time for 

potentially degradable NDF to ferment, more acetate to be produced within the rumen, 

and therefore produce a greater concentration of de novo and mixed origin fatty acids 

within the mammary gland. This adds to the theory from Cotanch et al. (2014) that dairy 

cows have a minimum amount of uNDF240 required in the diet, and that the uNDF240 

must be physically effective to have positive effects on the animal’s rumen fermentation 

because this allows development of the rumen digesta mat. The fatty acid profile of the 

milk shows that when diets are low in uNDF240 (~7.0%), cows are better able to handle 

fermentable starch when there is more undegradable physically effective fiber.  

While peuNDF240 affected the mixed origin and de novo fatty acids, the 

preformed fatty acids were affected by RFS (P = 0.02). Cows fed diets with less RFS had 

a greater concentration of preformed fatty acid compared to cows fed diets with more 

RFS (1.33 ± 0.02 g/100 g milk vs. 1.28 ± 0.02 g/100 g milk). Preformed fatty acids are 

fatty acids are derived from circulating lipoproteins and non-esterified fatty acids that 

derive from lipids absorbed in the digestive tract and mobilized body reserves, 

respectively (Bauman and Griinari, 2003).  It can be hypothesized that the cows fed the 

lower RFS diets had to utilize more fat from body tissue compared to higher RFS diets 

because of higher energy content. However, this effect was not great enough to cause a 

difference in body weight so it is unlikely the cause of the difference.  It is more likely 

caused by a difference in passage rate of incomplete biohydrogenated fatty acids in the 
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rumen. Diets with higher starch content have been observed to have an increased passage 

rate out of the rumen (Oba and Allen, 2003b). 

Overall, there was no effect of peuNDF240 or RFS on efficiency of milk, ECM, 

or SCM production (Table 2.8; P > 0.10) This was surprising since there were main 

effects on milk production, SCM, and ECM, but DMI (kg/d) was not different among 

treatments and could have compensated for any differences observed in milk production 

(Table 2.8). However, there was a tendency (P = 0.06) for an effect of RFS on FCM/DMI 

where cows fed the diets with higher RFS produced less FCM from the same DMI, 

showing a decrease in efficiency (1.77 ± 0.02 vs. 1.81 ± 0.00 kg/kg). This could be a 

factor of a difference in fiber degradability in the rumen from associative effects. 

2.4.4 Eating and ruminating behaviors 

Chewing behavior is most effected by the distension within the rumen caused by 

the undegradability of the diet and by the time required to chew the diet to the correct 

particle size for swallowing (Allen, 2000). All treatment diets had similar uNDF240om 

(7.0% of DM) and peNDF (19.1% of DM) content.  As a result, there were no differences 

in eating time as minutes per day or minutes per kg of DMI (Table 2.9). However, there 

were differences in rumination time and, therefore, chewing time because chewing time 

is a summation of eating and ruminating. When peuNDF240 was lower, rumination 

increased when RFS was increased, and decreased when RFS was decreased (526 vs. 

503 min/d P = 0.03). When peuNDF240 was higher, rumination decreased when RFS 

was increased, and increased when RFS was lower (513 vs. 523 min/d; P = 0.03). This 

was an unexpected result (Oba and Allen, 2003a; Salfer et al., 2018). As starch increases 

in the diet, rumination will decrease, as seen in the diets with higher peuNDF240, because 
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there is generally a decrease in particle size of the diet with the addition of starch. It is 

unusual to see rumination increase with greater RFS content in the diet with lower 

peuNDF240. A study looking at fermentable carbohydrates and forage particle size 

observed a similar occurrence of a significant increase in rumination due to the use of a 

more fermentable starch source (Maulfair and Heinrichs, 2013). The authors stated that 

the increase in rumination may seem counterintuitive, but it was likely caused by 

adaptive responses of the animal to decrease the severity of a low rumen pH (Maulfair 

and Heinrichs, 2013).  

Meal length is known to be smaller when rapidly fermentable carbohydrates are 

added to a diet because of propionate production (Allen, 2000). Shorter meal sizes are 

affected by the stimulation of hepatic receptors by propionate which transmit signals to 

the brain satiety center (Allen, 2000). The cows fed diets with greater RFS had shorter 

meals compared to the cows fed diets with lower RFS (31.14 ±0.12 vs. 33.34 ± 0.87 

min/meal; P = 0.05). This response was also observed in a study that increased 

fermentability of the diet by substituting refined corn starch for dry cracked shelled corn 

which resulted in a decrease in meal length (Krause et al., 2003). Interestingly, this effect 

was observed with the low to moderate starch content diets fed in the current study, yet 

the difference in meal length between the lower and higher RFS diets did not facilitate a 

difference in DMI. There was a main effect of RFS on meal bouts, so as RFS increased 

there was a greater number of meals (11.23 ± 0.18 vs. 10.52 ± 0.19 bouts/d; P = 0.04). 

The increase in meal bouts in the diets with higher RFS most likely compensated for the 

decrease in meal length which explains why starch did not affect DMI. Similarly, Krause 



69 

et al. (2003) also observed a trend for the number of meals to increase with an increased 

fermentability of starch with no changes in DMI and decreased meal length. 

2.4.5 Rumen fermentation and rumen pH 

There were no significant interactions of the main effects on total VFA (mM; P 

> 0.10; Table 2.10). Diets with higher RFS had a tendency for less acetate (62.1 ± 0.0 vs. 

62.9 ± 0.0 mM; P = 0.09), greater propionate (23.1 ± 0.3 vs. 21.9 ± 0.3 mM; P = 0.10), 

and a significantly lower acetate:propionate ratio (A:P; 2.73 ± 0.04 vs. 2.94 ± 0.05; P = 

0.05) and acetate + butyrate:propionate ratio (A+B:P) (3.26 ± 0.05 vs. 3.53 ± 0.07; P = 

0.05). These reductions follow the reduction in FCM yield. As fermentable starch content 

increased, a shift in molar proportions of VFA from acetate, generally produced during 

structural carbohydrate fermentation, to propionate would be expected (Krause and 

Combs, 2003; Firkins et al., 2006). Krause et al. (2003) observed a significant reduction 

in acetate and an increase in propionate in the rumen when a more fermentable diet was 

fed. This also corresponded with a decrease in A:P. These changes in acetate, propionate, 

and A:P are consistent with a shift in rumen fermentation that would be expected with 

MFD (Bauman and Griinari, 2003). Isovalerate concentration was significantly (P < 

0.0001) increased for cows fed diets with higher peuNDF240 compared to diets with 

lower peuNDF240. Isovalerate is produced during fiber fermentation so a greater molar 

proportion in the rumen of cows fed diets with greater peuNDF240 would be expected 

(Van Soest, 1994; Mangwe et al., 2020).  

There were no significant effects of peuNDF240 or RFS on pH (Table 2.11). With 

the changes observed in the milk fat and fatty acid content of cows in this study, changes 

in rumen pH due to higher RFS was expected; however, this was not the case.  Declines 
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in pH have been noted in the literature when cows are fed higher concentrations of starch 

in their diet (Plazier et al., 2007). A study using mid-lactation Holstein cows observed 

that when ground high-moisture corn was replaced with dry-cracked corn, there was a 

decrease in mean rumen pH from 5.82 to 5.67 and an increase in the hours per day when 

pH was <5.8 from 4.4 to 6.4 h (Krause and Combs, 2003). Krause and Combs (2003) fed 

a diet that had a starch content above 28% of DM and an aNDFom of less than 26% of 

DM. The current study had a starch content between 20 to 24% of DM and an aNDFom 

content of 33% of DM. The starch and RFS content in the current study may not have 

been high enough to elicit the same response, but the NDF content of the diet could have 

also caused an increase in rumination, therefore increasing the amount of salivary buffer 

entering the rumen and overall increasing rumen pH (Van Soest, 1994). However, a study 

that replaced refined-corn starch for dry-cracked shelled corn had diets with a starch 

content of 29 to 32% of DM and an aNDFom of 26 to 28% of DM, and also saw no 

significant difference in pH measurements similar to the current study (Krause et al., 

2003). There was an increase in rumination in the lower peuNDF240 and higher RFS 

diet that may have compensated for any lower pH. This could have caused the pH 

measurements to not be significantly different from each other. A study that looked at 

the effect of forage particle size and fermentable carbohydrates saw a similar pattern 

where there was an increase in rumination activity when the cows were on a fermentable 

diet, but this also corresponded no difference in rumen pH metrics similar to the current 

study (Maulfair and Heinrich, 2013). 

In the case of diets with high fermentable starch, a depression in pH and a shift 

in the VFA profile is often observed with the change in microbial processes described 
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during incomplete biohydrogenation and increases in trans-10 isomers that has been 

assumed to result in MFD (Bauman and Griinari, 2003). There were no interaction or 

main effects in the current study pH observations statistically, but the cows fed the diet 

with lower peuNDF240 and higher RFS had 347 min/d that the rumen pH was < 5.8, or 

approximately 5.8 h/d, although it was not statistically significant. Using guidelines from 

Humer et al. (2017), there is a higher risk of SARA when the rumen pH is < 5.8 for more 

than 5 h/d. Therefore, the cows fed the lower peuNDF240 and higher RFS would be 

considered to have a higher risk of SARA, unlike the other three treatment diets where 

cows averaged around 4 h/d when the rumen pH was < 5.8. This shows that even when 

starch (24% of DM) and RFS (19% of starch) content are moderately low, there can be 

negative effects on the animal’s rumen environment, when the peuNDF240 of the diet is 

at approximately 6% of ration DM. 

2.4.6. Rumen pool size and turnover 

Table 2.12 details the digesta characteristics of cows fed the four treatment diets. 

There was not a significant interaction of main effects, but there were significant effects 

of peuNDF240 and RFS on rumen digesta volume (P < 0.05). The cows fed the diets 

with lower peuNDF240 had less rumen digesta volume compared to the cows fed the 

diets with higher peuNDF240 (109.5 ± 2.5 vs. 114.5 ± 1.5 L), and the cows fed the diets 

with lower RFS had less rumen digesta volume compared to cows fed the diets with 

higher RFS (110 ± 3 vs. 115 ± 2 L). There was a similar pattern for rumen digesta mass 

where there was an effect of peuNDF240 (P = 0.04) and a trend for RFS (P = 0.06) with 

cows fed the diets with higher peuNDF240 likely required more time to reduce the 



72 

particle size of the fiber particle so that it could pass through the omasal orifice and out 

of the rumen (Allen, 2000).  

There were no interactions (P > 0.10) between peuNDF240 or RFS on rumen 

pool size for aNDFom, starch, uNDF240om, or OM, as shown in Table 2.12. However, 

there was a trend (P = 0.06) for RFS to have an effect on rumen pool size of starch (0.3 

± 0.0 vs. 0.35 ± 0.05 kg). There was also a significant effect of peuNDF240 on uNDF240 

rumen pool (P = 0.06; 3.0 ± 0.0 vs. 3.2 ± 0.0 kg). This would be an expected pattern 

when considering the nutrient content of the diet. There were no effects (P > 0.10) of 

dietary peuNDF240 or RFS on rumen turnover rate or retention time for aNDFom, starch, 

or uNDF240. There was a trend (P = 0.10) for RFS to have an effect on rumen turnover 

time of starch, and a trend for peuNDF240 (P = 0.09) to have an effect on uNDF240 

rumen turnover rate. Additionally, there was an effect of peuNDF240 on OM rumen 

turnover rate (P = 0.04). The cows fed the diets with lower peuNDF240 had a lower OM 

turnover rate compared to the higher peuNDF240 diets (11.0 ± 0.2 vs. 11.8 ± 0.1 %/h). 

This follows the same pattern observed in unsaturation and fatty acid composition of the 

milk. Ingested material will leave the rumen either through fermentation of carbohydrates 

or proteolysis by microorganisms, through absorption, or through passage, and they offer 

competition to each other for the removal of digesta (Van Soest, 1994). A study using 

two starch processing methods with two starch concentrations observed a greater passage 

rate of dry-ground corn compared to the high-moisture corn for both high (32% of DM) 

and low (21% of DM) starch concentrations (Oba and Allen, 2003b). However, Oba and 

Allen (2003b) observed a tendency for passage rate to be greater in the higher starch diets 

compared to the low starch diets. The authors hypothesized that this was due to greater 
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DMI in the high starch diets and because of the differences in physical characteristics 

between dry ground corn and high moisture corn. In contrast, the present study had no 

differences in DMI for the four diets, and there was no difference in source of starch used 

and overall particle size of the diet was the same.  

There was an interaction between peuNDF240 and RFS for starch rumen turnover 

rate. As RFS increased in diets with higher peuNDF240, starch turnover rate decreased. 

As RFS increased in diets with lower peuNDF240, the rumen turnover rate of starch 

increased.  

2.4.7. Total tract nutrient digestibility 

There were no interactions or main effects on total tract DM, OM, or potentially 

degradable NDF (pdNDF) digestibility (Table 2.13). Potentially degradable NDF is the 

fraction of NDF that is available for microbial fermentation and disappears in the rumen 

(Harper and McNeill, 2015). It is a measurement that is associated with extended rumen 

retention, and this fraction has the greatest impact on energy supply to the ruminant in 

forage-based diets (Harper and McNeill, 2015).  Considering that the retention time in 

the rumen was not different (Table 2.12), the total tract digestibility results for DM, OM, 

and pdNDF were expected. The amount of degradable material that can escape to the 

abomasum and the overall rate of fermentation is determined by the rate of digestion and 

the rate of passage from the rumen (Van Soest, 1994). 

There was an effect of peuND240 (P = 0.002) on aNDFom digestibility. The cows 

fed the diets with higher peuNDF240 had lower aNDFom digestibility compared to the 

cows fed the low peuNDF240 diets (58.1 ± 0.5 vs. 61.1 ± 0.95 % of DM). This is not 

surprising because the diets with higher peuNDF240 had more uNDF240om in the 
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physically effective fraction compared to the lower peuNDF240 diets. This means there 

was more aNDFom that was undegradable in the rumen and therefore passed through the 

gastrointestinal tract and into the feces. There was also a trend for an effect for RFS, with 

the cows fed diets higher RFS diets tending to have a lower aNDFom digestibility (58.9 

± 1.3 vs. 60.3 ± 1.7; P = 0.10 % of DM). In a meta-analysis looking at effect of cereal 

grain type and processing found that as dietary starch concentration increased there was 

a significant reduction in rumen NDF degradability and NDF TTD (Ferraretto et al., 

2013). Specifically, they observed a decrease in rumen NDF degradability of 0.61 and 

by 0.48 percentage units per percentage unit increase in dietary starch content (Ferraretto 

et al., 2013). This suggests that the amount of starch in the diet should be considered 

antagonistic to aNDFom digestibility (Ferraretto et al., 2013) and the decrease in 

aNDFom digestibility in the present study agrees with their findings. A meta-analysis 

that used 147 different studies to evaluate the current NRC dairy model (2001) observed 

an interaction between starch and DMI that suggests that an increase in starch intake will 

cause a reduction in aNDFom digestibility (White et al., 2015). This is thought to be 

caused by a reduction in rumen pH when there is an increased amount of fermentable 

carbohydrates in the diet. This causes the rumen environment to become too acidic and 

therefore not suitable to fiber digesting bacteria (Van Soest, 1994). This decreases the 

capabilities of the rumen to ferment and utilize aNDFom, increasing the amount that 

passes through the gastrointestinal tract and into the feces.  

In the rumen, starch fermentability can range from 50 to 90% of starch intake, 

while post-rumen digestion can range from 6 to 44% (Allen, 2000; Firkins, 2001). Post-

rumen absorption will compensate for the differences in rumen digestion so there is less 
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variability in total tract starch digestibility between grain types and their conservation 

methods (Allen, 2000; Ferraretto et al., 2013). There was an effect of peuNDF240m on 

starch total tract digestibility, with the cows fed the high peuNDF240 diets having greater 

total tract starch digestibility (98.8 ± 0.1%), while the cows fed the lower peuNDF240 

diets had less (98.4 ± 0.2%; P = <0.001). However, these values are very similar and it 

is unlikely to have biological significance. The average starch digestibility for the meta-

analysis that evaluated the NRC dairy model was ranged from 68.5 to 99.7% with an 

average of 92.1% (White et al., 2015) which is much lower compared to the current starch 

digestiblities and less than a 0.6% difference across all diets. A majority of the variability 

in rumen starch digestibility is related to grain type and the degree of processing the grain 

undergoes (Ferraretto et al., 2013). These diets contained the same ground-corn meal 

with varied inclusion rates. So, it is not surprising that these diets had total tract starch 

digestibilities that were less than 1% different from each other.  

2.5 Conclusions 

Undegradable NDF after 240 hours of fermentation is becoming a common 

measurement that the industry uses to formulate dairy cattle rations and predict 

production indicators such as DMI and ECM. While uNDF240 does a reasonable job 

predicting DMI and ECM, it does not consider the particle size of the diet. Therefore, a 

measurement that takes both the undegradability as well as the particle size into account 

would be useful if it were able to improve predicted responses of the cow to a formulated 

diet. By analyzing peuNDF240, both uNDF240 and particle size are accounted for and 

can better allow nutritionists to formulate rations and predict the cow response.  
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Diets with lower peuNDF240 (~6% of DM) and higher RFS (19% of starch) 

elicited negative associative effects. Specifically, milk fat and mixed origin fatty acids 

were reduced for the cows when lower dietary peuNDF240 and higher RFS was fed. 

These negative associative effects were also reflected in the A:P and the total tract 

digestibility of aNDFom, where there was less aNDFom digested in the lower 

peuNDF240 diets. At moderate dietary content of RFS, when the peuNDF240 was at 6% 

of DM, there was likely a greater risk of SARA based on the decrease in mixed origin 

fatty acid, an increase in time rumen pH was <5.8, and lower aNDFom total tract 

digestibility. These negative associative effects were not as apparent when the 

peuNDF240 was above the 6% level at the same RFS concentration, however there did 

not appear to be an interaction between peuNDF240 and RFS, which was originally 

hypothesized. Likely, these effects will be amplified to a greater extent with higher 

inclusion of starch and need to be considered during ration formulation. Future research 

may find value in examining at the ratio between uNDF240 and RFS or peuNDF240 and 

RFS when predicting MFD in diets. Specifically, these data showed that when the 

uNDF240:RFS is at 0.43 or lower, or the peuNDF249:RFS is at 0.51 or lower, it can be 

associated with lower milk fat. 
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2.7 Tables 

Table 2.1. Ingredient composition of diets (% of DM) with varying concentrations of 
physically effective undegraded neutral detergent fiber at 240 h (peuNDF240) and rumen 
fermentable starch (RFS) fed to lactating Holstein cows. 
 Diets 
 Low peuNDF240 High peuNDF240 
Ingredients Low RFS High RFS Low RFS High RFS 
Conventional corn silage - - 47.60 47.60 
Brown midrib corn silage 47.60 47.60 - - 
Timothy hay, chopped 7.94 7.94 7.94 7.94 
Wheat straw, chopped 1.59 1.59 1.59 1.59 
Corn meal 2.78 7.94 3.57 8.73 
Beet pulp, pelleted 7.14 5.16 6.35 4.37 
Concentrate mix     
  Aminomax Pro1 6.99 6.99 6.99 6.99 
  Canola meal 6.98 6.98 6.98 6.99 
  Soybean meal 5.56 5.56 5.56 5.56 
  Dried distillers grains  4.76 1.59 4.76 1.59 
  99% Sugar2  1.41 1.41 1.41 1.41 
  Soybean hulls 1.58 1.58 1.58 1.58 
  BergaFat3 1.16 1.16 1.16 1.16 
  Energizer Gold4 1.09 1.09 1.09 1.09 
  Calcium carbonate 0.78 0.78 0.78 0.78 
  Sodium sesquicarbonate 0.74 0.74 0.74 0.74 
  Cane molasses 0.46 0.46 0.46 0.46 
  Salt 0.39 0.39 0.39 0.39 
  Magnesium oxide 0.31 0.31 0.31 0.31 
  Urea 0.28 0.28 0.28 0.28 
  Omnigen5 0.17 0.17 0.17 0.17 
  Trace vitamin premix6 0.10 0.10 0.10 0.10 
  Yeast culture7 0.04 0.04 0.04 0.04 
  Clarifly8 0.04 0.04 0.04 0.04 
  MetaSmart9 0.03 0.03 0.03 0.03 
  Smartamine-L9 0.03 0.03 0.03 0.03 
  Mintrex zinc10 0.02 0.02 0.02 0.02 
  Vitamin E11 0.02 0.02 0.02 0.02 
  Selenium yeast 0.01 0.01 0.01 0.01 
Total 100.0 100.0 100.0 100.0 

1 Afgritech, LLC. Watertown, NY. 
2 Pure Sugar. 
3 BergaFat; Berg + Schmidt America, LLC; Libertyville, IL.  
4 IFFCO (Malaysia) Sdn.Bhd., Sharjah, United Arab Emirates. 
5 Phibro Animal Health Corp., Teaneck, NJ. 
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6 Contained 21.66 % Ca, 0.91% Cl, 0.72% Mg, 0.17% P, 0.16% S, 0.01% K, 25,438 mg/kg Zn, 21,802 
mg/kg Mn, 6,427 mg/kg Cu, 500 mg/kg Fe, 428 mg/kg I, 269 mg/kg Se, 154 mg/kg Co, 5,732 kIU/kg 
Vitamin A, 1,589 kIU/kg Vitamin D, and 29,762 kIU/kg Vitamin E. 

7 Diamond V, Cedar Rapids, IA. 
8 Central Garden and Pet Company, Schaumburg, IL. 
9 Adisseo USA, Inc.; Alpharetta, GA.  
10 Novus International Inc., St. Charles, MO. 
11 Contained 8,800 IU vitamin E/kg. 
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Table 2.2. Formulated composition of diets with varying concentrations of physically 
effective undegraded neutral detergent fiber after 240-h fermentation (peuNDF240) and 
rumen fermentable starch (RFS) fed to lactating Holstein cows. Formulation was based on 
estimated chemical composition of ingredients. The corn silages and timothy hay were 
based on wet chemistry and in vitro digestibility analysis from samples taken before the 
study began. All other ingredients were based on AMTS (version 4.8; Groton, NY) feed 
library values. 
  Diets 

  Low peuNDF240 High peuNDF240 
Item Low RFS High RFS Low RFS High RFS 
DM, % 57.2 57.1 54.0 53.9 
CP, % of DM 15.4 15.3 15.5 15.4 
Soluble protein, % of CP 30.3 30.2 31.2 27.6 
ADF, % of DM 20.6 18.7 21.5 19.6 
aNDFom1, % of DM 33.3 30.9 33.6 31.1 
uNDF240om2, % of DM 7.24 6.92 10.14 9.81 
NFC3, % of DM 39.0 41.7 38.3 41.0 
Lignin, % of DM 2.7 2.6 3.1 3.0 
Starch, % of DM 23.5 27.2 23.5 27.2 
RFS4 % of DM 16.5 19.9 15.9 19.3 
Sugar (ESC5), % of DM 5.9 5.7 5.4 5.3 
Ether extract, % of DM 5.5 5.6 5.4 5.5 
Calcium, % of DM 0.93 0.90 0.95 0.91 
Phosphorus, % of DM 0.33 0.34 0.33 0.34 
Magnesium, % of DM 0.40 0.40 0.43 0.42 
Potassium, % of DM 1.02 0.98 1.02 0.98 
Sulfur, % of DM 0.24 0.24 0.23 0.23 
Sodium, % of DM 0.45 0.45 0.45 0.45 
Chloride ion, % of DM 0.52 0.52 0.52 0.52 
Iron, mg/kg of DM 288 262 283 256 
Copper, mg/kg of DM 15 15 15 15 
Manganese, mg/kg of 
DM 

64 63 64 63 

Zinc, mg/kg of DM 93 93 93 93 
1 Amylase- and sodium sulfite-treated neutral detergent fiber, ash corrected. 
2 Undegraded neutral detergent fiber after 240 h of in vitro fermentation, ash corrected. 
3 Nonfiber carbohydrates. 
4 Rumen fermentable starch was calculated as the starch content of the diets multiplied by a 7h 

degradability, 70% of starch, which has been previously measured in prior research the Miner Institute 
(Farmer et al., 2014) 

5 Ethanol soluble carbohydrates. 



Table 2.3. Analyzed chemical composition (mean ± SD), in vitro digestibility, and fermentation analysis (for silages) of 
ingredients used in treatment diets varying in physically effective neutral detergent fiber after 240 h of fermentation 
(peuNDF240) and rumen fermentable starch (RFS) fed to lactating dairy cows.    

Item 
CON1 corn 

silage 
BMR2 corn 

silage 
Timothy 

hay Wheat straw 
Beet pulp 

pellets 
Low RFS 
grain mix 

High RFS 
grain mix Corn meal 

DM, % 38.0±0.33 39.4±0.5 88.9±0.2 88.0±0.1 87.9±0.1 88.1±0.1 88.0±0.0 85.4±0.1 
CP, % of DM 7.4±0.1 7.5±0.1 5.5±0.2 3.9±0.1 9.3±0.1 33.8±0.7 33.8±0.2 8.2±0.1 
Soluble protein, % 
DM 

4.5±0.1 4.1±0.1 2.0±0.2 1.8±0.1 1.6±0.3 9.5±0.7 8.7±0.5 1.7±0.3 

ADF, % of DM 21.1±0.3 21.6±0.6 43.5±0.2 55.0±0.8 28.4±0.5 16.1±1.1 16.3±0.8 2.65±0.4 
aNDFom4, % of 
DM 

36.2±0.7 35.4±1.8 65.9±0.2 79.9±1.0 42.6±0.2 21.9±1.6 23.2±0.8 9.8±0.4 

Lignin, % of DM 2.26±0.2 1.6±0.1 6.3±0.0 8.9±0.3 2.34±0.1 5.0±0.1 5.2±0.3 0.6±0.1 
NFC5, % of DM 51.0±0.9 51.6±2.0 23.9±0.6 11.5±0.8 47.2±0.4 28.1±0.7 27.4±0.5 77.9±0.3 
NSC, % of DM 37.5±0.1 38.5±2.6 11.7±0.3 1.3±0.3 8.7±0.3 10.3±0.4 10.8±0.9 76.8±0.3 
Starch, % of DM 36.8±0.4 37.9±2.7 0.6±0.1 0.5±0.3 0.4±0.1 1.4±0.1 1.7±0.4 75.1±0.5 
Starch D, % of DM 66.0±1.9 72.4±2.1 - - - - - 53.8±2.5
Sugar (ESC6), % of 
DM 

0.7±0.2 0.6±0.1 11.1±0.3 0.8±0.2 8.3±0.3 8.9±0.3 9.2±0.8 1.7±0.2

Ether extract, % of 
DM 

3.3±0.1 3.4±0.0 1.1±0.0 1.2±0.1 0.9±0.1 5.9±0.
2 

5.7±0.
1 

3.8±0.0 

Ash, % of DM 3.2±0.1 3.3±0.1 5.3±0.1 5.9±0.40 9.1±0.20 14.1±0.30 13.8±0.30 1.5±0.10 
Calcium, % of DM 0.27±0.01 0.22±0.02 0.18±0.01 0.22±0.01 2.05±0.03 2.64±0.12 2.68±0.12 0.02±0.00 
Phosphorus, % of 
DM 

0.24±0.00 0.25±0.01 0.15±0.00 0.06±0.00 0.10±0.00 0.68±0.01 0.68±0.01 0.28±0.01 

Magnesium, % of 
DM 

0.19±0.01 0.18±0.01 0.07±0.00 0.07±0.00 0.21±0.01 1.01±0.03 1.16±0.05 0.11±0.00 

Potassium, % of 
DM 

0.90±0.03 0.92±0.03 1.46±0.02 1.56±0.04 0.39±0.01 1.57±0.02 1.56±0.03 0.38±0.00 

Sulfur, % of DM 0.11±0.00 0.16±0.01 0.09±0.00 0.09±0.00 0.14±0.00 0.54±0.01 0.58±0.03 0.12±0.00 
Sodium, % of DM 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.05±0.00 1.57±0.11 1.54±0.05 0.01±0.00 



Chloride ion, % of 
DM 

0.29±0.03 0.24±0.01 0.2±0.004 0.14±0.02 1.17±0.04 0.93±0.07 0.97±0.01 0.06±0.00 

Iron, mg/kg of DM 146±11 120±6 117±6 73±5 556±28 441±16 475±11 31±2 
Copper, mg/kg of 
DM 

6±0 6±0 6±0 5±0 6±0 34±2 35.5±3 2.25±0 

Manganese, mg/kg 
of DM 

23±1 15±2 31±1 19±2 45±0.5 111±7 108±4 5±0 

Zinc, mg/kg of DM 25±0 27±0.7 16±0 8±1 32±2 246±1 256±9 20±0 
Lactic acid, % of 
DM 

4.7±0.1 3.6±0.4 - - - - - - 

Acetic acid, % of 
DM 

3.3±0.2 3.2±0.2 - - - - - - 

Propionic acid, % of 
DM 

0.1±0.0 0.1±0.0 - - - - - - 

Total VFA7, % of 
DM 

8.0±0.2 6.8±0.4 - - - - - - 

pH 3.8±0.0 4.0±0.1 - - - - - - 
uNDF12om8, % of 
DM 

- - - - 10.8±0.4 10.8±1.1 11.3±0.6 6.4±0.1 

uNDF30om9, % of 
DM 

14.5±0.3 11.6±0.4 33.0±0.3 50.0±0.2 - - - - 

uNDF72om10, % of 
DM 

- - - - 5.5±0.1 6.0±0.2 6.3±0.1 2.5±0.1 

uNDF120om11, % 
of DM 

9.1±0.3 7.5±0.3 21.0±0.2 32.8±0.3 5.0±0.1 5.4±0.2 5.5±0.2 2.0±0.1 

uNDF240om12, % 
of DM 

8.6±0.2 6.7±0.3 19.9±0.2 33.7±2.4 - - - - 

1Conventional. 
2Brown midrib. 
3 Mean ± standard deviation. Sample n = 4/ingredient. 
4 Amylase- and sodium sulfite-treated neutral detergent fiber, ash corrected. 
5 Nonfibrous carbohydrates. 
6 Ethanol soluble carbohydrates. 
7 Volatile fatty acids. 
8 Undegraded neutral detergent fiber after 12 hours of in vitro fermentation, ash corrected. 



 

9 Undegraded neutral detergent fiber after 30 hours of in vitro fermentation, ash corrected. 
10 Undegraded neutral detergent fiber after 72 hours of in vitro fermentation, ash corrected. 
11 Undegraded neutral detergent fiber after 120 hours of in vitro fermentation, ash corrected. 
12 Undegraded neutral detergent fiber after 240 hours of in vitro fermentation, ash corrected. 



 

Table 2.4. Particle size distribution, physical effectiveness factor (pef), and physically effective neutral detergent fiber (peNDF) 
of ingredients used in treatment diets varying in physically effective neutral detergent fiber after 240 h of fermentation 
(peuNDF240) and rumen fermentable starch (RFS) fed to lactating dairy cows.  

Item 
COV1 corn 

silage 
BMR2 corn 

silage Timothy hay Wheat straw 
Beet pulp 

pellets 
Low RFS 
grain mix 

High RFS 
grain mix Corn meal 

Particle size, % as-fed3

>19.0 mm 4.9±0.24 3.4±0.2 22.8±1.5 28.7±1.6 - - - - 
8.0 to 19.0 mm 71.7±0.8 76.9±1.2 30.5±0.6 35.7±0.9 - - - - 
4.0 to 8.0 mm 12.9±0.3 11.5±0.5 15.7±0.2 17.5±0.2 - - - - 
<4.0 mm 10.5±0.4 8.3±0.9 31.1±1.8 18.2±0.8 - - - - 

pef5 0.89±0.00 0.92±0.01 0.69±0.01 0.82±0.01 - - - - 
peNDF6, % 32.2±0.79 32.3±1.8 45.0±1.03 64.5±0.38 - - - - 
Particle size, % DM7 

>19.00 mm 0.5±0.1 0.1±0.0 0.2±0.0 0.7±0.3 0.00±0 0.00±0 0.00±0 0.00±0 
13.20 to 19.00

mm 0.8±0.3 0.7±0.3 0.6±0.0 1.4±0.3 0.00±0 0.00±0 0.00±0 0.00±0 
  9.50 to 13.20 
mm 4.0±0.2 5.3±1.0 1.4±0.1 2.7±0.3 0.00±0 0.00±0 0.00±0 0.00±0 
  6.70 to 9.50 mm 15.1±1.1 18.9±1.0 4.3±0.2 7.1±0.3 51.8±2.5 0.2±0.2 0.7±0.1 0.00±0 
  4.75 to 6.70 mm 20.0±0.6 22.7±0.6 5.4±0.1 7.0±0.6 3.0±0.2 0.2±0.1 0.5±0.3 0.00±0 
  3.35 to 4.75 mm 20.8±0.2 21.4±0.7 7.0±0.4 11.9±0.3 4.0±0.3 0.6±0.1 0.7±0.1 0.00±0 
  2.36 to 3.35 mm 14.0±0.4 11.5±0.8 9.6±0.4 14.9±0.2 6.4±0.4 1.6±0.2 1.5±0.1 0.1±0.1 
  1.18 to 2.36 mm 13.0±0.2 10.5±0.4 28.2±0.3 33.7±0.9 17.1±0.9 18.2±1 17.9±0.6 10.1±1.9 
  0.60 to 1.18 mm 6.2±0.1 4.8±0.3 20.6±0.4 14.3±0.5 8.9±0.7 32.8±0.3 32.3±0.4 27.9±1.9 
  0.30 to 0.60 mm 3.1±0.2 2.4±0.2 13.5±0.2 4.7±0.4 5.3±0.5 28.3±1.2 28±0.6 31.3±0.6 
  < 0.30 mm 2.5±0.1 1.7±0.2 9.3±0.4 1.7±0.2 3.5±0.4 18.2±0.3 18.4±0.8 30.5±4.5 
pef8 0.88±0.00 0.91±0.01 0.57±0.01 0.79±0.01 0.82±0.01 0.21±0.01 0.21±0.01 0.10±0.01 
peNDF9, % 31.8±0.72 32.3±1.8 37.0±0.4 64.5±0.38 31.2±0.60 4.4±0.45 4.6±0.25 0.9±0.2 

1 Conventional. 
2 Brown midrib. 
3 Measurements made with the Penn State Particle Separator. 
4 Mean ± standard deviation. Sample n = 4/ingredient. 
5 pef = physical effectiveness factor with the Penn State Particle Separator, % of DM ≥ 4.0 mm. (Lammers et al., 1996). 
6 peNDF = physically effective neutral detergent fiber with the Penn State Particle Separator, % DM ≥ 4.0 mm. 
7 Measurements made with the Ro-Tap sieve. 



 

8 pef = physical effectiveness factor, % DM ≥1.18 mm. 
9 peNDF = physically effective neutral detergent fiber, % DM ≥1.18 mm.
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Table 2.5. Particle size distribution (mean ± SD) of treatment diets varying in physically 
effective undegraded neutral detergent fiber after 240 h of fermentation (peuNDF240) and 
rumen fermentable starch (RFS) fed to lactating dairy cows. 

Diets
Low peuNDF240 High peuNDF240 

Item Low RFS High RFS Low RFS High RFS 
Particle size, % as-fed1

>19.0 mm 4.7±0.22 4.9±0.3 5.6±0.3 6.1±0.5 
8.0 to 19.0
mm 45.4±0.6 43.5±1.1 40.8±0.6 41.1±1 

4.0 to 8.0 mm 10.3±0.2 10.2±0.4 10.4±0.1 9.8±0.4 
<4.0 mm 39.6±0.5 41.4±1.2 43.3±0.6 43.1±0.7 

pef4  0.60±0.01 0.57±0.01 0.57±0.01 0.57±0.01 
peNDF4 19.9±1.12 19.0±0.80 18.9±0.61 18.6±0.31 
Calculated 

peuNDF2405, 
% of 
uNDF240 

4.17±0.04 3.98±0.17 4.14±0.07 4.05±0.17 

1Measurements made with the Penn State Particle Separator. 
2Mean ± standard deviation. Sample n = 4/ingredient. 
3 pef = physical effectiveness factor with the Penn State Particle Separator, % of DM ≥ 4.0 mm. (Lammers 
et al., 1996) 
4 peNDF = physically effective neutral detergent fiber with the Penn State Particle Separator, % of DM ≥ 
4.0 mm. 
5 Physically effective undegraded neutral detergent fiber after 240 hours of in vitro fermentation. The pef 
multiplied by undegraded neutral detergent fiber after 240 hours of in vitro fermentation, ash corrected 
(uNDF240om) from composited diets.  This value assumes a normal distribution of uNDF240om across all 
particle sizes in the diet.
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Table 2.6. Calculated diet composition based on wet chemistry analysis of individual 
feed ingredients. The diets were different in physically effective neutral detergent 
fiber after 240 h of fermentation (peuNDF240) and rumen fermentable starch (RFS). 

Diets 
Low peuNDF240 High peuNDF240 

Item Low RFS High RFS Low RFS High RFS 
DM, % 55.3±0.41 55.3±0.4 54.4±0.3 54.2±0.2 
CP, % of DM 16.1±0.2 15.3±0.1 16.0±0.3 15.2±0.1 
Soluble protein, % of 
CP 

40.6±0.9 39.8±1.0 43.4±0.8 42.5±1.1 

ADF, % of DM 22.0±0.6 21.2±0.4 21.6±0.5 20.7±0.2 
aNDFom2, % of DM 33.1±1.3 32.4±0.8 33.3±0.8 32.6±0.2 
NFC3, % of DM 41.4±1.0 43.4±0.9 41.4±0.6 43.4±0.4 
Lignin, % of DM 3.21±0.1 3.1±0.1 3.5±0.1 3.42±0.1 
NSC, % of DM 25.4±1.3 29.0±1.2 25.5±0.3 29.1±0.2 
Starch, % of DM 20.7±1.3 24.6±1.3 20.8±0.2 24.7±0.2 
Starch D4,5, % of DM 80.5±1.7 78.1±1.6 81.4±1.4 77.0±2.3 
RFS6 16.7±1.0 19.2±1.0 16.9±0.3 19.0±0.7 
Sugar, % of DM 3.9±0.1 4.5±0.2 4.7±0.2 4.5±0.2 
Ether Extract, % of DM 3.83±0.08 3.76±0.06 3.81±0.06 3.75±0.08 
Ash, % of DM 7.44±0.12 6.77±0.12 7.29±0.13 6.67±0.09 
Calcium, % of DM 1.14±0.03 1.02±0.04 1.15±0.04 1.04±0.04 
Phosphorus, % of DM 0.36±0.00 0.36±0.00 0.37±0.00 0.36±0.00 
Magnesium, % of DM 0.44±0.01 0.46±0.02 0.45±0.02 0.46±0.01 
Potassium, % of DM 1.14±0.01 1.09±0.01 1.12±0.02 1.08±0.02 
Sulfur, % of DM 0.27±0.00 0.27±0.01 0.25±0.00 0.25±0.01 
Sodium, % of DM 0.53±0.04 0.47±0.02 0.53±0.04 0.47±0.02 
Chloride ion, % of 
DM 

0.52±0.02 0.48±0.01 0.54±0.03 0.50±0.01 

Iron, mg/kg of DM 250±5 240±6 262±8 248±7 
Manganese, mg/kg of 
DM 

49±2 45±2 53±3 48±2 

Zinc, mg/kg of DM 97±4 93±3 97±4 92±3 
Copper, mg/kg of DM 15±0.8 14±1 15±1 14±1 
uNDF30om5,7, % of DM 13.5±0.2 15.2±1.1 15.1±0.3 15.5±0.4 
uNDF120om5,8, % of 
DM

7.5±0.2 7.6±0.1 8.5±0.2 8.5±0.2 

uNDF240om5,9, % of 
DM

6.9±0.1 6.8±0.2 7.3±0.1 7.1±0.3 

peuNDF240om5,10, % of 
uNDF240 6.35 6.07 8.60 8.00 

1 Mean ± standard deviation. Sample n = 4/ingredient. 
2 Amylase- and sodium sulfite-treated neutral detergent fiber, ash corrected. 
3 Nonfibrous carbohydrates. 
4Starch Digestibility 
5 The reported values were analyzed from the total mixed ration to reflect the associative effects of all 

ingredients and were not calculated from individual ingredient in vitro analysis. 
6 Rumen fermentable starch, starch multiplied by starch digestibility. 
7 Undegraded neutral detergent fiber after 30 hours of in vitro fermentation, ash corrected. 
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8 Undegraded neutral detergent fiber after 120 hours of in vitro fermentation, ash corrected. 
9 Undegraded neutral detergent fiber after 240 hours of in vitro fermentation, ash corrected.  
10 Physically effective undegraded neutral detergent fiber after 240 hours of in vitro fermentation, ash 

corrected. The uNDF240om from composited diet that was retained above the 1.18 mm sieve.  This value 
is sensitive to differences in uNDF240om across particle sizes in the diet



 

Table 2.7. Least square means of intake, body weight, and body condition change of lactating Holstein cows fed diets with 
varying concentrations of physically effective neutral detergent fiber after 240 h of fermentation (peuNDF240) and rumen 
fermentable starch (RFS). 

Diets 
Low peuNDF240 High peuNDF240 P-value

Variable 
Low 
RFS 

High 
RFS 

Low 
RFS 

High 
RFS SE peuNDF240 RFS Interaction 

DMI kg/d 29.7 29.4 29.4 29.2 0.7 0.27 0.40 0.72 
DMI, % of BW/d 4.31 4.28 4.24 4.20 0.12 0.04 0.41 0.84 
aNDFom1 intake, kg/d 9.9 9.5 9.8 9.6 0.3 0.75 0.03 0.63 
aNDFom intake, % of BW/d 1.44 1.39 1.42 1.37 0.05 0.37 0.03 0.86 
Starch intake, kg/d 6.1 7.2 6.0 7.2 0.2 0.74 <0.001 0.98 
Starch intake, % of BW/d 0.88 1.06 0.87 1.04 0.03 0.35 <0.001 0.76 
uNDF240om2 intake, kg/d 2.2 2.2 2.5 2.4 0.06 <0.001 0.008 0.80 
uNDF240om intake, % of BW/d 0.32 0.32 0.35 0.35 0.01 <0.001 <0.001 0.76 
BW, kg 691 690 695 700 14 0.04 0.51 0.39 
BCS 2.87 2.87 2.89 2.91 0.09 0.17 0.68 0.72 

1 Amylase- and sodium sulfite-treated neutral detergent fiber, ash corrected. 
2 Undigested neutral detergent fiber after 240 hours of in vitro fermentation, ash corrected. 



 

Table 2.8. Least square means of lactation performance of lactating Holstein cows fed diets with varying concentrations of 
physically effective neutral detergent fiber after 240 h of fermentation (peuNDF240) and rumen fermentable starch (RFS). 

Diets 
Low peuNDF240 High peuNDF240 P-value

Variable Low RFS High RFS Low RFS High RFS SE peuNDF240 RFS Interaction 
Milk, kg/d 53.1 52.0 51.2 51.5 1.3 0.01 0.35 0.19 
3.5% FCM, kg/d 53.8 51.5 52.9 52.2 1.3 0.85 0.01 0.19 
SCM1, kg/d 49.0 47.2 48.1 47.7 1.2 0.77 0.03 0.17 
ECM, kg/d 53.4 51.5 52.5 51.9 1.3 0.56 0.02 0.18 
Fat, % 3.59 3.48 3.74 3.60 0.08 0.05 0.06 0.87 
Fat, kg/d 1.90 1.79 1.90 1.84 0.06 0.41 0.01 0.34 
True protein, % 2.83 2.87 2.85 2.86 0.05 0.61 0.12 0.42 
True protein, kg/d 1.50 1.48 1.45 1.47 0.03 0.02 0.94 0.34 
Lactose, % 4.57 4.57 4.59 4.61 0.05 0.04 0.58 0.33 
Lactose, kg/d 2.43 2.38 2.35 2.37 0.06 0.09 0.60 0.14 
Solids nonfat, % 8.50 8.54 8.55 8.58 0.09 0.03 0.04 0.85 
Solids nonfat, kg/d 4.51 4.44 4.37 4.41 0.10 0.04 0.66 0.17 
Urea nitrogen, mg/dL 12.0 10.1 12.4 10.5 0.44 0.08 <0.001 0.97 
Somatic cell score 20.9 23.5 26.5 23.3 4.75 0.27 0.90 0.24 
De novo FA2, g/100 g milk 0.80 0.76 0.81 0.80 0.03 0.15 0.26 0.54 
Mixed origin FA, g/100 g milk 1.34 1.31 1.43 1.38 0.03 0.008 0.13 0.69 
Preformed FA, g/100 g milk 1.31 1.26 1.34 1.29 0.03 0.17 0.02 0.83 
De novo and Mixed origin 
FA, g/100 g milk 2.14 2.07 2.24 2.18 0.06 0.03 0.17 0.98 

Unsaturation, double bonds/FA 0.288 0.294 0.281 0.280 0.005 0.005 0.43 0.35 
Milk/DMI, kg/kg 1.79 1.77 1.75 1.76 0.03 0.29 0.89 0.44 
3.5% FCM/DMI, kg/kg 1.81 1.75 1.81 1.79 0.03 0.41 0.06 0.35 
SCM/DMI, kg/kg 1.65 1.69 1.64 1.63 0.03 0.46 0.15 0.35 
ECM/DMI, kg/kg 1.80 1.75 1.80 1.78 0.03 0.59 0.12 0.37 

1 Solids corrected milk. 
2 Fatty acids. 



 

Table 2.9. Least squares means of feeding behavior data of lactating Holstein cows fed diets with varying concentrations of 
physically effective neutral detergent fiber after 240 h of fermentation (peuNDF240) and rumen fermentable starch (RFS). 

Diets
P-valueLow peuNDF240 High peuNDF240

Item Low 
RFS

High RFS Low RFS High RFS SE peuNDF240 RFS Interaction 

Eating time 
min/d 291 292 297 291 10 0.59 0.53 0.40 
min/kg of DMI 10 10 10 10 1 0.33 0.73 0.42 
min/kg of aNDFom1 30 31 31 31 2 0.89 0.61 0.69 
min/kg of starch 48 41 50 41 3 0.60 <0.001 0.27 
min/kg of uNDF240om2 133 137 123 122 8 <0.001 0.56 0.35 

Rumination time 
min/d 503 526 523 513 11 0.65 0.43 0.03 
min/kg of DMI 17 18 18 18 1 0.36 0.30 0.03 
min/kg of aNDFom 52 56 54 54 2 0.76 0.07 0.08 
min/kg of starch 83 74 87 72 3 0.74 <0.001 0.08 
min/kg of uNDF240om 228 245 215 214 7 <0.001 0.04 0.03 

Total chewing time 
min/d 795 818 820 804 14 0.50 0.69 0.02 
min/kg of DMI 27 28 28 28 1 0.24 0.50 0.04 
min/kg of aNDFom 82 87 85 85 3 0.78 0.13 0.15 
min/kg of starch 132 115 137 112 5 0.65 <0.001 0.09 
min/kg of uNDF240om 361 381 337 336 14 <0.001 0.07 0.04 

Meal length, min/meal 33.45 32.01 33.22 30.27 1.68 0.37 0.05 0.50 
Meal bout, bouts/d 10.33 11.05 10.70 11.40 0.47 0.31 0.04 1.00 

1 Amylase- and sodium sulfite-treated neutral detergent fiber, ash corrected. 
2 Undigested neutral detergent fiber after 240 hours of in vitro fermentation, ash corrected.



 

Table 2.10. Fermentation data of lactating Holstein cows fed diets with varying concentrations of physically effective neutral 
detergent fiber after 240 h of fermentation (peuNDF240) and rumen fermentable starch (RFS). 

Diets 
Low peuNDF240 High peuNDF240 P-value

Item Low RFS High RFS Low RFS High RFS SE peuNDF240 RFS Interaction 
Total VFA, mM 126.6 124.5 124.3 125.6 2.70 0.80 0.87 0.46 
VFA, % of total VFA 
 Acetate (A) 62.9 62.1 62.9 62.1 0.78 0.86 0.09 0.94 
 Propionate (P) 21.6 23.4 22.2 22.8 0.89 0.94 0.10 0.39 
Butyrate (B) 13.0 12.1 12.3 12.5 0.32 0.66 0.32 0.09 
Isobutyrate 0.49 0.49 0.54 0.51 0.04 0.05 0.41 0.31 
Valerate 1.5 1.5 1.5 1.5 0.06 0.96 0.67 0.72 
Isovalerate 0.50 0.53 0.60 0.59 0.04 <0.001 0.31 0.12 

A:P 2.98 2.69 2.89 2.76 0.13 0.94 0.05 0.42 
A+B:P 3.59 3.21 3.46 3.32 0.16 0.89 0.05 0.34 
Ammonia-N, mg/dL 6.51 6.11 7.72 6.85 0.85 0.11 0.29 0.68 



 

Table 2.11. Rumen pH data of lactating Holstein cows fed diets with varying concentrations of physically effective neutral 
detergent fiber after 240 h of fermentation (peuNDF240) and rumen fermentable starch (RFS). 

Diets 
Low peuNDF240 High peuNDF240 P-value

Item Low RFS High RFS Low RFS High RFS SE peuNDF240 RFS Interaction 
Daily mean pH 6.10 6.06 6.11 6.14 0.07 0.19 0.85 0.31 
Minimum pH 5.48 5.46 5.52 5.52 0.09 0.40 0.83 0.78 
Maximum pH 6.61 6.59 6.63 6.62 0.05 0.39 0.64 0.81 
Range 1.13 1.13 1.11 1.11 0.07 0.69 0.98 0.90 
Standard deviation pH 0.28 0.28 0.27 0.27 0.02 0.74 0.85 1.00 
Time pH < 5.8, min/d 267 347 254 211 89 0.12 0.69 0.20 
Time pH < 5.8, h/d 4.5 5.8 4.2 3.5 1.5 0.12 0.68 0.20 
Time pH < 6.0, min/d 487 582 492 409 122 0.25 0.93 0.22 
Time pH < 6.0, h/d 8.2 9.7 8.2 6.8 2.0 0.24 0.96 0.24 
Area1 < 5.8 56.8 77.3 53.6 43.8 22.2 0.16 0.67 0.24 
Area2 < 6.0 132 170 127 106 43 0.72 0.14 0.21 

1 Area < 5.8 = rumen pH units below pH 5.8 by hour. 
2 Area < 6.0 = rumen pH units below pH 6.0 by hour. 



Table 2.12. Rumen digesta characteristics and digestion kinetics of lactating Holstein cows fed diets with varying concentrations 
of physically effective neutral detergent fiber after 240 h of fermentation (peuNDF240) and rumen fermentable starch (RFS). 

Diets 
Low peuNDF240 High peuNDF240 P-value

Item Low RFS High RFS Low RFS High RFS SE peuNDF240 RFS Interaction 
Rumen digesta volume, L 107 112 113 116 4 0.02 0.05 0.75 
Rumen digesta mass, kg 92 96 96 98 3 0.04 0.06 0.29 
Rumen density, kg/L 0.85 0.86 0.87 0.85 0.01 0.56 0.87 0.42 
Rumen pool, kg 

aNDFom1 7.1 7.7 7.6 7.4 0.24 0.48 0.40 0.11 
Starch 0.3 0.3 0.3 0.4 0.04 0.34 0.06 0.31 
uNDF240om2 3.0 3.0 3.2 3.2 0.10 0.06 0.63 0.98 
Organic matter 25.1 25.5 25.3 24.6 0.69 0.59 0.87 0.41 

Rumen turnover rate, %/h 
aNDFom 5.5 4.9 4.9 5.1 0.2 0.26 0.33 0.07 
Starch 111 137 145 81 20.1 0.60 0.36 0.05 
uNDF240om 2.2 2.5 2.0 2.1 0.1 0.09 0.17 0.33 
Organic matter 10.8 11.1 11.7 11.9 0.44 0.04 0.51 0.78 

Rumen turnover time, h 
aNDFom 18.8 20.5 20.8 20.4 0.9 0.25 0.45 0.23 
Starch 1.2 1.2 1.1 1.6 0.2 0.37 0.10 0.18 
uNDF240om 49.4 42.0 50.4 49.5 2.8 0.16 0.17 0.28 
Organic matter 19.5 14.2 11.5 12.3 3.4 0.16 0.52 0.38 

1 Amylase- and sodium sulfite-treated neutral detergent fiber, ash corrected. 
2 Undigested neutral detergent fiber after 240 hours of in vitro fermentation, ash corrected. 



 

Table 2.13. Total tract digestibility data of lactating Holstein cows fed diets with varying concentrations of physically effective 
neutral detergent fiber after 240 h of fermentation (peuNDF240) and rumen fermentable starch (RFS). 

Diets 
Low peuNDF240 High peuNDF240 P-value

Item Low RFS High RFS Low RFS High RFS SE peuNDF240 RFS 
Interactio

n 
DM, % 76.1 76.7 76.0 75.7 0.52 0.22 0.76 0.29 
Organic matter, % of DM 77.4 78.0 77.4 76.9 0.50 0.19 0.90 0.24 
aNDFom1, % of DM 62.0 60.1 58.6 57.6 0.59 0.002 0.10 0.63 
pdNDF2, % of DM 77.1 75.5 75.8 74.7 0.74 0.30 0.18 0.79 
Starch, % of DM 98.2 98.5 98.9 98.7 0.14 <0.001 0.67 0.07 

1 Amylase- and sodium sulfite-treated neutral detergent fiber, ash corrected. 
2 potentially digestible neutral detergent fiber 
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CHAPTER 3: SUMMARY AND PERSPECTIVES 

This thesis focused on the interaction of physically effective undegraded neutral 

detergent fiber after 240 h of fermentation (peuNDF240) and rumen fermentable starch 

(RFS). From the data, we concluded that as RFS increased in the diet, the cows exhibited 

negative associative effects such as milk fat depression (MFD), a drop in A:P ratio, and 

a decrease in NDF degradability even when the RFS content was moderate. These data 

showed the true sensitivity cows have to fermentability in their diets especially when the 

amount of physically effective undegraded material in the diet is lower (~6-8%). When 

the amount of peuNDF240 was greater in the diet, these negative associative effects were 

not as apparent, but there did not appear to be an interaction. There is still a need to 

characterize how different RFS contents and different starch sources would affect these 

results. In this study, the RFS was not as high as originally formulated and there also was 

not as large of a difference in the fiber portion of the diet as originally formulated. If the 

study was repeated and the diets were fed as formulated, it would be interesting to 

compare what responses were observed at moderate levels of fermentation compared to 

much higher. It may also be useful to perform an experiment with a set amount of 

peuNDF240 and have a range of differing RFS contents that reflects the range in what is 

commonly fed in the industry. This would cause a dilution effect where the severity of 

negative associative effects could be directly assessed.  

It is known that different starch sources have different fermentabilities, and 

different conservation and processing methods can increase or decrease their 

fermentabilities. More research needs to be applied to the idea that peuNDF240 can help 
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mitigate negative effects from a fermentable diet. In this study, the starch and RFS 

content in the diets were low relative to what is normally fed on dairies in the U.S. 

Typical starch content in diets can range from as low as 20 to higher than 30% of ration 

DM. The content depends on the availability and price of grain as well as the forage 

sources and quality. The amount of peNDF in the diet has already been established as an 

important factor in maintain a normal rumen pH and milk fat, but more research is needed 

to understand if the amount of undegradable physically effective fiber gives a better 

measurement to help balance diets than peNDF alone.  

Prior research suggests that not only is the amount of physically effective fiber 

important but also the amount of undegradable fiber. There is a minimum amount of 

undegradable fiber required in the rumen to help develop the rumen mat as well as 

stimulate rumination. These data addressed the theory that combining the physical and 

chemical nature of fiber would optimize how fiber is fed to dairy cows. In previous 

research, a multiplication of the pef and the uNDF240 of a TMR or forage was used to 

evaluate this theory (calculated peuNDF240), but the diets fed in the present study 

required a more direct measurement of the physically effective undegradable portion of 

the diet because of the lack of uniformity in uNDF240 distribution across particle size 

fractions. The reason for this lack of uniformity is not yet understood, but it is most likely 

caused by differences in source of NDF. There are other contributions like non-forage 

vs. forage fiber sources, concentrate types, as well as fragility of NDF. Although the 

calculated peuNDF240 was not specific enough to differentiate and accurately describe 

the treatment diets because of how low the uNDF240 content was, it still is a helpful 



103 

measurement and still aids in describing the fiber characteristics of these diets. There is 

an analogous problem in the peNDF system. In the 1997 paper by David Mertens, he 

mentions the shortcomings of assuming the uniformity of NDF percentage throughout 

all the particle sizes in a diet (Mertens, 1997). Although that is a shortcoming of the 

system, it seems to still provide valuable knowledge to nutritionists in describing diets. 

More testing of forages such as alfalfa and alfalfa-based TMR is needed to increase the 

robustness of the current data set that is based primarily on corn silage and haycrop diets. 

The ultimate difference is based on the uNDF characteristics of the various forage types. 

Legumes have higher uNDF240, but the rate of degradation of the pdNDF is much higher 

compared to corn silage. There is also a need to test diets that have a large inclusion of 

non-forage fiber sources such as beet pulp pellets and wheat middlings. Non-forage fiber 

sources are a way of providing degradable fiber, but for the most part, they are not 

sufficient in stimulating rumination or developing the rumen digesta mat because of their 

smaller pef. Plus, although they are lumped into one category, they are different from 

each other in nutrient makeup. For instance, beet pulp pellets are high in degradable fiber 

but also high in pectin, while cottonseed hulls have less degradable fiber and have been 

known to stimulate rumination to a substantial degree. Each non-forage fiber source 

would need to be individually analyzed to be give a better idea of how they affect 

peuNDF240. 

Another interesting aspect of this study that requires greater consideration is the 

pH metrics. In this study, there were no significant differences in any pH measurement 

which was incredibly surprising when looking at the milk components produced by the 
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cows on these diets. Milk fat depression is usually associated with a drop in pH that 

usually results in subacute rumen acidosis (SARA). Although some research has shown 

that this is not always the case, more research is needed to understand why some cows 

drop in pH and why others do not. There is also needed information on the best way to 

diagnose SARA, as well as if some cows have different thresholds as to what pH they 

can endure and function properly. It is known that there is a large degree of variability 

when analyzing pH data of cows. Some cows are able to maintain their rumen pH 

relatively high compared to the fermentable diet they are ingesting, while other cows 

have the opposite effect of having more severe nadirs and time when rumen pH is low. 

It is possible that in this specific study the sample size was too small to distinguish any 

true significant differences, but the fact that it is not uncommon to see these unexpected 

rumen pH results gives traction to the idea that there needs to be a better way of looking 

at rumen pH data altogether. Other research groups have looked into this problem and 

have evaluated how to separate cows in to either high or low risk groups for SARA. In 

2015, Gao and Oba wanted to evaluate a noninvasive measurement of identifying 

whether a cow was at high or low risk for SARA (Gao and Oba, 2015). They used milk 

urea nitrogen and milk fat content of cows of late lactation cows. If the cows had lower 

milk urea nitrogen (MUN) and milk fat content, they would be considered at higher risk 

for SARA compared to cows on the same diet with higher MUN and milk fat content. To 

test this hypothesis, they had 35 late lactation cows on a high grain diet for 21 days. From 

milk samples taken the last 3 days, the top 5 cows with the highest MUN and milk fat 

content were presumed to be low risk of SARA, while the bottom 5 cows with the lowest 
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MUN and milk fat content were presumed to be high risk of SARA. These 10 animals 

were cannulated and when they were in midlactation, they were fed the same high grain 

diet as they were fed during their previous late lactation, and their pH was evaluated. 

Interestingly, the low risk of SARA group had a significant less amount of time where 

the pH was below 5.8 (52.5 v 395; P = 0.04). This could be a useful tool to use when 

enrolling cows on different research studies. It would be good to have an balanced mix 

of both high and low risk cows to obtain a more accurate representation of the population.  

Finally, this sensitivity that cows have to carbohydrate fermentability needs to be 

evaluated in different management systems. The cows on this study were in a non-

competitive feeding environment with their own personal feed bunks, stalls, and 

waterers. Through previous research on management and behavior of dairy cows, it is 

known that a perfect diet cannot compensate for imperfect management strategies. Cows 

that are in an overstocked situation where there is greater competition at the feed bunk 

and stalls have been shown to have lower rumen pH, less recumbent rumination, and 

more slug feeding. Whatever negative associative effects were observed from this study 

would likely be exacerbated at a higher stocking density or if there was limited access to 

the feed bunk. Time in the holding area and amount of feed push-ups per feeding would 

also increase negative effects, and the extent of these increases is necessary to understand 

as most dairy farms are overstocked and understaffed. These cows would likely have 

more time when the pH is below 5.8 and a greater degree of milk fat depression. It would 

be interesting to research if higher peuNDF240:RFS  ratios would be able to mitigate 
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these negative effects. Is there a specific cut off in a diet where milk fat depression will 

occur, and will raising the peuNDF240 or uNDF240 help mitigated this effect? 

Characterizing fiber in dairy cow diets has been a focus of research for over 6 

decades. The data from this study gives greater evidence that combining the physical and 

chemical nature of fiber will provide a measurement that is closely related to dry matter 

intake and energy-corrected milk, as well as its potential ability to mitigate negative 

consequences of a fermentable diet. Although more information is needed on this 

measurement, peuNDF240 is proving to be a useful way to characterize fiber and 

improve ration balancing for high producing lactating cows.  
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