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Abstract

The behavior of modern systems lives in a complex landscape that is unique to its
particular application. In this work we describe and analyze the behavior of two mod-
ern computational systems: a Linux server and the National Market System (NMS).
Though this work is diverse in both the type and scale of system under study, it is
unified through the design and implementation of computationally tractable quanti-
tative metrics aimed at defining the state of behavior of these systems. Understanding
the behavior of these systems allows us to ensure their desired operation. In the case
of a server we need to quickly be alerted when the system is compromised. Similarly,
we need to know when a systematic or structural change in the NMS has unintended
side-effects.

We first explore methods for host-based intrusion detection. Host-based Intrusion
Detection Systems (HIDS) automatically detect events that indicate compromise of
the host by adversarial applications. We propose and implement a full pipeline for
HIDS development on an arbitrary host system. Our methodology first learns the
sequence structure in system calls on an uncompromised host by predicting future
calls. We then use predictions from this model to detect anomalies at the application
level. Our pipeline is evaluated on an existing event sequence corpora, and PLAID.
The PLAID Lab Artificial Intrusion Dataset is a new corpus for HIDS development
we created to be more representative of modern systems. In addition, we characterize
differences in attack and baseline behavior using allotaxonographs.

Next we turn our attention to the NMS for which we propose measures to quantify
inefficiencies resulting from the geographic fragmentation of the equity marketplace.
Using the most comprehensive, commercially-available dataset of trading activity
in U.S. equity markets, we catalog and analyze quote dislocations between the SIP
National Best Bid and Offer (NBBO) and a synthetic BBO constructed from direct
feeds. We observe a total of over 3.1 billion dislocation segments in the Russell 3000
during trading in 2016, roughly 525 per second of trading. These dislocations do not
behave as expected, often persisting meaningfully longer and with higher magnitude
than what physical constraints suggest. These dislocations exhibit a characteristic
structure that features more dislocations near the open and close. Around 23% of
observed trades executed during dislocations leading to estimated opportunity costs
on the order of $2 billion USD. A subset of the constituents of the S&P 500 index
experience the greatest amount of opportunity cost and appear to drive inefficiencies
in other stocks.
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Chapter 1

Introduction

Researchers have long studied the behavior of complex computational systems. In

the cyber-security realm Behavioral Based Security (BBS) approaches are used to

detect intrusions or misuse. While in financial markets participants such as traders,

exchanges, and regulators aim to discover Stylized Facts, empirical findings that de-

scribe the system’s behavior. These market participants then apply their behavioral

understanding toward a wide variety of ends ranging from profit generation to mech-

anism design.

A common cyber-security application of BBS by both academia [5] and indus-

try [6, 7, 8] is the development of Intrusion Detection Systems (IDSs); tools that auto-

matically detect events indicating system compromise by malicious adversaries. IDSs

fall into one of two main categories based on their detection methodology: signature-

based or anomaly-based. The key difference in these two approaches is what behavior

is being observed and how that information is used. Signature based approaches

operate similarly to a virus scanner: they report events matching a signature, that

is a pattern of behavior, of a known attack. For example, the MITRE ATT&CK
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Framework [9] is a set of signatures, expressed as rules for detecting intrusions, that

can be used to flag events for further examination. Anomaly based approaches model

normal system behavior and report abnormal events. Signature-based IDS offer a

low false alarm rate, and do not require modeling of the system, but are unable to

detect novel attacks. The ability to detect novel attacks—i.e. ones that have not been

previously encountered—is the key advantage of anomaly-based systems.

IDSs are additionally classified by the data source they analyze. Host-based IDS

(HIDS) monitor local events on its own internals and interfaces. Network-based

Intrusion Detection Systems (NIDS) examine network events (i.e. traffic between

hosts), rather than events occurring on a single host, and are thus distinct from HIDS.

NIDS have traditionally been simpler to deploy than HIDS, since they do not require

modifying individual hosts. However, as important services increasingly migrate to

the cloud—where the network is under the control of the cloud provider—deploying

a network-based approach for intrusion detection is often not feasible. The relative

importance of HIDS research in the intrusion detection space is therefore increasing

with the use of cloud computing.

The behavior of financial markets and their participants has long been of inter-

est to academics, traders, exchanges and regulators [10]. Securities markets, such

as the NMS, utilize auction mechanisms to facilitate the valuation and trade of as-

sets [11, 12, 13, 14]. The NMS, as of 2016, was comprised of 13 networked exchanges

coupled by information feeds of differential quality and subordinated to national reg-

ulation. Adding another layer of complexity, the NMS supports a diverse ecosystem

of market participants, ranging from small retail investors to institutional financial

firms and designated market makers. Market participants are classified primarily by
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their trading behavior [15, 16, 17].

Efficiency is perhaps the most studied behavioral trait of modern markets. To

"maintain fair, orderly, and efficient markets . . . " [18] is a primary goal of market’s

chief regulatory body, the Securities Exchange Commission (SEC), and of exchanges

who are competing against each other for market-share. Implementation details of

these markets, including the auction mechanism, computing and communication in-

frastructure, as well as information dissemination policies, impact their informational

and economic efficiency [19, 20]. The impact of market microstructure factors on

high-level outcomes has been increasingly considered in recent analyses of market

efficiency [21, 22, 23, 24]. This increased attention to market microstructure is due

in part to the rise of High-Frequency Traders (HFT) who are categorized by their ul-

tra fast timescales and sophisticated strategies that are dependent on the underlying

microstructure.

A main goal of this dissertation is to demonstrate means to understand the behav-

ior of real, large-scale computational systems. To that end we study both a modern

server deployment and the NMS. Logging the events these systems perform, be it sys-

tems calls executed or financial orders placed, results in massive datasets cataloging

the operation of these systems. Using modern data science tools such as machine

learning and big data analytics with these datasets we can categorize and quantify

the behavior of the underlying system.

The behavior we wish to quantify of course depends on our end goals, such as

determining how a new regulation impacts market efficacy. To quantify this behavior

we need to collect a dataset upon which to run our analysis. Finally, we need a

measure of success to evaluate both our analysis and the underlying metric. This
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is a highly interconnected and creative process, the data we collect determines what

analysis can be performed and vice versa. We discuss our goals for analyzing these

two systems in Sections 1.1 and 1.2. Throughout this dissertation we discuss the

decisions that were made to achieve these goals along with the rationale of our chosen

approaches.

1.1 Application 1: Host-Based Intrusion

Detection with Deep Learning

We improve the state of the art for Host-based Intrusion Detection Systems (HIDS)

utilizing anomaly-detection [25]. Intrusion Detection Systems (IDS) aim to automat-

ically detect events indicating system compromise by malicious adversaries. Due to

the growing importance of security threats, this problem has received considerable

attention both in academic research [5] and from industry [6, 7, 8]. HIDS are a class

of Intrusion Detection Systems (IDS) that monitor a computer system’s internals and

interfaces to detect intrusions. Systems that utilize anomaly-detection model normal

system behavior and report abnormal events. The primary alternative to anomaly-

based IDSs is signature-based. Signature based approaches operate similarly to a virus

scanner: they report events matching the signature of a known attack. For example,

the MITRE ATT&CK Framework [9] is a set of signatures, expressed as rules for

detecting intrusions, that can be used to flag events for further examination. Unlike

signature-based approaches, anomaly-based approaches can detect novel attacks, as

they are identifying changes in behavior rather than a specific attack.

Network-based Intrusion Detection Systems (NIDS), the primarily alternative to
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HIDS, examine network events (i.e. traffic between hosts), rather than events occur-

ring on a single host, and are thus distinct from HIDS. NIDS have traditionally been

simpler to deploy than HIDS, since they do not require modifying individual hosts.

However, as important services increasingly migrate to the cloud—where the network

is under the control of the cloud provider—deploying a network-based approach for

intrusion detection is often not feasible. The relative importance of HIDS research in

the intrusion detection space is therefore increasing with the use of cloud computing.

We chose to focus on anomaly-based HIDS to create systems compatible with modern

cloud deployments that can protect against zero-day attacks.

Automated methods for HIDS are generally formulated as analyses of sequences

of system events such as bash commands or system calls [5]. System calls are the in-

terface for userspace programs to request services from the operating system’s kernel,

such as starting a new process or reading a file. In HIDS research, system call se-

quences are used as a proxy for understanding the behavior of a running program—we

assume that a malicious program will produce a very different pattern of system calls

than baseline execution of a benign program. We focus on the use of machine learning

to distinguish between malicious and baseline behavior in sequences of system calls.

1.2 Application 2: Inefficiencies in the

National Market System

In our second application we explore how the behavior of the NMS is impacted by

geographic fragmentation. We quantify the behavior for both individual securities and

mutually exclusive groups, highlighting significant differences for securities trading on
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Category Duration Magnitude Count

Dow
- - 120,355,462
> 545µs - 65,073,196
> 545µs > 1g 2,872,734

SPexDow
- - 1,126,186,592
> 545µs - 530,499,458
> 545µs > 1g 51,187,430

RexSP
- - 1,888,686,248
> 545µs - 704,416,718
> 545µs > 1g 110,447,787

Table 1.1: Total number of dislocation segments in mutually-exclusive market categories.
Number of opportunities is calculated unconditioned, conditioned on duration, and condi-
tioned on both duration and magnitude.

identical microstructure [26, 27]. We investigate a broad subset of the equities traded

in the U.S. National Market System (NMS), a network of stock exchanges located in

the U.S., since it is the proverbial center of the world equity markets. In particular,

we focus on constituents of the Russell 3000 Index, which is compiled by FTSE

International Ltd. and contains roughly 3000 of the largest equities traded on the

NMS. The selected sample represents the vast majority of the equities traded in the

U.S. and can serve as a nearly comprehensive cross-section of publicly traded equities

from which the observation and assessment of microstructure behaviors can be made.

We take a first-principles approach by compiling an exhaustive catalog of every

dislocation, defined as a nonzero pairwise difference between the prices displayed by

the National Best Bid and Offer (NBBO), as observed via the Securities Informa-

tion Processor (SIP) feed, and Direct Best Bid and Offer (DBBO), as observed via

the consolidation of all direct feeds. The SIP and consolidation of all direct feeds

are representative of the displayed quotes from the national exchanges (lit market).
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1 Realized Opportunity Cost $2,051,916,739.66
2 SIP Opportunity Cost $1,914,018,654.41
3 Direct Opportunity Cost $137,898,085.25
4 Trades 4,745,033,119
5 Diff. Trades 1,124,814,017
6 Traded Value $28,031,002,997,692.75
7 Diff. Traded Value $7,077,357,462,641.67
8 Percent Diff. Trades 23.71
9 Percent Diff. Traded Value 25.25
10 Ratio of 9 / 8 1.0651

Table 1.2: Summary statistics of the realized opportunity cost (ROC) aggregated across all
studied securities and all of calendar year 2016. The total ROC of this sample is over
$2B USD. We discuss statistical characteristics of ROC extensively in Section 6.2. Row
10 shows that the average differing trade moves approximately 6.51% more value than the
average trade. This indicates a qualitative shift in trading behavior during dislocations.

Additionally, we catalog every trade that occurred in the NMS among our selected

sample in calendar year 2016, allowing an investigation of the relationship between

trade execution and dislocations. We compile a dataset of all trades that may lead to

a non-zero realized opportunity cost (ROC). We find that dislocations—times during

which best bids and offers (BBO) reported on different information feeds observed

at the same time from the point of view of a unified observer differ—and differing

trades—trades that occur during dislocations—occur frequently. We measure over

3 billion dislocation segments (DSs), events derived from dislocations between the

NBBO and DBBO. Table 1.1 shows that approximately 1.3 billion of those dislo-

cation segments are what we term actionable, meaning that we estimate that there

exists a nontrivial likelihood that an appropriately equipped market participant could

realize arbitrage profits due to the existence of such a dislocation segment. We term

any trade that executes during a dislocation a differing trade. Row 8 of Table 1.2

shows that 23.71% of all trades were differing trades. Differing trades may have been
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influenced by stale quote information, so we used them to calculate realized oppor-

tunity costs (ROC). However, some trades may have been executed in this period

intentionally, so we only include differing trades that executed at either of the two

NBBO quotes. This results in a conservative estimate of total ROC, $2,051,916,739.66

across the Russell 3000 in 2016, as depicted in Row 1 of Table 1.2.

To facilitate this analysis we use the most comprehensive dataset of NMS messages

commercially available which is effectively identical to that used by the Securities and

Exchange Commission’s (SEC) Market Information Data Analytics System (MIDAS).

In addition to its comprehensive nature, this data was collected from the viewpoint

of a unified observer: a single and fixed frame of reference co-located from within the

Nasdaq data center in Carteret, N.J. We are unaware of any other source of public

information (i.e., dataset available for purchase) or private information (e.g., available

only to government agencies) that is collected using the viewpoint of a single, unified

observer. Additionally, we note that despite recent technological upgrades to market

infrastructure, the chief economist at Nasdaq confirms that our bar for actionability

remains material in 2020 for the execution of latency arbitrage strategies [28].

We demonstrate that the topological configuration of the NMS entails endoge-

nous inefficiency. The fractured nature of the auction mechanism, continuous double

auction operating on 13 heterogeneous exchanges and at least 35 Alternative Trading

Systems (ATSs) [29], is a consistent generator of dislocations and opportunity cost

realized by market participants. The quantification of these dislocations establishes a

baseline to benchmark the effect of new trading venues and regulatory changes have

on market efficacy. This is especially relevant since as of writing in late 2020 two

new venues, the Members Exchange, and the Long Term Stock Exchange are coming
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online.

1.3 Contributions

To summarize, our primary contributions span two distinct, though related applica-

tions. In the first application we propose an alternative to trace-level anomaly detec-

tion with the ALAD algorithm, manufacture a new dataset, and apply advanced data

visualization techniques. In the second application we provide concrete definitions for

DS and ROC, apply and compare these measures across the constituents of collated

equity indices, and propose novel visualization techniques. The similarity of the con-

tributions for these two applications highlights the parallels between these domains.

In both cases we collect sequences of events, apply a metric on these sequences, then

compare the results by sequence classification.
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Chapter 2

Literature Review

2.1 Intrusion Detection Systems

Intrusion detection systems (IDS) aim to automatically detect events indicating sys-

tem compromise by malicious adversaries and have been studied since at least 1980 [30].

Liu and Lang provide a comprehensive taxonomy of the systems developed since

then [5]. IDS are typically classified according to their sources of data and detection

methods.

Network- vs. host-based intrusion detection. There are two major categories

of data sources. Network-based intrusion detection systems (NIDS) are deployed at

the network level, and detect intrusions by examining network traffic. Host-based

intrusion detection systems (HIDS), which are the subject of this work, are deployed

on a single host and detect intrusions by examining events on that individual host.

NIDS have traditionally received more attention (e.g. [31, 32, 33, 34, 35, 36, 37, 38, 39,

40, 41, 42, 43, 44, 45]) because they are easier to deploy, more efficient, and capable of
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detecting threats across multiple hosts. HIDS have the advantage of being deployable

in a cloud setting, in which the cloud provider controls the network infrastructure,

and are capable of detecting intrusions that do not produce abnormal network traffic.

Our work focuses on HIDS.

Data & datasets. Our work is focused on detecting intrusions using sequences of

system calls. System calls are the interface for userspace programs to request services

from the operating system’s kernel, such as starting a new process or reading a file.

Forrest et al. first proposed using these sequences to detect intrusions, by collect-

ing information about “normal” patterns of system calls and detecting system call

sequences that deviate from these patterns [46]. Datasets of system call sequences

include both baseline and attack sequences. Baseline sequences are collected from pro-

grams running normally; attack sequences are collected from compromised programs

behaving abnormally (e.g. while an exploit is being used to attack the program).

Datasets of system call sequences are difficult to construct; as a result, most work

in this area is evaluated on just four datasets:

• The DARPA Intrusion Detection Dataset [47] (1998/1999)

• The KDD 99 Dataset [48] (1999)

• The UNM System Call Dataset [49] (1998)

• The ADFA-LD Dataset [50] (2012)

Unfortunately, the DARPA, KDD, and UNM datasets are too old to be of practical

use as representative of modern host processes and attacks [51]. The ADFA-LD (Aus-

tralian Defence Force Academy Linux Dataset [50]) dataset was specifically designed
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to address limitations of previously-collected datasets. In particular, they captured

system call traces on a server running a modern operating system (Linux) with real-

istic workloads (e.g. web browsing and word processing), and attack sequences gener-

ated via real vulnerabilities in commonly-used software. For these reasons, the ADFA-

LD dataset is often used for HIDS research, and previous work has demonstrated that

this realism translates into a much more challenging learning task, suggesting that

realistic datasets are vital for designing systems for practical deployment.

Nonetheless, the ADFA-LD dataset has a number of shortcomings. Since its re-

lease in 2012, typical workloads on Linux servers have changed, so the dataset is no

longer reflective of typical server behavior. The dataset was captured on an i386 host,

which though common at the time are rare in modern production environments. This

is important because the system calls used by i386 and x86_64 systems differ substan-

tially which makes it difficult to directly compare or integrate ADFA-LD traces with

those collected on modern systems. Finally, the normal traces appear to be more

reflective of a workstation, rather than server environment and are underspecified.

Each attack sequence is labeled with the process which generated it, but the baseline

sequences are not similarly labeled—so it is impossible to know what program was

used to generate each sequence.

Signature- vs. anomaly-based methods. As mentioned earlier, there are two

major methods of detection in HIDS research: signature-based methods and anomaly-

based methods. Signature-based methods are commonly used to detect malware [52,

53, 54]; though they may also be used to detect known patterns of behavior that

indicate an intrusion [45, 55]. These methods typically have low false-positive rates

and are efficient, but they can only detect known attacks. Anomaly-based methods
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detect abnormal behavior by comparing against a model of normal behavior; they have

higher false positive rates, but are capable of detecting brand-new attacks. Anomaly-

based methods have been applied both to sequences of system calls and to other kinds

of intrusion detection [56, 57, 58, 59, 60, 61]. Our work focuses on anomaly-based

intrusion detection.

IDS based on machine learning. A number of machine learning-based intrusion

detection systems have been proposed by other authors. Machine learning approaches

based on supervised learning (e.g. [45, 55, 62]) correspond to signature-based intrusion

detection: they use labeled training data including both baseline behavior and attacks

to train classifiers that distinguish between the two. These approaches cannot detect

new kinds of attacks. Approaches based on unsupervised learning (e.g. [63, 64, 65, 66,

67, 68, 69, 70]) correspond to anomaly-based intrusion detection: they train models

of baseline behavior using unlabeled training data containing only baseline behavior.

Our work focuses on the use of unsupervised deep learning to perform anomaly-based

intrusion detection on system call sequences. Previous work in this area has used both

traditional (“shallow”) machine learning and deep learning to build models of benign

system call sequences. For example, approaches based on Hidden Markov Models [63,

64, 65] and support vector machines (SVM) [66, 67] have both been proposed. These

methods worked well on datasets collected in the 1990’s but performed poorly on

the more recent ADFA-LD [50]. In particular, methods that discard the ordering

information in system call sequences, including clustering and ”bag of system calls”

approaches achieve reasonable accuracy on legacy datasets but fail on ADFA-LDḊue

to this recent approaches focus on techniques that leverage ordering information, of

which deep-learning has been shown to be the most promising. Kim et al. compared
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a long short-term memory (LSTM) model which k-nearest neighbor and k-means

clustering achieving state-of-the-art performance with the LSTM [68]. Chawla et al.

use a combined convolutional / recurrent (CNN / RNN) architecture, and obtain

similar performance LSTMs with less training time [70]. These deep-learning based

approaches represent the state-of-the-art in anomaly-based HIDS, and we use them

for comparison in our empirical evaluation.

Visualisation Various visualization techniques have been used to aid human ana-

lysts and users in identifying suspicious activities and emerging threats in the cyber-

security realm [71, 72]. Recent work in the field of Complex Systems provides an-

alytical methods and corresponding visualizations for comparing various states of a

system [73]. These advances have not previously been applied in the cyber-security

domain though the divergent nature of attack vs baseline system call sequences is a

natural fit for the application.

2.2 Financial Markets

Empirical Studies of Modern U.S. Markets In a recent report to its gov-

ernment oversight committee, the U.S. Securities and Exchange Commission (SEC)

offered the following characterization of the prevailing literature which relates to our

study: “It is unsurprising that academic studies generally are narrowly focused, as the

amount of data, computing power and sophistication necessary to engage in broader

study are daunting and costly, and relevant data may not be widely available or eas-

ily accessible.” [74]. Given these constraints, we are aware of only two other recent

studies which also used comprehensive, market data to analyze modern U.S. market
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behavior and develop stylized facts.

In the first study, Wah [75] calculated the potential opportunities for latency

arbitrage on the S&P 500 in 2014 using data from the SEC’s MIDAS platform [76].

Using similar data to that for our study, Wah identified price discrepancies that

could serve as latency arbitrage opportunities. Wah located time intervals during

which the highest buy price on one exchange was higher than the lowest sell price

on another exchange, termed a “latency arbitrage opportunity” in that work, and

examined the potential profit to be made by an infinitely-fast arbitrageur taking

advantage of these price discrepancies. Wah estimates that this idealized arbitrageur

could have captured $3.0B USD from latency arbitrage in 2014, which is similar to

our conservative calculations of approximately $2.1B USD in ROC from actual trades

in 2016.

The second study was Aquilina et al. [77], which used message data from 2015

to quantify aspects of latency arbitrage in global equity markets. The authors note

the frequent yet fleeting occurrence of latency arbitrage opportunities and estimate

profits from latency arbitrage in 2018 at $4.8B USD globally, including $2.8B USD

in the U.S. equity market.

Both the Wah and Aquilina et al. studies relied on affiliations with regulatory

agencies and their respective data. This reliance on regulatory data supports the SEC

observation that “relevant data may not be widely available or easily accessible.”

Theory of market efficiency The studies above suggest that markets are not per-

fectly efficient. This proposition is further supported by O’Hara [78], Bloomfeld [79],

Budish [80], who provide evidence that well-informed traders are able to consistently

beat market returns as a result of both structural advantages and the actions of
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less-informed traders, so called "noise traders" [81]. The suggestion that an imple-

mentation of a computation system is not perfectly efficient comes to no surprise

to computer scientists but appears, at least at face value, to contradict prevailing

economic theory.

The efficient markets hypothesis (EMH) as proposed by Fama [82] states that asset

prices reflect all available information - the typical definition of market efficiency..

Thus, under this hypothesis it is impossible to systematically outperform the market

since prices should only adjust when new information is presented. This hypothesis

comes from analysis of 1960’s and early 1970’s transaction data. A stronger version

of the EMH proposes the incorporation of private information as well, via insider

trading and other mechanisms.

Previous studies have identified exceptions to this hypothesis [83], such as price

characteristics of equities in emerging markets [84], the existence of momentum in

the trajectories of equity prices [85], and speculative asset bubbles. Recent work by

Fama and French has demonstrated that the EMH remains largely valid [85] when

price time series are examined at timescales of at least 20 minutes and over a suffi-

ciently long period of time. However, the NMS operates at speeds far beyond that

of human cognition [86] and consists of fragmented exchanges [78] that may display

different prices to the market. More permissive theories on market efficiency, such as

the Adaptive Markets Hypothesis [87], allow for the existence of phenomena such as

dislocations due to reaction delays, faulty heuristics, and information asymmetry [19].

In line with this, the Grossman-Stiglitz paradox [88] claims that markets cannot be

perfectly efficient in reality, since market participants would have no incentive to

obtain additional information. If market participants do not have an incentive to ob-
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tain additional information, then there is no mechanism by which market efficiency

can improve. This compendium of results points to a synthesis of the competing

viewpoints of market efficiency. Specifically, that financial markets do seem to even-

tually incorporate all publicly available information, but deviations can occur at fine

timescales due to market fragmentation and information asymmetries.

Market Dislocations Fragmented markets, such as the NMS, cannot be perfectly

efficient due to physical considerations alone. The speed of information propagation

is bounded above by the speed of light in a vacuum making it impossible for infor-

mation to propagate instantaneously to spatially separated matching engines. These

physically-imposed information propagation delays lead us to expect some decou-

pling of BBOs across both matching engines and information feeds. Such divergences

were found between quotes on NYSE and regional exchanges as long ago as the early

1990s [89], in NYSE securities writ large [90], in Dow 30 securities in particular [91],

between NASDAQ broker-dealers and ATSs as recently as 2008 [92, 93], and in NAS-

DAQ listed securities as recently as 2012 [22]. U.S. equities markets have changed

substantially in the intervening years, hence the motivation for our research. It is a

priori unclear to what extent dislocations should persist within the NMS beyond the

round-trip time of communication via fiber-optic cable. A first-pass analysis of laten-

cies between matching engines could conclude that, since information traveling at the

theoretical speed of light between Mahwah and Secaucus would take approximately

372 µs to make a round trip between those locations, then dislocations of this length

might be relatively common. However, a light-speed round trip between Secaucus

and Mahwah takes approximately 230 µs and between Secaucus and Carteret takes

approximately 174 µs. Enterprising agents at Secaucus could rectify the differences
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in quotes between Mahwah and Carteret without direct interaction between agents

in Carteret and agents in Mahwah.

Several other authors have considered the questions of calculating and quantifying

the occurrence of dislocations or dislocation-like measures. In the aggregate, these

studies conclude that price dislocations do not have a substantial effect on retail in-

vestors, as these investors tend to trade infrequently and in relatively small quantities,

while conclusions differ on the effect of dislocations on investors who trade more fre-

quently and/or in larger quantities, such as institutional investors and trading firms.

Ding, Hanna, and Hendershot (DHH) [22] investigate dislocations between the SIP

NBBO and a synthetic BBO created using direct feed data. Their study focuses on a

smaller sample, 24 securities over 16 trading days, using data collected by an observer

at Secaucus, rather than Carteret, and does not incorporate activity from the NYSE

exchanges. They found that dislocations occur multiple times per second and tend

to last between one and two milliseconds. In addition, DHH find that dislocations

are associated with higher prices, volatility, and trading volume. A study by the

TABB Group of trade execution quality on midpoint orders in ATSs also noted the

existence of latency between the SIP and direct data feeds, as well as the existence of

intra-direct feed latency, due to differences in exchange and ATS software and other

technical capabilities [94].

High-Frequency Trading Other authors have analyzed the effect of high-frequency

trading (HFT) on market microstructure, which is at least tangentially related to our

current work due to its reliance on low-latency, granular timescale data and phenom-

ena. O’Hara [78] provides a high-level overview of the modern-day equity market and

in doing so outlines the possibility of dislocation segments arising from differential
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information speed. Angel [95, 96] claims that price dislocations are relatively rare oc-

currences, while Carrion [97] provides evidence of high-frequency trading strategies’

effectiveness in modern-day equity markets via successful, intra-day market timing.

Budish [80] notes that high-frequency trading firms successfully perform statistical

arbitrage (e.g., pairs trading) in the equities market, and ties this phenomenon to

the continuous double auction mechanism that is omnipresent in the current mar-

ket structure. Menkveld [98] analyzed the role of HFT in market making, finding

that HFT market making activity correlates negatively with long-run price move-

ments and providing some evidence that HFT market making activity is associated

with increasingly energetic price fluctuations. Kirilenko [15] provided an important

classification of active trading strategies on the Chicago Mercantile Exchange E-mini

futures market, which can be useful in creating statistical or agent-based models

of market phenomena. Mackintosh noted the effects of both fragmented markets

and differential information on financial agents with varying motives, such as high-

frequency traders and long-term investors, in a series of Knight Capital Group white

papers [23]. These papers provide at least three additional insights relevant to this

dissertation. The first is a comparison of SIP and direct-feed information, noting that

“all data is stale” since, regardless of the source (i.e., SIP or direct feed), rates of data

transmission are capped at the speed of light in a vacuum as discussed above. The

second is that the SIP and the direct feeds are almost always synchronized. That is,

for U.S. large cap stocks such as Dow 30 constituents, synchronization between the

SIP and direct feeds existed for 99.99% of the typical trading day. Stated another

way, Mackintosh observed dislocations between quotes reported on the SIP and direct

feeds for 0.01% of the trading day, or a sum total of 23 seconds distributed throughout
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the trading day. The third relevant insight from the Mackintosh papers reflects the

significance of dislocations. Mackintosh observed that 30% of daily value typically

traded during these dislocations.

For a more comprehensive review of the literature on high frequency trading and

modern market microstructure more generally, we refer the reader to Goldstein et

al. [99] or Chordia et al. [100]. Arnuk and Saluzzi [101] provide a monograph-level

overview of the subject from the viewpoint of industry practitioners.

Trade Execution Our calculations provide a conservative estimate of ROC from

actual trades in the U.S. equity markets in 2016. Therefore, we identify some relevant

literature on trade execution [102]; namely, where and when trades occur. First, trad-

ing is not instantaneous. Delays, or latencies, exist throughout the NMS. Second,

not all trading activity occurs at a national exchange or an ATS. Instead of routing

an order to one of these market venues, a broker may execute the order against the

broker’s own inventory of that stock. This process of retaining customers’ orders

internal to the brokerage is called “internalization" [103]. In addition to matching

customers’ orders against the broker’s inventory of a particular stock, internalization

also includes instances when a broker may route customers’ orders to a market-maker

under a Payment for Order Flow (PFOF) agreement. Even without charging commis-

sions for trades, brokers may generate revenue from executing trades via PFOF [104].

To mitigate potential conflicts of interest, each broker is required to ensure that its

customers’ orders execute against best prices, as determined by the NBBO.

Trade execution problems may still arise from PFOF. In a public statement

announcing its fine against a prominent market-maker, the SEC noted the use of

algorithms which were used to avoid paying best prices on internalized orders. Per
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the SEC, "these algorithms were triggered when they identified differences in the

best prices on market feeds, comparing the SIP feeds to the direct feeds from ex-

changes" [105]. The reader will note that this market state, what the SEC has iden-

tified as "differences in best prices on market feeds", is the very same state that we

have defined here as a market dislocation.

PFOF remains a controversial practice. More recently, another market-maker

settled allegations that it did not ensure best prices for the internalization of its

customers’ orders [106].

We found references to internalization and PFOF dating back to 1994, when

annual revenues from PFOF exceeded $500M USD across all U.S. brokers [107].

Some studies identified the potential for conflicts of interest from PFOF, but claimed

that these conflicts could be mitigated by the adoption of minimum tick sizes of a

penny (i.e., decimalization) [108, 109]. Though the SEC adopted decimalization in

2000 [110], PFOF remains a lucrative practice. In the first half of 2020, four brokers

in the U.S. generated more than $1B USD in revenue from PFOF [111].

Scaling Behavior As we examine the scaling behavior between DSs, market cap-

italization (MC), and ROC we discuss previous quantification’s of scaling behavior

in financial markets. Mandelbrot [112, 113] was one of the first to characterize the

scaling properties of price returns in modern markets. The scaling of returns was later

revisited by Stanley and Plerou [114], Cont [10], as well as Patzelt and Bouchard [115].

Beyond returns in price time series, additional financial variables have been found to

display scaling properties. Market indices and foreign exchange rates [116] as well as

share volume and number of trades [117] adhere to scaling properties.
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Chapter 3

Background & Motivation

3.1 Host-Based Intrusion Detection

Previous work has developed HIDS that operate on individual traces of system call

sequences [68, 69] using publicly available datasets [47, 48, 49, 50]. Some of these

prior works are also based on anomaly detection [56, 57, 58, 59, 60, 61]. All of these

works consider system call traces generated by an individual process; however, modern

applications often use multiple processes, and modern attacks can impact one or more

of these processes. Furthermore, existing system call corpora used to develop these

HIDS are limited and outdated. Thus, the problems we address are how to modernize

anomaly-based HIDS by incorporating analysis of multi-process applications, how to

develop algorithms and evaluation methods more relevant to modern systems and

attacks, and overall how to achieve more accurate detection of modern attacks.

We address these problems as follows. First, we present a novel approach for

building HIDS based on unsupervised deep learning. State-of-the-art in this do-

main demonstrates that models based on Long Short Term Memory (LSTM) [68],
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and Gated Recurrent Unit (GRU) [69] architectures outperform prior SVM-based

approaches and hence are the most promising technology in this space. The key

technical contribution of our approach is an application-level classifier, called ALAD

(Application-Level Anomaly Detection), to distinguish between baseline and mali-

cious behavior. ALAD groups system call sequences by program—rather than by

process, as was done in previous work [68, 69]. ALAD is simple to implement, and

in our experiments produces a statistically significant improvement in classification

compared to previous work. We describe the ALAD approach in Section 5.1.5.

Second, we collect and release a new dataset of system call sequences, with modern

attacks on multi-process applications, used to support the development of our ap-

proach and validate our results. Our new dataset, called PLAID, contains sequences

from six modern exploits and penetration techniques as well as a large collection from

normal operation. We discuss the creation of PLAID in Section 4.1.

The third main contribution of our paper is the application and evaluation of

modern sequence-to-sequence neural network architectures for anomaly detection. In

Section 5.1, we compare a state-of-the-art architecture, WaveNet [118], with replica-

tions of the LSTMs and GRUs used in prior work, using both ALAD and the trace-

level classifiers developed in previous work. We demonstrate our results on PLAID as

well as the Australian Defence Force Academy Linux Dataset (ADFA-LD) [50], used

by several closely related works [68, 69]. We completed 540 training and evaluation

trials over combinations of dataset, model, and replicate. To our knowledge this is

the largest comparison of deep learning models used in HIDS to date. We provide

open source repositories for all datasets and code1 to facilitate reproducibility.
1Repository link suppressed for double-blind review.
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In addition, we address a common critique of deep learning, that it is “black-

box”, in the sense that it structurally obfuscates model details and does not provide

practitioners with insights about why it works. We show in Section 5.4, that recent

techniques in corpora “divergence” visualization can still provide useful insights into

datasets. Specifically, we explore our new dataset along with the popular ADFA-LD

to observe differences between normal and malicious sequences. This helps to explain

the effectiveness of anomaly detection in this application.

In summary, our primary contributions are as follows:

1. Application Level Anomaly Detection (ALAD), a new classifier for groups of

system call sequences.

2. PLAID, a new dataset of modern system call sequences and attacks.

3. A comparison of modern sequence-to-sequence neural network architectures for

anomaly detection.

4. The use of rank-turbulence divergence to visualize differences in system-call

n-grams.

Note that (3) also subsumes a comparison with historical work, since [68, 69] already

demonstrated superiority of deep learning approaches as compared to other historical

approaches.

3.2 The National Market System

To understand the behavior of the NMS one must first be familiar with the infras-

tructure components and some varieties of market participants. For this reason we
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provide a brief overview of the NMS as it stood in 2016. In particular, we note the

information asymmetry between participants informed by the Securities Information

Processor and those informed by proprietary, direct information feeds.

The U.S. equities market, known as the National Market System, is composed

of 13 National Securities Exchanges. Each exchange contributes to price discovery

through the interactions of market participants, mediated by an auction mechanism.

Another core component of the NMS is a collection of approximately 40 alternative

trading systems (ATSs) [119], also known as dark pools. ATSs provide limited pre-

trade transparency, which can allow market participants to reduce the market impact

of their trades, but have limited participation in price discovery as a result. Each

exchange and ATS accumulates orders whose execution conditions have not been

met in an order book. Resting orders are matched with incoming marketable orders

based on a priority mechanism, commonly price-time priority [120]. Traders often

have access to a variety of order types that allow them to tailor how they interact

with the market [121, 122, 123, 124]. The top of the book at each exchange, the

resting bid with the highest price and the resting offer with the lowest price, is called

the best bid and offer (BBO). BBOs from across the NMS are aggregated by one of

the Securities Information Processors (SIP) to form the national best bid and offer

(NBBO) [125, 126]. Under Regulation National Market System (Reg. NMS), trades

must execute at a price that is no worse than the NBBO, though exceptions exist

(e.g. intermarket sweep orders) [127].

Market participants in the NMS have several options of data products to fuel their

trading decisions. In addition to the dissemination of the NBBO, each SIP provides

data feeds containing all quotes and trades that occur in their managed securities.
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Information feeds offered by each exchange, referred to as direct feeds, can provide

similar information with lower latency than the SIP data feeds. Direct feeds can also

provide additional data, such as the resting volume at all price points, commonly

called depth-of-book information. Information asymmetries between data products

lead to DSs, which can impact trading decisions and outcomes.

The NMS is regulated by the U.S. Securities and Exchange Commission (SEC),

a federal agency, and self-regulated by the Financial Industry Regulatory Author-

ity (FINRA), a professional organization. FINRA polices its members and ensures

they adhere to SEC rules and other professional guidelines, while SEC designs, imple-

ments, and enforces rules that are intended to promote market stability and economic

efficiency. The physical structure of the NMS, in conjunction with the existence and

usage of multiple distinct information feeds, leads to the creation of DSs and associ-

ated ROC.

3.2.1 Market Participants

There are, broadly speaking, three classes of agents involved in the NMS: traders, of

which there exist essentially four sub-classes (retail investors, institutional investors,

brokers, and market-makers) that are not mutually exclusive; exchanges and ATSs,

to which orders are routed and on which trades are executed; and regulators, which

oversee trades and attempt to ensure that the behavior of other market participants

abides by market regulation. We note that Kirilenko et al. claim the existence of six

classes of traders based on technical attributes of their trading activity [15]. This

classification was derived from activity in the S&P 500 (E-mini) futures market, not

the equities market, but is an established classification of trading activity. It is not
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possible to perform a similar study in the NMS since agent attribution is not publicly

available. However, the Consolidated Audit Trail (CAT) is an SEC initiative (SEC

Rule 613) that may provide such attribution in the future [128]. At the time of writing

this framework was not yet constructed.

3.2.2 Physical Considerations

Contrary to its moniker, “Wall Street” is actually centered around northern New

Jersey. The matching engines for the three NYSE exchanges are located in Mahwah,

NJ, while the matching engines for the three NASDAQ exchanges are located in

Carteret, NJ. The other major exchange families base their matching engines at the

Equinix data center, located in Secaucus, NJ, except for IEX, which is based close to

Secaucus in Weehawken, NJ. The location of individual ATSs is generally not public

information. However, since there is a great incentive for ATSs to be located close

to data centers (see sections 2.2 and 5.2), it is likely that many ATSs are located

in or near the data centers that house the NMS exchanges. For example, Goldman

Sachs’s Sigma X2 ATS has its matching engine located at the Equinix data center in

Secaucus, NJ [129].

Since matching engines perform the work of matching buyers with sellers in the

NMS, we hereafter refer to the locations of the exchanges by the geographic location

of their matching engine. For example, IEX has its point of presence in Secaucus,

but its matching engine is based in Weehawken; we locate IEX at Weehawken.

This geographic decentralization has a profound effect on the operation of the NM.

We calculate minimum propagation delays between exchanges and are displayed in

Table 3.1. In constructing Table 3.1 we use estimates of propagation delays in fiber
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NMS Propagation Delay Estimates
Carteret—
Mahwah

Mahwah—
Secaucus

Carteret—
Secaucus

Secaucus—
Weehawken

Straight-line Distance 34.55mi 21.31mi 16.22mi 2.56mi
55.60km 34.30km 26.10km 4.12km

Light speed, one-way 185.75µs 114.57µs 87.20µs 13.76µs
Light speed, two-way 371.50µs 229.14µs 174.40µs 27.52µs
Fiber, one-way 272.44µs 168.07µs 127.89µs 20.19µs
Fiber, two-way 544.88µs 336.14µs 255.78µs 40.38µs
Hybrid laser, one-way - - 94.50µs -
Hybrid laser, two-way - - 189.00µs -

Table 3.1: The speed of light is approximated by 186, 000 mi/s (or 300, 000 km/s) and fiber
propagation delays are assumed to be 4.9µs/km. These propagation delays form the basis
for estimates of the duration required for a dislocation segment to be considered actionable,
though these figures do not account for any computing delays and thus are lower bounds for
the definition of actionable.

optic cables provided by M2 Optics [130] as well as data center locations, distances

between data centers, and one-way hybrid laser propagation delays from Anova Tech-

nologies [131].

In reality, the time for a message to travel between exchanges will be strictly

greater than these lower bounds, since light is slowed by transit through a fiber

optic cable, and further slowed by any curvature in the cable itself. The two-way

estimates in Table 3.1 give a lower bound on the minimum duration required for

a dislocation segment to be “actionable" and a more realistic estimate derived by

assuming propagation through a fiber optic cable with a refractive index of 1.47

[130]. These estimates do not account for computing delays, which may occur at

either end of the communication lines, in order to avoid speculation. In practice such

computing delays will also have a material effect on which dislocation segments are

truly actionable and will depend heavily on the performance of available computing
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hardware.

Connecting the exchanges are two basic types of data feeds: SIP feeds, contain-

ing quotes, trades, limit-up / limit-down (LULD) messages, and other administrative

messages complied by the SIP; and direct data feeds, which contain quotes, trades,

order-flow messages (add, modify, etc), and other administrative messages. The di-

rect data feeds operate on privately-funded and installed fiber optic cables that may

have differential information transmission ability from the fiber optic cables on which

the SIP data feeds are transmitted. Latency in propagation of information on the

SIP is also introduced by SIP-specific topology (SIP information must travel from a

matching engine to a SIP processing node before being propagated from that node

to other matching engines) and computation occurring at the SIP processing node.

Due to the observed differential latency between the direct data feeds and the SIP

data feed and the heterogeneous distance between exchanges, dislocation segments

are created solely by the macro-level organization of the market system. We note

that in the intervening years since data was collected for analysis, the SIP has been

upgraded substantially to lower latency arising from computation at SIP processing

nodes. Our understanding of the physical layout of the NMS is depicted in Fig. 3.1

at a relatively high level.

There are three basic types of information flow within the NMS:

a. Direct feed information, which flows to anyone who subscribes to it. Direct

feed information is associated with non-trivial costs (on the order of $130, 000

USD per month and so is used primarily by exchanges, large financial firms,

and ATSs. Direct feed information thus flows to and from the exchanges (and

the major exchange participants). We hypothesize that direct feed information
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NYSE
NYSE

MKT

ARCA

TRFNYSE

Mahwah, NJ

NASDAQ
OMX BX

OMX PX

NASDAQ

TRFNASDAQ

Carteret, NJ

Equinix

BATS

BATS /Y

EDGX/A

NSX

CHX

Secaucus, NJ

Centurylink

IEX
Weehawken, NJ

Tape A/B

Tape C

observer

Dark pools

direct feed (fast)
lagged reporting (slow)
SIP information (slow)
dashed lines are hypothesized

Figure 3.1: The NMS (lit market and ATSs) as implied by the comprehensive market data.
As we do not have the specifications of inter-market center communication mechanisms
and have minimal knowledge of intra-market center communication mechanisms, we simply
classify information as having high latency, as the SIP and lagged information heading to
the SIP do, or low latency, as the information on the direct feeds does. Note the existence of
the observer, located in Carteret NJ. Without a single, fixed observer it is difficult to clock
synchronization issues and introduces an unknown amount of noise into measurements of
dislocations and similar phenomena. Clock synchronization issues are avoided when using
data collected from a single point of presence since all messages may be timestamped by a
single clock, controlled by the observer.
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also flows to ATSs, since they require some type of price signal in order for the

market mechanism to function and may benefit from low latency data. This

was the case for at least one major ATS, Goldman Sachs’s Sigma X2, as of May

2019, so it is plausible that it is true for others [129]. The direct feeds provide

the fastest means by which to acquire a price signal, and thus may provide the

best economic value to traders dependent on frequent information updates; this

provides the economic foundation for our hypothesis.

b. SIP information, which is considerably less expensive than direct feed informa-

tion and exists by regulatory mandate. However, market participants may still

subscribe to the SIP as a tool for use in arbitrage; see Section 2.2 for discussion

of this possibility. Market participants that choose not to purchase the direct

feed data might also choose to purchase the SIP data for use as a price signal

and as a backup to the consolidated direct feeds. At least one ATS, Goldman

Sachs’s Sigma X2, uses SIP data as a backup to direct feed data and combines

both data sources to construct their local BBO [129].

c. Lagged reporting data that is not yet collated by the SIP. Regulation requires

that exchanges report all local quote and trade activity, and that ATSs report

all trade activity. This information is collected by the appropriate SIP tapes

and then disseminated through the SIP data feeds. It is the responsibility of the

exchanges to report their quote and trade information to the SIP, and of ATSs

to report their trade information to FINRA Trade Reporting Facilities (TRF).

Thus, though this information will be eventually visible to all subscribers to

SIP or direct feed data, it differs qualitatively from that data due to its lagged

nature.
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For example, suppose a trade occurs at NYSE MKT on a NASDAQ-listed se-

curity that updates the NBBO for that security. Since this trade occurs at

Mahwah, it takes a non-negligible amount of time for the information to prop-

agate to SIP Tape C, located in Carteret. However, traders located at Mahwah

have access to this information more quickly, possibly allowing them an infor-

mation advantage over their Carteret-based competitors.
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Chapter 4

Data

The collection and curation of datasets is perhaps the most important aspect of any

application of data science. Knowledge of a systems behavior is learned through study

of a dataset since said behavior is not defined through a discrete set of rules. Thus,

one’s findings are only as good as the underlying data, as the saying goes garbage in,

garbage out.

In this dissertation we use multiple datasets. The core datasets catalog the systems

operation, namely copra of system calls for our Linux server, and quote and trade

messages for the NMS. Additionally, we use meta-information to isolate the behavior

of aspects of the larger system. We discuss all datasets used and considered in our

analysis here.

4.1 The PLAID Dataset

As with all machine learning techniques for IDS, our approach to training and testing

models for HIDS relies on corpora of events, in our case system calls. Since we are
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developing an anomaly detection system, training corpora must contain baseline and

attack data as described above in Section 2.1. Given the shortcomings of ADFA-LD

discussed in Section 2.1 we developed a new dataset, named PLAID, with modern

system calls, and a richer, more current set of attacks. The PLAID Lab Artificial

Intrusion Dataset is an open source dataset intended to support the work described

here, and to support research in the broader community. PLAID features modern

exploits carried out against a contemporary Linux server deployment, and is publicly

available [132].

4.1.1 Host Configuration

Ubuntu 18.04 LTS [133] was selected as the host Operating System (OS) for PLAID.

Ubuntu is a secure modern Linux distribution, and the most popular choice of OS for

use on public clouds such as AWS and Microsoft Azure.

Commonly used remote administrative services FTP and SSH [134] were installed

through Ubuntu’s default package manager and enabled with their default configu-

rations. Redis Version 4.0.14 [135] an open source in-memory data structure store

was manually installed on the host and configured to allow connections on the local

network. A malicious client side executable [136] was placed on the machine, simu-

lating a successful social engineering attack. Nginx Version 1.14.0 [137] and php-fpm

Version 7.1.33 [138] were installed on the host and configured to serve a basic website,

a common deployment of the world’s most popular web server [139].

This host configuration represents a reasonable approximation of a modern pro-

duction Linux server offering remote access, high performance data storage, and web

hosting.
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4.1.2 Network Setup

Our experiment testbed consists of three Virtual Machines (VMs): our host, an

attack machine, and a router. The attack VM is an instance of Kali 2019 [140], a

Linux distribution designed for penetration testing. We connected our attack and

host VMs on a local network through a bare-bones instance of Ubuntu 18.04 LTS

serving as a router. All three VMs were run using VirtualBox Version 6.1 [141] on a

single physical machine.

4.1.3 Attack Overview

Our host machine was exploited from six different attack vectors.

1. TheRedis attack [142] exploits a vulnerability in the “extension” functionality

provided in the Redis in-memory database to execute arbitrary code. An exploit

for the vulnerability was developed in 2018 and is available in Metasploit.

2. ThePHP-FPM attack [143] (CVE-2019-11043) exploits a vulnerability present

in the combination of nginx and php-fpm to execute arbitrary code. An exploit

for this vulnerability was developed in 2019 and is available on GitHub.

3. The privilege escalation attack [144] (CVE-2016-5195, also called DirtyCow)

uses a malicious CSE that exploits a vulnerability in the Linux kernel to obtain

a shell with root privileges.

4. The brute-force attacks [145] represent the use of a traditional brute-force

password-cracking application (Hydra) to discover users’ passwords over SSH

and FTP.
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4.1.4 Data Collection

System call traces were generated by starting the target application with strace—a

userspace utility capable of monitoring interactions between processes and the Linux

kernel. Each exploit was run and monitored for ten trials, fully restarting all affected

services between each trial. The result of each trial is a series of files containing system

calls for example: execve brk access access openat fstat mmap close...

Each individual file corresponds to a single process of the program’s execution and is

labeled with the process id.

Since the intended use of this dataset is the development of anomaly-based IDSs,

we require baseline data approximating normal operation. This baseline dataset was

generated by monitoring a wide variety of common operations on the host with no

active attacks in progress. Specific items in the set of common operations were chosen

for two reasons. The first is to be representative of the wide range of computational

tasks performed in modern day enterprise environments. The second is to achieve a

high degree of behavioral overlap with the previously described attacks. The chosen

baseline operations are:

• Transfer of files to and from the host using FTP

• Host access via SSH and modification of configuration files

• Simulation of web traffic using Apache Bench

• Redis interactions

• Download files from the internet with curl
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• Execution of rustup, the Rust programming language install script [146]

• PHP and Redis test suites

• Compilation of small and large programs

• Deployment of small programs that involve: reading from disk, non-trivial com-

putation, and standard IO

We encode meta-information in the directory structure in the same manner as the

ADFAdataset. The generated data was split into two top level directories- attack

and baseline. Inside the attack directory is a subdirectory for each trial labeled with

the exploit and trial ID. These subdirectories contain all collected system call trace

files from the corresponding exploit trial. Similarly, the baseline directory contains

a subdirectory for each baseline operation. These subdirectories contain all collected

system call traces associated with the baseline operation.

4.2 Equity Indices

Many of our results are centered around the components of three of the most popular

equity indices: Dow Jones Industrial Average, S&P 500, and the Russell 3000. Indices

measure the performance of a bucket of securities. The choice of the underlying

securities is often to be representative of a market segment. Indices may not be

directly purchased in the same way as an equity, but may be tracked by Exchange

Traded Funds (ETFs) and mutual funds.

The Dow Jones Industrial Average, from here on referred to as the Dow, is a price

weighted index that aims to provide an overview of the U.S. economy [147]. The Dow
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consists of thirty S&P 500 constituents, covering all industries except for utilities and

transportation.

The S&P 500 is a market capitalization weighted index of 500 large US based

companies referred to by it’s creators as “the gauge of the market economy". The

index is considered by many to be representative of the US stock market as a whole

and is a primary holding among passive investors. To be included in the index, as of

2016, a company must meet the following criteria [148].

• Be a U.S. Company

• Have a market capitalization greater than $5.3 billion

• Be highly liquid

• Have a public float of at least 50% of outstanding shares

• Had positive earnings in the most recent quarter

• The sum of the last four consecutive quarterly earnings must be positive

• Be listed on a major exchange

Meeting these criteria does not guarantee inclusion, and failing to uphold these stan-

dards does not necessarily result in immediate expulsion from the index. S&P 500

constituents are chosen by S&P Global, and the index is updated regularly, though

not on any fixed schedule.

The Russell indexes are passively constructed (no human in the loop) based on a

transparent set of rules including [149]:

• Be a U.S. Company
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• Be listed on a major exchange

• Have a share price ≥ $1

• Have a market capitalization ≥ $30M

• Have a public float ≥ 5%

The Russell 3000 consists of the largest 3000 firms by market capitalization meeting

the above criteria, or the entire eligible set, whichever is smaller. The index undergoes

an annual reconstruction in June and is augmented quarterly with the addition of

Initial Public Offerings (IPO). This methodology results in the Russell 3000 being a

strict superset of the S&P 500.

For our analysis we focus on constituents of these indices, rather the index itself.

Thus, differing weighting methodologies used by these indices have no effect on our

analysis. We also note that some companies have multiple common stocks, one for

each share class, and that each index handles the inclusion of multiple share classes

differently.

4.3 NMS Dataset

We use a dataset comprised of every quote and trade message that was disseminated

on one of the SIP or direct feeds during the period of study. This dataset features

comprehensive coverage of the stocks under study, is collected from a single location

(Carteret, NJ), and is time stamped upon arrival, thus limiting clock synchronization

issues. Thesys Technologies collected and curated this data [150], and also provided

data for the SEC’s MIDAS [76] at the time of collection. Prior to awarding Thesys
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Group the MIDAS contract, the SEC conducted a sole source selection [151], thereby

designating Thesys Group as the only current authoritative source for NMS data.

The fact that this dataset was collected by a single fixed location allows us to

directly observe market dislocations ROC. This is unlike previous studies where sim-

ilar phenomenon could only be estimated. With the arrival timestamp we observe

information flow through the NMS in the same manner as a market participant lo-

cated at the Carteret data center. Ideally, we would have data from four different

unified observers—an observer located at each data center—so that we could compile

the different states of the market that must exist depending on physical location of

observation, but we do not believe that comprehensive consolidated data is available

from the point of view of observers located anywhere but at Carteret, hence our

selection of this location for observation.

The securities under study are categorized by meta properties including: index

membership, Global Industry Classification Standard (GICS) sector classification,

and Market Capitalization (MC). Data on these properties was gathered using a

standard commercial Bloomberg Terminal.

The indices we consider are subject to frequent changes in membership. To sim-

plify our analysis we consider the Dow 30 and S&P 500 as they stood on Jan. 1, 2016.

For the Russell 3000 we consider the constituents as listed in the June 2016 construc-

tion, excluding those that were not publicly traded on Jan. 1, 2016. Constituents of

the indices under study were curated to only include companies that survived as a

publicly traded entity on a national exchange for the entire calendar year of 2016.

Companies that were delisted for any reason (e.g. bankruptcy or buyout) were ex-

cluded, in addition to those who were acquired by an out-of-study firm. Mergers
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between in-sample companies did not result in exclusion. Curating the stocks under

study in this way allows us to avoid issues caused by IPOs and delistings.

Many companies in our dataset changed their ticker symbol over the course of the

calendar year and thus appear as a different entity in the data. To study a company

over a long time period it is necessary to know all tickers it traded under and when

the ticker changes occurred. There is no consolidated public record of these ticker

changes, so we tracked them via an extensive review of press releases. These ticker

changes were then validated by observing changes in trading activity in the old and

new ticker on the date of the change using the Thesys data archive.

This curation reduced the Russell 3000 from 3005 stocks to 2903, the S&P 500

from 500 stocks to 472, and did not impact the 30 members of the Dow. We denote

the curated version of an existing index by appending a prime to the respective base

index (e.g. Dow 30 → Dow 30′). We then construct two additional stock groups,

RexSP and SPexDow, by taking the appropriate set difference, e.g. SPexDow = S&P

500′ - Dow 30′. Finally, all companies in our dataset were classified by their MC as it

stood in the beginning of Q4 2016 using the classes defined in Table 4.1. Our dataset

covers approximately 98% of all publicly traded U.S. equities by MC [152]. Tables 4.2

and 4.3 provide summary statistics and distribution of these equities across GICS

sector, MC, and market category, for several indices.
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Class Statistic Russ 3K′ RexSP S&P 500′ SPexDow Dow 30′

Nano
% by # 0.14 0.16 0.00 0.00 0.00
% by MC 0.00 0.00 0.00 0.00 0.00
Count 4 4 0 0 0

Micro
% by # 11.51 13.74 0.00 0.00 0.00
% by MC 0.26 1.09 0.00 0.00 0.00
Count 334 334 0 0 0

Small
% by # 42.89 51.13 0.42 0.45 0.00
% by MC 4.37 18.50 0.01 0.02 0.00
Count 1,245 1,243 2 2 0

Mid
% by # 30.35 32.21 20.76 22.17 0.00
% by MC 15.11 53.19 3.37 4.72 0.00
Count 881 783 98 98 0

Large
% by # 14.50 2.71 75.21 75.79 66.67
% by MC 56.68 20.72 67.77 77.59 43.28
Count 421 66 355 335 20

Mega
% by # 0.62 0.04 3.60 1.58 33.33
% by MC 23.58 6.50 28.85 17.67 56.72
Count 18 1 17 7 10

Table 4.1: Composition of indexes under study by market capitalization (MC) classification
as of Q4 2016. The composition of various indexes is displayed by the percentage of index
constituents that are a member of each given index (% by #) and by the weighting of those
constituents (% by MC).
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Sector Statistic Russ 3K′ RexSP S&P 500′ SPexDow Dow 30′

Consumer
Discretionary

% by # 14.92 14.52 16.95 17.19 13.33
% by MC 12.97 16.40 11.92 13.10 8.98
Count 433 353 80 76 4
($) MC Min 95,330,024 95,330,024 1,244,719,232 1,244,719,232 84,654,022,656
($) MC Max 356,313,137,152 89,539,158,016 356,313,137,152 356,313,137,152 165,862,064,128

Consumer
Staples

% by # 4.03 3.41 7.20 7.01 10
% by MC 8.54 3.83 9.99 9.69 10.74
Count 117 83 34 31 3
($) MC Min 114,570,432 114,570,432 9,794,159,616 9,794,159,616 178,815,287,296
($) MC Max 224,997,457,920 17,508,790,272 224,997,457,920 150,058,582,016 224,997,457,920

Energy

% by # 5.20 4.73 7.63 7.69 6.67
% by MC 6.57 4.71 7.14 5.83 10.40
Count 151 115 36 34 2
($) MC Min 160,502,160 160,502,160 2,427,903,232 2,427,903,232 222,190,436,352
($) MC Max 374,280,552,448 27,468,929,024 374,280,552,448 116,800,331,776 374,280,552,448

Financials

% by # 17.81 18.84 12.50 12.44 13.33
% by MC 15.17 21.99 13.07 14.73 8.91
Count 517 458 59 55 4
($) MC Min 89,903,488 89,903,488 3,021,111,552 3,021,111,552 34,774,474,752
($) MC Max 401,644,421,120 401,644,421,120 308,768,440,320 276,779,139,072 308,768,440,320

Health Care

% by # 15.23 15.84 12.08 11.99 13.33
% by MC 12.49 9.12 13.53 13.19 14.38
Count 442 385 57 53 4
($) MC Min 21,050,850 21,050,850 1,478,593,408 1,478,593,408 152,328,667,136
($) MC Max 313,432,473,600 18,889,377,792 313,432,473,600 108,768,911,360 313,432,473,600

Industrials

% by # 13.47 13.41 13.77 13.57 16.67
% by MC 10.40 11.03 10.20 9.91 10.94
Count 391 326 65 60 5
($) MC Min 58,695,636 58,695,636 2,821,674,240 2,821,674,240 54,259,630,080
($) MC Max 279,545,937,920 13,281,452,032 279,545,937,920 100,041,220,096 279,545,937,920

Information
Technology

% by # 14.40 14.60 13.35 12.90 20
% by MC 21.40 13.81 23.74 20.93 30.74
Count 418 355 63 57 6
($) MC Min 114,370,240 114,370,240 3,334,570,240 3,334,570,240 151,697,113,088
($) MC Max 617,588,457,472 32,402,583,552 617,588,457,472 538,572,161,024 617,588,457,472

Materials

% by # 4.55 4.40 5.30 5.43 3.33
% by MC 3.26 5.83 2.47 3.02 1.11
Count 132 107 25 24 1
($) MC Min 103,733,456 103,733,456 2,823,849,728 2,823,849,728 63,809,703,936
($) MC Max 69,704,540,160 69,704,540,160 63,809,703,936 46,132,944,896 63,809,703,936

Real Estate

% by # 6.61 6.99 4.66 4.98 0.00
% by MC 3.89 8.67 2.41 3.38 0.00
Count 192 170 22 22 0
($) MC Min 161,591,616 161,591,616 7,130,559,488 7,130,559,488 0.00
($) MC Max 55,830,577,152 24,264,243,200 55,830,577,152 55,830,577,152 0.00

Telecommunication
Services

% by # 1.03 1.03 1.06 0.90 3.33
% by MC 2.40 1.82 2.57 2.09 3.79
Count 30 25 5 4 1
($) MC Min 285,299,072 285,299,072 3,964,831,488 3,964,831,488 217,610,731,520
($) MC Max 261,176,721,408 47,389,126,656 261,176,721,408 261,176,721,408 217,610,731,520

Utilities

% by # 2.76 2.22 5.51 5.88 0.00
% by MC 2.91 2.78 2.95 4.13 0.00
Count 80 54 26 26 0
($) MC Min 141,720,064 141,720,064 3,867,331,328 3,867,331,328 0.00
($) MC Max 57,253,351,424 12,880,323,584 57,253,351,424 57,253,351,424 0.00

Table 4.2: Market Capitalization (MC) statistics of equities under study broken out by Global
Industry Classification Standard (GICS) sector as of Q4 2016. The composition of various
indexes is displayed by the percentage of index constituents that are a member of each given
sector (% by #) and by the weighting of those constituents (% by MC). Additionally, the
MC of the smallest and largest constituent for each index in each category is displayed.
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Russ 3K′ RexSP S&P 500′ SPexDow Dow 30′

Count 2,903 2,431 472 442 30
($) MC Sum 26,217,754,755,404 6,177,292,648,268 20,040,462,107,136 14,303,673,004,544 5,736,789,102,592
($) MC Min 21,050,850 21,050,850 1,244,719,232 1,244,719,232 34,774,474,752
($) MC Max 617,588,457,472 401,644,421,120 617,588,457,472 538,572,161,024 617,588,457,472

Table 4.3: Makeup of market indexes by number of constituents as of Q4 2016. Additionally,
the Market Capitalization (MC) of the smallest and largest constituent for each index is
displayed along with the sum of all constituent MCs.
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Chapter 5

Application 1: Deep learning and

the ALAD Algorithm

5.1 Deep Learning Models and The ALAD

Algorithm

In this section we describe the ALAD algorithm, the underlying deep learning models

it uses, and our evaluation and experimental methods. We also explicitly state our

research hypotheses, as Hypotheses 1 and 2 below. We return to these hypotheses in

Section 5.3 and discuss how our experimental results support or refute them.

5.1.1 Method Overview and Definitions

Our approach to anomaly-based intrusion detection is a two stage process similar to

that of Kim et al. but differs substantially in implementation [68]. We implement
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a full detection pipeline consisting of two main stages. The first stage models the

system call language using deep neural networks trained exclusively on baseline data.

The second stage performs anomaly prediction using the model(s) from the first stage

as well as an anomaly classifier.

Trace Probability

The first stage in our pipeline is a system call language model, which specifies the

probability distribution for the next system call in a sequence given all prior system

calls in that sequence. If we have a system call trace t = x1, x2, x3, . . . , xn, we can

calculate the probability of the sequence occurring with equation 5.1.

p(t) =
n∏
i=1

p(xi|x1:i−1) (5.1)

Recall that each event xi is a system call as described in Section 4.1. Models trained

exclusively with baseline data estimate this probability distribution for a host’s normal

operation. Thus, we can formally define a model M as a mapping from traces t to

a probability (real number) value. Details of the neural network architectures used,

and their training methodologies can be found in Sections Sections 5.1.2 and 5.1.4

respectively.

Trace-Level Anomaly Detection (TLAD)

The second stage in our pipeline uses the probabilities generated by the first stage to

classify a trace as baseline or anomaly. Specifically, a modelM trained on baseline

sequences can be used to classify a trace t as anomalistic if it has low probability.

Taking the negative log ofM(t) (its negative log-likelihood) results in low values if t
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is not anomalistic, and high values if it is. A standard approach (e.g. [68]) to anomaly

detection sets a threshold θ and classifies a trace t as anomalistic if its negative log-

likelihood exceeds the threshold. Formally, trace-level anomaly detection (TLAD) is

defined as follows, given a modelM and threshold θ:

TLAD(t) =


1 if − log(M(t)) > θ

0 otherwise

Application-Level Anomaly Detection (ALAD)

A drawback of TLAD is that it considers only a single process at a time, whereas

attacks typically target applications and can impact multiple processes. We pro-

pose an algorithm that aggregates predictions for all processes associated with an

application. As discussed above in Section 4.1, process traces are endowed with ap-

plication meta-information in corpora, which we can use to group traces into sets

A as described below in Section 5.1.5. Furthermore, there is nothing special about

this meta-information, in particular it is easily available to any system in practice.

These sets A can be provided as input to our ALAD algorithm to predict whether

an application is benign or malicious. Formally:

ALAD(A) = let {t1, . . . , tn} = A

let m = median(−logM(t1), . . . ,−logM(tn))

1 if m > θ otherwise 0

Figure 5.1 illustrates our complete pipeline using ALAD.
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Figure 5.1: An illustration of our entire pipeline. Starting on the left is a testing split
consisting of attack (red) and baseline (blue) system call traces. These are submitted to a
model of normal behavior- the model is a result of training exclusively on baseline traces.
The model is first used to obtain the probability of occurrence of each process trace in our
test set. Then we use trace metadata to group trace probabilities by application. Finally, we
test the aggregation (median) of these grouped probabilities against a threshold θ resulting
in a classification for each program.

Research Hypotheses

With the above definitions in place, we can now state our explicit research hypotheses

as follows.

Hypothesis 1 WaveNet will outperform the LSTM and combined CNN/RNN archi-

tectures used in prior work [68, 70].

Hypothesis 2 ALAD will outperform TLAD as an IDS mechanism.

We discuss the performance metrics and evaluation methodology for both TLAD

and ALAD in Section 5.1.5. In Section 5.2 we compare the performance of several

models from each architecture (WaveNet, LSTM, CNN/RNN) and show how ALAD

yields significant performance improvements compared to TLAD.
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5.1.2 Model Architectures

Intrusion detection is a less-explored application for the machine learning community,

though many advances in the field are relevant. In particular, if we formulate the

anomaly-based IDS as sequence-to-sequence learning problem, then we can leverage

cutting-edge techniques from an active area of research in the deep learning commu-

nity. We investigate and compare several models that are adapted from recent deep

learning research.

All models used in this work feature the same high level layout. The integer

encoded system calls are fed into a learned embedding layer. The embedding layer

is followed by one of the architectures described above which outputs a probability

distribution over system calls at each time step.

Our first candidate model is the WaveNet architecture [118], an audio generation

model developed by Google DeepMind. WaveNet can serve as a drop-in replacement

for LSTM-based architectures, which are commonly used on sequence-to-sequence

problems. WaveNet employs discrete convolutions to capture context information and

inform predictions, rather than the recurrent connections seen in LSTMs. This allows

WaveNet to achieve superior performance with shorter training time as compared to

LSTM-based architectures.

Our second and third candidates replicate the architectures from two prior ap-

proaches performing anomaly detection on ADFA-LD. They are an LSTM language

architecture from Kim et al. [68], and the combined CNN/RNN architecture from

Chawla et al. [70]. The LSTM architecture is simply a variable number of LSTM

layers followed by dropout leading into a dense layer. The combined CNN/RNN
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model features multiple one dimension convolutional layers stacked on top of a GRU

followed by a dense layer.

We implemented these architectures in Python using TensorFlow version 2.1 [153]

and provide our source code on GitLab [132].

5.1.3 Data

We constructed separate training, testing and validation subsets for both ADFA-LD

and PLAID. A separate dense integer encoding was used for each dataset as they

were generated on machines using different instruction set architectures. The testing

sets feature a 1:1 ratio of attack and normal traces while the training and validation

sets contain exclusively normal traces.

ADFA-LD

The ADFA-LD data directory consists of three folders: attack, training and valida-

tion. Respectively, these contain 746, 833, and 4,373 system call traces of varying

lengths. The 175 unique system calls in ADFA-LD originally represented by a sparse

integer encoding are refactored into a dense encoding for computational efficiency.

The training and validation folders contain traces of normal operation while the at-

tack folder features all attack traces.

We use this data to construct our own training, testing, and validation splits

as follows. The ADFA training and validation folders are merged, consolidating all

normal traces. Our test set was created by combining the attack sequences with 746

randomly selected normal sequences resulting in a 1:1 ratio of attack and normal

sequences. The unused normal traces were then randomly split into training and
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validation sets with an 80:20 ratio resulting in 3,567 sequences selected for training

and 892 for validation. Note that the original ADFA data split is not used in this

paper and all further references to training, testing and validation refer to our own

data splits.

PLAID

Pre-processing of the PLAID dataset was done similarly. PLAID consists of two top-

level directories, attack and normal, named for the type of traces they contain. A

total of 1,494 traces with a length less than 8 or greater than 4,495 were discarded.

The remaining traces consisting of 228 unique system calls were encoded with a dense

integer representation. These bounds correspond to the smallest and largest sequences

present in ADFA-LD. The test set is constructed by combining all 1,145 remaining

attack sequences with an equal number of randomly selected normal traces. The

remaining unused normal traces are then randomly split into training and validation

sets with an 80:20 ratio resulting in 29,626 sequences selected for training and 7,407

for validation.

Complexity

We note that size of these datasets may seem small for deep learning applications;

this observation however fails to consider the size of the overall landscape. There are

kn possible system call traces of length n, where k is the vocabulary size of system

calls. The Linux kernel currently features over 300 unique system calls resulting in

over 27 million possibilities for traces of length three. With a length of 4,495 the

landscape for the largest traces under consideration is much larger than the number
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of floating-point operations the universe could have performed thus far [154]. Given

the complex landscape of system call traces, it is unsurprising that deep learning is

required to achieve state-of-the-art performance.

5.1.4 Model Training & Configuration

For each architecture described in Section 5.1.2, we build three models with differing

hyper-parameters to be used in an ensemble. The models, written Mi for i ∈ {0, 1, 2}

and M ∈ {CNN/RNN, LSTM, WaveNet}, are ordered by increasing number of pa-

rameters.

Selecting optimal hyper-parameters is a notoriously difficult task due to the large

search space and computational cost of exploration. We used a Gaussian process

optimizer to inform the search, aiding in the selection of hyper-parameters for our

WaveNet models [155]. Ultimately we selected three WaveNet configurations all with

8 WaveNet blocks and no regularization. The models differed only by the number of

filters in each convolutional layer which were 128, 256, and 512 respectively.

For the replicated architectures we used the hyper-parameters specified in their

respective papers. For the LSTM architecture this was a single LSTM layer with 200

cells, a single LSTM layer with 400 cells, and two LSTM layers with 400 cells. The

CNN/RNN models differed in both the number of 1D convolutions 6, 7, 8 and number

of GRU units 200, 500, 600 respectively. The number of filters in each convolutional

layer was set to mach it’s WaveNet counterpart as the value was unspecified in the

original work.

We trained all of our models using the Adam optimizer [156] with a learning

rate of 0.0001. Gradient clipping with a maximum norm of 5 was applied to ensure
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training stability [157]. Models were trained for a fixed number of epochs, 300 and 30

for ADFA-LD and PLAID respectively with a batch size of 32. A differing number

of training epochs were selected for ADFA-LD and PLAID as the latter contains

over eight times for training data. By using both a fixed number of training epochs

and batch size for all models we ensured they received the same number of gradient

updates allowing for a fair architecture comparison. Sparse categorical cross-entropy

was used as the loss function for all models. The number of parameters, training

time, and other summary information for each model is detailed in Table 5.1.

5.1.5 ID Classifier Evaluation

We completed 540 evaluation trials over combinations of dataset, model, and replicate.

The nine model configurations outlined in Section 5.1.4 were trained and evaluated

for thirty replication trials on both ADFA-LD, and PLAID. Our evaluation compares

the ALAD and TLAD classification algorithms using these underlying models.

Both PLAID and ADFA-LD group traces by attack trial, allowing us to aggregate

traces at the application level. The ADFA-LD baseline data does not include program

grouping information, so we randomly sampled synthetic programs of equal size from

the normal portion of the test set. For sake of consistency, we use the same process

on PLAID.

In practice, we bootstrapped the baseline groups with thirty trials for each repli-

cate model. This mitigates statistical errors from the random sampling, such as

selection of an unrepresentative grouping. Thus, the single value result is the mean

of the bootstrapped operations.

By varying the threshold value θ we obtained Receiver Operating Characteristic
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Params. Training Time
(h:m:s)

Eval. Time
(s)

AUC T LAD FPR T LAD
(TPR = 1)

AUC ALAD FPR ALAD
(TPR = 1)

ADFA
CNN/RNN0 552096 1:41:55 ± 2:29 29.6 ± 0.9 0.785 ± 0.006 0.843 ± 0.030 0.981† ± 0.003 0.085† ± 0.014
CNN/RNN1 2528472 2:48:15 ± 2:14 29.5 ± 0.8 0.802 ± 0.005 0.863 ± 0.076 0.985† ± 0.002 0.112† ± 0.037
CNN/RNN2 7841280 4:53:42 ± 3:25 33.1 ± 4.9 0.800 ± 0.007 0.887 ± 0.082 0.986† ± 0.002 0.120† ± 0.055
LSTM0 391376 1:43:23 ± 2:56 27.0 ± 0.8 0.726 ± 0.013 0.962 ± 0.068 0.924† ± 0.013 0.255† ± 0.060
LSTM1 1422576 2:50:30 ± 3:08 27.3 ± 0.9 0.759 ± 0.017 0.873 ± 0.070 0.964† ± 0.015 0.118† ± 0.044
LSTM2 2704176 4:36:27 ± 5:05 45.8 ± 0.5 0.793 ± 0.005 0.795 ± 0.009 0.983† ± 0.002 0.074† ± 0.010
WaveNet0 1111664 1:19:33 ± 0:48 39.3 ± 3.7 0.815 ± 0.004 0.795 ± 0.050 0.986† ± 0.001 0.144† ± 0.062
WaveNet1 4346736 2:58:54 ± 0:59 38.5 ± 3.3 0.830 ± 0.007 0.827 ± 0.038 0.993† ± 0.001 0.036† ± 0.008
WaveNet2 17206640 8:15:56 ± 3:22 45.9 ± 6.8 0.828 ± 0.017 0.837 ± 0.047 0.993† ± 0.004 0.048† ± 0.065
PLAID
CNN/RNN0 569533 1:02:58 ± 1:06 45.7 ± 7.4 0.854 ± 0.024 0.719 ± 0.209 0.980† ± 0.009 0.220† ± 0.189
CNN/RNN1 2561809 1:41:30 ± 1:36 47.2 ± 3.9 0.844 ± 0.030 0.625 ± 0.147 0.970† ± 0.017 0.248† ± 0.199
CNN/RNN2 7879917 2:54:41 ± 2:06 48.9 ± 5.4 0.810 ± 0.029 0.683 ± 0.143 0.945† ± 0.039 0.312† ± 0.161
LSTM0 412629 1:01:48 ± 1:34 39.2 ± 4.0 0.886 ± 0.008 0.543 ± 0.096 0.985† ± 0.004 0.185† ± 0.056
LSTM1 1465029 1:41:17 ± 2:33 39.1 ± 6.0 0.883 ± 0.060 0.572 ± 0.136 0.968† ± 0.097 0.254† ± 0.169
LSTM2 2746629 2:42:03 ± 3:28 67.7 ± 4.8 0.889 ± 0.011 0.459 ± 0.117 0.985† ± 0.006 0.198† ± 0.135
WaveNet0 1120409 0:51:48 ± 0:41 68.4 ± 13.8 0.796 ± 0.036 0.661 ± 0.143 0.936† ± 0.046 0.428† ± 0.241
WaveNet1 4362265 1:51:19 ± 0:55 79.4 ± 15.1 0.772 ± 0.024 0.711 ± 0.172 0.915† ± 0.039 0.558 ± 0.202
WaveNet2 17235737 5:01:33 ± 2:35 93.2 ± 20.3 0.798 ± 0.079 0.660 ± 0.142 0.922† ± 0.125 0.523 ± 0.296

Table 5.1: We note that our proposed classification methodology results in a significantly
higher AUC for all models under consideration. All models were trained and evaluated on a
NVIDIA Tesla V100 with 32GB VRAM provided by the Vermont Advanced Computing Core.
Training and performance metrics above are reported as the mean of thirty trials ± one
standard deviation. In total this table summarizes the results of 540 training and evaluation
trials. Total training time for the 540 models, not including hyper-parameter tuning, was
over 62 days. We the relative efficiency of WaveNet whose smallest configuration had the
fastest training time despite having over twice the parameters of the smallest model. ALAD
performance metrics marked with † are statistically distinct (two-sided t-test, p < 0.001)
from their TLAD counterpart. Evaluation time is how long it took the model to output the
probability distribution for all sequences in the test set. Bolded results are the best in their
respective column, and dataset combination.
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AUC TLAD FPR TLAD
(TPR = 1)

AUC ALAD FPR ALAD
(TPR = 1)

ADFA
Avg. CNN/RNN 0.800± 0.004 0.842± 0.030 0.985† ± 0.002 0.125† ± 0.027
ReLU. CNN/RNN 0.800± 0.004 0.847± 0.041 0.985† ± 0.002 0.131† ± 0.041
Avg. LSTM 0.765± 0.006 0.903± 0.079 0.966† ± 0.006 0.228† ± 0.030
ReLU. LSTM 0.766± 0.005 0.903± 0.079 0.966† ± 0.006 0.231† ± 0.029
Avg. WaveNet 0.870± 0.008 0.712± 0.071 0.998† ± 0.001 0.026† ± 0.005
ReLU. WaveNet 0.871± 0.008 0.692± 0.079 0.998† ± 0.001 0.027† ± 0.005
Hybrid0 0.800± 0.005 0.661± 0.023 0.975† ± 0.004 0.153† ± 0.030
ReLU. Hybrid0 0.801± 0.005 0.543± 0.050 0.976† ± 0.003 0.150† ± 0.030
Hybrid1 0.820± 0.009 0.609± 0.017 0.981† ± 0.007 0.098† ± 0.039
ReLU. Hybrid1 0.822± 0.009 0.504± 0.019 0.981† ± 0.007 0.100† ± 0.037
Hybrid2 0.847± 0.005 0.547± 0.029 0.990† ± 0.002 0.047† ± 0.008
ReLU. Hybrid2 0.848± 0.005 0.485± 0.034 0.990† ± 0.002 0.047† ± 0.008
PLAID
Avg. CNN/RNN 0.919± 0.012 0.499± 0.058 0.993† ± 0.004 0.119† ± 0.042
ReLU. CNN/RNN 0.919± 0.012 0.481± 0.050 0.994† ± 0.004 0.127† ± 0.051
Avg. LSTM 0.929± 0.020 0.394± 0.103 0.994† ± 0.009 0.099† ± 0.141
ReLU. LSTM 0.930± 0.012 0.380± 0.098 0.995† ± 0.006 0.098† ± 0.140
Avg. WaveNet 0.884± 0.055 0.559± 0.124 0.977† ± 0.055 0.197† ± 0.135
ReLU. WaveNet 0.886± 0.047 0.531± 0.058 0.978† ± 0.047 0.190† ± 0.098
Hybrid0 0.929± 0.003 0.477± 0.076 0.996† ± 0.001 0.063† ± 0.046
ReLU. Hybrid0 0.929± 0.003 0.466± 0.066 0.996† ± 0.001 0.065† ± 0.046
Hybrid1 0.922± 0.037 0.512± 0.118 0.989† ± 0.034 0.113† ± 0.165
ReLU. Hybrid1 0.923± 0.030 0.485± 0.066 0.990† ± 0.026 0.103† ± 0.125
Hybrid2 0.914± 0.054 0.479± 0.120 0.986† ± 0.050 0.092† ± 0.117
ReLU. Hybrid2 0.915± 0.049 0.459± 0.067 0.986† ± 0.048 0.089† ± 0.102

Table 5.2: Performance metrics for all ensembles under consideration. We note that
ALAD results in a significantly higher AUC for all ensembles under consideration. Homo-
geneous ensembles, designated by architecture, contain all three model configurations from
that architecture. Heterogeneous ensembles, termed hybrid, contain the the model from each
architecture at the given configuration level. Performance metrics above are reported as the
mean of thirty trials ± one standard deviation. ALAD performance metrics marked with †
are statistically distinct (two-sided t-test, p < 0.001) from their TLAD counterpart. Bolded
results are the best in their respective column, and dataset combination.
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(ROC) curve for our classifiers—a common means of evaluating binary classification

systems. The x-axis of the curve shows the false positive rate while the y-axis shows

the true positive rate. In this case, the curve visualizes the trade-off between detection

and false alarm rate. We summarize the performance of a model into a single value

using the Area Under Curve (AUC) metric. In addition, we report the False Positive

Rate (FPR) where the True Positive Rate (TPR) is one. The reported value for

a given metric such as AUC (discussed below in Section 5.2) is the mean of all 30

replicate trials. For ALAD the reported AUC is the mean of 900 operations- thirty

replicate trials each with thirty bootstrap groupings.

Finally, we also consider the same evaluation strategies for ensembles. We con-

sider two ensemble types: a simple averaging, and the ReLU ensemble method from

Kim et al. [68]. An ensemble of each type was constructed for each architecture and

configuration level, resulting in 12 total ensembles. All ensembles consist of three

models—either the three configurations from a given architecture, or the three differ-

ent base models with the same configuration index.

5.2 Results

We present performance metrics, namely ROC AUC and FPR at complete detection

for all models, in Table 5.1. Separate columns exist for both metrics over each com-

bination of model, dataset, and classifier method. These metrics are reported as the

mean of the thirty replicate trials ± one standard deviation. In all cases ALAD sig-

nificantly increased AUC (two-sided t-test, p-val < 0.001) when compared to TLAD.

We also observe a significant reduction in the FPR at complete detection in the vast
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(a) ADFA TLAD (b) ADFA ALAD

(c) PLAID TLAD (d) PLAID ALAD

Figure 5.2: ROC curves for the highest performing single model from each architecture
along with the highest performing ensemble on ADFA (top) and PLAID (Bottom). Models
were evaluated using both the TLAD(left) and ALAD(right). ROC curves show the mean
and standard deviation for thirty trials. The legend reports the mean AUC and its standard
deviation. For all models ALADsignificantly improved performance.
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(a) CNN/RNN (b) LSTM

(c) WaveNet (d) Hybrid

Figure 5.3: Figures 5.3a to 5.3c feature ROC curves for all trained models as well as homoge-
nous ensembles on ADFA. Figure 5.3d shows the ROC heterogeneous ensembles constructed
from model of all three architectures for each hyper-parameter configuration. ROC curves
show the mean and standard deviation for thirty trials using TLAD. The legend reports the
mean AUC and its standard deviation. We note that the LSTM and CNN/RNN ensembles
under-performed some of their constituents while the WaveNet ensembles performed better.
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(a) CNN/RNN (b) LSTM

(c) WaveNet (d) Hybrid

Figure 5.4: Figures 5.4a to 5.4c feature ROC curves for all trained models as well as
homogenous ensembles on PLAID. Figure 5.4d shows the ROC heterogeneous ensembles
constructed from model of all three architectures for each hyper-parameter configuration.
ROC curves show the mean and standard deviation for thirty trials using TLAD. The
legend reports the mean AUC and its standard deviation.
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Figure 5.5: Validation loss compared to performance for all models on the ADFA dataset.
Typically, one expects lower validation loss to correspond with higher performance. Here we
see no strong correlation between validation loss and performance. We note that anomaly
detection results in a special case as the training task (system call prediction), is not same
as the evaluation task (attack classification).
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majority of cases. WaveNet proved to be the strongest performer on ADFA while

LSTM models had the strongest performance on PLAID.

In Figure 5.1.5 we show ROC curves for the highest performing model from each

architecture, and the single best ensemble. We present our performance metrics for

all 12 ensembles in Table 5.2. The traditional TLAD is shown on the left, and our

proposed ALAD is on the right. We note the higher ROC curves when using ALAD

showing the lower false positive rates at all levels of detection. Of additional interest

is that there is no clear winner in terms of model architecture or even model size.

Models tended to have a higher performance on PLAID compared to ADFA-LD at

the trace level, except WaveNet.

Figures 5.3 and 5.4 show ROC curves for all models and ensembles on ADFA-LD

and PLAID respectively using TLAD. We use an identical evaluation methodology

to Kim et al. [68] and Chawla et al. [70] at the trace level, so we would expect model

performance to be similar to the original work despite the differing data splits and

training methodology. This was the case for our CNN/RNN models which had AUCs

similar to their originally reported values. We failed to replicate the high performance

at the trace level of Kim et al [68], but our smaller LSTM model performed similar to

the LSTM model used in Chawla et al. [70]. We did see a performance improvement

from the use of ensembles and note that the ReLU ensemble was the top performer for

both datasets, beating out the averaging and hybrid ensembles. Despite this we were

unable to replicate the strong performance of the ReLU ensemble shown in Kim et

al. [68] and note that its performance is virtually indistinguishable from the averaging

ensemble.

In Figure 5.5 we compare validation loss at the final epoch to model performance
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as measured by the ROC AUC score. One might expect a lower validation loss to

correspond with a higher ROC AUC score, however we do not observe this empirically.

In summary, ALAD resulted in a significant AUC improvement for all models

on all architectures and datasets under consideration. This improvement comes at

virtually no additional computational overhead, compared to TLAD.

5.3 Discussion

5.3.1 Hypotheses

Testing our first of two hypotheses formulated in Section 5.1.1, namely that WaveNet

would be the top performing architecture, produced mixed results. On ADFA, the

dataset on which all models were tuned, WaveNet was indeed the top performer,

supporting our hypothesis. However, WaveNet was the poorest performer on PLAID.

There are two plausible explications for this behavior: WaveNet models may have

over fit to the training data, or the architecture could be more sensitive to tuning.

Our second hypothesis, namely that ALAD would yield superior performance

compared to TLAD, was fully supported by our analysis. For all models and datasets

under consideration there was a statistically significant (two-sided t-test, p-val <

0.001) improvement under ALAD. We speculated that this is due to the fact that

some attack traces may in fact be benign. This is an unavoidable artifact of the

collection methodology. The attack set contains all traces, each representing a distinct

process, of a program during a successful attack. The effects of a modern attack are

seen across multiple processes[50]. Precisely identifying the affected processes would
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require knowing exactly what system calls would have been issued in the absence of

an attack.

5.3.2 Practical Concerns & Use Cases

The information in Tables 5.1 and 5.2 allows practitioners considering a deep learning

IDS deployment to make informed decisions about the trade-offs between detection,

false alarms, and computational cost. These tables show the primary drawback of

deep learning powered IDS, long training and non-trivial evaluation times. For real-

time detection the time and computational requirements may be too expensive for

some applications. However, in addition to real-time detection, IDSs may also be used

in a retrospective analysis. In a retrospective analysis IDSs may be used to identify

which systems or applications were affected; helping analysts identify the impact of

a breach or informing their search.

While PLAID improves upon ADFA-LD there is still a need for more compre-

hensive datasets. To be effective IDSs must be trained on baseline data reflective

of their host. To meet this requirement practitioners must train the systems they

wish to deploy on data collected locally. Additionally, the system must be (at least

partially) retrained when any significant changes occur, such as the deployment of a

new application.

5.3.3 Implementation Decisions

A deployment of any form of anomaly detection requires practitioners to select a

threshold θ. This is an obstacle for practitioners as there is no way to know a priori
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the estimated probability the model will assign an attack sequence. Fortunately,

there are two informed methods through which practitioners may select this value.

First, one may use results on an existing corpus such as PLAID or ADFA. Second,

one could utilize baseline sequences from their own production system; selecting a

threshold that results in FPR they are able to handle. Of course, while neither of

these choices guarantee complete detection they provide a means to achieve strong

performance with an anomaly-based IDS. There is no wrong choice for a threshold

value, only trade-offs between detection and false alarms.

Model selection is yet another obstacle for practitioners deploying a deep learning

powered IDS. Typically, in deep learning one performs this task by selecting the model

with the lowest validation loss. Unfortunately, we observed no strong correlation

between AUC and validation loss. For this reason we recommend practitioners select

their models based on their performance on reference datasets such as PLAID and

ADFA. Additionally, this result underscores the need for researchers to continue to

expand upon existing datasets.

Surprisingly, while we did see improvement from the use of ensemble, the effect

was small compared to the performance achieved by the highest performing models.

Additionally, while the ReLU ensembles outperformed their average ensemble coun-

terparts, performance gains were marginal. As the creation of an ensemble requires

duplicating training and evaluation costs, we believe it to be not worth the effort for

this application.

64



4
3

2
1

0
1

2
3

4

Figure 5.6: Comparison of system call rankings between attack and baseline traces in
PLAID. Note that some of the most frequently utilized system calls, read and close, are
among the largest contributors to divergence.
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5.4 Visualizing Differences Between Base-

line and Attacks

While deep learning is an effective ML approach in many applications, it suffers from

its “black box”, uninterpretable nature. Although methods are being developed to

interpret deep learning models, they fall short, especially for insights into high-stakes

decision making [158]. This is not necessarily an argument against the use of deep

learning for HIDS since ML models are often just one component of a “observe, orient,

decide, act” loop in security operation centers that also incorporate human analysts.

However, interpreting data and predictive features in data is often critical for security

practitioners. Instead of leveraging ML models for computational insights, we argue

that other techniques can be leveraged, orthogonal to model development.

Two recently proposed techniques are “allotaxonometry” and “rank-turbulence

divergence” [73]. These highly general methods leverage information-theoretic tech-

niques for visualizing differences in datasets with complex structure, such as natural

language text, baby names, and mortality cause databases. These techniques are es-

pecially relevant in our application space, since anomaly-based HIDS rely on the fact

that significant differences exist between normal and malicious operations. Quantify-

ing such differences not only sheds light on features potentially exploited by models,

but also potentially new types of analysis. In this Section we explore the differ-

ences between attack and normal traces for both datasets used in this study, using

allotaxonometry and rank-turbulence divergence.

In figure 5.6 we display the differences between attack and normal uni-grams using
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an allotaxonograph. This instrument features a rank-turbulence histogram on the left,

and a rank-turbulence divergence shift on the right. We compute the relative rate of

usage for each uni-gram in the baseline and attack sequences separately, then order

system calls using tied-rank. Ranks for system calls that are found in one distribution

but not the other are replaced with the maximum rank of the joint distribution. The

2D histogram on the left displays the distribution of uni-grams found in the baseline

and attack sequences as well as the overlap between the two distributions. System

calls on the left side of the histogram are often used in the baseline sequences, whereas

system calls that are highlighted on the right side of the histogram are often used in

attack sequences. System calls which are used in both systems equivalently can be

seen in the middle.

Of particular interest is that commonly used system calls (e.g., open, close, and

times) display relatively high rank-turbulence divergence in both datasets. This is

in contrast to natural language where rankings of the most common words tend to be

stable across corpora [73]. Additionally, the most dangerous system calls [159] are not

top contributors to divergence. This suggests that focusing exclusively on dangerous

system calls could result in failures to detect intrusions. Additional allotaxonographs

of uni through tri grams of both datasets are in Appendix A.1. We also contrast the

raw frequencies of system calls found in baseline and attack traces for both datasets

in Appendix A.2.

In figure 5.7 we show that system call usage roughly follows an exponential rank

frequency distribution. The rank frequency system call bi and tri-grams appears to

approximate a power-law with an exponential cutoff in the tail. Natural language

corpora tend to be and stay power-law like for uni- through tri-grams with the tail
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Figure 5.7: Rank frequency plots of system calls for attack and baseline traces in ADFA-LD
(left) and PLAID (right). Fit lines were obtained using Huber regression. Observe that
system call usage roughly follows an exponential rank frequency distribution. This is differs
from natural language where word frequencies follow a power law distribution [1].

starting to flatten [1]. Thus, system call corpora become more power-law, while not

quite reaching a power-law distribution while natural language corpora continue to

follow a power-law distribution. Additional rank frequency plots for bi and trigrams

are located in Appendix A.2. In all of these figures we clearly see substantial differ-

ences between attack and normal system call distributions.
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Chapter 6

Application 2: Inefficiencies in the

U.S. equity markets

Leveraging the large number of securities under study and the broad range of market

capitalization (MC) covered, we examine scaling relationships between DSs, ROC,

and MC. DSs occur in equities of all sizes. While DS are more frequent in equities

with larger MC, the distributions of their qualities, such as their magnitude and

duration, are more extreme among equities with smaller MC. We find a strong positive

correlation between MC and ROC, show in Figure 6.1. A similar relationship is seen

between MC-total trades and MC-differing trades in Figure A.9. The majority of

ROC is generated by equities in the S&P 500 that are not also in the Dow (termed

the SPexDow). The SPexDow also Granger-causes ROC in other mutually-exclusive

market categories (Dow 30 and Russell 3000 less the S&P 500, or RexSP), pointing

to its centrality in the U.S. equities market.

In the following sections, we describe statistics of DSs, including distributions of start

times and durations. Next we move to analysis of ROC, providing summary statistics,
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Figure 6.1: Linear and quadratic regression between Market Capitalization (MC) and ROC
in doubly-logarithmic space. There is a strong positive relationship between MC and ROC.
The data exhibits interesting nonlinearity and heteroskedasticity, where equities with smaller
MC have higher variance in the dependent variable, while equities with larger MC have
generally lower variance. Note that equities in the financial sector have a consistently lower
ROC relative to MC while equities in the energy sector have a consistently higher ROC
relative to MC. The shaded area surrounding the regression curves indicate 95% confidence
intervals for the true curves, calculated using bootstrapping techniques.
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comparisons across mutually-exclusive market categories, and correlation along with

Granger-causality analyses. We close with a brief exploration of exchange-traded

funds (ETFs), a discussion of results, and possibilities for future work.

6.1 Methods

Our work investigates the occurrence of DSs and ROC arising from quote discrep-

ancies between the SIP and direct feeds. Similar concepts have been discussed in

empirical market microstructure literature [22, 78, 160, 161, 162], though formal def-

initions vary. We follow the definitions described below.

Dislocations Suppose that there exist two market data feeds, F1 and F2, each display-

ing quotes for a single asset. Quotes have the form qi(t) = (bi(t),mi(t), oi(t), ni(t)),

where i ∈ 1, 2, bi(t) is the bid price at time t, oi(t) is the offer priceat time t, mi(t)

and ni(t) are the number of shares associated with the bid and offer at time t re-

spectively. We observe these feeds from a single, fixed location in Carteret, NJ. A

dislocation between these sources of data occurs when the prices of the quotes differ,

e.g. b1(t) 6= b2(t) or o1(t) 6= o2(t). A DS occurs when the quotes differ and the relation-

ship between the quoted prices remains constant, e.g. b1(t) < b2(t) or b1(t) > b2(t).

More formally we represent dislocation segments as a 4-tuple:

vn = (tstart
n , tend

n , min ∆p, max ∆p). (6.1)

The maximum (resp. minimum) value of the dislocation segment are simply the max-
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Figure 6.2: We depict the dissemination of a market event to a subset of core participants
in the national market system. The left panel visualizes the the plumbing connecting our
participants; NYSE and SIP tape A co-located in Mahwah, NJ and Nasdaq along with our
observer co-located in Carteret, NJ. All participants subscribe to both the SIP (blue) and
direct feeds (red) from both exchanges. We show the flow of information as a sequence of
enumerated events depicted as rectangular documents. The right panel displays the best bid
and offer observed by the participants at each event from both the SIP (blue) and direct feeds
(red). Note that while Nasdaq and our observer remain in sync for this entire example this is
not always the case. We start at step zero with a market in harmony, that is all participants
observe the same price on all feeds. Within the same microsecond NYSE processes an order
resulting in a new best bid that narrows the spread. NYSE quickly dispatches a message of
the top-of-book change to the SIP and its direct feed customers. Five microseconds later [2,
3] NYSE’s message arrives at the SIP which takes an additional 92µs [4] to process the
information and dispatch a new NBBO. After another five microseconds NYSE receives the
new NBBO from its co-located SIP. It’s not for another 180µs, 282µs after the original
message the subscribers to NYSE’s direct feed in Carteret receive the message. At this point
we observe a 1g dislocation between the BBO displayed on the direct feeds and the observed
NBBO. This dislocation persists for 97µs at which time the SIP update arrives in Carteret.
Note that while technological advances will result in this sequence of events unfolding faster,
the core behavior will remain unchanged. Messages from direct feeds travel a single leg,
from exchange to subscriber, while updates to the NBBO require two legs, exchange to SIP
to subscriber.
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imum (resp. minimum) difference in the prices that are generating the dislocation

segment over the time period [tstart
n , tend

n ). The time period [tstart
n , tend

n ) is determined

by identifying a contiguous period of time where ∆p > 0 or ∆p < 0. From the above

quantities the duration of the dislocation segment can also be calculated. The quan-

tity ∆p(t) is the difference in the price displayed by the information feeds at time

t as measured and timestamped by our observer in Carteret. From the definitions

of max ∆p and min ∆p the reader will note that dislocation segments will tend to

feature min(|min ∆p|) ≥ $0.01, since the minimum tick size in the NMS is set at

one penny for securities with a share price of at least $1.00. In collating dislocation

data, we record the maximum and minimum value of each dislocation segment rather

than a time-weighted average of dislocation value or other statistic for the sake of

simplicity. In much of our analysis we take the absolute values of the maximum

and minimum values of each dislocation segment as the fundamental object of study

as any dislocation, regardless of which feed is favored, presents an opportunity for

market inefficiency.

Figure 6.2 walks through an example DS occurring on a subset of the NMS using

estimates of message transit and processing time for each leg of the journey. In our

example a DS starts when a message regarding a quote change in Mahwah reaches

our observer in Carteret via a direct feed and ends when the same message arrives

via the SIP 92µs later. In this single example we see three factors that either alone,

or in combination, may cause DSs; differences in processing time, transfer speed, and

route (SIP messages require an additional leg). In this example the dislocation was

triggered by a single top of book change at NYSE. However, dislocations can occur

due to sequences of events occurring across multiple exchanges and SIP processors.
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Recall that by definition a DS requires two feeds. TAQ data contains only the quotes

resulting in a NBBO change as well as all trades. In contrast our dataset contains all

quotes sent along the direct feeds as well as all SIP updates. Thus, we can observe

events such as our example in Figure 6.2, an impossibility with TAQ data.

Realized Opportunity Cost Using the two market data feeds F1, F2 from dislo-

cation definition above we calculate the ROC of using F1 in place of F2 by combining

quote and trade information. Assume that trades take the form Tj = (pj, vj, tj),

where pj is the execution price, vj is the number of traded shares, and tj is the exe-

cution time. If a trade executes at one of the currently quoted prices, e.g. b1(tj), then

the ROC is given by (b2(tj) − b1(tj)) ∗ vj. If the trade executes on the opposite side

of the book, e.g. o2(tj), then the ROC is given by (o1(tj) − o2(tj)) ∗ vj. This allows

for a consistent interpretation of the values, where a positive value indicates that F2

displayed a better price for the active trader (higher bid or lower offer) than F1. The

total ROC over an interval [S, E] is obtained by taking the sum of ROC values from

all trades that occurred in that interval.

We first compute summary statistics and qualitative descriptions of the distributions

of DSs and ROC. Additionally, we leverage the large sample of equities to conduct

a cross-sectional study of the effect of company “size” on these microstructure quan-

tities. We quantify the notion of size of a company by both its MC and its rank

in relation to other companies. We also investigate index inclusion effects through

the use of disjoint sets of equities and compute aggregate statistics across these sets.

Since the S&P 500 is a strict superset of the Dow 30 and the Russell 3000 is a strict

superset of the S&P 500, the natural division of the superset of all equities under

74



study is split into three distinct classes: the Dow 30, the S&P 500 excluding the Dow

30 (SPexDOW), and the Russell 3000 excluding the S&P 500 (RexSP). We investigate

correlations between these disjoint subsets, and characterize the statistical properties

of the time series of DSs and ROC across these disjoint categories. We further explore

the relationship between these categories by conducting a Granger causality analysis

of aggregated ROC time series [163].

The next section gives results on DSs, including summary statistics and regressions

of DSs against MC. We then discuss structure in the intra-day distribution of DS

start times and DS duration. Following this, we provide statistics of the ROC across

the market as a whole and again within mutually-exclusive market categories. We

then explore statistical properties of the ROC time series. We close with an overview

of the statistics of ETF DSs and ROC, contrasting these with those of the market as

a whole.

6.2 Results

6.2.1 Dislocation Segments

DSs can occur when quotes displayed by distinct information feeds differ. We cata-

loged all DSs occurring in the equities under study and present summary statistics

along with qualitative comparisons of their distributions and higher-order moment

statistics. Table A.1 - A.3 display means of summary statistics of DSs for each

mutually-exclusive market category under study.

We will use the notation 〈fA〉 to denote an average of the quantity f conditioned

75



Figure 6.3: Histograms of the base-10 logarithm of minimum magnitude, maximum magni-
tude, and duration of dislocation segments in the RexSP without conditioning on duration
or magnitude. The distributions are leptokurtic, with the log-distributions of minimum and
maximum magnitude presenting a long right tail and the distribution of log-duration dis-
playing a rough bell-shape.

on the condition A. These averages are interpreted as the quantity f conditioned

on condition A averaged over all securities and all times of observation; defining the

number of instances of the quantity f having condition A as NA, we have

〈fA〉 = 1
NA

∑
1≤n≤NA

f has condition A

fn. (6.2)

Tables A.1 - A.3 show that, on average, there were more DSs in Dow 30 securities

than in SPexDow or RexSP securities. However, the average maximum magnitude of

DSs in the Dow30 is lower than those of the SPexDow, which in turn are lower than

those of the RexSP. In particular, actionable DSs (those with duration > 545µs)

with magnitude > $0.01 exhibit more extreme behavior in the SPexDow and RexSP

than in the Dow. On average, the median maximum magnitude in the Dow 30

among actionable DSs was
〈
median max magduration,magnitude

〉
' $0.023, while in
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the SPexDow we observed
〈
median max magduration,magnitude

〉
' $0.034 and in the

RexSP
〈
median max magduration,magnitude

〉
' $0.045, a roughly one-cent increase in

the median maximum magnitude of a DS in each mutually-exclusive market category.

Examples of distributions of these quantities are given in Figure 6.3, where the dis-

tributions of the means of minimum magnitude, maximum magnitude, and duration

are plotted for the RexSP.

These results provide evidence for the existence of a MC scaling effect in DSs. Se-

curities with larger MC tend to feature higher trading volume and more frequent

occurrence of DSs, but these DSs tend to be smaller in magnitude on average. More

frequent trading implies a lower probability that prices across differing information

feeds will diverge by large magnitudes.

Since DSs are not distributed evenly throughout the day in the Dow 30 [26], we

examine their distribution in the SPexDow and the RexSP as well. Appendix A.4

contains figures displaying the distribution of DS start times plotted modulo day

and aggregated over the year as well as figures displaying the distribution of DS

durations for each mutually exclusive market category. Distributions are plotted both

without conditioning, conditioned on duration, as well as conditioned on duration and

magnitude.

Distributions of start times display predictable structure. In all market categories,

there are large peaks at the very beginning and end of the trading day (circa 9:30

AM and 4:00 PM), along with a noticeable and sudden increase in density around

2:00 PM. The peak in density that occurs at the end of the day is most noticeable

when the distribution of start times is not conditioned on DS size. These observa-

tions correspond with the results found for the Dow 30 in [26]. However, along with
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these granular observations, there also exists structure on shorter timescales. The

distribution exhibits self-similarity on the half-hour timescale, with large peaks every

half-hour and decreasing density toward a sudden peak at the next half-hour. There

is also structure at the five-minute timescale that is noticeable before the 2:00 PM

spike in density but does not appear to be present after the spike. (Future work could

statistically test for the presence of this structure and for its persistence across mul-

tiple timescales.) The structure on shorter timescales is present in all distributions

but, again, is more pronounced in distributions not conditioned on magnitude.

Distributions of DS duration are extremely heavy tailed, so we plot them with a log-

transformed horizontal axis. All DS duration distributions exhibit one or more peaks

in the range 10−4s ≤ log10 duration ≤ 10−3s, but there is also a distinct and much

lower peak in the distribution near approximately one second in length.

S&P 500 Inclusion Effect: Dislocations As a visual aid to these results, we

have included circle plots, as introduced in [26], to demonstrate the non-uniform

distribution of DSs that can occur. Figure 6.4 shows these circle plots for two common

stock pairs ((PBI, INCR), (BRK.B, XOM)) on the edges of our indices. The first pair

is the smallest common stock in the S&P 500′ by MC that remained in the S&P 500

for the entire calender year and the closest component by MC in the RexSP, PBI

and INCR respectively. The second pair is the only mega cap in the RexSP and the

closest component by MC in the S&P 500′ that remained in the S&P 500 for the entire

calender year, BRK.B and XOM respectively. We note that BRK.A is not included

in the Russell 3000 [149] and that XOM is additionally included in the DOW. These

common stock pairs underscore the difference in behavior between constituents of the
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S&P 500 and those not included in the most worlds most widely tracked equity index.

Figure 6.4 displays the DSs for the above-mentioned common stocks aggregated

over a year (modulo day). We see that DSs appear to be more concentrated for S&P

500 constituents with spikes occurring at the beginning of the trading day and at 2:00

pm. Additionally, DSs for S&P 500 constituents tend to have smaller magnitudes,

relative to Russell 3000 constituents. We provide circle plots for many more securities

on our webpage [164].

6.2.2 Market capitalization

Further evidence for scaling behavior arises from analysis of MC. Tables 4.2 and 4.1

display MC statistics broken down by industry sector and categorical size, e.g., micro-

cap, mega-cap, etc. MC is significantly positively correlated with ROC. Tables A.13

- A.16 display results from ordinary least squares regressions predicting ROC using

MC and other predictors. A linear fit predicting log10 ROC from log10 MC, log10

total trades, and log10 differing trades gives R2 ' 0.908. A positive coefficient relates

log10 ROC to log10 MC, indicating that higher MC is associated with higher ROC.

A similar regression is computed including quadratic terms in log10 MC, which has a

significant, but weak, negative association with ROC. Similar relationships hold for

both the linear and quadratic models when the dependent variable is instead chosen

to be total or differing trades.

Though behavior of ROC as a function of MC is generally similar when equities are

stratified by sector, some sectors display lower average levels of ROC, differing trades,
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Figure 6.4: Dislocation segments (DS) for stock pairs (similar MC) aggregated over a year
(modulo day). PBI (paired with INCR) is the smallest common stock by MC under consid-
eration that remained in the S&P 500 for all of 2016. BRK.B (paired with XOM) is the
only mega cap in the RexSP. We see that DSs appear to be more concentrated for S&P 500
constituents (left) with spikes occurring at the beginning of the trading day and at 2:00 pm.
Additionally, we note that DSs appear to a smaller magnitude for S&P 500 constituents.
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or total trades when MC is held constant. Equities classified as being in the financial

sector generally have a smaller amount of ROC, while equities classified as being in

the energy sector exhibit a higher amount of ROC on average. However, there is no

clear general trend linking sectors to MC or to ROC.

6.2.3 Realized opportunity cost

As expected with an increase in the number of analyzed equities from 30 to more

than 2900, the amount of ROC rose substantially from the quantity reported in [26],

from $160M to $2.05B USD. ROC clearly displays sublinear scaling with the number

of studied equities; we do not observe a thousandfold increase in the amount of ROC

with a thousandfold increase in the number of equities. The information advantage

afforded traders with access to direct feed information is not uniform; though a vast

majority of the ROC ($1.91 B) favored the direct feeds in this way, a non-negligible

amount of ROC ($137 M) did favor the SIP feeds. Approximately a quarter (23.71%)

of all trades observed occurred during a dislocation. The fraction of “differing traded

value”—the nominal market value of all differing trades—was slightly higher (25.25%)

than the fraction of all trades that were differing trades. The ratio between these two

values (25.25% / 23.71% = 1.0651) shows that the average differing trade moves

approximately 6.51% more value than the average trade. This indicates a qualitative

shift in trading behavior during dislocations.

Securities in the SPexDow account for a median of 2,006,091 differing trades per day,

in contrast to the 309,158 in the Dow 30 or 1,921,121 in the RexSP. The median

differing traded value per day in the SPexDow was also the highest among the three

categories, totaling approximately $14.07T versus the RexSP’s total of $6.7T and
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BRK.B XOM PBI INCR

MC ($) 401,644,421,120 374,280,552,448 2,821,674,240 2,820,235,520
ROC ($) 2,278,835.98 8,846,416.18 726,596.69 487,049.13
Trades 5,120,595 16,146,652 2,360,470 904,613
Diff. Trades 1,544,050 4,479,209 488,092 243,855
Traded Val. ($) 70,435,832,686.71 169,057,336,872.77 5,766,285,837.56 3,989,174,661.59
Diff. Traded Val. ($) 24,162,015,573.13 47,541,675,580.93 1,257,265,907.34 1,016,834,174.82

Table 6.1: Summary statistics for select common stock pairs. BRK.B (paired with XOM)
is the only mega cap in the RexSP. PBI (paired with INCR) is the smallest common stock
by MC under consideration that remained in the S&P 500 for all of 2016. Note that those
in the S&P 500 (green) have a much higher trading volume and ROC then their similarly
capitalized counterparts.

the Dow’s total of $3.27T. ROC per share differed across the three categories, with

median ROC per share per day of 1.1g, 1.5g, 2.1gfor the Dow, SPexDow, and RexSP

respectively. ROC per share tends to increase as MC decreases, with lowest ROC

per share occurring in the Dow and highest ROC per share occurring in the RexSP.

Median total ROC per day on the Dow amounted to $514.8K, while median total

ROC per day on the SPexDow totaled $3.384M and on the RexSP amounted to

$3.564M. Summary statistics for distributions of ROC for each mutually-exclusive

market category are given in Table A.7.

It is interesting to consider the distribution of both total ROC and ROC per share

by both equity and mutually-exclusive market category. Figure A.10 displays ROC

of the top 30 and bottom 30 of all securities under study when ranked by ROC.

Included in this figure for comparison is the exchange-traded fund SPY, an ETF that

tracks the S&P 500. Selected ETFs are also treated separately in Section 6.2.4. It

is notable that the equity with the largest ROC, Bank of America (BAC), has more

than twice the ROC of the equity with the second-largest amount of ROC, Verizon

(VZ). Though not an equity and not included in the rest of this study, it is also
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Stat. Mean Std.

MC ($) 3,695,890,099.20 ± 464,930,329.63
3,696,678,400.00 ± 465,021,263.08

ROC ($)† 1,530,766.70 ± 1,212,566.32
573,704.19 ± 454,901.87

Trades† 3,757,345.30 ± 2,579,005.78
1,340,988.30 ± 1,099,357.71

Diff. Trades† 848,648.80 ± 568,393.92
318,163.00 ± 222,699.69

Traded Value ($)† 11,966,521,828.32 ± 6,995,211,619.34
4,281,159,071.68 ± 2,466,969,453.45

Diff. Traded Value ($)† 2,930,334,696.21 ± 1,746,456,767.92
1,071,563,501.93 ± 551,246,762.12

Table 6.2: Comparison of the smallest ten common stocks that remained in the S&P 500 for
all of 2016 (green) and the ten RexSP common stocks with the closest MC. Rows marked
with † have significantly (two-sided t-test, p < 0.05) higher values for common stocks in the
S&P 500. We note that common stocks in the S&P 500 have nearly three times the trading
activity and ROC than their similarly capitalized counterparts.
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notable that SPY, one of the most heavily traded securities on the NMS along with

BAC, is close to BAC in ROC. Of the top 30 securities with the most ROC, eight of

the 30 are Dow 30 equities. Only four out of 30 are RexSP equities, while the other

17 non-ETF securities are SPexDow equities. One may attribute this to MC, though

we note the S&P 500 is not the largest 500 U.S. companies 4.2. In fact, there are

612 RexSP constituents with a MC greater than PBI, a common stock at the bottom

of the S&P 500. This includes 67 large and mega cap common stocks. Since the

S&P 500 appears to be the primary driver of ROC across all equities (c.f. below), we

find the top 30 and bottom 30 S&P 500 securities ranked by ROC, including Dow

30 securities, and plot their ROC in Figure A.11. Even in this subset, only 10 of the

top 30 equities are Dow 30 securities. However, when the unit of analysis changes

to ROC per share, as in Figure A.12, we find that RexSP equities fill 27 out of 30

top ranks, which corresponds with the aggregated statistics reported in Table A.7.

Additionally, we revisit our common stock pairs from 6.2.1 to take a closer look at

common stocks barely inside and outside of the S&P 500. We see that the common

stocks in the S&P 500 have a much higher trading volume and ROC then their

similarly capitalized counterparts 6.1. To see if this trend holds we expand our set

to the ten smallest common stocks that remained in the S&P 500 for all of 2016 and

the ten RexSP common stocks with the closest MC. None of the ten RexSP members

spent any time in the S&P 500 during 2016. We find the trend holds with members

of the S&P 500 having nearly three times the trading activity and ROC than their

similarly capitalized counterparts 6.1.

Since there appear to be differences between the (stationary) summary statistics of

the mutually-exclusive market categories, it is reasonable that there may be signifi-
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cant differences between the ROC statistics considered as time-dependent stochastic

processes and simply considered as random variables decoupled from time. Within

each category, the ROC was computed for all equities in that category for each day.

Each ROC series is then normalized as ri 7→ ri−〈ri〉√
Var(ri)

, which allows direct comparison

of the series. Figure A.16 displays a quantile-quantile plot of the Dow, SPexDow,

and RexSP ROC distributions. The Dow distribution is plotted as linear and the

other two distributions are compared with it. It is immediately obvious that the

left tails of the SPexDow and RexSP distributions are heavier than that of the Dow;

this also appears to be the case for the right tails of the distributions, but there is

little sampling in this region and so no conclusion can be drawn. This similarity of

the SPexDow and RexSP distributions is also striking; when normalized they appear

almost identical.

Figure A.17 displays the time-dependent sample paths of ROC sampled at daily

resolution. These processes are anti-autocorrelated—they display mean reversion—

as evidenced by their detrended fluctuation analysis (DFA) [165] exponents of αDow =

0.438, αSPexDow = 0.242, and αRexSP = 0.235. All series exhibit rare large values from

time to time, with the Dow ROC series exhibiting the largest rare values relative to

its mean fluctuations and the SPexDow series exhibiting the smallest. We also note

that, in accordance with the QQ plot of the time-decoupled distributions above, the

DFA exponents of the SPexDow and RexSP—and thus their corresponding dynamical

behavior—are closer than they are to the Dow DFA exponent.

A review of the above results points to the SPexDow as being the “dominant" mutually-

exclusive market category in some sense: it accounts for a plurality of differing trades,

differing traded value, and total ROC, while also having a DFA exponent lower than
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that of the Dow and close in value to that of the RexSP, meaning that its time-series of

ROC is strongly mean-reverting. The amalgamation of these facts can be interpreted

as evidence that the SPexDow ROC time series is possibly least likely to be influenced

by the other series of ROC. To test this hypothesis, we conduct a number of Granger

causality tests on the time series of ROC. Granger causality is the notion that past

values of one time series may be useful in predicting current and future values of

another time series [163]. A maximum lag of 40 days was set and four tests were cal-

culated pairwise between each of the three mutually-exclusive market categories: sum

of squared residuals χ2-test, a likelihood ratio test, sum of squared residuals F -test,

and a Wald test. We consider there to be a significant Granger causality between

series when all four tests indicate significant Granger causality at the p = 0.05/Nlags

confidence level. The correction for multiple comparisons is done using the most con-

servative estimate, the Bonferroni correction, to minimize the probability of Type I

error [166]. Figure 6.5 displays the results of these tests graphically as a directed

network. The direction of edges denotes the direction of the Granger-causal relation-

ship between the categories, while the weights on the edges denote the total number

of lags for which the relationship was significant. The SPexDow is shown to signifi-

cantly influence both the Dow and RexSP while not being significantly influenced by

either category; this provides strong evidence to support our above hypothesis. We

note that the SPY tracks the S&P 500, is one of the most heavily-traded securities,

and has the second-highest amount of ROC of the securities under study here. The

SPY’s price dynamics and ROC may thus have a material effect on the relationships

between the S&P 500’s ROC and those of the other market categories, providing a

partial confounding effect to the Granger-causal relationship determined here; there
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Figure 6.5: Network of relationships between mutually-exclusive market categories implied
by results of four Granger causality tests. The direction of the edges gives the direction of
the Granger-causal relationship, while the weight on the edge is the total number of lags for
which the relationship was significant at the p = 0.05/Nlags level (the conservative Bonferroni
correction). The maximum number of lags was chosen to be Nlags = 40. Thickness of the
edge is proportional to edge weight and is plotted for emphasis in visualization. Details about
which lags were associated with significant Granger causality can be found in Table A.12.

may be a mutually-causal relationship between the real S&P 500 and the ETF that

tracks it. The RexSP and Dow have a mutually Granger-causal relationship, with the

Dow exerting more influence on the RexSP than the other way around. This finding

corresponds with the ranking of categories on a total shares traded per number of

equities basis; this is not a surprising result. We also find that the SPexDow exerts

far less influence on the RexSP than does the Dow (four total lags for the SPexDow

versus 23 total lags for the Dow), a fact for which we do not have a ready explanation.
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ROC: Dow SPexDow RexSP
Dow 1.000000 0.451072 0.319018
SPexDow 0.451072 1.000000 0.724903
RexSP 0.319018 0.724903 1.000000

ROC / Share: Dow SPexDow RexSP
Dow 1.000000 0.103061 -0.019662
SPexDow 0.103067 1.000000 0.411443
RexSP -0.019662 0.411443 1.000000

Table 6.3: Pearson correlation matrices of mutually-exclusive market categories. For each
index subset a daily resolution time series is constructed for the given statistic over all stocks
in the index subset. For the ROC series the ROC generated for each stock on a particular
trading day is summed, while in the ROC per share case the values are averaged. The
correlation coefficients are then calculated between pairs of time series in order to construct
the tables above. The top table displays ROC correlations, while the bottom table displays
ROC per share correlations. The ROC per share statistic normalizes the number of traded
shares, allowing for a fair comparison between the more heavily traded stocks in the Dow 30
or S&P 500 subset with the more lightly traded stocks in the Russell 3000 subset.

Providing further evidence for the above hypothesis, we compute Pearson correlations

between pairs of mutually exclusive categories for both ROC and ROC per share; these

results are displayed in Table 6.3.

ROC correlations are strongest between SPexDow and RexSP (ρ = 0.72) and

SPexDow and Dow (ρ = 0.45), while the correlation between the RexSP and Dow

is lower (ρ = 0.31). ROC per share correlations are universally lower than those for

ROC, but the correlations between SPexDow and RexSP (ρ = 0.41) and SPexDow

and Dow (ρ = 0.10) are still higher than that between RexSP and Dow (ρ = −0.01),

which is actually negative.

Figure A.13 displays the distributions of daily total ROC in 2016 by mutually-

exclusive market category. The panel with linear scaling highlights the extremely

heavy-tailed nature of these distributions, while the log scaled panel provides a bet-
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ter comparison between the mutually-exclusive market categories. On average, mem-

bers of the Dow 30 experience the greatest daily ROC, followed by members of the

SPexDow, followed by members of the RexSP. It seems likely that the kurtosis of

the theoretical distributions do not exist, implying tail exponent γ < 4 in the dis-

tribution Pr(X > x) ∼ x−(γ−1). Table A.8 displays the skew and kurtosis for each

distribution. If we examine the daily ROC per share in a similar manner, which is

shown in Figure A.14, we observe a reversal of the previous relationship. Members

of the Dow 30 have the least daily ROC per share, on average, and members of the

RexSP have the most. Though there is a slight trend, more ROC per share in less

frequently traded stocks, the distributions of all three groups are nearly centered at

1g per share. This corresponds well with our expectations based on the structure of

the system and the distribution of DS magnitudes shown in Figure 6.3.

6.2.4 ETFs

Exchange traded funds (ETFs) are securities that trade on the NMS and are designed

to mimic as closely as possible a particular portfolio of other securities. They are thus

governed by the same price discovery mechanism as other securities that trade on the

NMS, as opposed to the end-of-day price discovery mechanism to which mutual funds

are subjected, but also allow investors to own a portion of potentially many underlying

assets (or at least a simulacrum of such), similar to a mutual fund. Here, we briefly

remark on the similarities and differences between ETFs designed to track subsets of

the market and those subsets of the market themselves. We calculate statistics on

the DSs and ROC associated to ETFs from three firms (Vanguard, iShares, Russell)

for three indices (S&P 500, Russell 300, Russell 2000), for a total of nine ETFs
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(SPY, VOO, IVV, THRK, VTHR, IWV, TWOK, VTWO, IWN). The Russell 2000

is comprised of the smallest 2000 firms in the Russell 3000 by MC. The S&P 500 and

Russell 3000 were selected as measures of overall market activity while the Russell

2000 was selected to isolate dynamics among ETFs that track smaller equities.

Table A.9 summarizes ROC statistics for the ETFs under study. The fraction of

differing trades and differing traded value are lower than for any of the indexes as

a whole; in fact, the ratio of the fraction of differing traded value to the fraction of

differing trades is less than one. Total ROC incurred from trades in ETFs studied here

totaled over $38 million in calendar year 2016. This statistic provides some evidence

to suggest that ETFs have their own endogenous statistical behavior that differs from

the behavior of the assets from which they are derived.
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Chapter 7

Concluding Remarks

This dissertation has developed new quantitative methods for exploring the behavior

of two computational systems. In the first application we developed new methods for

host-based intrusion detection systems (HIDS). In the second application we showed

that market inefficiencies in the form of dislocations and realized opportunity cost

were common and of non-negligible frequency and size. These results are used to

establish baselines for their respective systems; allowing practitioners, by they security

personnel, investors, or regulators to better understand and evaluate the state of the

system they are operating in.

7.1 Host-Based Intrusion Detection

Our fundamental approach to intrusion detection is to develop models for predicting

“normal” aka baseline behavior, and then leveraging those models to detect malicious

behavior as anomalistic. This approach has the benefit of being able to detect novel

attacks, as well as known ones. We used deep learning models to achieve high levels
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of prediction performance.

Our work makes four primary contributions in the area of HIDS research. First,

we collected and publicly released PLAID, a new system-call dataset for develop-

ing and evaluating IDS. Second, we developed ALAD (Application-Level Anomaly

Detection), a new classification method for anomaly-based IDS. Third, we presented

the largest comparison to date of deep learning architectures applied to this domain.

Fourth, we explored new visualization methods, based on information-theoretic cor-

pus divergence measures, for exploring HIDS datasets.

Evaluating the performance of advanced methods, such as alternative deep learn-

ing models, requires comprehensive benchmarking that cannot be accomplished with

the use of a single dataset. In our own architecture comparison, the use of either

PLAID or ADFA-LD independently might lead to a conclusive answer that is differ-

ent from the relatively inconclusive results that we observed during a comprehensive

evaluation. By introducing PLAID, we hope to empower the community to better

evaluate new and existing HIDS models.

ALAD offered significantly better performance than TLAD regardless of the se-

lected deep learning architecture or training dataset. This indicates that the inclusion

of a relatively minimal piece of meta-data, application-level labels, can greatly im-

pact IDS performance. The consistent benefit of ALAD begs the question, what

other data or meta-data elements should be considered when constructing HIDS?

The results of our architecture search were fairly inconclusive with respect to clas-

sification performance, with WaveNet performing best on ADFA-LD and the LSTM

model performing best on PLAID. However, WaveNet required approximately 60%

less training time to converge on both ADFA-LD and PLAID when compared with
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similarly sized LSTM and GRU models. Thus, practitioners looking to train deep

learning empowered HIDS quickly or scale up to massive data sets may prefer archi-

tectures composed primarily of convolutions over those composed of recurrent layers.

In our application of allotaxonographs to ADFA-LD and PLAID we identified clear

differences between system calls created by baseline and malicious behavior. These

differences may lead to additional insights into datasets why deep learning models out

perform traditional machine learning models for HIDS. Future work should continue

to investigate quantitative methods for corpus divergence in order to improve the

interpretability of HIDS.

Overall, our results represent a significant improvement in the state-of-the-art

in anomaly-based HIDS. We provide a useful new dataset for the broader HIDS

research community, and a blueprint for developing deep learning empowered HIDS

by presenting clear evaluation methodologies and reproducible results. Finally, we

highlight opportunities for adapting these tools to particular domains.

7.2 Market Inefficencies

We show that total ROC in Russell 3000 securities was well in excess of $2 billion USD

during 2016. While consistent with the two comprehensive studies of the modern U.S.

market [75, 77], our ROC calculations provide the first empirical evidence explaining

how traders might profitably exploit market dislocations, despite paying up to $2.0B

USD annually for order flow [111].

Compounding these results, we provide strong statistical evidence that the S&P 500

excluding Dow 30 securities, to which we refer as the SPexDow, is the primary driver
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of ROC among the three mutually exclusive categories of equities (Dow 30, SPexDow,

and Russell 3000 excluding S&P 500 securities, or the RexSP).

Compounding the above results, we find that structure in the distributions of DS start

times and duration persist across the entire Russell 3000, indicating some broader

microstructure-based proximate cause of this structure. Distributions of DS duration

exhibit a large peak between 10−4 and 10−3 seconds (100 microseconds to one mil-

lisecond), but also exhibit a second smaller, yet distinct, peak near one second. This

separation of timescales in the distribution provide evidence for the existence of at

least two distinct proximate causes of DS. Distributions of DS start times display even

more intricate structure, with large peaks at the beginning and end of the trading

day, self-similarity on the half-hour and ten-minute timescales, and a large spike at

2:00 P..

ROC was highest among SPexDow securities, but ROC per share was highest among

RexSP securities, which were also the most lightly-traded securities. All time series of

ROC exhibit behavior of anti-autocorrelation, meaning that they are mean-reverting.

ROC in the SPexDow Granger-cause ROC in the other market categories, but the

converse is not true; while the Dow Granger-causes the RexSP, the RexSP only weakly

Granger-causes the Dow and does not have any effect on the SPexDow.

Taken together, these results paint the picture of a NMS the physical structure of

which generates effects that are persistent across size of equity and exchange. Ampli-

fying these persistent effects is the apparent central role of the SPexDow; in number

of DSs, amount of ROC, spectral properties of ROC time series, and Granger-causal

relationships, the story emerges of the SPexDow’s characteristics being generated

by largely-endogenous factors and subsequently influencing the characteristics of the
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Dow and RexSP. Future work could explore in more depth the extent to which

microstructure effects arising first in the SPexDow then spread to other mutually ex-

clusive market categories and propagate through time. This work could also explore

the evolutionary dynamics of the modern NMS from its birth following the financial

crisis of 2007/8 to the present day. The NMS may not have remained static, with

a constant number of market centers and a stationary distribution of market agents

and trading strategies, but rather may have experienced fluctuations in the number of

exchanges, in the regulatory environment, and in strategy profiles of trading agents.

Such an analysis could pave the way for better informed modelling efforts and the

advancement of market theory.

7.3 Application Similarities

Despite the disparate application domains and use cases commonalities were discov-

ered. A discovery of particular interest is the importance of relatively minor meta-

data. The inclusion of application-level labels significantly improved the performance

of IDSs, and a common stock’s inclusion in the S&P 500 appears to have a significant

impact on ROC and DSs. This finding underscores the importance of data cura-

tion and suggests that the inclusion and creation of meta-data should be carefully

considered.

The processes of detecting cyber intrusion and establishing baseline behavior of finan-

cial markets are not necessarily all that different. Though they were not considered in

this dissertation we note similarity between frequency based approaches to intrusion

detection and our DSs analysis. In a similar vein, there exists a class of traders who
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make decisions quickly on short sequences of events similar to our ALAD pipeline.

Finally, both applications were developed for evolving systems. Developers of IDSs

must adapt their systems to emerging attack methods, and a changing computational

landscape, such as moving from single to multi-processed applications. Similarly, the

NMS is constantly changing, as of writing new exchanges are coming online and

sweeping changes to regulations are under consideration.

96



Bibliography

[1] Martin Joos. The psycho-biology of language, 1936.

[2] Bats. Us equities/options connectivity manual. 2016.

[3] Chicago Board Options Exchange. Us equities/options connectivity manual.
2019.

[4] The Consolidated Tape Association. The consolidated tape association. 2020.

[5] Hongyu Liu and Bo Lang. Machine learning and deep learning methods for
intrusion detection systems: A survey. Applied Sciences, 9(20):4396, 2019.

[6] LLC. SolarWinds Worldwide. Solarwinds security event manager, 2020. Ac-
cessed: 2020-06-16.

[7] Splunk. Splunk intrusion detection system, 2020. Accessed: 2020-06-16.

[8] OSSEC Project Team. Ossec: Host intrusion detection for everyone, 2020.
Accessed: 2020-06-16.

[9] Blake E Strom, Andy Applebaum, Doug P Miller, Kathryn C Nickels, Adam G
Pennington, and Cody B Thomas. Mitre att&ck: Design and philosophy. Tech-
nical report, 2018.

[10] R. Cont. Empirical properties of asset returns: stylized facts and statistical
issues. Quantitative Finance, 1(2):223–236, 2001.

[11] Josef Penso de la Vega. Confusion Des Confusiones. Baker Library, Harvard
Graduate School of Business Administration, ’S-Gravenhage, 1688.

[12] Louis Bachelier. ThĂŠorie de la spĂŠculation. Gauthier-Villars, France, 1900.

[13] Frank Hyneman Knight. Risk, uncertainty and profit. Houghton Mifflin, 3,
1921.

97



[14] Eugene F Fama. The behavior of stock-market prices. The journal of Business,
38(1):34–105, 1965.

[15] Andrei Kirilenko, Albert S Kyle, Mehrdad Samadi, and Tugkan Tuzun. The
flash crash: The impact of high frequency trading on an electronic market.
Available at SSRN, 1686004, 2011.

[16] Michael A Goldstein and Kenneth A Kavajecz. Trading strategies during cir-
cuit breakers and extreme market movements. Journal of Financial Markets,
7(3):301–333, 2004.

[17] Mark Grinblatt and Matti Keloharju. The investment behavior and performance
of various investor types: a study of finland’s unique data set. Journal of
financial economics, 55(1):43–67, 2000.

[18] U.S. Securities and Exchange Commission. Strategic plan fiscal years 2014-2018.
2014.

[19] George A. Akerlof. The market for "lemons": Quality uncertainty and the
market mechanism. The Quarterly Journal of Economics, 84(3):488–500, 1970.

[20] David Easley and Maureen O’hara. Price, trade size, and information in secu-
rities markets. Journal of Financial economics, 19(1):69–90, 1987.

[21] Alex D Wissner-Gross and Cameron E Freer. Relativistic statistical arbitrage.
Physical Review E, 82(5):056104, 2010.

[22] Shengwei Ding, John Hanna, and Terrence Hendershott. How slow is the nbbo?
a comparison with direct exchange feeds. Financial Review, 49(2):313–332,
2014.

[23] Phil Mackintosh. The need for speed. 2014.

[24] Jacob Adrian. Informational inequality: How high frequency traders use premier
access to information to prey on institutional investors. Duke L. & Tech. Rev.,
14:256, 2016.

[25] John H Ring IV, Colin M Van Oort, Christian Skalka, and Joseph Near. Meth-
ods for host-based intrusion detection with deep learning. Submitted, 2020.

[26] Brian F Tivnan, David Rushing Dewhurst, Colin M Van Oort, John H Ring IV,
Tyler J Gray, Brendan F Tivnan, Matthew TK Koehler, Matthew T McMahon,
David M Slater, Jason G Veneman, et al. Fragmentation and inefficiencies in
us equity markets: Evidence from the dow 30. PloS one, 15(1):e0226968, 2020.

98



[27] John H. Ring IV au2, Colin M. Van Oort, David R. Dewhurst, Tyler J. Gray,
Christopher M. Danforth, and Brian F. Tivnan. Scaling of inefficiencies in the
u.s. equity markets: Evidence from three market indices and more than 2900
securities, 2020.

[28] Phil Mackintosh. Time is relativity: What physics has to say about market
infrastructure. 2020.

[29] FINRA. Ats transparency data quarterly statistics. https://www.finra.
org/industry/otc/ats-transparency-data-quarterly-statistics,
Accessed 2019-06-19.

[30] James P Anderson. Computer security threat monitoring and surveillance.
Technical Report, James P. Anderson Company, 1980.

[31] Erxue Min, Jun Long, Qiang Liu, Jianjing Cui, andWei Chen. Tr-ids: Anomaly-
based intrusion detection through text-convolutional neural network and ran-
dom forest. Security and Communication Networks, 2018, 2018.

[32] Kehe Wu, Zuge Chen, and Wei Li. A novel intrusion detection model for a
massive network using convolutional neural networks. IEEE Access, 6:50850–
50859, 2018.

[33] Yi Zeng, Huaxi Gu, Wenting Wei, and Yantao Guo. deep−full−range: A deep
learning based network encrypted traffic classification and intrusion detection
framework. IEEE Access, 7:45182–45190, 2019.

[34] Maria Rigaki and Sebastian Garcia. Bringing a gan to a knife-fight: Adapting
malware communication to avoid detection. In 2018 IEEE Security and Privacy
Workshops (SPW), pages 70–75. IEEE, 2018.

[35] Kathleen Goeschel. Reducing false positives in intrusion detection systems using
data-mining techniques utilizing support vector machines, decision trees, and
naive bayes for off-line analysis. In SoutheastCon 2016, pages 1–6. IEEE, 2016.

[36] Phuangpaka Kuttranont, Kobkun Boonprakob, Comdet Phaudphut, Songyut
Permpol, Phet Aimtongkhamand, Urachart KoKaew, Boonsup Waikham, and
Chakchai So-In. Parallel knn and neighborhood classification implementations
on gpu for network intrusion detection. Journal of Telecommunication, Elec-
tronic and Computer Engineering (JTEC), 9(2-2):29–33, 2017.

[37] Sasanka Potluri, Shamim Ahmed, and Christian Diedrich. Convolutional neural
networks for multi-class intrusion detection system. In International Conference

99

https://www.finra.org/industry/otc/ats-transparency-data-quarterly-statistics
https://www.finra.org/industry/otc/ats-transparency-data-quarterly-statistics


on Mining Intelligence and Knowledge Exploration, pages 225–238. Springer,
2018.

[38] Baoan Zhang, Yanhua Yu, and Jie Li. Network intrusion detection based on
stacked sparse autoencoder and binary tree ensemble method. In 2018 IEEE
International Conference on Communications Workshops (ICC Workshops),
pages 1–6. IEEE, 2018.

[39] He Zhang, Xingrui Yu, Peng Ren, Chunbo Luo, and Geyong Min. Deep adver-
sarial learning in intrusion detection: A data augmentation enhanced frame-
work. arXiv preprint arXiv:1901.07949, 2019.

[40] Tao Ma, Fen Wang, Jianjun Cheng, Yang Yu, and Xiaoyun Chen. A hybrid
spectral clustering and deep neural network ensemble algorithm for intrusion
detection in sensor networks. Sensors, 16(10):1701, 2016.

[41] Ahmed Ahmim, Leandros Maglaras, Mohamed Amine Ferrag, Makhlouf Der-
dour, and Helge Janicke. A novel hierarchical intrusion detection system based
on decision tree and rules-based models. In 2019 15th International Conference
on Distributed Computing in Sensor Systems (DCOSS), pages 228–233. IEEE,
2019.

[42] Xiaoyong Yuan, Chuanhuang Li, and Xiaolin Li. Deepdefense: identifying ddos
attack via deep learning. In 2017 IEEE International Conference on Smart
Computing (SMARTCOMP), pages 1–8. IEEE, 2017.

[43] Benjamin J Radford, Leonardo M Apolonio, Antonio J Trias, and Jim A Simp-
son. Network traffic anomaly detection using recurrent neural networks. arXiv
preprint arXiv:1803.10769, 2018.

[44] Wei Wang, Yiqiang Sheng, Jinlin Wang, Xuewen Zeng, Xiaozhou Ye,
Yongzhong Huang, and Ming Zhu. Hast-ids: Learning hierarchical spatial-
temporal features using deep neural networks to improve intrusion detection.
IEEE Access, 6:1792–1806, 2017.

[45] Steven McElwee, Jeffrey Heaton, James Fraley, and James Cannady. Deep
learning for prioritizing and responding to intrusion detection alerts. In
MILCOM 2017-2017 IEEE Military Communications Conference (MILCOM),
pages 1–5. IEEE, 2017.

[46] Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji, and Thomas A Longstaff.
A sense of self for unix processes. In Proceedings 1996 IEEE Symposium on
Security and Privacy, pages 120–128. IEEE, 1996.

100



[47] Massachusetts Institute of Technology Lincoln Labora-
tory. Darpa intrusion detection evaluation dataset,
1998/1999. https://www.ll.mit.edu/r-d/datasets/
1999-darpa-intrusion-detection-evaluation-dataset, https://
www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset,
Accessed: 2020-05-12.

[48] ACM Special Interest Group on Knowledge Discovery and Data
Mining. Kdd cup 1999: Computer network intrusion detection,
1999. https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data,
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, Ac-
cessed 2020/07/10.

[49] University of New Mexico Computer Science Department. Unm system call
dataset, 1998. Accessed: 2020-05-12.

[50] Gideon Creech and Jiankun Hu. Generation of a new ids test dataset: Time
to retire the kdd collection. In 2013 IEEE Wireless Communications and Net-
working Conference (WCNC), pages 4487–4492. IEEE, 2013.

[51] John McHugh. Testing intrusion detection systems: a critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed by lincoln
laboratory. ACM Transactions on Information and System Security (TISSEC),
3(4):262–294, 2000.

[52] Ahmad Azab, Robert Layton, Mamoun Alazab, and Jonathan Oliver. Mining
malware to detect variants. In 2014 fifth cybercrime and trustworthy computing
conference, pages 44–53. IEEE, 2014.

[53] Ahmad Azab, Mamoun Alazab, and Mahdi Aiash. Machine learning based
botnet identification traffic. In 2016 IEEE Trustcom/BigDataSE/ISPA, pages
1788–1794. IEEE, 2016.

[54] Sitalakshmi Venkatraman, Mamoun Alazab, and R Vinayakumar. A hybrid
deep learning image-based analysis for effective malware detection. Journal of
Information Security and Applications, 47:377–389, 2019.

[55] Weizhi Meng, Wenjuan Li, and Lam-For Kwok. Design of intelligent knn-based
alarm filter using knowledge-based alert verification in intrusion detection. Se-
curity and Communication Networks, 8(18):3883–3895, 2015.

101

https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


[56] Nam Nhat Tran, Ruhul Sarker, and Jiankun Hu. An approach for host-based
intrusion detection system design using convolutional neural network. In In-
ternational Conference on Mobile Networks and Management, pages 116–126.
Springer, 2017.

[57] Aaron Tuor, Samuel Kaplan, Brian Hutchinson, Nicole Nichols, and Sean
Robinson. Deep learning for unsupervised insider threat detection in structured
cybersecurity data streams. In Workshops at the Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

[58] Atul Bohara, Uttam Thakore, and William H Sanders. Intrusion detection
in enterprise systems by combining and clustering diverse monitor data. In
Proceedings of the Symposium and Bootcamp on the Science of Security, pages
7–16, 2016.

[59] Solomon Ogbomon Uwagbole, William J Buchanan, and Lu Fan. Applied ma-
chine learning predictive analytics to sql injection attack detection and pre-
vention. In 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), pages 1087–1090. IEEE, 2017.

[60] Ali Moradi Vartouni, Saeed Sedighian Kashi, and Mohammad Teshnehlab. An
anomaly detection method to detect web attacks using stacked auto-encoder.
In 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS),
pages 131–134. IEEE, 2018.

[61] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 1285–1298, 2017.

[62] Ehsan Aghaei and Gursel Serpen. Ensemble classifier for misuse detection us-
ing n-gram feature vectors through operating system call traces. International
Journal of Hybrid Intelligent Systems, 14(3):141–154, 2017.

[63] Eleazar Eskin, Wenke Lee, and Salvatore J Stolfo. Modeling system calls for
intrusion detection with dynamic window sizes. In Proceedings DARPA In-
formation Survivability Conference and Exposition II. DISCEX’01, volume 1,
pages 165–175. IEEE, 2001.

[64] Andrew P Kosoresow and SA Hofmeyer. Intrusion detection via system call
traces. IEEE software, 14(5):35–42, 1997.

102



[65] XA Hoang and Jiankun Hu. An efficient hidden markov model training scheme
for anomaly intrusion detection of server applications based on system calls.
In Proceedings. 2004 12th IEEE International Conference on Networks (ICON
2004)(IEEE Cat. No. 04EX955), volume 2, pages 470–474. IEEE, 2004.

[66] Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal Stolfo.
A geometric framework for unsupervised anomaly detection. In Applications of
data mining in computer security, pages 77–101. Springer, 2002.

[67] Yanxin Wang, Johnny Wong, and Andrew Miner. Anomaly intrusion detec-
tion using one class svm. In Proceedings from the Fifth Annual IEEE SMC
Information Assurance Workshop, 2004., pages 358–364. IEEE, 2004.

[68] Gyuwan Kim, Hayoon Yi, Jangho Lee, Yunheung Paek, and Sungroh
Yoon. Lstm-based system-call language modeling and robust ensemble
method for designing host-based intrusion detection systems. arXiv preprint
arXiv:1611.01726, 2016.

[69] ShaoHua Lv, Jian Wang, YinQi Yang, and Jiqiang Liu. Intrusion prediction
with system-call sequence-to-sequence model. IEEE Access, 6:71413–71421,
2018.

[70] Ashima Chawla, Brian Lee, Sheila Fallon, and Paul Jacob. Host based intrusion
detection system with combined cnn/rnn model. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 149–158.
Springer, 2018.

[71] Sitalakshmi Venkatraman and Mamoun Alazab. Use of data visualisation for
zero-day malware detection. Security and Communication Networks, 2018,
2018.

[72] Tran Khanh Dang and Tran Tri Dang. A survey on security visualization tech-
niques for web information systems. International Journal of Web Information
Systems, 2013.

[73] Peter Sheridan Dodds, Joshua R Minot, Michael V Arnold, Thayer Alshaabi,
Jane Lydia Adams, David Rushing Dewhurst, Tyler J Gray, Morgan R Frank,
Andrew J Reagan, and Christopher M Danforth. Allotaxonometry and rank-
turbulence divergence: A universal instrument for comparing complex systems.
arXiv preprint arXiv:2002.09770, 2020.

[74] U.S. Securities and Exchange Commission. Staff report on algorithmic trading
in u.s. capital markets. 2020.

103



[75] Elaine Wah. How prevalent and profitable are latency arbitrage opportunities
on us stock exchanges? Available at SSRN 2729109, 2016.

[76] U.S. Securities and Exchange Commission. Midas: Market information data
analytics system. 2013.

[77] Matteo Aquilina, Eric B Budish, and Peter O’Neill. Quantifying the high-
frequency trading "arms race": A simple new methodology and estimates.
Chicago Booth Research Paper, (20-16), 2020.

[78] Maureen O’Hara. High frequency market microstructure. Journal of Financial
Economics, 116(2):257–270, 2015.

[79] Robert Bloomfield, Maureen O’hara, and Gideon Saar. How noise trading af-
fects markets: An experimental analysis. The Review of Financial Studies,
22(6):2275–2302, 2009.

[80] Eric Budish, Peter Cramton, and John Shim. The high-frequency trading arms
race: Frequent batch auctions as a market design response. The Quarterly
Journal of Economics, 130(4):1547–1621, 2015.

[81] Fischer Black. Noise. The Journal of finance, 41(3):528–543, 1986.

[82] Eugene F Fama. Efficient capital markets: A review of theory and empirical
work. The Journal of Finance, 25(2):383–417, 1970.

[83] Jean-Philippe Bouchaud. Econophysics: Still fringe after 30 years? arXiv
preprint arXiv:1901.03691, 2019.

[84] James Foye, Dusan Mramor, and Marko Pahor. The persistence of pricing
inefficiencies in the stock markets of the eastern european eu nations. 2013.

[85] Eugene F Fama and Kenneth R French. Size, value, and momentum in inter-
national stock returns. Journal of financial economics, 105(3):457–472, 2012.

[86] Neil Johnson, Guannan Zhao, Eric Hunsader, Hong Qi, Nicholas Johnson, Jing
Meng, and Brian Tivnan. Abrupt rise of new machine ecology beyond human
response time. Scientific reports, 3:2627, 2013.

[87] Andrew W Lo. The adaptive markets hypothesis: Market efficiency from an
evolutionary perspective. 2004.

[88] Sanford J Grossman and Joseph E Stiglitz. On the impossibility of informa-
tionally efficient markets. The American economic review, 70(3):393–408, 1980.

104



[89] Marshall E Blume and Michael A Goldstein. Differences in execution prices
among the nyse, the regionals, and the nasd. Available at SSRN 979072, 1991.

[90] Charles MC Lee. Market integration and price execution for nyse-listed securi-
ties. The Journal of Finance, 48(3):1009–1038, 1993.

[91] Joel Hasbrouck. One security, many markets: Determining the contributions
to price discovery. The journal of Finance, 50(4):1175–1199, 1995.

[92] Michael J Barclay, Terrence Hendershott, and D Timothy McCormick. Com-
petition among trading venues: Information and trading on electronic commu-
nications networks. The Journal of Finance, 58(6):2637–2665, 2003.

[93] Andriy V Shkilko, Bonnie F Van Ness, and Robert A Van Ness. Locked
and crossed markets on nasdaq and the nyse. Journal of Financial Markets,
11(3):308–337, 2008.

[94] Jeff Alexander, Linda Giordano, and David Brooks. Dark pool exe-
cution quality: A quantitative view. http://blog.themistrading.com/wp-
content/uploads/2015/08/Dark-Pook-Execution-Quality-Short-Final.pdf, 2015.

[95] James J Angel, Lawrence E Harris, and Chester S Spatt. Equity trading in the
21st century. The Quarterly Journal of Finance, 1(01):1–53, 2011.

[96] James J Angel, Lawrence E Harris, and Chester S Spatt. Equity trading in the
21st century: An update. The Quarterly Journal of Finance, 5(01):1550002,
2015.

[97] Allen Carrion. Very fast money: High-frequency trading on the nasdaq. Journal
of Financial Markets, 16(4):680–711, 2013.

[98] Albert J Menkveld. High frequency trading and the new market makers. Journal
of Financial Markets, 16(4):712–740, 2013.

[99] Michael A Goldstein, Pavitra Kumar, and Frank C Graves. Computerized and
high-frequency trading. Financial Review, 49(2):177–202, 2014.

[100] Tarun Chordia, Amit Goyal, Bruce N Lehmann, and Gideon Saar. High-
frequency trading. 2013.

[101] Sal Arnuk and Joseph Saluzzi. Broken markets: how high frequency trading and
predatory practices on Wall Street are destroying investor confidence and your
portfolio. FT Press, 2012.

105



[102] U.S. Securities and Exchange Commission. Trade execution. 2013.

[103] U.S. Securities and Exchange Commission. Fast answers: Internalization. 2000.

[104] U.S. Securities and Exchange Commission. Fast answers: Payment for order
flow. 2007.

[105] U.S. Securities and Exchange Commission. Citadel securities paying $22 million
for misleading clients about pricing trades. 2017.

[106] Dave Michaels. Robinhood settles claims it didn’t ensure best prices for cus-
tomer trades; the online brokerage agreed to pay $1.25 million. Wall Street
Journal, 2019.

[107] William Power. ’in-house’ trades can be costly for small investors. Wall Street
Journal, page C1, 1994.

[108] Tarun Chordia and Avanidhar Subrahmanyam. Market making, the tick size,
and payment-for-order flow: theory and evidence. Journal of Business, pages
543–575, 1995.

[109] David Easley, Nicholas M Kiefer, and MAUREEN O’HARA. Cream-skimming
or profit-sharing? the curious role of purchased order flow. The Journal of
Finance, 51(3):811–833, 1996.

[110] U.S. Securities and Exchange Commission. Commission notice: Decimals im-
plementation plan for the equities and options markets. 2020.

[111] Michael Wursthorn and Euirim Choi. Does robinhood make it too easy to
trade? from free stocks to confetti; some behavioral researchers say the app’s
simplicity encourages novice investors to take bigger risks. Wall Street Journal,
2020.

[112] Benoit B Mandelbrot. The variation of certain speculative prices. In Fractals
and scaling in finance, pages 371–418. Springer, 1997.

[113] Benoit B Mandelbrot. Fractals and scaling in finance: Discontinuity, concen-
tration, risk. Selecta volume E. Springer Science & Business Media, Chicago,
USA, 2013.

[114] H.E. Stanley and V. Plerou. Scaling and universality in economics: empirical
results and theoretical interpretation. Quantitative Finance, 1(6):563–567, 2001.

106



[115] Felix Patzelt and Jean-Philippe Bouchaud. Universal scaling and nonlinearity
of aggregate price impact in financial markets. Physical Review E, 97(1):012304,
2018.

[116] Tiziana Di Matteo. Multi-scaling in finance. Quantitative finance, 7(1):21–36,
2007.

[117] Eugene H Stanley, Vasiliki Plerou, and Xavier Gabaix. A statistical physics
view of financial fluctuations: Evidence for scaling and universality. Physica A:
Statistical Mechanics and its Applications, 387(15):3967–3981, 2008.

[118] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

[119] Laura Tuttle. Alternative trading systems: Description of ats trading in national
market system stocks. 2013.

[120] Hendrik Bessembinder. Price-time priority, order routing, and trade execution
costs in nyse-listed stocks. Order Routing, and Trade Execution Costs in Nyse-
Listed Stocks (June 2001), 2001.

[121] Nasdaq. Order types and modifiers. 2017.

[122] New York Stock Exchange. Markets: Order types. 2020.

[123] Chicago Board Options Exchange. Order types and routing. 2020.

[124] The Investors Exchange. Order types summary. 2020.

[125] The Consolidated Tape Association. The consolidated tape association. 2020.

[126] The UTP Plan. Unlisted trading priveleges. 2020.

[127] U.S. Securities and Exchange Commission. Regulation national market system.
2005.

[128] U.S. Securities and Exchange Commission. Consolidated audit trail,
2012. https://www.sec.gov/divisions/marketreg/rule613-info.htm,
Accessed 2018-02-03.

[129] Goldman Sachs. Sigma x2 form ats-n. https://www.sec.gov/Archives/
edgar/data/42352/000095012319009319/xslATS-N_X01/primary_doc.
xml, Accessed 2019-11-13.

107

https://www.sec.gov/divisions/marketreg/rule613-info.htm
https://www.sec.gov/Archives/edgar/data/42352/000095012319009319/xslATS-N_X01/primary_doc.xml
https://www.sec.gov/Archives/edgar/data/42352/000095012319009319/xslATS-N_X01/primary_doc.xml
https://www.sec.gov/Archives/edgar/data/42352/000095012319009319/xslATS-N_X01/primary_doc.xml


[130] Kevin Miller. Calculating optical fiber latency. http://www.m2optics.com/
blog/bid/70587/Calculating-Optical-Fiber-Latency, Accessed 2017-
07-31.

[131] Anova Technologies. Anova technologies network map, 2018. http://
anova-tech.com/sample-page/map/, Accessed 2018-07-13.

[132] John H. Ring IV. Uvm ids gitlab repository, 2020. https://gitlab.com/
jhring/uvm_threat_stack, Accessed 2020/07/10.

[133] Canonical Ltd. Ubuntu linux, 2018. Accessed: 2020-05-08.

[134] Tatu Ylonen. Ssh–secure login connections over the internet. In Proceedings of
the 6th USENIX Security Symposium, volume 37, 1996.

[135] Salvatore Sanfilippo. Redis, 2009. Accessed: 2020-05-08.

[136] Robin Verton. cowroot.c, 2016. Accessed: 2020-05-08.

[137] Will Reese. Nginx: the high-performance web server and reverse proxy. Linux
Journal, 2008(173):2, 2008.

[138] The PHP Group. PHP hypertext processor, 2016. Accessed: 2020-05-08.

[139] Netcraft Ltd. April 2020 web server survey, 2020. Accessed: 2020-05-08.

[140] OffSec Services Limited. Kali linux, 2019. Accessed: 2020-05-08.

[141] Oracle. Virtual box, 2019. Accessed: 2020-05-08.

[142] Metasploit. Redis attack, 2019. Accessed: 2020-06-02.

[143] Emil Lerner. Php-fpm attack, 2019. Accessed: 2020-06-02.

[144] Robin Verton. Privilege escalation attack, 2019. Accessed: 2020-06-02.

[145] OffSec Services Limited. Brute-force password attack, 2013. Accessed: 2020-
06-02.

[146] Steve Klabnik and Carol Nichols. The Rust Programming Language (Covers
Rust 2018). No Starch Press, 2019.

[147] S&P Dow Jones Indices. Dow jones averages methodology. 2020.

[148] S&P Dow Jones Indices. S&p u.s. indices methodology. 2020.

108

http://www.m2optics.com/blog/bid/70587/Calculating-Optical-Fiber-Latency
http://www.m2optics.com/blog/bid/70587/Calculating-Optical-Fiber-Latency
http://anova-tech.com/sample-page/map/
http://anova-tech.com/sample-page/map/
https://gitlab.com/jhring/uvm_threat_stack
https://gitlab.com/jhring/uvm_threat_stack


[149] FTSE Russell. Russell u.s. equity indexes, construction and methodology. 2020.

[150] Thesys Technologies. Thesys technologies. 2020.

[151] Nathaniel Popper and Ben Protess. To regulate rapid traders, s.e.c. turns to
one of them, 2012. https://www.nytimes.com/2012/10/08/business/
sec-regulators-turn-to-high-speed-trading-firm.html, Accessed
2018-04-21.

[152] FTSE Russell. Russell 3000 fact sheet. 2020.

[153] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[154] Seth Lloyd. Computational capacity of the universe. Physical Review Letters,
88(23):237901, 2002.

[155] Keras Team. Keras tuner, 2020. Accessed: 2020-05-10.

[156] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[157] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. In International conference on machine
learning, pages 1310–1318, 2013.

[158] Cynthia Rudin. Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nature Machine Intelli-
gence, 1:206–215, 05 2019.

[159] Massimo Bernaschi, Emanuele Gabrielli, and Luigi V Mancini. Operating sys-
tem enhancements to prevent the misuse of system calls. In Proceedings of the
7th ACM conference on Computer and communications security, pages 174–183,
2000.

109

https://www.nytimes.com/2012/10/08/business/sec-regulators-turn-to-high-speed-trading-firm.html
https://www.nytimes.com/2012/10/08/business/sec-regulators-turn-to-high-speed-trading-firm.html


[160] Sal Arnuk and Joseph Saluzzi. Latency arbitrage: The real power behind preda-
tory high frequency trading. 2009.

[161] Robert A Jarrow and Philip Protter. A dysfunctional role of high frequency
trading in electronic markets. International Journal of Theoretical and Applied
Finance, 15(03):1250022, 2012.

[162] Joel Hasbrouck and Gideon Saar. Low-latency trading. Journal of Financial
Markets, 16(4):646–679, 2013.

[163] Clive WJ Granger. Investigating causal relations by econometric models and
cross-spectral methods. Econometrica: Journal of the Econometric Society,
pages 424–438, 1969.

[164] John H. Ring IV. Uvm compfi lab home page. 2020.

[165] C-K Peng, Sergey V Buldyrev, Shlomo Havlin, Michael Simons, H Eugene
Stanley, and Ary L Goldberger. Mosaic organization of dna nucleotides. Physical
review e, 49(2):1685, 1994.

[166] C Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. Pub-
blicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di
Firenze, 8:3–62, 1936.

110



Appendix A

Appendix

A.1 Allotaxonographs

111



5
0

5

Figure A.1: Comparison of system call rankings between attack and baseline traces in
ADFA-LD. Note that some of the most frequently utilized system calls, poll and read,
are among the largest contributors to divergence. Of additional interest is that the most
dangerous system calls are not top contributors to divergence.
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Figure A.2: Comparison of system call bi-gram rankings between attack and baseline traces
in ADFA-LD. Similar to uni-grams frequent bi-grams remain top contributors to divergence.
We see a larger portion of bi-grams appearing only in one split compared to uni-grams.
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Figure A.3: Comparison of system call bi-gram rankings between attack and baseline traces
in PLAID. Similar to uni-grams frequent bi-grams remain top contributors to divergence.
We see a larger portion of bi-grams appearing only in one split compared to uni-grams.
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Figure A.4: Comparison of system call tri-gram rankings between attack and baseline traces
in ADFA-LD. A slightly larger portion of tri-grams are present only in one set compared to
bi-grams. This suggests that longer n-grams help to differentiate between sets.
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Figure A.5: Comparison of system call tri-gram rankings between attack and baseline traces
in PLAID. A slightly larger portion of tri-grams are present only in one set compared to
bi-grams. This suggests that longer n-grams help to differentiate between sets.
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A.2 System Call Frequencies

Figure A.6: Rank frequency plots of system call bi (top) abd tri (bottom) grams for attack
and baseline traces in ADFA-LD (left) and PLAID (right). The rank frequency appears to
approximate a power-law with an exponential cutoff in the tail. Natural language corpora
tend to be and stay power-law like for uni through tri-grams with the tail starting to flatten.
In contrast to system call corpora which become more power law like.
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Figure A.7: Comparison of system call usage between baseline and attack traces in ADFA-
LD. System calls are in monotonically non-increasing order base on their frequency in base-
line traces. Notice that usages of individual system calls differ significantly between sets.
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Figure A.8: Comparison of system call usage between baseline and attack traces in PLAID.
System calls are in monotonically non-increasing order base on their frequency in baseline
traces. Notice that usages of individual system calls differ significantly between sets. Of
additional interest is the amount of clock_gettime calls in the attack split.
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A.3 NMS Tables

Russ 3K′

1 Realized Opportunity Cost $2,013,458,668.87
2 SIP Opportunity Cost $1,876,048,519.06
3 Direct Opportunity Cost $137,410,149.76
4 Trades 4,658,307,833
5 Diff. Trades 1,105,201,803
6 Traded Value $24,352,760,600,270.47
7 Diff. Traded Value $6,272,439,590,589.91
8 Percent Diff. Trades 23.73
9 Percent Diff. Traded Value 25.76
10 Ratio of 9 / 8 1.0855

RexSP

1 Realized Opportunity Cost $948,743,328.62
2 SIP Opportunity Cost $911,950,130.85
3 Direct Opportunity Cost $36,793,197.77
4 Trades 2,093,415,072
5 Diff. Trades 482,055,297
6 Traded Value $6,669,357,410,332.23
7 Diff. Traded Value $1,705,272,719,045.67
8 Percent Diff. Trades 23.03
9 Percent Diff. Traded Value 25.57
10 Ratio of 9 / 8 1.1104

S&P 500′

1 Realized Opportunity Cost $1,064,715,340.25
2 SIP Opportunity Cost $964,098,388.26
3 Direct Opportunity Cost $100,616,951.99
4 Trades 2,564,892,761
5 Diff. Trades 623,146,506
6 Traded Value $18,429,250,470,003.83
7 Diff. Traded Value $4,567,166,871,544.24
8 Percent Diff. Trades 24.30
9 Percent Diff. Traded Value 25.83
10 Ratio of 9 / 8 1.0631

SPexDow

1 Realized Opportunity Cost $904,501,417.30
2 SIP Opportunity Cost $842,017,261.86
3 Direct Opportunity Cost $62,484,155.44
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4 Trades 2,172,791,182
5 Diff. Trades 535,714,275
6 Traded Value $13,824,440,155,934.76
7 Diff. Traded Value $3,666,630,946,582.52
8 Percent Diff. Trades 24.66
9 Percent Diff. Traded Value 26.52
10 Ratio of 9 / 8 1.0757

Dow 30′

1 Realized Opportunity Cost $160,213,922.95
2 SIP Opportunity Cost $122,081,126.40
3 Direct Opportunity Cost $38,132,796.55
4 Trades 392,101,579
5 Diff. Trades 87,432,231
6 Traded Value $3,858,963,034,003.48
7 Diff. Traded Value $900,535,924,961.72
8 Percent Diff. Trades 22.30
9 Percent Diff. Traded Value 23.34
10 Ratio of 9 / 8 1.0465

Table A.5: Summary statistics of realized opportunity cost (ROC) for various equity groups
under study during 2016.
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Conditioned min magnitude ($) max magnitude ($) duration (s)

None

count 4,011,848.7333
mean 0.0110 0.0136 0.075413
std 0.0391 0.2725 5.829465
min 0.0100 0.0100 <0.000001
25% 0.0100 0.0100 0.000248
50% 0.0100 0.0100 0.000669
75% 0.0100 0.0103 0.001253
max 44.6933 279.2057 8,408.931478

Duration

count 2,169,106.5333
mean 0.0108 0.0149 0.132779
std 0.0436 0.3548 7.645375
min 0.0100 0.0100 0.000546
25% 0.0100 0.0100 0.000783
50% 0.0100 0.0100 0.001129
75% 0.0100 0.0107 0.002654
max 43.4150 279.1987 8,408.931478

Duration &
Magnitude

count 95,757.8000
mean 0.0427 0.2370 0.955731
std 0.3355 1.6130 48.214785
min 0.0200 0.0200 0.000546
25% 0.0200 0.0200 0.000698
50% 0.0200 0.0227 0.001073
75% 0.0307 0.0433 0.003552
max 43.4150 114.3480 7,186.866464

Table A.1: Mean of dislocation segment summary statistics taken across the 30 members of
the Dow. 545µs is used for duration conditioning and $0.01 is used for magnitude condi-
tioning.
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Conditioned min magnitude ($) max magnitude ($) duration (s)

None

count 2,525,082.0448
mean 0.0135 0.0168 0.252981
std 0.2801 0.3996 9.325161
min 0.0100 0.0100 <0.000001
25% 0.0100 0.0100 0.000227
50% 0.0100 0.0101 0.000583
75% 0.0115 0.0136 0.001085
max 476.1177 522.6072 9,084.040084

Duration

count 1,189,460.6682
mean 0.0134 0.0185 0.555820
std 0.4601 0.6076 13.029491
min 0.0100 0.0100 0.000546
25% 0.0100 0.0100 0.000754
50% 0.0102 0.0107 0.001119
75% 0.0117 0.0160 0.008169
max 471.7331 515.4222 9,084.040084

Duration &
Magnitude

count 114,770.0224
mean 0.0557 0.1249 1.591543
std 1.9177 2.5050 54.064998
min 0.0200 0.0200 0.000546
25% 0.0202 0.0209 0.000717
50% 0.0228 0.0346 0.001240
75% 0.0375 0.0625 0.027820
max 471.7331 506.9715 6,943.106256

Table A.2: Mean of dislocation segment summary statistics taken across 446 members of
the SPexDow. 545µs is used for duration conditioning and $0.01 is used for magnitude
conditioning.
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Conditioned min magnitude ($) max magnitude ($) duration (s)

None

count 770,577.8246
mean 0.9734 1.1361 4.413179
std 34.0534 37.7472 50.079342
min 0.0100 0.0100 <0.000001
25% 0.0116 0.0121 0.000245
50% 0.0139 0.0149 0.001042
75% 0.0225 0.0302 0.013774
max 2,238.1205 2,514.9617 8,796.956807

Duration

count 287,399.7217
mean 1.2116 1.7162 12.749530
std 37.6277 46.3599 83.465004
min 0.0100 0.0100 0.000546
25% 0.0110 0.0118 0.002065
50% 0.0147 0.0188 0.072213
75% 0.0263 0.0408 0.975526
max 2,033.1633 2,302.4541 8,796.956807

Duration &
Magnitude

count 45,062.3366
mean 2.1734 3.0486 13.154607
std 53.2211 66.0958 112.101259
min 0.0200 0.0200 0.000546
25% 0.0239 0.0272 0.003933
50% 0.0338 0.0449 0.053583
75% 0.0611 0.0806 0.798791
max 2,033.9931 2,295.6782 7,139.075345

Table A.3: Mean of dislocation segment summary statistics taken across the 2451 members
of the RexSP. 545µs is used for duration conditioning and $0.01 is used for magnitude
conditioning.
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Conditioned min magnitude ($) max magnitude ($) duration (s)

None

count 6,431,595.4444
mean 0.0216 0.0273 0.339145
std 0.0856 0.1027 13.327128
min 0.0100 0.0100 <0.000001
25% 0.0100 0.0100 0.000284
50% 0.0100 0.0100 0.000602
75% 0.0122 0.0156 0.001175
max 9.0956 9.3744 5,658.596041

Duration

count 3,674,884.7778
mean 0.0223 0.0289 0.683211
std 0.0859 0.1077 18.991011
min 0.0100 0.0100 0.000546
25% 0.0100 0.0100 0.000726
50% 0.0100 0.0111 0.001064
75% 0.0122 0.0167 0.002494
max 6.3278 8.4556 5,658.596041

Duration &
Magnitude

count 130,853.7778
mean 0.1707 0.1800 0.933693
std 0.2804 0.2995 26.558084
min 0.0200 0.0200 0.000546
25% 0.0200 0.0200 0.000765
50% 0.0344 0.0411 0.001213
75% 0.1733 0.2933 0.005725
max 6.3278 8.4311 5,005.870452

Table A.4: Mean of dislocation segment summary statistics taken across the 9 ETFs under
study. 545µs is used for duration conditioning and $0.01 is used for magnitude conditioning.
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Trades Traded Val. ($) Diff. Trades Diff. Traded Val. ($) ROC ($) ROC/Share

count 720,991 720,991 720,991 720,991 720,991 720,991
mean 6,460.98 33,776,788.61 1,532.89 8,699,747.42 2,792.63 0.020880
std 13,249.67 109,021,779.70 3,036.98 25,738,960.57 17,611.14 0.087810
min 0 0 0 0 0 0
25% 599 1,118,022.02 101 199,882.83 237.6100 0.009510
50% 2,020 5,316,322.22 450 1,246,241.41 826.6000 0.011448
75% 6,478 24,797,793.44 1,600 6,525,124.17 2,578.75 0.018836
max 517,270 8,280,915,338.59 103,885 1,596,912,962.05 6,798,041.07 19.3381

Table A.6: Purse statistics for all stocks under study in 2016. The data used to construct
this table is aggregated by date and stock, resulting in 720,991 data points that correspond
with the 731,556 combinations of 252 trading days in 2016 and 2903 stocks under study.

Trades Traded Val. ($) Diff. Trades Diff. Traded Val. ($) ROC ($) ROC/Share

R
us
s
3K

′

mean 18,485,348.54 96,637,938,889.96 4,385,721.44 24,890,633,295.99 7,989,915.35 0.023073
std 3,705,825.95 17,507,577,514.36 1,222,558.47 5,929,581,247.64 2,363,234.20 0.003143
min 7,045,815 41,324,500,835.46 1,197,040 8,277,978,080.59 2,717,631.16 0.018414
25% 16,178,390 85,348,849,125.71 3,674,541 21,481,677,427.57 6,560,601.80 0.020888
50% 17,837,416.50 94,176,286,443.74 4,257,438.50 24,165,074,815.55 7,524,560.38 0.022379
75% 20,114,165.50 103,932,196,142.46 4,964,932.50 27,054,706,014.87 8,884,110.40 0.024693
max 32,913,872 169,395,493,215.29 9,253,338 47,500,228,278.03 19,622,594.00 0.051371

R
ex
SP

mean 8,307,202.67 26,465,704,009.25 1,912,917.85 6,766,955,234.31 3,764,854.48 0.022109
std 1,370,512.88 3,786,979,882.64 473,884.96 1,299,054,438.46 1,048,372.83 0.002874
min 3,183,224 11,363,776,182.38 487,500 2,268,729,995.29 1,436,093.46 0.017744
25% 7,528,810.25 24,222,297,224.76 1,648,499.25 6,053,458,251.52 3,182,173.91 0.020092
50% 8,175,352.50 26,166,834,634.22 1,921,121.50 6,779,433,456.68 3,564,482.05 0.021393
75% 9,061,096.50 28,685,877,060.20 2,161,350.50 7,599,965,429.85 4,206,538.80 0.023737
max 13,408,508 41,337,807,991.92 3,537,890 10,627,257,029.61 10,083,342.57 0.047415

S&
P

50
0′

mean 10,178,145.88 70,172,234,880.71 2,472,803.60 18,123,678,061.68 4,225,060.87 0.014624
std 2,406,751.15 14,303,150,882.94 775,201.38 4,760,162,875.50 1,531,548.30 0.002019
min 3,862,591 29,960,724,653.08 709,540 5,941,906,620.96 1,281,537.70 0.011127
25% 8,716,552.50 60,764,387,798.11 2,034,844.50 15,251,685,767.67 3,371,948.52 0.013502
50% 9,684,039 67,776,548,100.32 2,310,806 17,479,288,594.91 3,918,496.70 0.014407
75% 11,120,226.50 75,672,607,052.02 2,783,838.50 20,074,235,595.26 4,654,693.39 0.015434
max 19,505,364 128,057,685,223.37 5,715,448 37,114,729,300.67 14,335,072.09 0.031484

SP
ex
D
ow

mean 8,622,187.23 54,858,889,507.68 2,125,850.30 14,550,122,803.90 3,589,291.34 0.014818
std 1,960,102.37 10,686,728,768.81 632,025.23 3,571,347,460.11 1,119,395.15 0.002029
min 3,283,385 23,296,053,599.93 619,976 4,906,051,591.25 1,136,332.05 0.011271
25% 7,398,970.25 48,123,050,130.46 1,762,152.75 12,329,749,894.94 2,915,802.29 0.013729
50% 8,237,387.50 53,383,376,977.72 2,006,091.50 14,073,439,429.50 3,384,654.11 0.014579
75% 9,405,905.75 59,188,646,444.18 2,398,085.25 15,973,362,072.81 4,050,343.31 0.015660
max 15,909,358 99,048,039,796.82 4,642,419 27,685,776,913.57 9,097,891.31 0.032760

D
ow

30
′

mean 1,555,958.65 15,313,345,373.03 346,953.30 3,573,555,257.78 635,769.54 0.011792
std 463,558.93 3,891,299,900.31 146,677.85 1,234,882,079.43 655,911.15 0.008071
min 579,206 6,664,671,053.15 89,564 1,035,855,029.71 145,205.65 0.008879
25% 1,278,813.25 12,915,031,172.08 262,209 2,804,569,367.64 417,485.73 0.009667
50% 1,429,062 14,431,597,662.01 309,158 3,274,390,601.60 514,856.64 0.010213
75% 1,715,351.25 16,829,521,684.38 387,772 3,993,470,514.97 666,268.27 0.011288
max 3,596,006 30,999,914,293.66 1,073,029 9,428,952,387.10 7,817,684.58 0.093108

Table A.7: Aggregated purse statistics for different groups of securities in 2016. Each section
is composed of date aggregated data, resulting in 252 data points that correspond with the
252 trading days in 2016.

126



Skew Kurtosis
Dow 52.59 3122.65
SPexDow 55.66 5644.74
RexSP 300.12 110365.89

Table A.8: Skew and kurtosis for daily ROC by mutually-exclusive market category, high-
lighting the remarkably heavy-tailed nature of these distributions.

1 Realized Opportunity Cost $38,458,070.79
2 SIP Opportunity Cost $37,970,135.30
3 Direct Opportunity Cost $487,935.49
4 Trades 86,725,286
5 Diff. Trades 19,612,214
6 Traded Value $3,678,242,397,422.43
7 Diff. Traded Value $804,917,872,051.93
8 Percent Diff. Trades 22.61
9 Percent Diff. Traded Value 21.88
10 Ratio of 9 / 8 0.9677

Table A.9: Summary statistics for realized opportunity cost (ROC) observed in the ETFs
under study. It is notable that, of all market subsets we study, only this small subset has a
ratio of the fraction of differing traded value to fraction of differing trades with value below
unity. On a per-trade basis, this means that there is on average less potential for ROC.

Trades Traded Value ($) Diff. Trades Diff. Traded Value ($) ROC ($) ROC/Share

mean 38,391.01 1,628,261,353.44 8,681.81 356,316,012.42 17,024.38 0.021169
std 106,302.46 4,663,474,508.49 23,900.69 1,033,570,406.20 48,481.79 0.043449
min 1 72.4600 0 0 0 0
25% 14 262,574.18 3 48,125.50 35.0000 0.008350
50% 683 15,165,081.37 181 3,386,159.33 455.2200 0.009997
75% 12,121.50 283,540,074.38 4,136 93,960,790.38 6,033.43 0.014408
max 974,888 40,617,035,891.21 251,657 11,028,368,359.92 499,906.77 1.0200

Table A.10: Aggregated purse statistics for the ETFs under study. The data used to con-
struct this table is aggregated by date and instrument, resulting in 2,259 data points that
correspond with the 2,268 combinations of 252 trading days in 2016 and 9 ETFs under
study.
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Trades Traded Value ($) Diff. Trades Diff. Traded Value ($) ROC ($) ROC/Share

mean 344,147.96 14,596,199,989.77 77,826.25 3,194,118,539.89 152,611.39 0.189762
std 157,107.76 6,043,079,696.41 45,179.00 1,675,731,349.39 85,509.19 0.118446
min 113,860 5,018,912,183.01 14,610 703,559,994.91 30,989.52 0.054358
25% 237,021.25 10,471,387,904.01 47,237.50 2,052,459,478.17 94,488.20 0.106098
50% 308,705 13,005,695,875.47 66,509 2,780,132,908 131,084.42 0.169572
75% 394,822.25 16,641,275,220.96 94,108 3,799,483,257.76 186,174.78 0.256871
max 1,177,148 44,900,644,748.00 339,480 12,945,336,256.63 616,859.86 1.0963

Table A.11: Aggregated purse statistics for the ETFs under study. The data used to con-
struct this table is aggregated by date, resulting in 252 data points that correspond with the
252 trading days in 2016.
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A.4 NMS Figures
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Figure A.9: Relationships between Market Capitalization (MC) and total trades (top) or
differing trades (bottom). Similar to Figure ??, there is a strong positive relationship in both
regressions, along with the same nonlinearity and heteroskedasticity. The data are well-fit
by linear and quadratic functions in doubly-logarithmic space. The shaded area surrounding
the regression curves indicate 95% confidence intervals for the true curves, calculated using
bootstrapping techniques.
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Figure A.10: ROC by ticker ($) for the top 30 (left panel) and bottom 30 (right panel) of
all securities under study, ranked by ROC. Constituents of the Dow 30 are shown in blue,
constituents of the S&P 500 (excluding the Dow 30) are shown in green, constituents of the
Russell 3000 (excluding the S&P 500) are shown in red, and ETFs are shown in black.

Figure A.11: ROC by ticker ($) for the top 30 (left panel) and bottom 30 (right panel) of
S&P 500 securities, ranked by ROC. Constituents of the Dow 30 are shown in blue, while
those belonging to the S&P 500 (excluding the Dow 30) are shown in green.

131



Figure A.12: ROC per share ($ / share) by ticker for the top 30 (left panel) and bottom 30
(right panel) of all securities under study, ranked by ROC. Constituents of the Dow 30 are
shown in blue, constituents of the S&P 500 (excluding the Dow 30) are shown in green, and
constituents of the Russell 3000 (excluding the S&P 500) are shown in red.

Figure A.13: Distributions of mean ROC per day over the members of each mutually exclu-
sive market category. Linear (left) and log 10 (right) vertical axis scaling are used to provide
additional perspective. On average, members of the Dow experience more ROC than mem-
bers of the SPexDow, which experience more ROC than the RexSP. These distributions are
extremely heavy tailed, thus the use of log scaling, and feature a high degree of overlap. Thus
there are members from each category that experience high ROC and low ROC.
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Figure A.14: Distributions of mean ROC per share per day ($ / day) over the members
of each mutually exclusive market category. Linear (left) and log 10 (right) vertical axis
scaling are used to provide additional perspective. On average, the members of the Dow
experience the least ROC per share, followed by the SPexDow, followed by the RexSP.

Figure A.15: Equities are plotted in rank-order of ROC per traded value; the 0-th equity
has highest ROC per traded value. The first over-100 top equities are in the RexSP, which
is unsurprising due to their combination of generally lower liquidity and lower share prices.
Blue markers are associated with constituents of the Dow 30, green markers with constituents
of the S&P 500 (excluding the Dow 30), red markers with constituents of the Russell 3000
(excluding the S&P 500), and black markers with ETFs.
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Figure A.16: Empirical quantile-quantile (QQ) plot for the normalized ROC per share pro-
cesses. It is clear that the distribution of the SPexDow and RexSP processes are similar,
and both are markedly different from the Dow process (blue line).
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Figure A.17: Normalized ROC per share processes. There is one observation per day for
a total of 252 observations in the process. These processes are anti-autocorrelated (Dow
DFA exponent α = 0.434, SPexDow DFA exponent α = 0.226, RexSP DFA exponent α =
0.301) and exhibit rare large values. The lower panel provides evidence for nonlinear cross-
correlation between the SPexDow and RexSP ROC per share processes.
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Figure A.18: Distributions of dislocation segment duration. Columns are associated with an
index (left to right: Dow 30, S&P 500 excluding the Dow 30, Russell 3000 excluding the S&P
500) and rows are associated with conditioning strategies (top to bottom: no conditioning,
magnitude greater than $0.01).
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Figure A.19: Distributions of dislocation segment start time. Columns are associated with
an index (left to right: Dow 30, S&P 500 excluding the Dow 30, Russell 3000 excluding the
S&P 500) and rows are associated with conditioning strategies (top to bottom: no condi-
tioning, duration greater than 545 µs, duration greater than 545 µs and magnitude greater
than $0.01).
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A.5 NMS Statistics

Ordered pair Lags
Dow → RexSP 2, 3, 4, 13, 14, 15, 20, 22, . . . , 37
Dow → SPexDow
SPexDow → Dow 1, . . . , 10, 15,. . . ,24, 26, 30, . . . , 34
SPexDow → RexSP 1, 2, 3, 4
RexSP → Dow 1, 3, 35, 36
RexSP → SPexDow

Table A.12: Granger causality results for pairwise combinations of mutually-exclusive mar-
ket category under study. Statistical significance was assessed using four Granger causality
tests (parameter F -test, sum of squared residuals F -test, likelihood-ratio test, χ2-test). Each
causal relationship was considered significant if each of the four tests resulted in a p-value
less than 0.05/Nlags. The maximum number of lags investigated was Nlags = 40.
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Dep. Variable: log10 ROC R-squared: 0.908
Model: OLS Adj. R-squared: 0.908
Method: Least Squares F-statistic: 7179.
No. Observations: 2884 Prob (F-statistic): 0.00
Df Residuals: 2880 Log-Likelihood: 551.07
Df Model: 3 AIC: -1094.

BIC: -1070.
Omnibus: 1630.431 Durbin-Watson: 2.007
Prob(Omnibus): 0.000 Jarque-Bera (JB): 23812.396
Skew: 2.375 Prob(JB): 0.00
Kurtosis: 16.252 Cond. No. 259.

coef std err z P>|z| [0.025 0.975]
Intercept 1.0052 0.091 11.050 0.000 0.827 1.183
l_MarketCap 0.1183 0.011 10.675 0.000 0.097 0.140
l_total_trades -0.2203 0.043 -5.127 0.000 -0.304 -0.136
l_differing_trades 0.9023 0.040 22.286 0.000 0.823 0.982

Table A.13: Ordinary least squares regression predicting realized opportunity cost (ROC)
using market capitalization, differing trades, and total trades.
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Dep. Variable: log10 ROC R-squared: 0.925
Model: OLS Adj. R-squared: 0.925
Method: Least Squares F-statistic: 5970.
No. Observations: 2884 Prob (F-statistic): 0.00
Df Residuals: 2877 Log-Likelihood: 846.73
Df Model: 6 AIC: -1679.

BIC: -1638.
Omnibus: 1952.210 Durbin-Watson: 1.988
Prob(Omnibus): 0.000 Jarque-Bera (JB): 50808.169
Skew: 2.831 Prob(JB): 0.00
Kurtosis: 22.768 Cond. No. 1.70e+04

coef std err z P>|z| [0.025 0.975]
Intercept 7.8666 0.802 9.811 0.000 6.295 9.438
l_MarketCap -0.0738 0.149 -0.496 0.620 -0.365 0.218
l_total_trades -4.1661 0.432 -9.638 0.000 -5.013 -3.319
l_differing_trades 3.0804 0.338 9.103 0.000 2.417 3.744
l_MarketCap ** 2 0.0067 0.008 0.837 0.402 -0.009 0.022
l_total_trades ** 2 0.3385 0.038 8.936 0.000 0.264 0.413
l_differing_trades ** 2 -0.2042 0.034 -6.002 0.000 -0.271 -0.138

Table A.14: Ordinary least squares regression predicting realized opportunity cost (ROC)
using market capitalization, differing trades, and total trades. Quadratic terms are included.
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Dep. Variable: log10 ROC R-squared: 0.600
Model: OLS Adj. R-squared: 0.600
Method: Least Squares F-statistic: 4280.
No. Observations: 2884 Prob (F-statistic): 0.00
Df Residuals: 2882 Log-Likelihood: -1574.9
Df Model: 1 AIC: 3154.

BIC: 3166.
Omnibus: 52.492 Durbin-Watson: 1.933
Prob(Omnibus): 0.000 Jarque-Bera (JB): 76.592
Skew: 0.199 Prob(JB): 2.34e-17
Kurtosis: 3.692 Cond. No. 126.

coef std err z P>|z| [0.025 0.975]
Intercept -1.4415 0.108 -13.398 0.000 -1.652 -1.231
l_MarketCap 0.7368 0.011 65.422 0.000 0.715 0.759

Table A.15: Ordinary least squares regression predicting realized opportunity cost (ROC)
using only market capitalization.

Dep. Variable: log10 ROC R-squared: 0.603
Model: OLS Adj. R-squared: 0.603
Method: Least Squares F-statistic: 2904.
No. Observations: 2884 Prob (F-statistic): 0.00
Df Residuals: 2881 Log-Likelihood: -1564.7
Df Model: 2 AIC: 3135.

BIC: 3153.
Omnibus: 67.584 Durbin-Watson: 1.935
Prob(Omnibus): 0.000 Jarque-Bera (JB): 100.782
Skew: 0.242 Prob(JB): 1.30e-22
Kurtosis: 3.777 Cond. No. 1.24e+04

coef std err z P>|z| [0.025 0.975]
Intercept -6.2441 1.286 -4.857 0.000 -8.764 -3.724
l_MarketCap 1.7575 0.266 6.598 0.000 1.235 2.280
l_MarketCap ** 2 -0.0539 0.014 -3.927 0.000 -0.081 -0.027

Table A.16: Ordinary least squares regression predicting realized opportunity cost (ROC)
using only market capitalization. Quadratic terms are included.
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