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domain result. First, the vertical value of cloud maps or output data is depth which

can be calculated by multiplying travel time with the acoustic wave speed. The

unit presented here is ms. Second, the results describe how sound waves propagate,

rebound, and move back in the subarea. No matter how many groups of sound wave

transmit into ground, the final result will be the same. Thus, the output data is an

equilibrium condition that the value will not change with time. To remove the time

term, equation 5.18 can be rewritten as follow:

∂2u(x, y)
∂x2 + ∂2u(x, y)

∂y2 = 0. (5.19)

As for parameter c1 (see equation 4.16a) which is wave propagation speed is eliminated

as well, the APL data is numbers result from properties of soil and buried pipes

and objects. To analysis the states of equilibrium result, redundant using of same

parameter is not allowed. Thus, the final governing equation is equation 5.19.

In using the numerical method, the elements should be set first. The triangle is

selected as domain area shown below

Figure 5.1: Element of an arbitrary triangle
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From theory of approximation (see equation 5.12), different from Chapter 4, this

is a domain area with both terms of x and y instead of just term of x in the description

of chapter 4. Nevertheless, it can still work perfectly by adding variable y back into

equation 5.12:

û(x, y) =
n+1∑
j=1

uj l(x, y), (5.20)

where n is number of degree. The l(x, y) should be determined both for polynomial

and weighting function. From figure 5.1, there are a total of three polynomials due to

three nodes for an element. for node1, when (x1, y1) is selected, only value of node1

survive. Three equations can be written:

l1(x1, y1) = 1, (5.21a)

l2(x1, y1) = 0, (5.21b)

l3(x1, y1) = 0. (5.21c)

Although, there are two variables x and y, the polynomial is still about two nodes.

Thus, a function with degree of one should be created:

lk = ax+ by + c (5.22)

Notice that the subscript i refers to each element; j refers to each nodes in elements;
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k, just introduced, refers to domain polynomials for each nodes.

l1(x1, y1) = ax1 + by1 + c = 1, (5.23a)

l1(x2, y2) = ax2 + by2 + c = 0, (5.23b)

l1(x3, y3) = ax3 + by3 + c = 0, (5.23c)

or in matrix form: 
x1 y1 1

x2 y2 0

x3 y3 0




a

b

c

 =


1

0

0

 . (5.24)

Same light the way of calculating Lagrange polynomial, by applying Cramer’s Rule

and insert a, b, andc back to equation 5.22, the result of φ1 is

l1 = x (y2 − y3) + y (x3 − x2) + (x2y3 − x3y2)
det p , (5.25)

where p is the 3 by 3 matrix of equation 5.24. Similarly, the l2 and l3 in figure 5.1

are:

l2 = x (y3 − y1) + y (x1 − x3) + (x3y1 − x1y3)
det p , (5.26a)

l3 = x (y1 − y2) + y (x2 − x1) + (x1y2 − x2y1)
det p . (5.26b)

From equation 5.11, an residual of the modified wave equation as follow:

[
d2û(x, y)
dx2 + d2û(x, y)

dy2

]
−
[
d2u(x, y)
dx2 + d2u(x, y)

dy2

]
= R(x, y) (5.27)
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Since the second part of this equation is zero, the residual function is:

d2û(x, y)
dx2 + d2û(x, y)

dy2 = R(x, y) (5.28)

Thus, the Galerkin’s weighted residual function (from equation 5.14) is a zero-result

integral inside the outline Ω of entire target area:

∫
Ω

[
d2û(x, y)
dx2 + d2û(x, y)

dy2

]
lidΩ = 0 (5.29)

Substituting û(x, y) with equation 5.12:

∫
Ω
u(x, y)

[
d2lj(x, y)
dx2 + d2lj(x, y)

dy2

]
lidΩ = 0 (5.30)

Applying Green’s 1st theorem, which is the two dimensional intergration by parts:

n∑
j=1

uj(x, y)
∫

Ω

[
∂lj(x, y)
∂x

∂li(x, y)
∂x

+ ∂lj(x, y)
∂y

∂li(x, y)
∂y

]
dΩ

=
∫

∂Ω

∂û(x, y)
∂n

li(x, y)dl
(5.31)

The equation 5.31 describes a global matrix built on the entire mesh like 5.2. By

recalling that the subscript i refers to elements, a same node may be described by

two or more elements. Thus, it is necessary to rewrite equation 5.31 into an equation

in term of elements.
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Figure 5.2: Sketch of mesh based on a square area

By rewriting equation 5.31 as follow:

uj(x, y)
m∑

e=1

∫
Ωe

[
∂lj(x, y)
∂x

∂li(x, y)
∂x

+ ∂lj(x, y)
∂y

∂li(x, y)
∂y

]
dΩe

=
∫

∂Ω

∂û(x, y)
∂n

li(x, y)dl,
(5.32)

m is number of elements and the coefficient of matrix defined by equation 5.32 is



a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

... ... ... . . . ...

an1 an2 an3 · · · ann


+



u1

u2

u3

...

un


=



f1

f2

f3

...

fn


(5.33)
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where

aij =
m∑

e=1

∫
Ωe

[
∂lj(x, y)
∂x

∂li(x, y)
∂x

+ ∂lj(x, y)
∂y

∂li(x, y)
∂y

]
dΩe, (5.34a)

fj =
∫

∂Ω

∂û(x, y)
∂n

li(x, y)dl. (5.34b)

5.3 Mesh

Beside mathematics, the mesh is an another important part for success of finite

element method.

Figure 5.3: Known horizontal points and vertical points from saved data of APL (The bold
horizontal line is ground and thin vertical lines are each scans.)
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Finite element mesh directly affect the accuracy based on each finite element

model. The meshing dividing a known model into small domains where one or more

functions are solved on that. With the density of mesh increasing (mesh refinement),

the area of domains decreased cause the results of function infinitely close to the

real solution. Size reduction is the simplest strategy of mesh refinement. Since size

reduction is easy to use, it is the most widely used mesh refinement strategy. The

other way to refine mesh is increasing order of domain. For Lagrange’s interpolation,

the Runge’s phenomenon may appear with the increment of degree. The Runge’s

phenomenon is a problem that an oscillation may occur at the edges of interval when

using polynomial interpolation with high degree. For some complex model, the mesh

can be adjusted by engineers. However, for this project, the the inserted points are as

same priority as the boundary condition. Therefore, to avoid Runge’s phenomenon

that comes with high degree and also to set the priority is same in everywhere in the

target area. The size reduction is selected as the way of mesh refinement. Figure

5.3 is cross-section of one slice. There are total 1280 nodes which described as y in

following equations along each scans. Operating with the parameters of acoustic wave

speed v (in m/s), the depth convert equation is shown as follows:

depth (inches) = v × y

20 times/s × 0.001 s/ms× 39.3701 inch/m× 0.5, (5.35)

where 20 times/s means the receiving frequency of accelerometer; the 0.5 at the end

most is a half of distance travelled because the time recorded is time consumed from

being emitted to being received.
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Figure 5.4: Numbering of nodes in elements (The red lines are scans; the black lines are
element boarders; the blue arrows are calculating orders)

The mesh rules of this thesis is shown in figure 5.4. After inserting unknown

nodes, there are total m nodes for each line (see figure 5.4). An arbitrary node n is

a point that follows 1 ≤ n ≤ m − 1 describing a universal way that how to get each

nodes and elements. Recalling equation 5.24, to make sure each result is positive,

an anticlockwise calculation direction is selected [22]. The element nodes order must

follow:

n −→ n+ 1 −→ m+ n (5.36a)

n+ 1 −→ m+ n+ 1 −→ m+ n (5.36b)
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Chapter 6

Examination in test area

The test area is a square surrounded by Perkins (see red zone in figure 6.1)

Figure 6.1: Test area, the right up corner is (0, 0) point

An elaborated map is shown in figure 6.2. There are four pipes buried under the

test area: two thin pipes with 4′′ diameter and two bold pipes with 7′′ diameter. One

thin pipe and one bold pipe are bounded as one group. In figure 6.2, group blue is

8′′ to the surface while group green is 30′′. The two orange squares cover the target
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