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Abstract

Quasilinear Control (QLC) is a theory with a set of tools used for the analysis and
design of controllers for nonlinear feedback systems driven by stochastic inputs. It is
based on the concept of Stochastic Linearization (SL), which is a method of linearizing
a nonlinear function that, unlike traditional Jacobian linearization, uses statistical
properties of the input to the nonlinearity to linearize it. Until now in the literature of
QLC, SL was applied only to feedback systems with single-variable nonlinearities that
appear only in actuators and/or sensors. In this dissertation, my recent contributions
to the literature of QLC are summarized. First, the QLC theory is extended to
feedback systems with isolated multivariate nonlinearities that can appear anywhere
in the loop and applied to optimal controller design problems, including systems
with state-multiplicative noise. Second, the numerical properties of SL, particularly,
the accuracy, robustness, and computation of SL, are investigated. Upper bounds
are provided for the open-loop relative accuracy and, consequently, the closed-loop
accuracy of SL. A comparison of the computational costs of several common numerical
algorithms in solving the SL equations is provided, and a coordinate transformation
proposed to improve most of their success rates. A numerical investigation is carried
out to determine the relative sensitivities of SL coefficients to system parameters.
Finally, QLC is applied to the optimal primary frequency control of power systems
with generator saturation, and control of virtual batteries in distribution feeders.

The expected impacts of this work are far-reaching. On the technical front, this
work provides: i) a new set of theoretical and algorithmic tools that can improve
and simplify control of complex systems affected by noise, ii) information to control
engineers on accuracy guarantees, choice of solvers, and relative sensitivities of SL co-
efficients to system parameters to guide the analysis and design of nonlinear stochas-
tic systems in the context of QLC, iii) a new computationally efficient method of
addressing saturation in generators or virtual batteries in modern electric power sys-
tems, resulting in efficient utilization of resources in providing grid services. On the
societal front, this work: i) enables technologies that rely on computationally-efficient
algorithms for automation of complex systems, e.g., control of soil temperature for
agriculture, which depends on multiple factors like soil moisture and net radiation,
ii) allows effective coordination of controllable smart devices in people’s homes, so as
not to hamper their quality of service, and iii) provides a stepping stone towards key
societal challenges like combating climate change by facilitating reliable operation of
the grid with significant renewable penetration.
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Chapter 1

Introduction

1.1 Background

Actuators and sensors (i.e., instrumentation) in control systems are often nonlinear.

One of the most common examples is actuator saturation. While plants are generally

nonlinear as well, they can usually be linearized around an operating point if the

control system is well-designed. The nonlinear instrumentation, however, cannot.

This is because external inputs to the system may be large enough to force the

actuators and sensors to operate far from their designed operating point, activating

nonlinearities in them.

Nonlinear feedback systems with static nonlinearities have been researched for

more than 100 years. The theory of Lyapunov stability and absolute stability ( [2–4])

have led to significant developments. Performance analysis of systems with saturation

has been discussed in [5, 6]. Nonlinear systems with stochastic inputs and randomly

varying parameters have been studied in [7–9]. A challenge with most existing meth-

ods for nonlinear stochastic systems is that they are, in general, either conservative
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or difficult to apply in practice.

1.1.1 Review of Common Techniques for nonlin-

ear systems

Some common techniques for the analysis and design of controllers for nonlinear

systems are:

• Model Predictive Control: This method involves predicting the future tra-

jectories of the system given different inputs over a horizon, possibly subject to

constraints, and selecting the best input trajectory that optimizes an objective

function over that horizon [10–14]. Only the first sample of the input trajectory

is applied to the system at the next time step and the optimization problem

solved again at the next step. The drawback is that this requires a lot of com-

putation at every step of the process, and for nonlinear systems would require

solving nonlinear programming problems which may have issues such as lack of

uniqueness of a solution.

• Describing Functions: It approximates the nonlinear system with an equiv-

alent gain by applying a sinusoidal signal at its input and calculating the ratio

of the Fourier coefficient of the first harmonic at the output to the magnitude

of the sinusoidal signal [3,15–19]. The drawback is that this works the best for

periodic inputs, especially sinusoidal inputs, and its not suitable for stochastic

inputs.

• Anti-Windup: This method is used to prevent integral windup in case the

2



actuator is saturated, and in its standard form, involves using the input and the

output of the saturation to modify the integral of the tracking error through

an anti-windup gain [20–24]. The drawback is that the anti-windup gain is

generally chosen heuristically and does not take into account the saturation

limits.

• Linear Matrix Inequality based methods: This involves design for stabi-

lization or performance of systems with sector-bounded nonlinearities by form-

ing linear matrix inequalities [25–29]. The drawback of this method is that this

leads to conservative controllers as the controllers are designed for any nonlin-

earity in a sector.

• Barrier based methods: These involve using barrier functions (whose values

become infinite as the variable approaches the boundary of the set) to ensure

stability of the control system [30–34]. These also lead to conservative designs.

• Perturbation/Averaging: This is an asymptotic method of analyzing non-

linear systems, and consists of exploiting the “smallness" of a perturbation pa-

rameter, a parameter on which the nonlinear function and the solution of the

nonlinear system depends on, to construct approximate solutions that are valid

for small values of that parameter [35–39]. The drawback is that this requires

the nonlinear function to be smooth in the perturbation parameter, which is

not available for common nonlinearities like the saturation function.

• Jacobian Linearization: This involves selecting an operating point and evalu-

ating the derivative/Jacobian of the nonlinear function at that operating point,

and replacing it by an affine approximation [3, 4, 40–42]. However, this is only

3



a local approximation that fails to be effective when the operating point shifts

from the point of linearization.

• Least Squares: This involves replacing the nonlinear system by an affine ap-

proximation by minimizing the (possibly weighted) mean square error between

the outputs of the nonlinear function and the affine approximation [43–47]. The

drawback is that this does not consider the input signal for this linearization,

e.g., considering which values of the input are more likely to occur, and hence,

the linearization may not be effective for all different regions of operation.

• Gain Scheduling: This involves linearizing the nonlinear system at several

equilibrium points, designing a linear feedback controller at each of those points,

and implementing the resulting family of controllers as a single controller whose

parameters can be changed by monitoring the scheduling variables (the variables

that parameterize the nonlinear system) [48–52]. However, the drawback is that

gain scheduling works best when the scheduling variable is constant or varies

slowly. Large changes in the scheduling variable, as, for example, in a stochastic

input, can result in instability.

• State Feedback Control in Normal Form: This involves transforming the

nonlinear system into external and internal dynamics by applying a transforma-

tion, and then using state feedback control that converts the external dynamics

into a chain of integrators and makes the internal dynamics unobservable from

the output [53–57]. The difficulty is that this requires the nonlinearities to be

sufficiently smooth on a domain and the transformation to be a diffeomorphism

on a neighborhood of every point on the domain.
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• Feedback Linearization: This uses state feedback control to linearize the

system [58–62]. However, this requires the existence of a sufficiently smooth

function relating the input to the output that is hard to find and involves evalu-

ating the Lie brackets, checking for involutiveness and solving partial differential

equations.

• Sliding Mode Control: In this control technique, trajectories of the nonlinear

system are forced to reach a sliding manifold in finite time and stay on it for all

future time, and motion on the manifold is independent of matched uncertainties

[63–67]. The drawback is that the system with sliding mode control suffers from

“chattering" due to imperfections in switching devices and delays in forcing the

solution on the manifold. Chattering results in low control accuracy, high heat

losses in electrical circuits, and high wear of moving mechanical parts.

• Lyapunov Redesign: This assumes that the nonlinear system is subjected

to model uncertainty or parameter uncertainty, and involves using a Lyapunov

function to design an additional feedback (on top of an existing feedback law)

such that the overall control law stabilizes the actual system in the presence of

uncertainty [68–72]. This also suffers from the problem of chattering as it is a

discontinuous controller.

• Backstepping: It considers systems that are cascade connection of two sub-

systems. The first subsystem is assumed to be stabilized by smooth state feed-

back control, and assuming the existence of a Lyapunov function, a change of

variable is done by subtracting the control law from the state of the second sub-

system [73–77]. This method, however, requires the nonlinear functions to be
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smooth in a domain that contains the origin, which is not suitable for saturated

systems.

• Passivity-based Control: This technique involves using a locally Lipschitz

function of the output of the nonlinear system as feedback [78–82]. However, it

requires the nonlinear system to be passive with a radially unbounded positive

definite storage function and zero state observable.

• Bumpless Transfer: This refers to the instantaneous switching between man-

ual and automatic control of a process while retaining a smooth (“bumpless”)

control signal [24, 83–88]. During tentative evaluation of new controllers, stan-

dard bumpless transfer faces some drawbacks, related to safety (the new con-

troller can drive the system unstable), economic feasibility (requiring costly

modifications to existing controller), robustness (it is sensitive to the new con-

troller) and generality of the controllers (requires the existing controller to have

a particular structure like the velocity form).

In summary, the above methods for the control of nonlinear systems are in general,

conservative, difficult to apply in practice, and/or are not suitable for stochastic

systems.

1.1.2 Overview of Quasilinear Control

Quasilinear Control (QLC) is a recently-developed theory that provides a simpler

alternative for analyzing and designing controllers for such nonlinear stochastic sys-

tems [89]. QLC leverages the method of stochastic linearization (SL) to approximate

the nonlinear system by replacing each nonlinearity by an equivalent gain and a bias,
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Figure 1.1: Traditional and stochastic linearization applied to f(x) = x2.

based on the statistical properties of the stochastic inputs. This is unlike ordinary

Jacobian linearization, which seeks only a local linear approximation to a nonlinear

function. SL is similar in principle to the “describing function" methodology [3], as it

involves approximating the static nonlinearity by a linear function. However, unlike

describing functions, which are intended for the analysis of systems driven by sinu-

soidal inputs, SL is intended for the analysis of systems driven by stochastic inputs.

A visual explanation of the SL procedure is given next.

Consider a nonlinear function f (x) = x2 shown by the solid blue curve in Fig. 1.1,

and assume that the input x is a Gaussian random process with mean µ = 3 and

standard deviation σ = 2. The traditional (Jacobian) approach in linearizing such

a function is to find the derivative of the function at a suitable operating point and

replace the nonlinearity by a local linear approximation. The method of stochastic

linearization, on the other hand, is based on minimizing the difference between the

nonlinear function and its approximation in a mean-squared sense, taking into account

7



the probability distribution of the input. The dashed lines in Fig. 1.1 represent two

Jacobian linearizations performed at x = 1 and x = 4, and the dotted line represents

the stochastically linearized approximation. If Jacobian linearization is performed

at x = 1, but the operating point shifts to, say, x = 4, the linearization becomes

highly inaccurate because the distance between points B and C in Fig. 1.1 is large.

However, since stochastic linearization considers the statistical properties of the input,

it performs better at D compared to B in predicting the actual value at C.

1.1.3 Literature Review of QLC

There is a significant body of literature in the field of SL. A detailed overview of the

prominent works can be found in [90–92]. Stochastic linearization was first introduced

as a generalization of the describing function methodology for nonlinear stochastic

systems virtually simultaneously by Booton and Kazakov [93, 94]. Subsequent de-

velopments are mentioned in [95–98]. The standard criterion of SL in [93, 94] is to

minimize the mean squared deviation between the output of the nonlinearity and

the SL approximation. An alternative criterion for SL is presented in [99] that re-

quires the mean squares of the function and its nonlinear approximation to be equal.

In [100], a third criterion for SL is proposed that minimizes the potential energy of

the nonlinear system and its linear equivalent. Similarly, there are other criteria, by

demanding other probability functionals be minimal or equal [101].

SL of systems with multivariate nonlinearities is specifically described in [102,

103]. A similar method of linearization of nonlinear elements in a stochastic system,

known as “equivalent linearization", but often used interchangeably with SL in the

literature, was proposed by Caughey in [104]. As elaborated in [90, 105], it slightly
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differs from SL applied in the sense of Kazakov [102] in evaluating the statistical

averages. In [106], the existence and uniqueness of solutions generated by equivalent

linearization are discussed. In [107], an energy-based version of SL is applied to

dynamical systems whose states evolve according to quantum stochastic differential

equations. In [108, 109], the methods of SL and harmonic balance are combined

to approximate nonlinear stochastic systems with pseudo-harmonic behavior. These

references, however, do not apply SL explicitly in the context of feedback control

systems that are frequently encountered by control engineers.

The theory of QLC seeks to apply the SL procedure to nonlinear feedback systems

and extend traditional control techniques like the root-locus design to stochastic sys-

tems with saturation [89,110,111]. While SL for multivariate nonlinearities has been

around for long, and indeed also used to analyze and design generic control systems in

these works in Russian [112–114], it was not applied in the traditional QLC literature.

In the book [89], the nonlinearities under consideration were single-variable, symmet-

ric (which, in QLC literature, refers to odd), and only appearing in the actuators

and sensors of the control system. In [110, 111], QLC was extended to asymmetric

(which refers to non-odd in context of QLC) nonlinearities, but still single-variable

and appearing in actuators and sensors.

1.1.4 Shortcomings in Existing Literature for

QLC

There are several shortcomings in the existing literature, as summarized below.
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Stochastic Linearization of Systems with Multivariate Nonlinearities

Previous works on SL [89,110,115] focused on systems with univariate nonlinearities,

for example actuator saturation, sensor dead zone, and gear backlash. However,

multivariate nonlinearities also arise in practical applications, which necessitates a

method of analysis and design capable of dealing with them. Examples of such

nonlinearities are bilinear control systems and systems with state multiplicative noise

[116]. Furthermore, in previous works, only systems with additive noise entering them

were considered. The theory of QLC does not currently consider multiplicative noise.

As another example of multivariate nonlinearities, the author was involved in a

power-systems-related project, in which the goal was to control the power grid by

leveraging the flexibility provided by an aggregation of consumer-side distributed

energy resources (DERs) and solar PV inverters. Such an aggregation typically has

variable/random power limits, due to devices opting in and out of service and variabil-

ity in solar irradiance. The behavior of the aggregation can be effectively modeled by

a trivariate saturation nonlinearity, where the first input is the power that is desired

of the aggregation, the second is the baseline power consumption of the aggrega-

tion, and the third is the aggregate power flexibility currently available (i.e., variable

saturation bounds) [117].

Investigation of Accuracy, Robustness and Computation of SL

While SL has been successfully applied in many examples in the references men-

tioned before (for single-variable nonlinearities), there are still many open questions

surrounding the accuracy, robustness, and computational aspects of it. All these

are important from the perspective of an SL-based controller design for nonlinear
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stochastic feedback systems.

The first problem is related to the accuracy of SL in approximating the statistics

of the signals in nonlinear feedback systems. Specifically, it needs to be investigated

how the inaccuracy (i.e., approximation errors) of SL in feedback settings is affected

by these causes: the inherent inaccuracy of the approximation itself (i.e., open-loop

approximation error), and the inaccuracy due to the assumption of Gaussianity in

closed-loop settings (i.e., closed-loop error). While there have been studies (e.g.,

[90, 118, 119]) on closed-loop accuracy of SL for generic systems, such breakup of

the approximation errors was not attempted in the past. This information on the

accuracy of SL is valuable from a practical perspective, as the error can then be

preemptively accounted for during an SL-based design of controllers for the original

nonlinear system.

The second problem is the computation of SL of a feedback control system. Since

SL involves solving implicit equations that generally contain transcendental functions

(e.g., the error function), their solution can be arrived at only numerically. Often

in practice, numerically solving this system of SL equations is only an intermediate

step in solving a larger problem. An example is optimal controller design using SL

for a system with saturation (e.g. [120, 121]). In such an optimization problem, the

SL equations need to be solved at every iteration of the solver. Hence, to ensure fast

solve times, it is important to employ numerical algorithms that solve the equations

as quickly as possible and with low computational overhead. This has further impacts

on stability/performance if the optimization needs to be performed in real-time and

updates of controller gains in regular intervals are necessary to maintain adequate

performance.
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The third problem is related to the robustness of SL to system parameters. The SL

gain and bias in closed loop depends on the statistical properties of the exogenous sig-

nals and all other system parameters (including the plant or process being controlled,

the controller, and the nonlinear element). If the sensitivity of the SL gain and bias

to system parameters is high, a small uncertainty in these parameters may render

the linearization (and consequently the designed controller, for example) inaccurate.

Hence, it is crucial to quantify which system parameter affects the gain/bias more

than others. The sensitivity of SL has been studied in the literature, e.g., in [122].

However, [122] does not compare the relative sensitivities of the SL coefficients to

system parameters in a feedback control system and their effect on signal statistics,

which could be employed, for example, in optimal controller design.

1.1.5 Limited Applications of QLC in the Exist-

ing Literature

QLC has many potential applications that are not explored in the existing literature.

Droop Control of Power Systems with Generator Saturation

Control of frequency in power systems is vital to ensure reliable operation. In a power

system, the frequency can deviate from the nominal value when there is a mismatch

between supply and demand, which could result from changes in demand, tripping of

generators, or isolation of areas with large generation capacity. A poorly controlled

power system would result in a low quality of supplied electrical energy that can

lead to power system collapse. Hence, power systems are typically equipped with an
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Figure 1.2: Effect of actuator saturation on droop control - A highly saturated actuator
(α=10) leads to oscillations in the frequency deviations from the nominal for a step change
in load power. A less saturated actuator (α = 100) leads to less oscillations. With negligible
saturation (α = 1000), the response is overdamped. Note that a small steady state error is
present in this case, although not visible to the naked eye. This is for illustration only, with
system parameters taken from [1].

automatic frequency control system that nullifies any change in frequency.

An automatic frequency control system is generally implemented in three parts:

primary, secondary and tertiary control [123–125]. Primary Frequency Control (PFC),

or droop control, serves to bring the frequency back to an acceptable value locally in

a power system area, although leaving a steady state error in frequency due to the

purely proportional droop controller. This control task is shared by all generators in

the area, irrespective of the location of the disturbance.

The proportional droop controller used in primary control can be chosen opti-

mally. This can ensure, for example, a minimal change in frequency with reduced
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control effort. Optimized droop control has been studied in the literature. For exam-

ple, Mallada et. al [126] propose an optimal load-side frequency control mechanism

to maintain the grid within operational constraints. In [127] and [128] averaging-

based distributed controllers, using communication among the generation units to

ensure economic optimization, are explored. A distributed real time frequency con-

trol scheme, using reverse and forward engineering, is discussed in [129]. In [130],

dynamic droop controllers that improve the dynamics without affecting the steady

state solution are proposed. In [131], the tracking of an operating point subject to

power balance over the network is optimized. Delays in frequency dependent flexible

loads are investigated in [132].

These references, however, do not systematically incorporate the issue of generator

power saturation, which can take place when, for example, the gate or valve position

that influences the flow of steam into a turbine is restricted, leading to specific output

power limits. By systematically, I mean a design process that explicitly considers all

the system parameters including saturation limits and, at the same time, does not

lead to overly complex controllers. While neglecting saturation leads to simplification

in the controller design and analysis, the results obtained may not accurately reflect

the performance when saturation is present.

I illustrate this fact using a simulation analysis, where the same droop controller

is used with varying levels of saturation (I used the system given in [1]). As shown in

Fig. 1.2 by the orange dashed line, an unsaturated actuator leads to a well-behaved

droop response - a momentary change in frequency, caused due to a step change in

load power, is brought back to a constant value without oscillations. However, when

there is significant generator saturation, the frequency change shows an underdamped
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response before being nullified, as shown by the solid line.

The above example motivates the systematic design of an optimal droop controller

to account for generator saturation in power systems.

Control of Virtual Batteries

With increased penetration of renewable generation like solar photovoltaic (PV), co-

ordinated control of demand-side distributed energy resources (DERs) in distribution

feeders is becoming vital to supporting a clean energy future. Many works in this area

propose novel control architectures to coordinate and control these resources. For ex-

ample, in [133, 134], methods for load frequency control using DERs are described.

In [135], the active and reactive power of DERs are controlled using information

exchange with neighboring DERs, while in [136], a model predictive control-based

approach is taken. Moreover, a virtual battery (VB) is an abstraction, i.e., a model-

ing tool, to capture the flexibility and dynamics of aggregations of DERs [137–139]

that enables analysis and design of controllers. Generally, the objective of VB control

(ignoring grid constraints) is to maximize revenue [140]. Hence, if the output power of

the VBs are controlled, as we seek to achieve this objective, the VBs may be pushed

to their energy or power limits. This requires controller design to be cognizant of

power/energy limits.

While most works on hierarchical control of DERs (e.g. [141]) mainly consider

using frequency and voltage droop characteristics to generate power set-points for

DERs using local measurements of frequency and voltage and compensating for the

deviations, in [142], a previous work by the authors, a novel hierarchical framework

for control of VBs in distribution feeders was proposed, wherein the deviation in the
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head node power of the feeder from an economic trajectory was minimized instead.

Unlike most local droop-based control strategies that are generally not cognizant of

the network, the design of the controller gains was done based on the grid topology

and device constraints, using the concept of a VB, with power and energy saturation

limits, to represent an aggregation of DERs.

Existing works to tune controller parameters based on saturation limits are either

heuristic [142], or the parameters are not optimized [127], which means the full poten-

tial of VBs is not unleashed. Furthermore, no work adaptively retunes the controller

parameters to take into account variable saturation levels using real-time data. In

the case of tuning PID controllers [143], there exist methods like the Cohen Coon,

Internal Model Control, and Ziegler Nichols, but they also do not provide a mecha-

nism to include the saturation nonlinearity in the design process. From a technical

standpoint, the challenge is that saturation represents a nonlinearity and the grid

is driven by stochastic inputs, a class of systems for which control design tools are

limited.

1.2 Original Contributions

This dissertation aims to solve the above mentioned problems.

Stochastic Linearization of Systems with Multivariate Nonlinearities and

State Multiplicative Noise

In Chapter 3, the theory of QLC is developed for nonlinear functions of multiple

variables. The original contributions of Chapter 3 and 4 are as follows. First, the
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equations for computing the linearization coefficients for SL of multivariate nonlinear-

ities have been derived in detail in the open-loop environment. Second, the existence

of these gains and biases for a generic nonlinear feedback system with generic multi-

variate nonlinearities (not just actuators or sensors) have been discussed, along with

a process for finding them. Third, the resulting formulae are applied to find SL of

a practical nonlinearity, namely the trivariate saturation, which is motivated by a

power systems example, and the practical significance of the SL coefficients is high-

lighted. Fourth, in Chapter 4, the theory of SL has been extended to systems with

multiple input multiple output (MIMO) nonlinearities, and has been applied to the

analysis and optimal controller design of systems with randomly varying parameters

(i.e., state multiplicative noise), where it is shown that SL can be effectively used to

study this class of systems. Development of SL for MIMO nonlinearities also allows

systems with multiplicative noise to be considered, apart from only additive noise that

was considered till now in the literature. Fifth, a robustness analysis is performed

to study the sensitivity of SL coefficients to system parameters. Finally, the theory

is applied to a bivariate saturation nonlinearity in the shape of an optimal control

problem, which demonstrates that SL is both fairly accurate and is able to adapt

systematically based on system parameters.

Investigation of Accuracy, Robustness and Computation of Stochastic Lin-

earization

In Chapter 5, the issue of accuracy of SL is addressed. Specifically, I delineate the

breakup of inaccuracy of SL in feedback settings to the open-loop approximation

error and the closed-loop error, provide a tight upper bound on the open-loop ap-
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proximation error, and discuss the implications of this upper bound on the closed-loop

accuracy for systems with saturation nonlinearities. The analyses show that SL of a

saturation nonlinearity can produce relative mean squared errors less than 30.1% in

the output but relative accuracy improves with a smaller variance in the input. A

way to analytically determine the statistics of the actuator input that leads to the

largest open-loop mean squared error for a given saturation authority is derived. Fi-

nally, it is shown that open-loop relative accuracy being bounded above also results

in the closed-loop accuracy being bounded above by a value that is dependent on the

saturation authority and the input of the saturation.

The issue of computation of SL has been investigated by comparing, through

Monte Carlo simulations, six numerical algorithms (specifically, the Bisection, Newton-

Raphson, Broyden, Trust-Region Reflective, Trust Region Dogleg, and Fixed Point

Iteration methods) for the number of function evaluations required to converge to a

solution of the SL equations. It has been found that, in the case of symmetric satura-

tion, the SL functions for most systems are, in fact, contraction maps, but not in the

asymmetric case. The best solver in terms of minimizing the amount of computation

for solving the SL equations on average in both the symmetric and asymmetric cases

is found to be the Trust Region Reflective method. A novel coordinate transformation

is also proposed that can improve the success rate of most of the above-mentioned

algorithms.

The issue of robustness of SL is addressed by performing Monte Carlo simulations

and showing that the SL gain and bias are more affected by those parameters that

directly affect the actuator input or its saturation authorities. Also, the sensitivities

are found to be higher for systems with an asymmetric saturation nonlinearity than
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for those with symmetric saturation, and the sensitivity of the SL bias is found to

be higher than that of the SL gain. However, the signal statistics are usually not

affected much by the SL coefficients, although in the case of asymmetric saturation,

it is possible to have a higher sensitivity of the mean of the actuator input and the

tracking error.

In sum, Chapter 5 investigates issues of accuracy, computation, and robustness

of SL in a typical feedback system with a saturating actuator (a system that is

commonly analyzed in various existing QLC literature [119, 144, 145]). Thus, the

original contributions of Chapter 5 are as follows:

• A novel metric for the relative accuracy of SL is proposed for the open-loop

accuracy of SL, along with upper bounds for the open-loop and, consequently,

the closed-loop accuracy of SL.

• A comparison of the computational costs of several common numerical algo-

rithms in solving the SL equations is provided.

• A coordinate transformation is proposed to improve the success rate of most of

the above-mentioned algorithms.

• A numerical investigation is carried out into the sensitivity of SL coefficients to

system parameters.

Optimal Primary Frequency Control of Power Systems with Generator

Saturation

In Chapter 6, I leverage the method of QLC to systematically design an optimal

droop controller that will dynamically adapt to the parameters of a power system.
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Numerical simulations show that the resulting optimal QLC controller reduces the

combined state and control costs by as much as 17% compared to a baseline design

from the literature. Since QLC depends on all the parameters of the system, any

change in a parameter leads to a systematic redesign of the optimal controller to

meet performance requirements.

Control of Virtual Batteries

In Chapter 7, the technique of SL is leveraged to optimally control VBs. Specifi-

cally, it illustrates the advantages of using an SL-based optimization compared to

the optimal VB controller described in [142,146]. While existing design methods (for

linear controller design of systems with saturation) based on Lyapunov functions and

LMIs [4, 5] treat the saturation as a sector-bounded nonlinearity and, hence, lead to

conservative designs, my goal is to achieve a non-conservative, optimal design, though

with a small approximation error due to SL. Specifically, I show in Chapter 7 that

compared to a baseline design, SL results in more accurate estimation of signal statis-

tics, SL-based optimization can reduce head node power deviation from nominal while

optimizing VB usage, and that SL-based optimization can use updated information

to update the controller parameters, i.e., can be made adaptive. Thus, the original

contributions of Chapter 7 are:

• An SL-based optimal controller design for control of networked VBs with fixed

power limits (i.e., by modeling the limits by a univariate saturation function),

• Adaptive SL-based design of VB controllers using real-time data,

• Analysis on the effect of various system parameters on the optimization, and
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• Simulation-based analysis of the SL-based design to VBs with variable power

limits (i.e., by modeling the limits by a trivariate saturation function).

1.3 Statement of Impact

The expected impacts of this work are far-reaching. On the technical front, this work

provides:

• a new set of theoretical and algorithmic tools that can improve and simplify

control of complex systems affected by noise, which are traditionally difficult

since the existing methods are heuristic or computationally challenging.

• information to control engineers on accuracy guarantees of SL (specifically, the

bounds derived on the open loop and closed loop accuracy provide a means to

incorporate them into design, perhaps using a robust control approach), choice

of solvers to solve the SL equations as quickly as possible (which is important

for an online optimization problem that is dependent on system parameters),

and relative sensitivities of SL coefficients to system parameters (which informs

which parameters of the physical system need to be estimated more accurately)

to guide the analysis and design of nonlinear stochastic systems in the context

of QLC.

• a new computationally efficient method of addressing saturation in generators

or virtual batteries in modern electric power systems, resulting in efficient uti-

lization of resources in providing grid services. Specifically, QLC provides a way

to incorporate constraints like saturation into the design process and leads to

more effective controllers.
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On the societal front, this work:

• enables technologies that rely on computationally-efficient algorithms for au-

tomation of complex systems (especially when they influenced by multiple vari-

ables), e.g., control of soil temperature for agriculture, which depends on mul-

tiple factors like soil moisture and net radiation,

• allows effective coordination of controllable smart devices like air conditioners

and water heaters in people’s homes, so as not to hamper their quality of service,

when they provide grid services like frequency regulation.

• provides a stepping stone towards key societal challenges like combating climate

change by facilitating reliable operation of the grid with significant renewable

penetration.

1.4 Outline

The outline of the rest of the dissertation is as follows. In Chapter 2, a brief review

of single variable QLC is provided. In Chapter 3, SL is extended to systems with

multivariate nonlinearities. Chapter 4 describes the SL process applied to systems

with state-multiplicative noise. In Chapter 5, the numerical properties of SL, namely

accuracy, robustness and computation are investigated. In Chapter 6, SL is applied

for optimal primary control of power systems with generator saturation. In Chapter

7, SL is applied to optimal control of virtual batteries. Finally, Chapter 8 concludes

the dissertation.
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Chapter 2

Review of Single Variable Quasi-

linear Control

This chapter presents a brief review of single-variable QLC theory. For details, please

refer to [89, 110]. Section 2.1 reviews SL in open-loop case. Section 2.2 applies SL

formulae to the closed-loop case. Section 2.3 concludes this Chapter by providing two

examples for SL.

2.1 Open Loop System

Consider a piecewise differentiable nonlinear function f : R → R, shown in Fig. 2.1,

driven by a wide-sense stationary (WSS) Gaussian random input u(t), with the fol-

lowing properties [103]:

1. ∂f
∂u

exists and is continuous almost everywhere;

2. |f(u)| < Aexp (ua), a < 2, for some A ∈ R and any u ∈ R.
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SL approximates the above nonlinearity by a linear approximation v̂(t) = Nu0(t)+M ,

where u0(t) = u(t)− E[u(t)] is the zero-mean part of u(t), such that the functional:

ε(N,M) = E[(v − v̂)2] (2.1)

is minimized [110]. Here, N is called the quasilinear gain, M the quasilinear bias,

and E[·] denotes mathematical expectation. It can be shown [91] that the values of

N and M are:

N = E[f ′(u)] = FN (µu, σu) (2.2)

M = E[f(u)] = FM (µu, σu) (2.3)

Because u(t) is Gaussian, (2.2) and (2.3) depend only on its mean, µu, and standard

deviation, σu. This dependency is denoted by functions FN and FM .

Now consider the saturation nonlinearity, which is the most widely studied non-

linearity in the QLC literature:

f(u) = satβα(u) :=



β, u > β

u, α ≤ u ≤ β

α, u < α

(2.4)

where α < 0 and β > 0 are constants and indicate the saturation limits. For this

function, the quasilinear gain N and bias M are given by [110]:

N = 1
2

[
erf
(
β − µu√

2σu

)
− erf

(
α− µu√

2σu

)]
(2.5)
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f(·)
u (t) v (t)

Nu0 (t) +M
v̂ (t)

(a) Involving u0(t)

f(·)
u (t) v (t)

N

m = M −Nµu

v̂ (t)

(b) Not involving u0(t)

Figure 2.1: The process of single-variable SL. Part (b) shows an arrangement that is equiv-
alent to that in part (a), but is amenable to block diagram manipulation. Here, N is the
quasilinear gain defined in (2.2), M the quasilinear bias defined in (2.3), µu, the mean of
u(t) and u0(t) = u(t)− µu.

M = α + β

2 − β − µu
2 erf

(
β − µu√

2σu

)
+ α− µu

2 erf
(
α− µu√

2σu

)
−

σu√
2π

exp
−(β − µu√

2σu

)2
− exp

−(α− µu√
2σu

)2
 (2.6)

where erf(·) is the error function:

erf(x) = 2√
π

∫ x

0
e−t

2
dt

.

Quantitatively, the quasilinear gain N from (2.5) equals the probability that the

output, satβα(u), has not been saturated at either its lower limit α or upper limit

β [144]. Hence, 0 ≤ N ≤ 1. When the saturation is symmetric, i.e., β = −α, and u

is zero-mean, i.e., µu = 0, (2.5) and (2.6) reduce to:

N = erf
(

β√
2σu

)
,M = 0 (2.7)
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wr(t)Fr (s)
‖Fr (s)‖2 = 1

σr

+ µr

C (s) f(·) +

+ µdσd

Fd (s)
‖Fd (s)‖2 = 1

wd(t)

P (s)
y (t)

-
r (t)
+

d (t)
e (t) u (t)

v (t)
z (t)

Figure 2.2: Block diagram of control system

2.2 Closed Loop System

The literature of QLC (e.g., [89, 110]) considers feedback systems similar to the one

shown in Fig. 2.2. It consists of a plant P (s) whose output is desired to be controlled

using a controller C(s) and a nonlinear actuator described by the function f(·). Since

I am concerned with performance analysis and not stability, I assume C(s) has been

chosen such that the resulting closed-loop system is stable. The reference signal r(t) is

modeled as a WSS Gaussian random process, with µr and σr as the mean and standard

deviation of its samples, respectively. To generate r(t), standard Gaussian white noise

wr(t) is passed through a coloring filter Fr(s) having unit H2 norm (to ensure that

the samples of the output of Fr(s) have unit variance). The output of Fr(s) is then

scaled by σr and shifted by µr. The disturbance signal d(t) is also modeled as a WSS

Gaussian random process, with µd and σd as the mean and standard deviation of its

samples, respectively, and is generated similarly.

I note that this system can be generalized to that shown in Fig. 3.2, which is

consistent with the literature of robust control and absolute stability. This gener-

alization has not been attempted previously in the literature of QLC. Here, w(t),

which models all exogenous inputs, including references and disturbances, is a vector
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Fw(s) Lw

µw

G(s)

f(·)

w(t) y(t)

u(t)v(t)

ws(t)

Figure 2.3: Generalized nonlinear feedback system

of WSS Gaussian processes, with a vector of means µw and covariance matrix Σw.

Again, the closed loop system is assumed to be stable. To generate w(t), a vector

of standard independent and identically distributed Gaussian white noise processes,

ws(t), is passed through a diagonal transfer matrix Fw(s), with the diagonal elements

being coloring filters having unit H2 norm. The result is scaled by Lw, which is the

lower triangular matrix resulting from the Cholesky decomposition of Σw = LwL
T
w,

and is shifted by µw. The linear part of the system is denoted by G(s), while f(·)

denotes a single-variable nonlinearity in the system. The block diagram in Fig. 2.2

can be redrawn as that in Fig. 3.2, with:

ws (t) =

 wr (t)

wd (t)

 , w (t) =

 r (t)

d (t)

 , y (t) = y (t)

Fw (s) =

 Fr (s) 0

0 Fd (s)



Lw =

 σr 0
σrd
σr

√
(σrσd)2−σ2

rd

σr

 , µw =

 µr

µd



G (s) =

 0 P (s) P (s)

C (s) −C (s)P (s) −C (s)P (s)


such that (y(t), u(t)) is the output when (w(t), v(t)) is input to G(s), and σrd is the
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Fw(s) Lw

µw

G(s)

N

w(t)

m = M −Nµû

ŷ(t)

û(t)v̂(t)

ws(t)

Figure 2.4: SL of the system in Fig. 3.2

covariance between r(t) and d(t). The SL of the system in Fig. 3.2 involves the

computation of N and M from (2.2) and (2.3). This requires the probability density

function (PDF) of u(t). However, because the system is nonlinear, such PDF is not

readily available. To remedy this issue, it is assumed that the system in Fig. 3.2 has

been stochastically linearized to that in Fig. 3.3, and the PDF of û(t) is instead used

for the computation of N and M . Since all inputs in Fig. 3.3 are Gaussian, so is the

signal û(t), and hence only its mean, µû, and standard deviation, σû, are required

to compute N and M . It is shown in [110] that when the plant is of a low-pass

filtering nature, the use of û(t) instead of u(t) typically results in only a small error,

for example, in their variances.

To explain how σû and µû can be computed, let us first partition G(s) as follows:

G(s) =

 G11 (s) G12 (s)

G21 (s) G22 (s)

 (2.8)

The standard deviation of û(t) is calculated using the H2 norm ‖·‖2 of the transfer

matrix from ws(t) to û(t) [147], after setting the exogenous inputs, µw and m, to zero:

σû (N) =
∥∥∥[1−NG22 (s)]−1G21 (s)LwFw (s)

∥∥∥
2

(2.9)
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The mean of û(t) can be found by evaluating the DC gain of the transfer function/-

matrix from m and µw to û(t):

µû (N,m) = lim
s→0

(1−NG22(s))−1 (G21(s)µw +mG22(s)) (2.10)

Note that previously in the literature of QLC [110], the formulation µû (M) =

lims→0[G21(s)µw + MG22(s)] was studied instead of (2.10). The novel formula-

tion of µû in terms of N and m in (2.10) is more amenable to numerical com-

putation as compared to that in terms of only M . This is because the formula-

tion of (2.10) can handle cases where the DC gain of any element of G21(s) or

of G22(s) is infinite, which can happen, for example, when there are integrators

in the control system. To illustrate this, consider Fig. 2.2, with C(s) = 5 and

P (s) = 10
s(s+1) . Then, lims→0G21(s) = lims→0

[
C (s) −C (s)P (s)

]
=
[

5 −∞
]

and lims→0G22(s) = − lims→0C (s)P (s) = −∞. Then, µû (M) is not defined, unless

M = −µd. On the other hand, from (2.10), µû (N,m) = −m+µd
N

is defined for all m

and N 6= 0.

The values of N andM (= m+Nµû) can be found by solving (2.2) and (2.3), with

σû and µû given by (2.9) and (2.10), respectively, resulting in the following equations

with two unknowns, N and m:

N = FN (µû(N,m), σû(N)) (2.11)

m+Nµû (N,m) = FM (µû(N,m), σû(N)) (2.12)

Note the resulting circularity in these equations. In general, the equations are tran-

scendental and hence, only numerically solvable. They can be solved using, for ex-

ample, MATLAB’s fsolve, which uses the Trust Region Dogleg method [148]. This
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completes the process of SL of systems with univariate nonlinearities.

2.3 Examples

In this section, I illustrate the process of SL through two examples, one for an open-

loop and another for a closed-loop system.

2.3.1 Example 1

Problem: Consider the nonlinear function f(x) = x2. Suppose the input process

is known to follow a Gaussian distribution with mean 3 and standard deviation 0.1.

Find the SL of f , i.e., find the gain N and the bias M .

The probability density function of x is given by:

p(x) = 1√
2π(0.1)2

e
− (x−3)2

2(0.1)2

The value of the quasilinear gain N can then be obtained from (2.2):

N = E [f ′ (x)] =
∫ ∞
−∞

2xp (x) dx =
∫ ∞
−∞

2x 1√
2π (0.1)2

e
− (x−3)2

2(0.1)2 dx = 6

The value of quasilinear bias M can be obtained as:

M = E [f (x)] =
∫ ∞
−∞

x2p (x) dx =
∫ ∞
−∞

x2 1√
2π (0.1)2

e
− (x−3)2

2(0.1)2 dx = 9.01

Thus, the SL of f(x) = x2 is Nx0 +M = 6(x− 3) + 9.01.
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wr(t) Fr (s)
‖Fr (s)‖2 = 1

σr +

µr

C (s) f(·) P (s)
y (t)

-
r (t) e (t) u (t) z (t)

Figure 2.5: Block diagram of control system

wr(t) Fr (s)
‖Fr (s)‖2 = 1

σr +

µr

C (s) N +

m

P (s)
ŷ (t)

-
r (t) ê (t) û (t) ẑ (t)

Figure 2.6: Stochastic Linearization of System in Fig. 2.5

2.3.2 Example 2

Problem: Consider a feedback system as shown in Fig. 2.5, which C(s) = 5, P (s) =
1
s+1 , µr = 0.1, σr = 1, f(·) = sat2

−1(·). Let Fr(s) =
√

3
s3+3s2+3s+1 (3rd order Butterworth

filter). Stochastically linearize this system to that shown in Fig. 2.6 and obtain N

and m.

To stochastically linearize the system, we need to find the mean and standard

deviation of the input to N , û. The standard deviation of û is evaluated using the

H2-norm of the transfer function from wr(t) to û(t), after setting exogenous biases to

zero, i.e., µr = m = 0:

σû(N) =
∥∥∥∥∥ Fr (s)C (s)

1 +NC (s)P (s)

∥∥∥∥∥
2
σr

=
∥∥∥∥∥ 5

√
3

(s+ 1)2 (5N + s+ 1)

∥∥∥∥∥
2

(2.13)

Similarly, the mean of û is computed by considering the DC gain of the transfer

functions from µr and m to û:
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µû(N,m) = C0 (µr −mP0)
1 +NP0C0

= 5(0.1−m)
1 + 5N (2.14)

where P0 and C0 are the DC gains of P (s) and C(s) repsectively.

Now, for the saturation function, N and m are given by (2.5)-(2.6) and m =

M −Nµu, with α = −1 and β = 2, and σu and µu replaced by σû and µû respectively

from (2.13) and (2.14). This results in a system of two equations in N and m. By

solving the resulting equations using MATLAB’s fsolve (Version 2021a, Windows)

for m and N , we obtain N = 0.9092 and m = 0.0339.
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Chapter 3

Stochastic Linearization of Sys-

tems with Multivariate Nonlinear-

ities

This chapter introduces multivariable stochastic linearization. The outline of this

chapter is as follows: Section 3.1 introduces expressions for SL of a multivariate

nonlinearity. The expressions introduced in Section 3.1 are then used in Section 3.2

to find the SL of a general feedback control system. Section 3.3 introduces a recipe

for evaluating robustness of stochastic linearization coefficients. Finally, in Section

3.4, a practical example of an optimal controller design is provided.
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3.1 Multivariable Stochastic Lineariza-

tion

In this section, the idea of SL is presented for multivariate nonlinearities, i.e., non-

linearities having multiple inputs and a single output. The case of multiple outputs

is considered in Section 4.1. Note that SL for multivariate nonlinearities has been

presented in an alternative form in [102,149,150]. A contribution of this section is to

provide its derivation for completeness.

Consider a function f : Rn → R evaluated at n jointly stationary Gaussian inputs

u1(t), u2(t), . . . , un(t), forming a stationary Gaussian random vector u(t) with mean

vector µu. The problem is to approximate v(t) = f(u(t)) by the linear function

v̂(t) = N>u0(t) +M , where u0(t) = u(t)−µu is the zero-mean part of u(t). Here, N

and M are constants and are referred to as the quasilinear gain and the quasilinear

bias respectively. Our objective is to choose N and M to minimize the mean square

difference between the two outputs v(t) and v̂(t). This is carried out in Theorem 1

below. Before I state the theorem, I note that since u(t) and u0(t) are assumed to be

stationary processes, their probability distributions are independent of time. Thus,

in the following Theorem, I omit the time argument t after u and u0. Furthermore,

for convenience, I denote ∂θ to mean partial derivative with respect to θ.

Theorem 1. Let u0 be a zero-mean stationary jointly-Gaussian process with a positive

definite covariance matrix E[u0u
>
0 ], and let u = u0 +µu, where µu is a constant mean

vector. Let f(u) : Rn → R be a function with the following properties:

1. the first partial derivative of f with respect to ui, i = 1, 2, ..., n, exists and is
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continuous almost everywhere;

2. |f(u)| < Aexp
(∑n

j=1 u
a
j

)
, a < 2 for some A ∈ R and any u ∈ Rn.

Then, the functional ε(N,M) = E{[f(u)−NTu0−M ]2} is minimized over N ∈ Rn

and M ∈ R by:

N = E [∇f (u)] (3.1)

M = E [f (u)] (3.2)

Proof. I prove this theorem by completing the square and noting that the functional,

ε(N,M) = E{[f(u)−NTu0 −M ]2}

= ||N − Σ−1
u0 E[f(u)u0]||2Σu0

+ (M − E[f(u)])2

+ E[(f(u)− E[f(u)])2]− ||E[f(u)u0]||2Σ−1
u0

(3.3)

where Σu0 = cov(u0) = E[u0u
>
0 ] is the covariance matrix of u0, and ||w||Σ = w>Σw is

the weighted Euclidean norm. The minimum of this functional is clearly attained at

N = Σ−1
u0 E[f(u)u0] (3.4)

and M = E[f(u)]. The term E[f(u)u0] in (3.4) can be expanded using the following

result from [103]: E [g (η) η] = E
[
ηηT

]
E [∇g (η)], where η is any jointly Gaussian vec-

tor with zero mean, i.e., E[η] = 0, ∇ is the gradient operator, and g is a function that

satisfies properties 1) and 2) in the Theorem statement. In this case, η = u0 (which

is indeed zero-mean) and g (η) = f (η + µu). The substitution of E[u0u
>
0 ]E[∇f(u)]
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f (·)
u (t) v (t)

N>u0 (t) +M
v̂ (t)

(a) Involving u0(t)

f (·)
u (t) v (t)

N>

m = M −N>µu

v̂ (t)

(b) Not involving u0(t)

Figure 3.1: The process of multi-variable SL for multivariate nonlinearities. Part (b) shows
an arrangement that is equivalent to that in part (a), but is amenable to block diagram
manipulation. Here, N is the vector of quasilinear gains defined in (3.1), M the quasilinear
bias defined in (3.2), µu the mean of u(t) and u0(t) = u(t)− µu.

for E[f(u)u0] in (3.4) completes the proof.

Equations (3.1) and (3.2) provide the necessary expressions for obtaining the

equivalent gains and bias for the case of multivariable SL. The process is illustrated

in Fig. 3.1, where the right-hand block diagram is an equivalent representation that

is more amenable to block diagram manipulation.

Because u(t) is Gaussian, the right-hand side of (3.1) and (3.2) depend only on

its mean, µu, and covariance matrix, Σu. I denote this dependency by functions GN

and GM in the following equations:

N = GN (µu,Σu) (3.5)

M = GM (µu,Σu) (3.6)

Remark 1. In the most general formulation of SL [90], what enters the SL procedure

is the joint probability distribution of the inputs to the nonlinearity at the current

time only, and thus theoretically, it does not matter if the inputs are stationary or

not. However, for the N and M to be independent of time, which is a practical
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requirement for QLC, at least a wide sense stationarity (WSS) assumption must be

imposed on the random inputs to the nonlinearity (in the case of Gaussian inputs, as

assumed above, this implies strict sense stationarity also).

Application to Trivariate Saturation To illustrate the use of the above for-

mulae for the SL of a practical nonlinearity that arises in control of power systems

with DERs [117], consider, as an example, a trivariate saturation nonlinearity, with

three jointly Gaussian inputs, p(t), n(t) and u(t), whose standard deviations are small

compared to their mean values. The input p(t) represents the nominal or baseline

power consumed by an aggregate of DERs. The signal n(t) represents the aggregate

flexibility of the DERs on top of the nominal power in both the positive and neg-

ative direction, while the input u(t) represents the power that is desired from the

aggregation. Clearly, the aggregate of DERs can only supply power that is between

p(t) − n(t) and p(t) + n(t). Thus the input u(t) is saturated dynamically by these

time-varying, stochastic limits. Moreover, if for some reason, the value of n(t) is zero

or negative, it signifies that there is no flexibility in these resources, implying that

the DERs only supply nominal power p(t). This nonlinearity is defined as follows:

sat (u, p, n) =



p+ n, u > p+ n

u, p− n ≤ u ≤ p+ n

p− n, u < p− n

(3.7)

when n ≥ 0, and sat (u, p, n) = p when n < 0.

On substituting the nonlinear function (3.7) for f(·) in (3.1), the values of N1, N2

and N3 can be found as follows: N =
[
N1 N2 N3

]>
= E [∇sat(u(t), p(t), n(t))].
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Note that since the saturation function is not differentiable at certain points, the

gradient ∇ has to be taken piecewise.

Since this nonlinearity is of importance to us, I delve deeper into its properties.

Specifically, I show that the quasilinear gains are significant in informing how likely

it is that the input u(t) to the saturation nonlinearity is saturated or by how much.

This is summarized in the following Theorem.

Theorem 2. Consider the trivariate saturation with jointly Gaussian inputs u(t),

p(t), and n(t), as described above. The probability that the primary input u(t) is not

saturated is quantified by the first element of N , i.e., N1. That is, N1 = Pr(p(t) −

n(t) < u(t) < p(t)+n(t)). Similarly, the probability that either the primary input u(t)

is saturated, or n(t) < 0, is quantified by N2, i.e., N2 = Pr(u(t) < p(t)−n(t)∨u(t) >

p(t)+n(t)∨N < 0), which can be shown to satisfy N2 = 1−N1. The quasilinear gain

N3 represents how much more the input u(t) is likely to be saturated by the upper limit

than by the lower limit, i.e., Pr(u(t) > p(t) + n(t))− Pr(u(t) < p(t)− n(t)) = N3.

Proof. By definition of the joint PDF,

Pr (p(t)− n(t) < u(t) < p(t) + n(t))

=
∫ ∞
−∞

∫ ∞
−∞

∫ p+n(t)

p−n(t)
Φ (u, p, n) du dp dn

Since, by the definition of the trivariate saturation in (3.7), the output is zero when

n(t) < 0,
Pr (p(t)− n(t) < u(t) < p(t) + n(t))

=
∫ ∞

0

∫ ∞
−∞

∫ p+n

p−n
Φ (u, p, n) du dp dn
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which is exactly N1. Similarly,

Pr (u(t) < p(t)− n(t) ∨ u(t) > p(t) + n(t) ∨ n(t) < 0)

=
∫ ∞

0

∫ ∞
−∞

∫ p−n

−∞
Φ (u, p, n) du dp dn

+
∫ ∞

0

∫ ∞
−∞

∫ ∞
p+n

Φ (u, p, n) du dp dn

+
∫ 0

−∞

∫ ∞
−∞

∫ ∞
−∞

Φ (u, p, n) du dp dn

which is exactly N2 and also matches 1−N1. Also,

Pr (u(t) > p(t) + n(t))− Pr (u(t) < p(t)− n(t))

=
∫ ∞

0

∫ ∞
−∞

∫ ∞
p+n

Φ (u, p, n) du dp dn

−
∫ ∞

0

∫ ∞
−∞

∫ p−n

−∞
Φ (u, p, n) du dp dn = N3.

The above theorem thus enables us, by noting the values of the quasilinear gains, to

qualitatively assess “how nonlinear" the system is, how much the inputs are saturated,

and what the contributions are from the upper and lower limits in saturating the

input. This insight can be valuable not only for analysis but also for controller

synthesis.

39



Fw(s) Lw

µw

G(s)

f(·)

w(t) y(t)

u(t)v(t)

ws(t)

Figure 3.2: Generalized nonlinear feedback system

Fw(s) Lw

µw

G(s)

N>

w(t)

m = M −N>µû

ŷ(t)

û(t)v̂(t)

ws(t)

Figure 3.3: SL of the system in Fig. 3.2

3.2 Stochastic Linearization of Feedback

Systems with Multivariate Nonlin-

earities

In this section, the procedure of multivariable SL, applied to a generic feedback control

system with a multivariate nonlinearity, is described.

Consider a generic nonlinear feedback control system depicted in Fig. 3.2. In this

system, the nonlinear part f(·) has been isolated from the linear part G(s). The

nonlinearity f : Rn → R is assumed to have the properties 1) and 2) mentioned in

the Theorem 1 statement. I showed in [144] that this is a generic structure that can

represent a wide variety of nonlinear systems, including the standard feedback control

40



system that contains a single linear time-invariant plant and controller. Here, w(t)

models all the exogenous stochastic inputs, including references and disturbances,

entering the control system. It is a vector of stationary Gaussian processes, with a

vector of means µw and a covariance matrix Σw. The closed-loop system is assumed

to be stable. To generate w(t), a vector of standard independent and identically dis-

tributed Gaussian white noise processes, ws(t), is passed through a diagonal transfer

matrix Fw(s), with the diagonal elements being coloring filters having unit H2 norm.

The result is scaled by Lw, any matrix square root of Σw = LwL
>
w , and is shifted by

µw.

Note that this system (Fig. 3.2) can be equivalently represented as a stochastic

differential equation (SDE) containing a nonlinear function of states (in fact, as shown

below, I will employ the SDE of its linearized version to find the SL of this system).

In this work, I assume that a stationary solution to the nonlinear SDE exists, has a

well-defined PDF, and is stochastically bounded [151]. I also consider that the class

of controllers that generate u(t) in Fig. 3.2 are linear, stabilizing controllers.

To apply SL to this system, it is necessary to find N and M from (3.1) and (3.2).

This requires analytic expressions for the multivariate probability density function

(PDF) of u(t). However, because the system is nonlinear, such PDF is not readily

available. Hence, it is assumed that the system has been stochastically linearized

to the system shown in Fig. 3.3 and that the moments arising in the calculation

of linearization coefficients from (3.1) and (3.2) are approximated by corresponding

moments of the linearized system in Fig. 3.3 (this procedure is similar to the one

used in [90]). Because the input w(t) is Gaussian, so is û(t); thus, its mean, µû, and

its covariance matrix, Σû, can now be used instead for the computation of N and

41



M . This approximation is generally fairly accurate for the systems with plants of a

low-pass filtering nature [110].

The process of computation of the mean and the covariance matrix of û (t) can

be simplified by decomposing the input w(t) into its zero-mean random part and a

constant part that is its mean, and passing those parts separately as inputs to the

system. This is illustrated below.

Consider a linear time-invariant (LTI) system, with transfer matrix G(s) and

impulse response g(t), as shown in Fig. 3.4, with a WSS input p(t) and WSS output

q(t). Let p0(t) and µp be the zero-mean part and the mean of p(t), respectively. If

the input to the system is p0(t), the output is q0(t) = g(t) ∗ p0(t). If the input is µp,

the output is µq = g(t) ∗ µp. Then, because the system is LTI,

q(t) = g(t) ∗ p(t) = g(t) ∗ [p0(t) + µp]

= g(t) ∗ p0(t) + g(t) ∗ µp = q0(t) + µq

Since p0(t) is zero-mean, so is q0(t), and since µp is a constant, so is µq. Hence,

in the equation q(t) = q0(t) + µq, the variability in q(t) must come from q0(t), or,

Σq = E
[
q(t)qT(t)

]
= E

[
q0(t)qT

0 (t)
]

= Σq0, where Σq and Σq0 are the covariance

matrices of q(t) and q0(t), respectively. Also, the mean of q(t) must equal µq, or

E [q(t)] = µq.

Thus, by treating w(t) as the input p(t) in the above discussion, and û(t) as the

output q(t), I can decompose w(t), which greatly simplifies the calculation of the

statistical properties of û(t) required for SL. In the following, I use the zero-mean

part of w(t) for computing the covariance matrix of û(t), and the constant mean
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G(s)p(t)

G(s)

G(s)E [·]
µp

-

p0(t)

q(t)

q0(t)

µq

Figure 3.4: Decomposition of a vector input p(t) to system S into its zero-mean part p0(t)
and its mean µp, in order to calculate the statistical properties of the output q(t). Here E [·]
denotes mathematical expectation. This arrangement results in the stationary mean of q(t)
being equal to µq, and the covariance matrix of q(t) being equal to that of q0(t).

part, i.e., µw, for computing the expected value of û(t).

I now discuss the computation of µû and Σû. To do that, let us first partition

G(s) as follows:

G(s) =

 G11 (s) G12 (s)

G21 (s) G22 (s)

 (3.8)

This partitioning is meant to correspond to the inputs/outputs of Fig. 3.3. The value

of µû can then be computed by evaluating the DC gains of the transfer matrices from

m and µw to û(t):

µû (N,m) = lim
s→0

(In −G22(s)NT)−1 (G21(s)µw +mG22(s)) (3.9)

where In is the n × n identity matrix. To compute Σû, I consider the following

stochastic state-space equation as a general representation of the stochastically lin-

earized system:

dx̂ = Ax̂(t)dt+Bdβ, û(t) = Cx̂(t)

where x̂(t) is the vector of system states and β is a vector of Wiener processes,

such that the white noise ws(t) in Fig. 3.3 is the formal (or weak) derivative of
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β [152]. I assume that the matrix A is Hurwitz (i.e., all eigenvalues satisfy Re(λi) <

0). This state-space model, which I assume is minimal, corresponds to the transfer

function from ws(t) to û(t) in Fig. 3.3, with m = µw = 0, i.e., C(sI − A)−1B :=

[1−NG22 (s)]−1G21 (s)LwFw (s). Then, the stationary covariance matrix of x̂(t),

Σx̂ := limt→∞E
[
x̂(t)x̂>(t)

]
, is the solution of the algebraic Lyapunov equation [153]:

AΣx̂ + Σx̂A
> +BB> = 0 (3.10)

To solve this equation, the following formula can be used [154]: (In ⊗ A + A ⊗

In)vec(Σx̂) = −vec(BB>), where vec (·) is the vectorization operator. Because û(t) =

Cx̂(t), the stationary covariance matrix of û(t) is:

Σû = CΣx̂C
> (3.11)

Remark 2. Matrix A is a function of N , implying that Σx̂ and Σû are also functions

of N . I thus denote Σû by Σû(N) to show this dependency. Also, from (3.9), µû is

a function of N and m. Note that m enters into the system as an additive constant

input (Fig. 3.1). Hence, these parameters are interrelated.

Thus, from (3.5) and (3.6), it follows that:

N = GN (µû(N,m),Σû(N)) (3.12)

m+N>µû(N,m) = GM (µû(N,m),Σû(N)) (3.13)

where I have used M = m + NTµû, as shown in the alternative representation of

Fig. 3.1. This is a system of equations in the unknowns N and m. Note, however,
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that solutions may or may not be unique, similar to the case of single variable SL

described in [89]. Non-unique solutions generally lead to “jumping" between possible

regimes of operation but are rare in practice for the saturation nonlinearity.

A sufficient condition for the existence of solutions is discussed in the following

theorem.

Theorem 3. Let N and M denote the ranges of GN and GM respectively in (3.12)-

(3.13), and let N andM denote their closures. Assume that the following hold:

1. The system is asymptotically stable ∀ N ∈ N .

2. The pair (A,B) is controllable.

3. N andM are compact and convex sets.

4. GN and GM are continuously differentiable.

5. If any element of lims→0G21(s) or of lims→0G22(s) is infinite, then

• ν (ξ, v) := lims→0[ξ + vT
(
In −G22(s)vT

)−1

(G21(s)µw + ξG22(s))] is a constant k ∈ M for all ξ ∈ R, v ∈ Rn, where

n is the number of elements in u(t), and

• there exists a constant d > 0 such that:

∣∣∣∣∣ ∂

∂µûj
[GM (µû,Σû(N))]

∣∣∣∣∣ ≥ d, ∀j = 1, 2, . . . , n

where µûj denotes the jth element of û(t).

Then, (3.12)-(3.13) has a solution (N,m) in N × R.
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Proof. I consider two cases. For the first case, assume that all the elements of

lims→0G21(s) and lims→0G22(s) are finite. This implies that µû(M) = lims→0[G21(s)

µw+MG22(s)] is finite. Substituting µû(M) for µû(N,m) andM form+NTµû(N,m)

in (3.12)-(3.13), I get:

N = GN (µû(M),Σû(N)) (3.14)

M = GM (µû(M),Σû(N)) (3.15)

The first assumption implies that for any value of N ∈ N , the solution Σx̂ of (3.10)

exists, and with the second assumption, is positive definite. Hence, from (3.11) and

Theorem 1, Σû exists, is positive definite, and is a continuous function of N . In

addition, µû is a continuous function of M . Therefore, both sides of (3.14) and (3.15)

form continuous functions of N and M . By the second assumption, and Brouwer’s

fixed point theorem [155], (3.14)-(3.15) has a solution (N,M) ∈ N ×M, implying

that a solution (N,m) of (3.12)-(3.13) exists in N × R.

For the second case, let us assume that some elements of lims→0G21(s) and/or

lims→0G22(s) are infinite. The first part of the fourth assumption, i.e., ν(ξ, v) = k ∈

M, ∀ ξ ∈ R, v ∈ Rn reduces the LHS of (3.13) to a constant, i.e., k. Since the

range of GM is M, the assumption k ∈ M ensures a necessary condition for (3.13)

to have a solution. To prove that the resulting (3.12)-(3.13) has a solution, I first

show the existence of an implicit relation µû = ς (Σû) between µû and Σû in (3.13).

Let p1 = vec (Σû) and p2 = µû. Since µû and Σû are continuous functions of m and

N respectively, so are p1 and p2. Since GM is continuously differentiable with respect

to µû, ψ (p1, p2) := GM (µû,Σû) is a continuous mapping from Rn2 × Rn → R, and is

46



continuously differentiable in p2, where the function ψ has been introduced in order to

express GM(µû,Σû) in terms of p1 and p2. By the second part of the fourth assumption

and Theorem 1 in [156], for any value of N ∈ N , and hence for any Σû (which is a

continuous function of N), there exists a unique µû = p2 = ϕ (p1) = ς (Σû), where

ϕ and ς are continuous functions. On substituting ς(Σû) for µû in (3.12), both the

sides of (3.12) become continuous functions of N . By the second assumption and

Brouwer’s fixed point theorem, the result follows.

In practice, condition 1) of Theorem 3 can be checked by examining the eigenvalues

of the system matrix A as a function of N , and ensuring they are all in the open left

half plane. Condition 2) is similarly straightforward to check. Conditions 3) and 4)

of Theorem 3 can be checked by examining the ranges of the functions GN and GM ,

and depend specifically on the nonlinearity f(·). They are both usually satisfied, as

in the case of the bivariate saturation nonlinearity. Finally, condition 5) takes care of

those cases when some elements of G(s) are infinite. This arises in classes of systems

containing, for example, integrators in the controller or poles at origin of the plant.

The first part of condition 5) essentially utilizes the infinitude of the elements of G(s)

and arranges them in a form such that in ratio, they yield a finite quantity in the

limiting case that can be used in a fixed point equation. The second part of condition

5) essentially ensures that the function GM does not become flat with respect to the

mean of the control input µû, and allows for the existence of an implicit relation, as

mentioned in the proof. For practical systems, this condition is also typically met.

There is no closed-form solution for (3.12) and (3.13), but they can be numerically

arrived at by using an algorithm like Trust-Region Dogleg [157], which is used in, for

example, MATLAB®’s fsolve. After solving those equations, M can be found using
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(3.9) and M = m+N>µû. This completes the SL procedure for a generic closed-loop

system with a multivariate nonlinearity.

Monte Carlo studies have been done with different nonlinear feedback systems

(with 1st and 2nd order plants and trivariate saturation nonlinearities) and their

stochastic linearizations to evaluate the accuracy of multivariable SL. Results in-

dicate that SL is fairly accurate in approximating the response of the nonlinear

system even with multivariate nonlinearities. For example, the median of the rel-

ative root-mean-squared differences between the tracking errors, e(t), of the simu-

lated nonlinear systems, and those of the stochastically linearized systems, ê(t), i.e.,

(
√∑tn

t=1 {e(t)− ê(t)}
2)/σe, was found to be less than 7%, where σe are the standard

deviations of the tracking errors, and tn is the total number of samples.

3.3 Robustness Analysis of SL

As seen from (3.12) and (3.13), the SL gains and bias depend on all the system and

signal parameters. Hence, it is important to study the robustness of SL, i.e., the

sensitivity of the quasilinear gains and bias to any change in system or signal param-

eters. Note that similar sensitivity studies have been conducted in the literature. For

example, in [122], the sensitivities of the moments of state variables to parameters

present in an SDE with a polynomial nonlinearity are evaluated. However, [122] does

not consider a generic nonlinear function and does not specifically compute sensitivity

to SL coefficients themselves. These are investigated in this section.

Let θ denote an uncertain system/signal parameter, e.g., plant time constant,

plant gain, or the standard deviation of the input signal. To study the robustness of
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SL to θ, I study ∂θN , where, as before, ∂θ denotes the partial derivative with respect

to θ. Since θ affects the output variance, both directly and indirectly through the

quasilinear gain N , I also study ∂θσŷ, where σŷ is the standard deviation of ŷ(t).

While these expressions can be found for very simple systems, they are generally

difficult to obtain analytically. Below I provide a recipe to perform this robustness

analysis and illustrate the recipe using a numerical example. Note that ∂θm can be

studied as well using a similar approach.

Consider the nonlinear stochastic system shown in Fig. 3.2 and its stochastic

linearization in Fig. 3.3, both with an uncertain parameter θ as described above. The

values of µû and Σû for the stochastically linearized system, as used in (3.12)-(3.13),

depend on the uncertain parameter, θ. Let this dependence be denoted by µû(N,m, θ)

and Σû(N, θ). To simplify notation, let HN (N,m, θ) := GN (µû(N,m, θ),Σû(N, θ)), and

HM (N,m, θ) := GM (µû(N,m, θ),Σû(N, θ))−NTµû(N,m, θ), where GN and GM are as in

(3.12)-(3.13). Equations (3.12)-(3.13) thus become

N = HN(N,m, θ) (3.16)

m = HM(N,m, θ) (3.17)

The sensitivity of N and m (and hence, of M) to θ can be found by finding the

derivative of (3.16) and (3.17) with respect to θ using the chain rule and the total

derivative of calculus, and evaluating the result at the solution (N,m) of (3.16) and

(3.17). This leads to:

∂θN = [I − ∂NHN − ∂mHN(1− ∂mHM)−1∂NHM ]−1

[∂mHN(1− ∂mHM)−1∂θHM + ∂θHN ]
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Figure 3.5: Block diagram of feedback control system

where I denotes the n × n identity matrix. Using ∂θN thus found, ∂θm = (1 −

∂mHM)−1(∂NHM∂θN + ∂θHM).

To illustrate this process with an example, consider a standard unity feedback

control system shown in Fig. 3.5 with plant P (s) = 1/(Ts+1), controller C(s) = 37.7,

and a trivariate saturation nonlinearity, sat(u, p, n) (defined in (3.7)), representing

actuator saturation. The reference, r(t), and the disturbance, d(t), along with n(t)

and p(t), which are inputs to the trivariate saturation nonlinearity other than u(t)

(but not shown explicitly as input signals in Fig. 3.5), are assumed to be stationary

Gaussian processes that are separately generated by passing standard white Gaussian

noises through coloring filters with unit H2-norm, scaling the respective outputs by

the desired standard deviations, and adding biases that are equal to the desired mean

values (similar to generation of w(t) in Fig. 3.2). Fig. 3.6 shows the sensitivity of

the quasilinear gain N1 to the plant parameter T (time constant). In this case, at

around T = 0.12 s, I see that the quasilinear gain N1 is most sensitive to change

in the plant parameter, T . A similar sensitivity is observed in the output standard

deviation, σŷ. However, for this example, the sensitivity observed in σŷ is not due

to SL as such, but due to the underlying structure of the control system (this was
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Figure 3.6: Sensitivity of N1 with respect to plant time constant T for the control system of
Fig. 2.2. The plant is 1/(Ts+ 1). The other (constant) parameters are: C(s) = 37.7, σr =
1, µr = σd = µd = ρpn = 0, σn = 0.28, µn = 3.40, σp = 0.66, µp = 0.16.

verified by forcing N1 = 1, N2 = 1−N1 = 0 and N3 = 0 as T was varied). In another

experiment, the standard deviation of n(t) (in the trivariate saturation function), σn,

was varied, and the magnitude of the sensitivity of σŷ to σn was found to increase

linearly with increase in σn. This indicates that with increasing variability in actuator

bounds, it becomes more important to get an accurate estimate of the statistics of the

actuator inputs to avoid sensitivity issues. As a final remark, note that the sensitivity

analysis outlined in this section can inform the selection of the stopping criteria for

the numerical root-finding algorithm that solves the SL equations.
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3.4 Optimal Controller Design Exam-

ple

QLC can be used to design optimal controllers. In this section, I consider the design

of a static optimal controller, but the process can be applied to dynamic controllers

as well. To elaborate, consider the system in Fig. 3.2. I can formulate the follow-

ing optimization problem to optimize a desired performance measure related to the

system:

minimize fobj

where fobj is the objective function that is a function of system and signal parame-

ters. However, since the statistics of the signals in this nonlinear system are difficult

to obtain analytically, and time-consuming using numerical simulations, the system

needs to be stochastically linearized to that in Fig. 3.3. Therefore, I recast the ob-

jective function based on the signals in the stochastically linearized version, and add

the equations of gains and bias as equality constraints:

minimize f̂obj

subject to (3.11)-(3.12)
(3.18)

By doing so, I am assuming that SL is accurate in the sense that the two objectives fobj

and f̂obj are close near the solution. While numerical examples show that this is indeed

the case, a formal investigation of accuracy of SL is a topic for future publication. In

general, however, SL is reliable, and I can obtain conclusions regarding the original

system from the stochastically linearized system, when: 1) the system is driven by
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Figure 3.7: Plot of the objective function for the system described in Section 3.4.1. The
cost has been evaluated for both the nonlinear system and the stochastically linearized ap-
proximation.

random exogenous inputs that have attained stationarity, 2) the open-loop system is

of a low pass filtering nature [110], 3) the nonlinearity is not even with respect to any

input. I can check for accuracy by comparing the statistics of the outputs of both

systems, using numerical simulations. The resulting problem (3.18) is non-convex,

with transcendental constraints, and hence should be solved numerically starting from

several initial conditions. An example is provided below.
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3.4.1 Example

Consider Fig. 2.2, but where the actuator f(·) is a bivariate saturation defined as

follows: when u2 ≥ max (−β, α),

satα,β (u1, u2) =



β + u2, u1 > β + u2

u1, α− u2 ≤ u1 ≤ β + u2

α− u2, u1 < α− u2

(3.19)

and satα,β (u1, u2) = 0 when u2 < max (−β, α), with the second input, i.e., the noise

in actuator bounds, modeled as a Gaussian process u2(t) with mean µ2 and standard

deviation σ2. It is generated in the same manner as d(t) and r(t) were in Section 2.2.

Let C(s) = K and P (s) = 10
s(s+10) . The actuator bounds are chosen to be α = −2,

β = 1, and the input parameters, µ2 = 0, σ2 = 1, µr = 0, σr = 1, µd = 0 and

σd = 1. The bandwidth for all coloring filters is chosen to be 48 rad/s, which is close

to the system bandwidth for the range of K considered. Let the objective function

be the sum of the second moment of the tracking error, ê(t), and that of the primary

actuator input, û1(t). The following optimization problem can be formulated:

minimize E[ê2(t)] + γE[û2(t)]

subject to (3.12)− (3.11)
(3.20)

minimize E[e2(t)] + γE[u2(t)]

subject to (3.12)− (3.11)
(3.21)
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where γ > 0 is a control penalty. Fig. 3.7 shows the objective function for both the

nonlinear system and the stochastically linearized system. The cost for the nonlinear

system was obtained numerically by simulating the system for each K, and that for

the stochastically linearized system by solving (3.12)–(3.11) for the same K’s. Each

case has a well-defined minimum. The difference between the two curves is small,

particularly at the minima, indicating the fairly high accuracy of SL. The small error

is in part due to the assumptions of SL and in part due to the linear approximation.

The optimization (3.21) was performed using the interior-point algorithm [158]

of fmincon in MATLAB® with default tolerance of 1 × 10−6, the initial value of

C(s) = 100, and γ = 1. The optimal controller was found to be C(s) = 0.24. The

cost reduced from 12445.2 to 1.2.

The system was simulated in MATLAB/Simulink® with an initial value of C(s) =

100, the results of which are shown in Fig. 3.8a. The upper subplot displays the

tracking error in the nonlinear system, e(t), and that in the stochastically linearized

system, ê(t). The lower subplot shows the actuator output from the nonlinear system,

v(t), and that from the stochastically linearized system, v̂(t), bounded by the actuator

limits: α−u2(t) and β+u2(t). The value of v(t) can clearly be seen to be saturated by

the bounds. Fig. 3.8b shows the same system after optimization. It can be seen that

the standard deviation of the nonlinear error, σe, reduced from 1.096 to 1.085 and

the absolute value of its mean, µe, reduced from 0.25 to 0.24. Since the optimization

also reduced the primary actuator input, it is no longer saturated, and hence, e(t)

and ê(t) coincide.

Because of the dependency of (3.12)-(3.11) on all system and input parameters,

any change in these parameters would result in a change in N andM , and hence in the
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Figure 3.8: Results of Optimization Problem

constraints of the optimization problem. By including N and M in the optimization

problem, the method of SL allows for the system to optimally adapt to any change

in its parameters.
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Chapter 4

Systems with State Multiplicative

Noise

In this chapter, the process of SL is applied to systems with state-multiplicative noise.

In Section 4.1, the process of SL is extended to MIMO nonlinearities, which occur in

systems with state-multiplicative noise. In Section 4.2, the results of Section 4.1 are

applied to the SL of systems with state-dependent noise.

4.1 Extension to MIMO Nonlinearities

The process of SL can be extended to multiple-input multiple-output (MIMO) non-

linearities described by v(t) = f(u(t)), where f : Rn → Rm. This can model systems

with nonlinearities having multiple outputs or systems with multiple nonlinearities

located in different parts of the control systems. While there can be various objective

functions to minimize the error between the output of the multivariate nonlinearity

and that of its SL [112,113], including minimizing the L2-norm of the error, as done
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in [91, 103], the approach used here involves minimizing the mean squared error of

each output of the nonlinearity with the corresponding output of its SL, using the

results of Section 3.1. In the following theorem, the Jacobian of the function f(·) is

denoted as Jf (·) and, for a matrix L, L◦2 = L ◦ L, where ◦ denotes the Hadamard

(i.e., element-by-element) product. Similar to Theorem 1, I drop the argument t after

u(t) and u0(t) for convenience.

Theorem 4. Let u0 be a zero-mean stationary jointly-Gaussian process with a positive

definite covariance matrix E
[
u0u

>
0

]
, and let u = u0+ µu, where µu is a constant mean

vector. Let f(u) : Rn → Rm be a function such that f(u) = [f1(u) f2(u) · · · fm(u)]>,

where each fj(u) : Rn → R satisfies properties 1) and 2) mentioned in Theorem 1.

Then, the functional: ε(N,M) = E{[f(u)−Nu0−M ]◦2} is minimized over N ∈ Rm×n

and M ∈ Rm by:

N = E [Jf (u)] (4.1)

M = E [f (u)] (4.2)

Proof. Let Nj denote the jth row of N , Nij the ijth element of N , and Mj the jth

element of M . The jth output of the nonlinearity f(·) can be written as vj = fj(u),

where fj : Rn → R. Let εj(N>j ,Mj) be the jth element of ε(N,M). Then ε(N,M)

is minimized when for all j ∈ N, 1 ≤ j ≤ m, εj(N>j ,Mj) is minimized. Using

Theorem 1, the functional: εj(N>j ,Mj) = E{[fj(u) − Nju0 − Mj]2} is minimized

when N>j = E[∇fj(u)] and Mj = E[fj(u)]. Hence, it follows that N = E[Jf (u)] and

M = E[f(u)].

Eqns. (4.1) and (4.2) are similar to (3.1) and (3.2) respectively, with some differ-
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ences. There are now nm quasilinear gains forming a matrix N , and m biases forming

a vector M . Also, the gradient in (3.1) is replaced by a Jacobian in (4.1).

4.2 Stochastic Linearization of Systems

with State-Dependent Noise

SL can be used for analyzing and designing optimal controllers for systems with

stochastic parameters, or state-multiplicative noise. This application does not ap-

pear in the existing literature of SL and is one of the important contributions of

this dissertation. Reference [159] describes a somewhat similar application of SL to

systems with random parameters excited by random noise, but the parameters are

assumed to be random variables (not random processes), the random process excita-

tion does not multiply the state, and the SL has been done by equating the second

moments of the nonlinear process and stochastically linearized process (not by min-

imizing the mean squared error). References [112, 113, 160], which are in Russian,

also contain similar other works on the application of SL to systems with parametric

noise. In [161] and other literature reviewed in [90], while SL is applied for opti-

mal control of nonlinear stochastic systems, systems with state multiplicative noise

are not considered. Control systems with state multiplicative noise, as investigated

here, find applications in many areas, for example, control of pH processes [162], oil

catalytic cracking [163], and altitude estimation from altimeter measurements [164].

For the sake of presentation, I focus this section on a specific differential equation

with random parameters that are stochastic processes. Other forms can be handled

similarly.
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Consider the following differential equation and output equation as a representa-

tion of a system with stochastic parameters:

ẋ(t) = (A+ A1w(t))x(t) + (B +B1w(t))u(t) (4.3)

y(t) = Cx(t) +Du(t) (4.4)

where x(t) ∈ Rn represents the state of the system, w(t) ∈ R is a white noise process

with intensity σ2, A1w(t) ∈ Rn×n and B1w(t) ∈ Rn×m represent noises in the system

matrices A ∈ Rn×n and B ∈ Rn×m respectively, u(t) ∈ Rm is the control input

and y(t) ∈ Rp is the output. Note that the product of x(t) and w(t) represents

a nonlinearity (in fact, bilinearity) in this system. It is assumed, for simplicity,

that there is no variability in the matrices C ∈ Rp×n and D ∈ Rp×m. One of the

objectives when designing controllers for such systems is to minimize the adverse

effect of variability in parameters on some performance measure. In this section, I

seek to design an optimal state feedback law u(t) = Kx(t)+Gr(t) such that (4.3)-(4.4)

tracks the deterministic reference r(t) on average, and that the sum of the variance

of the output and the control effort is a minimum. This is also the standard LQR

cost function [165]. I achieve this goal using two approaches. First, I directly design

K and G using the original nonlinear system. Second, I use SL to do so. Then, I

compare the optimal gains and the output accuracy obtained by both methods. The

purpose of this illustration is to establish that SL is an effective method for designing

and analyzing nonlinear systems subjected to stochastic inputs.
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4.2.1 Nonlinear System

Substituting u(t) = Kx(t) +Gr(t) in (4.3)-(4.4), I obtain:

ẋ = (A+BK)x+BGr + [(A1 +B1K)x+B1Gr]w

y = (C +DK)x+DGr

Since I assume that the system is in the stationary regime, the mean of the state is

given by [152]:

E[x] = − (A+BK)−1BGr (4.5)

Similarly, the covariance matrix of x(t) can be obtained from:

E{[(A+BK)x+BGr](x− E[x])>}

+E{[(A+BK)x+BGr]>(x− E[x])}

+E{[(A1 +B1K)x+B1Gr]σ2[(A1 +B1K)x+B1Gr]>} = 0

(4.6)

where E[x] is as in (4.5). Equation (4.6) can be expanded, and then solved for E[xx>]

by vectorizing both sides and using the property that for conformable matrices P , Q

and X, vec (PXQ) =
(
Q> ⊗ P

)
vec (X). The output covariance, Σy, and the input

covariance, Σu, can thus be found to be:

Σy = (C +DK) (E
[
xx>

]
− E[x]E[x]>) (C +DK)> (4.7)

Σu = K
(
E
[
xx>

]
− E[x]E[x]

)>
K> (4.8)

where E[xx>] is obtained from (4.6) and E[x] from (4.5).

61



Finally, since I am designing the system to track the reference r(t), I set the

expected value of the output equal to r(t) and compute G:

G = [−(C +DK)(A+BK)−1B +D]−1 (4.9)

The optimization problem is thus stated to be:

minimize tr(∑y +∑
u)

over K

subject to (4.5)-(4.9)

(4.10)

where tr denotes trace of matrix. This problem can be solved numerically, for exam-

ple, using a trust-region-reflective algorithm based on the interior-reflective Newton

method [166], which is implemented by lsqnonlin in MATLAB®.

4.2.2 Stochastically Linearized System

To find the SL of system (4.3)-(4.4), similarly, I plug in u(t) = Kx(t) + Gr(t) in

(4.3)-(4.4), but rewrite the equations in this form:

ẋ = (A1 +B1K)wx+ (A+BK)x+BGr +B1Grw

y = (C +DK)x+DGr

(4.11)

To ensure that the nonlinear system tracks the reference on average, I again assume

here that G is given by (4.9). It can be seen that the nonlinearity in this system

is f : Rn+1 → Rn, given by f(w, x) = wx, which is a multi-input, multi-output

nonlinearity. Such nonlinearities depending on w and x are considered in open-loop
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systems in [112, 113] and in closed-loop systems in [160]. Using (4.1) and using the

notation x = [ x1 x2 . . . xn ]>, it can be shown that N is given by:

N =


E (x1) 0 0 · · · 0

... ... . . . . . . ...

E (xn) 0 · · · 0 0



since E[w] = 0. Also, from (4.2), M = E[wx]. Then, by Theorem 4, the nonlinearity

v = wx can be stochastically linearized to: v̂ = E[x]w+E[wx]. Denoting the states of

the stochastically linearized system as x̂, (4.11) can thus be stochastically linearized

to:
˙̂x = (A1 +B1K) (E [x̂]w + E [wx̂]) + (A+BK) x̂+

BGr +B1Grw, ŷ = (C +DK)x̂+DGr

(4.12)

As before, assuming that the system is in the stationary regime, the mean of x̂ can

be found from:

(A+BK)E[x̂] + (A1 +B1K)E [wx̂] +BGr = 0 (4.13)

The above equation has two unknowns, E[x̂] and E [wx̂]. Out of them, E [wx̂] can

be found out separately using system properties. To illustrate the process of finding

E[wx̂], I first show how it can be obtained for a general LTI system in the following

theorem, and then use the result in this specific case.

Theorem 5. Consider a stable LTI system with the state-space equation: ẋ = Ãx+

R̃ + B̃w, where Ã, B̃, and R̃ are constant matrices, Ã being non-singular, x is the

state, and w is a white noise process with intensity σ2. Then, assuming the system is
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Figure 4.1: Scatter Plots for Accuracy and Controller Gains

in the stationary regime, E[wx] = σ2B̃.

Proof. To find E[wx], I make the change of coordinates z = Ãx + R̃ to bring the

state equation into a standard form for which I can easily prove the results. In the z

coordinates, the dynamics are given by: ż = Ãz+ÃB̃w. This is a system with transfer

matrix from w to z given by G(s) = (sI − Ã)−1ÃB̃. From the theory of LTI systems

driven by random processes [167], the cross-power spectral density between the output

and the input, Szw, is related to the power spectral density of the input, Sw = σ2,

by Szw = G(jω)Sw = G(jω)σ2. Also, Szw is given by the Fourier transform of the

cross-correlation function, Rzw(τ), between z and w, i.e., Szw = F{Rzw(τ)}. Since

E[wz] = Rzw(0), it follows that: E[wz] = F−1{Szw}t=0 = F−1{G(jω)σ2}t=0. Using

the Initial Value Theorem, this can be simplified to: E[wz] = σ2 lims→∞ sG(s) =
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σ2 lims→∞ s(sI − Ã)−1ÃB̃ = σ2ÃB̃. Finally, in the original coordinates, E[wz] =

E({Ãx+ R̃}w) = ÃE[wx], which implies that E[wx] = σ2B̃.

Note that the state-space equation assumed in the theorem statement is of the

same form as the first equation in (4.12). Thus, using the result of Theorem 5 on

(4.12), I obtain:

E [wx̂] = σ2 [(A1 +B1K)E [x̂] +B1Gr] (4.14)

Solving (4.13) and (4.14) for E[x̂] and E [wx̂], I obtain:

E [x̂] = σ2PB1Gr, E [wx̂] = −σ2QB1Gr (4.15)

where: P = [(A1 + B1K)−1(A + BK) + σ2(A1 + B1K)]−1 and Q = (I + σ2{(A1 +

B1K)(A+BK)−1(A1 +B1K)})−1.

The covariance matrix of x̂, Σx̂, can be obtained by solving the Lyapunov equation:

(A+BK) Σx̂ + Σx̂ (A+BK)> + V V > = 0 (4.16)

where V = σ [(A1 +B1K)E [x̂] +B1Gr]. Similar to (4.7), the output covariance Σŷ

and the input covariance Σû can be obtained thus:

Σŷ = (C +DK) Σx̂ (C +DK)> (4.17)

Σû = KΣx̂K
> (4.18)

where Σx̂ is obtained from (4.16) and E[x̂] from (4.15). The mean of the output is

E[ŷ] = (C + DK)E[x̂] + DGr. Similar to (4.10), the optimization problem can be
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stated to be:
minimize tr(∑ŷ +∑

û)

over K

subject to (4.9), (4.15)-(4.18)

(4.19)

4.2.3 Comparison of the two methods

To investigate the effectiveness of SL in predicting the behavior of such a system with

stochastic parameters, a Monte Carlo experiment was conducted. Specifically, 1000

first-order systems were randomly generated, with the system matrices being selected

randomly and uniformly from the following ranges: A ∼ U [−2, 0], B,C,D,A1, B1 ∼

U [0, 1]. Standard white Gaussian noise w(t) was assumed to be the perturbing agent.

The reference to be tracked was r(t) = 1. Systems with A + A1 > 0 were rejected

since noise in such systems might drive them to instability. After experimenting, the

computed standard deviation of the output of the nonlinear system was compared

with that of the corresponding stochastically linearized system, both the systems

having the optimal controller gain that was derived using the SL method described in

the previous subsection. This study was conducted to investigate the accuracy of SL

for this class of systems. Fig. 4.1a shows a scatter plot of the percentage difference

between the standard deviation of output of the stochastically linearized system, σ̂min,

and that of the nonlinear system, σmin, both simulated using the optimal SL gains,

K = K̂min. The percent difference in standard deviation is shown in the x-axis and

the quantity η := (A1 +B1K)2σ2/(A+BK) is in the y-axis. It can be seen that the

error (i.e., accuracy) depends highly on the value of η. To intuitively understand this,

note from (4.11) that (A1 +B1K) multiplies both the state and noise (with intensity
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σ2), and (A+BK) multiplies the state only. Hence, as η becomes closer to −1, or as

the noisy component becomes comparable to the no-noise component, the accuracy

of SL degrades. For |η| < 10%, the error is less than 8%.

Fig. 4.1b shows a scatter plot of the optimal controller gains K for the same set of

systems as above, obtained separately from both the methods, namely optimization

of the nonlinear system in (4.10), and that of the stochastically linearized system in

(4.19). It can be seen that for most of these systems, the optimal gains reported by

both methods are close, indicating the effectiveness of SL in designing optimal con-

trollers for systems with stochastic parameters. Note that in this case, the analytical

solution to the nonlinear system was readily available, but in many cases, it is not.

The above analysis shows that SL is an alternative method of design and analysis

that is also effective for such systems.
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Chapter 5

Investigation of Accuracy,

Robustness and Computation of

SL

This chapter investigates the accuracy, robustness and computation of SL. It is or-

ganized as follows. Section 5.1 defines the feedback system considered here, which

is commonly used in the literature of QLC. Section 5.2 discusses open-loop accuracy

of SL and its effect on closed-loop accuracy. In Section 5.3, the computational costs

of different numerical algorithms for computing the SL coefficients for systems with

symmetric actuator saturation are compared. In Section 5.4, a sensitivity analysis

is performed on the SL coefficients, again for systems with symmetric saturation.

Section 5.5 extends the above investigation to systems with asymmetric saturation

nonlinearities.
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Figure 5.1: SL of a feedback system

5.1 Feedback System

The feedback control system on which the rest of the chapter will be based is described

is depicted in Fig. 5.1a, where the symbols have the same meaning as in Section 2.2,

and satβα(u) is as in (2.4). Applying the process of SL as described in Chapter 2 to

this system, I obtain the system of Fig. 5.1b, where:

σû =
∥∥∥∥∥ Fr(s)C(s)

1 +NP (s)C(s)

∥∥∥∥∥
2
σr (5.1)

M = 1
P0
µr −

1
C0P0

µû (5.2)

N = FN
(
µû,

∥∥∥∥∥ Fr(s)C(s)
1 +NP (s)C(s)

∥∥∥∥∥
2
σr

)
(5.3)

1
P0
µr −

1
C0P0

µû = FM
(
µû,

∥∥∥∥∥ Fr(s)C(s)
1 +NP (s)C(s)

∥∥∥∥∥
2
σr

)
(5.4)

where FN(·, ·) and FM(·, ·) are as in (2.2)-(2.3). After solving (5.3) and (5.4), M can

be found by using M = 1
P0
µr − 1

C0P0
µû and m from m = M − Nµû. This completes

the process of SL of the nonlinear system in Fig. 5.1a to that in Fig. 5.1b.
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It can be seen that (5.3) and (5.4) comprise a system of two transcendental equa-

tions in two unknowns. Thus, these equations are only numerically solvable. In

this chapter, I am thus concerned with investigating the numerical solution of these

equations and their properties. Specifically, I have considered two types of nonlinear

feedback systems (consistent with the literature of QLC [110, 145]): 1) systems hav-

ing symmetric saturation nonlinearity (i.e., α = −β) and zero-mean reference input

(µr = 0), and 2) systems with asymmetric saturation α 6= −β and non-zero mean

reference input (µr 6= 0). For convenience, systems of the first type are henceforth

referred to as “symmetric", and those of the second type are referred to as “asym-

metric".

5.2 Analysis of Accuracy of Stochastic

Linearization

I begin by investigating the accuracy of SL in this section. Since SL approximates the

nonlinear system in a mean-squared sense, there is inevitably an error in the response

of the stochastically linearized system compared to that of the original nonlinear

system. Consistent with the minimization problem in Eq. (2.1), this error can be

quantified as the mean-squared difference between the stationary response of the

original nonlinear system and that of its SL. There are mainly two sources that

contribute to the error: 1) the SL of the nonlinearity itself (as in (2.1), referred

to as the open-loop accuracy herein), and 2) the assumption that the input to the

nonlinearity in the closed-loop setting is Gaussian and equal to û (in Fig. 5.1b) instead

of u (in Fig. 5.1a). Inspired by Eq. (2.1), in this section, I introduce a new metric
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to quantify the open-loop relative accuracy of SL for a saturation nonlinearity. I

term this metric the “relative approximation error" and provide its relationship to

the actuator authority and the statistics of the input to the nonlinearity. I determine

the upper bound on this relative error and show its effect on bounding the closed-loop

accuracy. This information on the accuracy of SL is valuable to have from a practical

perspective, as the error can then be properly accounted for during an SL-based

design of controllers for the original nonlinear system.

5.2.1 Symmetric Case

First, I consider the case of symmetric systems. Recall that the objective of open-

loop SL is to minimize the functional (2.1). Let f(u) = satβ−β (u), which is the

standard symmetric saturation function with upper limit β > 0 and lower limit −β,

and u(t) = u0(t) be a zero-mean stationary Gaussian input. Then, substituting for

f(u) and u0(t) as above and N from (2.7) in (2.1), the following expression for the

mean squared error, ε, can be obtained in terms of β and σu (recall that M = 0 in

the symmetric case):

ε (N, 0) = −β2erf
(

β√
2σu

)
+ β2 −

√
2βσue

− β2

2σ2
u

√
π

− σ2
uerf2

(
β√
2σu

)
+ σ2

uerf
(

β√
2σu

)
(5.5)

It can be observed from (5.5) that if I normalize the above by the variance of the

input, σ2
u, the term β√

2σu
can be collected and the expression simplified. In addition,

this normalization provides a sense of scale of the accuracy relative to the input

variance. Thus, letting U = β√
2σu

, which I term the “saturating factor", I can define
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(a) Symmetric Case (b) Asymmetric Case

Figure 5.2: Relative Open-Loop Accuracy of SL

the “relative approximation error", ε1, to be:

ε1(U) :=

√√√√ε (N, 0)
σ2
u

=

√√√√2U2 − 2Ue−U2

√
π

+ (1− 2U2) erf (U)− erf2 (U) (5.6)

Fig. 5.2a shows the variation of ε1 (U) with U . It can be seen that ε1 has a maximum

value and is thus bounded above. To find the maximum, I evaluate the derivative

ε1 (U) and set it equal to zero. The maximum is found to occur around U = 0.600 and

the maximum value is around 0.228. The sensitivity of this relative approximation

error to changes in system parameters in the feedback case is remarked upon in Section

5.2.

The bell-shaped nature of Fig. 5.2a can be explained as follows. When U � 0.6,

or the standard deviation of input is very small compared to the saturation authority,

i.e., σu � 1.1785β, the error is low (i.e., accuracy is high). This is expected, since in

such a case, the output of the saturation function remains practically unsaturated,

i.e., satβ−β (u) → u. Also, N = erf
(

β√
2σu

)
→ 1 as σu → 0. Thus, for large U , it can
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be mathematically shown that the relative error converges to:

ε1(U)→

√√√√√√ lim
σu→0

E


(
satβ−β (u)−Nu

)2

σ2
u

 = lim
σu→0

√√√√E [(u−Nu)2

σ2
u

]

=

√√√√ lim
σu→0

(1−N)2 E [u2]
σ2
u

= lim
σu→0

√
(1−N)2 = 0

where I used the fact that E [u2] = σ2
u.

As can be seen from Fig. 5.2a, the relative accuracy is good even when U � 0.6,

i.e., σu � 1.1785β (or the standard deviation of input is very large compared to the

saturation authority). This is due to the definition of relative accuracy – the division

by a large input variance makes the relative accuracy tend toward zero. This makes

physical sense as well: the error is small compared to the size of the input. In other

words, the standard deviation of the actuator input u is much higher than that what

is allowed to propagate through the saturation nonlinearity. Since the bounds of the

saturation nonlinearity are finite, the error is small compared to the size of the input.

I now show this mathematically. Consider σu → ∞. Then N = erf (U) → 0, and

thus:

ε1(U)→ lim
σu→∞

√√√√√√E

(
satβ−β (u)−Nu

)2

σ2
u



= lim
σu→∞

√√√√√√E

{
satβ−β (u)

}2

σ2
u

+ lim
σu→∞

E

[
N2u2

σ2
u

]
− 2 lim

σu→∞
E

satβ−β (u)Nu
σ2
u

 = 0

In the last line, the first limit is zero because {satβ−β(u)}2 is bounded but σ2
u is

unbounded. The second limit is zero because E[u2] = σ2
u and N → 0. Finally, the

third limit is zero because E[satβ−β(u)u] = erf(β/(
√

2σu))→ 0, as σu →∞.
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Thus, in the symmetric case, the open-loop relative error of SL for a saturation

function is found to be always better than about 0.228, or 22.8%. Thus, the accuracy

is high relative to the size of the input. As shown later, this has consequences in the

closed-loop accuracy of SL as well, as it provides an upper bound on how inaccurate

the SL approximation can be in a feedback system.

5.2.2 Asymmetric Case

For the case of asymmetric systems, the accuracy is obtained by evaluating the ex-

pectation in (2.1), with f(u) substituted from (2.4), u0 as u − µu, and N and M

substituted from (2.5) and (2.6) respectively. Similar to the symmetric case, the ex-

pression for accuracy is simplified if I normalize it by the variance of the input u, and

define:

L := α− µu√
2σu

, U := β − µu√
2σu

(5.7)

where L can be termed as the “lower saturation factor" and U the “upper saturation

factor" respectively, such that the “relative approximation error" is given by:

ε2(L,U) :=
√
ε(N,M)/σ2

u

=
(
−L

2 erf2 (L)
2 + L2

2 + LU erf (L) erf (U)− LU erf (L) + LU erf (U)− LU

+Le−U
2 erf (L)√
π

+ Le−U
2

√
π
− Le−L

2 erf (L)√
π

− U2 erf2 (U)
2 + U2

2 −
Ue−U

2 erf (U)√
π

74



+Ue−L
2 erf (U)√
π

− Ue−L
2

√
π

+ e−L
2−U2

π
− erf2 (L)

4

+ erf (L) erf (U)
2 − erf (L)

2 − erf2 (U)
4 + erf (U)

2 − e−2U2

2π − e−2L2

2π

) 1
2

(5.8)

Fig. 5.2b shows a plot of the above expression for permissible values of L and U ,

i.e., L < U . It can be seen that similar to the symmetric case, the relative open-loop

accuracy is always better than a certain level, which in this case, is observed to be

the supremum of (5.8). It can be observed from Fig. 5.2b that this supremum can be

approached asymptotically along either L = 0 or U = 0. Specifically, it can be found

to be:

lim
U→∞

ε2 (0, U) = lim
L→−∞

ε2 (L, 0) =
√

1
4 −

1
2π

which has a numerical value of around 0.301, or 30.1%. The sensitivity of this relative

approximation error to changes in system parameters in the feedback case is remarked

upon in Section 6.4.

The observation can be explained as follows: when µu ≈ α or µu ≈ β, the input

to the saturation is situated, on average, near the boundary of the regions of the

saturation function (which are: u > β, α ≤ u ≤ β, and u < α), and thus the

output is more likely to switch between two linear regions, making the resulting

linear approximation less accurate. On the other hand, when α� µu � β, µu � α,

or µu � β, the input is situated, on average, in a linear region of the function, and

hence, the resulting linear approximation is more accurate. The good accuracy for

large σu, when L and U both approach zero, is due to division by σ2
u, which makes
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the relative accuracy smaller (similar to the symmetric case).

Thus, the relative accuracy of open-loop SL for an asymmetric saturation is also

bounded above and always better than 30.1%, which is higher than the 22.8% in

the symmetric case. Moreover, as the magnitude of L or U increases, which can be

brought about by a decrease in σu, the accuracy improves. As shown next, this has

consequences in the closed-loop system, as it bounds the closed-loop accuracy of SL

as well.

5.2.3 Implications for Closed-Loop Accuracy

Consider the closed-loop system shown in Fig. 5.1a and its SL in Fig. 5.1b. Analo-

gous to the previous subsections, I can define the closed-loop “relative approximation

error" of SL as the square root of the mean squared error between the output of the

nonlinearity in Fig. 5.1a and its SL in Fig. 5.1b, normalized by the actuator input

variance:

ε3 :=

√√√√√E
[(
satβα (u)−Nû0 −M

)2
]

σ2
û

(5.9)

I choose to normalize by the variance of the actuator input û(t) from the stochasti-

cally linearized system as opposed to the nonlinear system since its value is readily

available in terms of system parameters, whereas the PDF of the u(t) in the nonlinear

system is not readily available. I now proceed to show that this closed-loop relative

approximation error is bounded above, leveraging the results from the previous sub-

sections. First, through the algebraic manipulations shown below, it can be observed

76



that the closed-loop RMSE satisfies:

√
E
[(
satβα(u)−Nû0 −M

)2
]

=
√
E
[({

satβα(u)− satβα (û)
}

+
{
satβα(û)−Nû0 −M

})2
]

≤
√
E
[{

satβα(u)− satβα (û)
}2
]

+
√
E
[{

satβα(û)−Nû0 −M
}2
]

(5.10)

by Minkowski inequality [168]. The last line of (5.10) is profound, as it prominently

delineates the breakup of the closed-loop approximation error into two components:

the first represents the error due to the Gaussianity assumption on the input to the

nonlinearity in the closed-loop setting (i.e., û in Fig. 5.1b is equal to u in Fig. 5.1a),

while the second represents the open-loop approximation error due to the SL of the

nonlinearity itself. I now further simplify the right hand side as follows. Since α ≤

satβα (u) ≤ β and α ≤ satβα (û) ≤ β,
∣∣∣satβα (u)− satβα (û)

∣∣∣ ≤ β − α. Hence,

√
E
[{

satβα (u)− satβα (û)
}2
]
≤ β − α (5.11)

Dividing (5.10) by σû and using (5.11) and (5.7), I obtain:

ε3 ≤
√

2 (U − L) + ε2 (5.12)

Thus, the closed-loop relative approximation error ε3 is found to be bounded above

by the sum of the open-loop relative approximation error, ε2 (in the symmetric case,

ε2 = ε1), and a term that depends on the difference of the saturation factors. Since ε3

depends directly on ε2, for the same value of σû, a smaller value of ε2 leads to a smaller
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upper bound for ε3. In other words, if the open-loop relative accuracy is good, so

will the closed-loop relative accuracy. The open-loop relative approximation error ε2

has already been shown to be bounded above in previous subsections, while the term
√

2(U − L) provides a bound on the closed-loop relative approximation error due to

the Gaussianity assumption on u. Moreover, as σû becomes larger, or the saturation

authorities become more restrictive, the upper bound of the relative approximation

error in closed-loop approaches that in the open-loop case.

In summary, the analyses in the preceding subsections show that SL of a satu-

ration nonlinearity can produce relative mean squared errors less than 30.1% in the

actuator output but relative accuracy improves with a smaller variance in the input.

Equations (5.6) and (5.8) provide a way to analytically determine the statistics of the

actuator input that leads to the largest open-loop mean squared error for a given ac-

tuator authority. Finally, it is shown that open-loop relative accuracy being bounded

above also results in the closed-loop accuracy being bounded above by a value that is

dependent on the saturation authority and the actuator input. This information can

be used to design controllers that take into account the possible error in the closed-

loop case, for example, involving a robust optimization problem whose solution is

robust to linearization error. This is a topic of future research.

5.3 Computation of Stochastic

Linearization

I investigate the computation of SL coefficients in this section. As mentioned in

Section 5.1, the SL Equations (5.3) and (5.4) are transcendental and, hence, only
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numerically solvable. For practical considerations, it is important to employ numerical

solvers that can solve them as quickly and efficiently as possible. In this section, some

common numerical algorithms are compared for the number of function evaluations

until convergence. Since analytic solutions are not possible, I rely on Monte Carlo

simulations (similar to [110,145]) to carry out this investigation.

Only symmetric systems are considered in this section since asymmetric systems

give rise to unique computational challenges and results. They are analyzed separately

in Section 5.5. Specifically,

• The case of asymmetric saturation requires solving a set of two simultaneous

equations, and is thereby more complicated, whereas the case of symmetric

saturation requires solving only one equation.

• When the equation-solving (i.e., root finding) algorithms are applied to the

asymmetric case (Section 6.2), most of the systems require many “extra tries"

(see below), indicating that this case is not numerically robust. This prompts

the coordinate transformation in Section 6.3 so that the number of extra tries

required is lowered.

5.3.1 Algorithms Examined

The numerical algorithms that are considered, both in this section and the next for

the asymmetric case, are briefly described below:

Bisection Method: The bisection method [169,170] finds a root of an equation

(or a system of equations) by reducing the search interval in half in an iterative

manner, based on the function values at the endpoints of the interval. Since the
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quasilinear gain N ∈ [0, 1], this algorithm naturally has a bounded initial search

interval and can be applied to find SL of symmetric systems. However, the bisection

algorithm cannot be applied to the case of asymmetric systems because µû does not

belong to a compact set, which means that the initial search space is unknown. The

QLC literature has historically been using this method to solve SL equations [89].

Newton-Raphson Method: The Newton-Raphson method is an iterative al-

gorithm that uses the gradient of the function to choose a step direction for the

next iteration, with the weight of this direction decided by the functional value at

that point [171]. This algorithm works for any sized system of equations, making it

applicable for both symmetric and asymmetric cases. The downsides are that the

gradient must be available for computation at every iteration and that convergence

is guaranteed only when the initial guess is sufficiently close to the solution.

Broyden’s Method: This is a quasi-Newton method that uses the same pro-

cedure as the Newton-Raphson method, but with the gradient being approximated

by the slope of the line segment between the current and previous guesses [172].

Therefore, it typically has a lower computational overhead as compared with Newton-

Raphson, since it does not need to evaluate the gradient explicitly, nor must it evaluate

the system of functions more than once at each iteration.

Trust-Region Reflective Method: This method is similar to the Newton-

Raphson Method but is more robust in situations where the gradient is singular, or

the initial guess is far from the solution. It involves solving a quadratic program

around the current best solution (i.e, around a trust region) to determine the next

step. It is used for solving an unconstrained optimization problem [173]. This al-

gorithm is used by default in MATLAB’s lsqnonlin. Recall that a root-finding
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problem g(x) = 0 for a vector function g : Rn → Rn can be posed equivalently as

an unconstrained optimization problem of minimizing ∑n
i=1 gi(x)2, where gi(x) is the

ith component of g(x) [174]. Hence, this algorithm is applied by reformulating the

SL root-finding problem as an unconstrained minimization problem and solving the

resulting optimization problem using this algorithm. Note that other trust-region

techniques can be used as well. For example, the Trust Region Dogleg is a similar

algorithm used for solving equations [157]. However, since in our studies, the results

obtained with the Trust Region Dogleg algorithm were similar to that obtained using

the Trust Region Reflective method, I have omitted the former.

Fixed Point Iteration: This method leverages the fact that for a contractive

function with a fixed point, repeated function evaluations can be used to converge

to the fixed point [175]. Specifically, given the fixed point problem x = g(x), where

g a contraction, the following iterative procedure can be used to find the solution:

xn+1 = g(xn) starting from any initial guess.

5.3.2 Problem Setup

Systems of the form shown in Fig. 5.1a were chosen for the Monte Carlo study,

with only the symmetric cases being considered (for now). A random controller

C(s) and plant P (s) were generated for each system, along with random saturation

authorities (keeping α = −β) and reference standard deviation σr (with µr = 0). To

incorporate a variety of situations, three combinations of plant and controller classes

were considered: 1) a constant controller with a first-order plant (5.13), 2) a first-

order controller with a first-order plant (5.14), and 3) a constant controller with a
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Table 5.1: Parameter Ranges used For Random System Generation

Parameter Value Range
Controller Gain, Kc (0, 50)
Plant Gain, Kp (0, 5)

Saturation Boundary, β (0, 10)
1st Order Controller Time Constant, τc (0.01, 100)

1st order Plant Time Constant, τp (0.01, 100)
2nd order Plant Natural Frequency, ωp (0.01, 100)
2nd order Plant Damping Factor, ζp (0, 2)

Reference Signal Standard Deviation, σr (0, 5)

second-order plant (5.15).

C(s) = KC , P (s) = KP

τP s+ 1 (5.13)

C(s) = KC

τCs+ 1 , P (s) = KP

τP s+ 1 (5.14)

C(s) = KC , P (s) =
KPω

2
p

s2 + 2ζpωps+ ω2
p

(5.15)

Table 5.1 lists the sampling ranges for all these parameters. They were chosen

such that the distribution of the quasilinear gain N was more-or-less equally skewed

towards both N = 0 and N = 1, fairly representing systems ranging from both

highly nonlinear to fully linear systems. For example, it was observed through a

Monte Carlo simulation that values of β = −α < 5 result in N being more closer

to 0 and β = −α > 15 result in N being more closer to 1. All parameters were

sampled uniformly, except for the first-order time constants and the second-order

natural frequency, which were sampled logarithmically. To obtain data from a large

number of systems, each class of system was sampled 10,000 times; thus a total of

30,000 systems were considered. For each system, (5.3) was solved for the unknown,

N (note that (5.4) is not required to be solved since the saturation is assumed to
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be symmetric), with a relative convergence tolerance of 1 × 10−8 on the unknown

variable, i.e., (|N2 −N1|)/(1 + |N1|) < 1 × 10−8, where N2 is the value of N at the

current iteration and N1 that at the previous iteration. Systems with phase margin

(which is a metric used to quantify the stability and robustness of a control system),

PM < 40◦ were rejected, as they are not indicative of a well-designed control system

(see Remark 1 in the next subsection). For algorithms that require the gradient

(i.e., the Newton-Raphson and Trust-Region Reflective methods), the gradient was

provided by finite differencing. This was done by small perturbations, unlike the finite

differencing performed in the Broyden method. For all the algorithms, the numbers

of function evaluations (including Jacobian evaluations) were collected. The number

of iterations was capped to 400, and if an algorithm was unable to find a solution

with a given initial condition, it was allowed to retry with a different random initial

condition. The number of such “retries" was capped to 100; if an algorithm failed

even after 100 tries, that system was considered a “failure" for the algorithm (since

the algorithm would effectively be unusable for practical purposes if it requires many

number of tries).

5.3.3 Results

The Monte Carlo experiment revealed that the SL equation for symmetric feedback

systems is, in fact, a contraction map (for all randomly generated systems). This is an

important and profound discovery into the nature of the SL equations and paves the

way for future research into the topological and algebraic properties of this equation.

Also, it highlights that the fixed-point iteration can be successfully employed to solve

the SL equation.
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(a) Box Plot of Function Evaluations (b) Systems requiring extra tries

Figure 5.3: Computation of SL

The results from the Monte-Carlo simulation are illustrated in Figs. 5.3a and

5.3b. Fig. 5.3a shows a box plot of the number of function evaluations for different

algorithms and Fig. 5.3b shows the number of systems that required extra tries to

converge to a solution. All algorithms eventually found the solution, i.e., there were

no “failures". From 5.3b, it can be seen that less than 3% of the systems required

extra tries. In the x-axis of Fig. 5.3a, “Bis" stands for bisection, “NR" for Newton-

Raphson, “TRR" for Trust-Region Reflective, and “FPI" for Fixed Point Iteration.

On each box, the central mark indicates the median, and the bottom and top edges

of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend

to the most extreme data points not considered outliers, and the outliers are plotted

individually using the red ‘◦’ symbol. Any data point that is greater than x + 1.5y

or less than x− 1.5y is considered an outlier, where x is the median and y the inter-

quartile range. From Fig. 5.3a, it can be seen that the bisection algorithm (which

is commonly used in the QLC literature) performs significantly worse than all of the

other algorithms on average, with mean iterations being more than two times greater
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Figure 5.4: Number of Tries for Fixed Point Iteration Method

than those of others, although it has the smallest spread. On average, the Trust-

Region Reflective method requires the least number of function evaluations, followed

closely by Fixed Point Iteration. However, the Fixed Point Iteration method has

a bigger spread in the number of evaluations. This is because the gradients of the

functions are close to one, although they are always contractions. From Fig. 5.3b,

it can be seen that the Trust Region Reflective method requires more tries in some

cases, whereas the Newton Raphson method does not, although both have almost the

same spread in the number of function evaluations. I conclude that, if the goal is to

ensure certainty of a solution, the Newton-Raphson method is the best, and if the

goal is to ensure computational speed most of the time, the Trust Region Reflective

is the best.

Remark 3. In a separate study, I considered systems with PM < 40◦. I found

that, while none of the algorithms failed (i.e., required tries more than 100) for PM

> 40◦, in the case of PM < 40◦, a few (about 0.3%) of the systems simulated failed to

converge for Fixed Point Iteration, indicating that they may not be contraction maps.
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The number of tries for some systems increased for PM < 40◦, as shown in Fig. 5.4,

and more tries were required for those systems which have smaller phase margin.

5.4 Robustness of SL

Recall that the quasilinear gain N and bias M found by solving (5.3) and (5.4) de-

pend on system components like the plant P (s) and the controller C(s), as well as on

exogenous signal statistics like the mean and standard deviation of the reference, r(t).

This dependence on various parameters may render these SL coefficients sensitive to

these parameters, which may be problematic. For example, in optimal control set-

tings (e.g., the linear quadratic regulator or LQR [176]), the variance of the actuator

input, σ2
u (or σ2

û in the SL reformulation), is often penalized in the objective function

of the optimal control problem. If the SL coefficients are highly sensitive to system

parameters, it may render the optimal control problem numerically sensitive (or even

inaccurate) to these parameters as well. Thus, the knowledge of these sensitivities

can help to understand which parameters of the system must be estimated/measured

more accurately for reliable computation of the quasilinear gain/bias and, hence, the

optimal controller. To obtain sensitivity data for a large range of feedback systems,

a Monte Carlo investigation was performed. This was done since an analytic inves-

tigation of comparative sensitivities is not possible due to the highly transcendental

and nonlinear nature of the SL equations. Similar to the previous section, again,

only symmetric systems are studied here, and asymmetric systems are separately in-

vestigated in Section 5.5. This is because in the case of robustness for asymmetric

systems, the sensitivities to both the quasilinear gain N and bias term, m, need to be
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considered rather than only N in the symmetric case. Also, since in the asymmetric

case, the exogenous signals have a non-zero mean, the sensitivities of the means of

the signals must be considered apart from only the standard deviations, as considered

in this section. Finally, it is found in Section 6 that the sensitivities in the case of

asymmetric saturation are, in general, larger.

5.4.1 Problem Setup

The same systems as in Section 6.2a were considered here for the Monte Carlo study.

A 1% change in various system parameters was applied (representing, for example,

typical numerical tolerance in the measurement or estimation of the parameters),

the quasilinear gain N was re-calculated, and the change from the previous value

recorded. Further, to investigate the effect of a change of N on the computation of

the statistical properties of the various signals, the standard deviations of the tracking

error, σê, the actuator input, σû, the actuator output, σv̂, and the plant output, σŷ,

were recorded, both with the original value of N at the solution of the SL equations

and with a 1% increase in that value of N .

5.4.2 Results

Fig. 5.5a shows a box plot of the percentage change in the solved quasilinear gain N ,

i.e., |∆N/N | × 100%, where ∆N refers to the change in N after re-solving the SL

equations, for a 1% change in various system parameters, i.e., |∆θ/θ| × 100% = 1%,

where ∆θ is a change in the system parameter θ.

I have removed cases where N < 0.1 since the percentage change metric (i.e.,
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(a) Sensitivity of Quasilinear Gain to System Pa-
rameters

(b) Sensitivity of Signal Statistics to Quasilinear
Gain

Figure 5.5: Sensitivity of SL Coefficients

|∆N/N | × 100%) does not convey useful information when the original value N is

zero or close to zero (also, I am interested only in the comparative sensitivities of N

to various parameters). From Fig. 5.5a, it can be seen that the overall change in N is

less than 1% on average for all parameters (note that this is less than the 1% change

introduced in the parameters). Also, while there is not much effect of the plant or

controller dynamics (i.e., the time constant, damping factor, or natural frequency),

there is a considerable effect of the reference standard deviation σr, actuator author-

ity β, and the controller and plant gain on the quasilinear gain. This observation can

be explained by the fact that these parameters directly affect the magnitude of the

input to the saturation, or the bounds of saturation. The probability of saturation is

therefore directly influenced by these parameters. Moreover, since β, σr, Kc, and τc

are usually known, it is the plant gain Kp that needs to be accurately measured/es-

timated. Knowing these sensitivities, one essentially also knows the level of potential

variability in the quasilinear gain due to uncertainties in the model parameters. This
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can further be leveraged in, for example, an optimization problem to design robust

controllers, which is a topic for future work.

Fig. 5.5b shows the effect of a 1% change inN at the solution (i.e., |∆N/N |×100 =

1%, where ∆N is a change introduced in the quasilinear gain N at the solution) on

standard deviations of various signals (again, removing instances where the original

value of the standard deviation is less than 0.1). That is, the y-axis of Fig. 5.5b shows

|∆σq/σq| × 100%, where ∆σq refers to the change in the standard deviation of the

particular signal q, σq, due to a 1% change in N . It can be observed that the standard

deviations of the signals are affected by less than 1% on average (note that this is less

than the 1% change introduced in the parameters). This indicates that even if the

quasilinear gain is sensitive to system parameters, this will generally contribute even

lesser to a change in the signal statistics. This is a useful property to have for an

optimization problem that may involve such statistics for designing optimal controller

gains.

Remark 4. The trends for sensitivity for different parameters do not change for

systems with PM < 40◦, although it was noticed that for some systems the sensitivities

were higher than in the case with PM> 40◦.

Remark 5. The sensitivity of the open-loop approximation error (5.6) for the stochas-

tically linearized system was found to be, in general, close to zero for all system

parameters, except for the plant time constants, in which case, the sensitivity was

higher.
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5.5 The Case of Asymmetric Saturation

In this section, the investigation of robustness and computational efficiency of SL is

continued for nonlinear stochastic systems with asymmetric saturation and a nonzero

mean reference signal.

5.5.1 Problem Setup

For investigating the computation and robustness of SL in the following subsections,

Monte Carlo studies were conducted on the same classes of systems that were gener-

ated in Section 6.2a, but with α 6= β, α being generated uniformly from (−10, 0). The

reference mean µr was sampled uniformly from (−5, 5). Both (5.3) and (5.4) were now

solved for N and µû. For assessing computational performance, all algorithms men-

tioned in Section 5.3.1 were considered except the Bisection algorithm (as explained

in Section 5.3.1). Moreover, in the case of Fixed Point Iteration, (5.4) was not used

in the form shown since it is not a fixed point equation. Instead, µû was replaced by

C0(µr−P0M) and σû by RHS of (5.1) in (5.3) and (5.4), and the resulting equations

were instead solved for the fixed point (N , M). Systems in which L > 0 or U < 0

(where L and U are defined in (5.7)) were removed since, for a well-designed control

system, it is expected that the nonlinear actuator will not be affected by signals whose

values are outside the saturation bounds on average. Also, as before, systems with a

phase margin of < 40◦ were rejected, as they are not typically employed in practical

settings.
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5.5.2 Results for Computation of Stochastic Lin-

earization

Fig. 5.6a shows the number of function evaluations required for convergence for differ-

ent algorithms and Fig. 5.6b the number of systems that required extra tries, including

failed systems (i.e., no. of tries > 400). It can be seen that the number of systems

requiring extra tries significantly increased from the symmetric case (Fig. 5.3b). This

is expected since the asymmetric case has a more complicated system of transcen-

dental equations. Although from Fig. 5.6a, the number of function evaluations is

found to be the least on average in the Fixed Point Iteration method (for systems

where the method converged successfully), more than 95% of the systems failed (i.e.,

required tries more than 400) using this method, indicating that the RHS of (2.5)

and (2.6) are not contractions for most systems. This is in contrast to the symmetric

case, where the SL equation is a contraction for all systems. The Newton-Raphson

method requires a comparatively lesser number of tries but the most number of func-

tion evaluations. Upon analyzing the cause of a large number of tries or failures in the

Newton-Raphson method, it was found that in some iterations, the quasilinear gain

was negative (as previously shown, N must satisfy 0 ≤ N ≤ 1). Negative values of

N are non-physical and are an artifact of the numerical solver. To remedy this, a co-

ordinate transformation is proposed to prevent the solver from choosing non-physical

values, as mentioned in the next subsection.
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(a) Box Plot of Function Evaluations (b) Systems requiring extra tries

Figure 5.6: Computation of SL coefficients

5.5.3 Improving Computation through

Coordinate Transformation

The idea of coordinate transformation is to allow solvers to have access to a larger

space for variables than what is allowed in the base coordinate system, such that

function evaluations do not result in undefined values. To ensure that the quasilinear

gain N does not become negative in (5.3) and (5.4), (N , µû) can be transformed to

a new coordinate system (Nt, Mt), which is defined through the following mapping:

N = f(Nt,Mt) and µû = g(Nt,Mt), where f and g are transformations that satisfy

these conditions: 1) f and g are bijective and differentiable such that the Jacobian

of
[
f (Nt,Mt) g (Nt,Mt)

]>
is invertible, 2) Nt and Mt can take all real values, and 3)

The range of f is the interval [0, 1], which is the range of allowable values for N in

the case of SL for the saturation function. The first condition ensures that there is a

one-one mapping between the coordinate systems and the function does not become
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flat to avoid numerical issues. The second condition ensures that the solvers have

access to an infinite space for the variables so that functional values do not become

undefined.

Several forms of f(Nt,Mt) are possible, including f(Nt,Mt) = h(Nt), where h(Nt)

is one of the following (note that the function h is introduced, in addition to f , to

simplify the discussion below, as I will show): h(Nt) = 0.5 + arctan(Nt)/π, h(Nt) =

(1 + erf(Nt))/2, and h(Nt) = 1/(1 + e−Nt). However, as Nt → ±∞, these functions

h(Nt) tend to 0 or 1 asymptotically, which may result in numerical issues if N ≈ 0 or

N ≈ 1 as the function becomes flat at these extremes. Hence, the third requirement

on f is modified to: the range of f is [0 − ε, 1 + ε] ∩ Ns, where ε ≥ 0 is a small

number and Ns is the set of values of N that makes the closed-loop SL system

stable (it can be verified that Ns = {N : N > −1/P0C0} for the classes of systems

considered in Section 6.2a, where P0 and C0 are the DC gains of the plant and

controller respectively). For ε 6= 0, this is essentially done by defining f such that

f(Nt,Mt) := h(Nt)(l − u) + l, where h(Nt) are as mentioned above, l represents the

lower limit of Ns, Ns,min, and u = 1 + ε. See Fig. 5.7a for graphs of these modified

functions. For g(Nt,Mt), possible functions are g(Nt,Mt) = C0(µr −MtP0) (where

Mt is actually M , as mentioned in Section 5.1), g(Nt,Mt) = (C0µr − C0MtP0)/(1 +

C0f(Nt)P0) (where Mt is actually m) or g(Nt,Mt) = Mt (when Mt is actually µû and

is not transformed).

In our investigation on the same systems considered in Section 5.5.2, it was found

that out of all the above-mentioned combinations of the forms of f(Nt,Mt) and

g(Nt,Mt), the forms of f(Nt,Mt) = (0.5+tan−1(Nt)/π)(l−u)+l and g(Nt,Mt) = Mt,

with some ε > 0, leads to the best results. The Monte Carlo experiment mentioned in
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(a) Graphs of common f(Nt) (b) Systems requiring extra tries

Figure 5.7: Coordinate Transformation for SL

Section 5.5.2 was performed again with these transformed coordinates for ε = 1. The

fixed point iteration method was not attempted again since the coordinate transfor-

mations destroy the contraction property. This is because the derivative of the inverse

of arctan, erf and exp functions are greater than unity for the values of quasilinear

gain considered. The results are shown in Fig. 5.7b. It can be seen that the number

of systems requiring extra tries has reduced significantly for all methods (compared

to Fig. 5.6b), with the lowest for the Trust-Region Reflective method. The number

of function evaluations was similar on average.

Hence, for SL of asymmetric systems, it is our recommendation to use the trans-

formations f(Nt,Mt) = (0.5 + tan−1(Nt)/π)(l − u) + l and g(Nt,Mt) = Mt, with

an ε ≈ 1, u = 1 + ε, l as defined above, and the optimization-based Trust-Region

Reflective method for quick convergence.
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(a) Sensitivity of signal statistics to N (b) Sensitivity of signal statistics to m

(c) Sensitivity of signal statistics to N and m.

Figure 5.8: Sensitivity of SL coefficients

5.5.4 Results for Robustness Analysis

Recall that the procedure of SL in the case of asymmetric systems results in a value of

N and µû from (5.3) and (5.4). From the value of µû found, bothM andm = M−Nµû

can be found (in fact, from any of µû, M and m, the other two can be found).

Physically, µû refers to the mean of the actuator input, M the mean of the actuator

output, and m an external bias term that needs to be injected into the system as
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shown in Fig. 5.1b. Since out of µû, M , and m, only m represents an external input,

its value can be manipulated physically in a practical system, and hence, I performed

the sensitivity analysis concerning N and m. The results for the sensitivity of the

solved quasilinear gain N and m = M − Nµû to a 1% change in various system

parameters (the definition of % change is the same as in Section 5.4.2) are shown in

Figs. 5.8a and 5.8b respectively. The sensitivities of signal statistics (µ denoting the

mean and σ the standard deviation of the signal) to a 1% change introduced in N and

m at the solution are shown in Fig. 5.8c. As before, those cases are removed where

the magnitude of the parameters whose sensitivities are being found are less than 0.1

since the percentage change metric does not reliably portray the change when the

original value is close to zero. From Fig. 5.8a, it can be seen that compared to the

symmetric case, the sensitivity has increased for many systems to more than 20%.

Also, from both Figs. 5.8a and 5.8b it can be observed that while the sensitivities of

N and m to system parameters are, on average, close to zero, there are many systems

where the bias term m is highly sensitive to the system parameters. Again, as in

the symmetric case, it is found that sensitivities are higher for those parameters that

directly affect the magnitude of the actuator input and its saturation authority, e.g.,

the controller or plant gains, and the actuator authorities.

From Fig. 5.8c, it can be seen that while the sensitivities of the signal statistics

to the computed N and m are, on average, low, although the sensitivity of the mean

of the tracking error, ê, and of the actuator input, û, is higher for many systems.

This is due to the effect of feedback, and the fact that the magnitude of the mean

of the error is typically small for a reference tracking problem. The results indicate

that if an optimization problem uses the mean of the tracking error or the actuator
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input in the objective function, then the numerical tolerance of the solver should

be carefully chosen and the parameters of the system accurately identified to avoid

sensitivity issues. Note that such issues do not arise if only the standard deviation of

the error and that of the actuator input are used in the objective function, as done,

for example, in a standard LQR problem. I have not found a clear correlation of the

outliers with known system parameters, and that is a topic for future investigation.

Remark 6. Similar to the symmetric case, the sensitivity of the open-loop approxi-

mation error (5.8) for the stochastically linearized system was found to be, in general,

close to zero for all system parameters, except for the plant time constants, in which

case, the sensitivity was higher.
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Chapter 6

Optimal Primary Frequency Con-

trol of Power Systems with Gen-

erator Saturation

In this chapter, SL is applied to the droop control of power systems with generator

saturation. The organization of the chapter is as follows. In Section 6.1, the system

model is described and the optimization problem formulated. The description of

the QLC design procedure is given in Section 6.2. Section 6.3 illustrates the design

process using numerical simulations.
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6.1 Modeling and Problem Formulation

6.1.1 Primary Frequency Control in Power Sys-

tems

Consider a simple two-area power system, which appears in [1] and is shown in

Fig. 6.1. This is a simplified model to represent the dominant behavior of a large,

interconnected power system having many control zones. It consists of two single-bus

systems Σ1 and Σ2, each characterized by six parameters and connected with a tie-

line in between them. The block diagram of system Σi is shown in Fig. 6.2a. Here the

parameter Tti represents the effective time constant of the governor/turbine dynam-

ics, and Hi the total inertia constant of the area, which is rated at the base power Sbi.

The parameter DLi models the motor loads and W0i the frequency-dependent loads.

Finally, the parameter Si, also known as speed regulation or droop, determines the

effective steady-state speed vs. load characteristic of the generating units. Modifying

this parameter affects the proportional droop controller gain 1/Si, thereby regulating

the change in frequency from the nominal value of f0. The block satβiαi (ui) models

the saturating actuator and is explained in 6.1.2. Each individual control area Σi has

effectively two inputs, the mechanical power set-point Pm0i and the effective change

in load power Pdi, which acts as a power disturbance. The change in frequency ∆fi is

the controlled output. As shown in Fig. 6.1, any mismatch in frequency between the

two areas gives rise (through the block modeled by the parameter P̂t related to the

tie-line reactance) to a power flow ∆Ptie between the two areas. This power, when

combined with the local load power disturbance ∆PLi and fed back as the effective
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∆f2
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∆PL1
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∆Ptie
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∆PL2

+Pd2

∆Ptie

-

Figure 6.1: Block diagram of primary frequency control of a two-area interconnected power
system

change in load power Pdi to each area, regulates the frequency to a new steady state

value, according to the following equations:

Pd1 = ∆PL1 + ∆Ptie and Pd2 = ∆PL2 −∆Ptie

6.1.2 Nonlinearity in the Actuator

In the block diagram of Fig. 6.2a, it is assumed that the turbine output ui, which is the

change in mechanical power, is saturated by an asymmetric saturation nonlinearity,

shown in Fig. 2.4. This situation can arise, for example, when the position of the gate

or valve controlling the flow of steam into the turbine is restricted, resulting in specific

power limits. The saturation is assumed to be asymmetric, with an upper bound βi >

0 and a lower bound αi < 0, such that |αi| > |βi|. This is a reasonable assumption

since a turbine nominally produces mechanical power P0 close to its designed capacity,

P0 + βi. In the event of a frequency deviation, it can thus produce an output power
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(a) Block diagram of each control area Σi

1
Ttis+1 Ni +

mi = Mi −Niûi

ûi v̂i + f0
2HiSbis

1
Si

-
Pm0i

+

2W0i
f0
s

1
DLi

∆f̂i

+

-

Pdi

(b) Stochastically linearized system corresponding to
Fig. 6.2a

Figure 6.2: Droop Control System

between P0 + αi < P0 and P0 + βi > P0. Since this model is linearized around the

nominal power P0, the change in mechanical power output vi of turbine is restricted

between αi and βi, as modeled by the asymmetric saturation. Note that here, vi does

not refer to voltage, but I am using this notation to be consistent with earlier works

in the literature of QLC.
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Figure 6.3: Asymmetric Saturation Nonlinearity

6.1.3 Problem Statement

The problem is to design optimal droop parameters S1, S2 that would improve the

combined frequency and actuator input performance of the power system, compared

to a baseline design, should any frequency deviation take place. This involves using

stochastic linearization to find an equivalent quasilinear system, selecting a suitable

cost function to minimize and then optimizing over an admissible region to find the

optimal droop parameters. These are done in the sections to follow.

6.2 QLC Based Droop Controller De-

sign

In this section, the method of QLC is leveraged to design the optimal droop controller.

It is appropriate to do so in this context since the load disturbance in power systems

is stochastic in nature and QLC requires that all exogenous inputs to the system

be random processes. The change in load power is thus first modeled accordingly.

The nonlinear actuator block is then replaced by the corresponding stochastically

linearized block for further analysis. The design process is explained below.
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wi FΩd (s)
‖FΩd (s)‖2 = 1

σLi +

µLi

∆PLi

Figure 6.4: Modeling the change in load power

6.2.1 Modeling the Load Power Disturbance

The change in load power ∆PLi in area i is modeled as a wide sense stationary

Gaussian white noise with mean µLi and standard deviation σLi. The Gaussian

distribution is a reasonable modeling assumption for a power system load disturbance

having small temporal scales due to the central limit theorem and has been used

in [111] to model wind farm power disturbance. Similar reasoning can be applied in

solar applications. The noise ∆PLi is modeled as a standard white Gaussian noise

wi, as shown in Fig. 6.4, passed through a coloring filter FΩd (s) of bandwidth Ωd,

multiplied by a gain σLi, and added to a bias µLi. To ensure a realistic disturbance

signal, the filter bandwidth is chosen to equal the closed loop bandwidth of the control

area for the system to be able to detect the change in load power. Also, by choosing

the filter such that its H2-norm equals unity, the final signal ∆PLi is ensured to have

mean µLi and standard deviation σLi.

6.2.2 Stochastic Linearization of the Nonlinear

Actuator

To analyze the system and determine the optimal droop parameters, the nonlinear

actuator needs to be linearized. Leveraging the method of stochastic linearization, the
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nonlinear system of area i described by Fig. 6.2a can be reduced using equations (2.2)

and (2.3) to an equivalent linear system shown in Fig. 6.2b, where the nonlinearity

satβiαi has been replaced by an equivalent quasilinear gain Ni and a bias mi = Mi −

Niµûi such that Mi is the quasilinear bias and µûi the mean of actuator input. Here,

Ni = 1
2

[
erf
(
βi − µûi√

2σûi

)
− erf

(
αi − µûi√

2σûi

)]
(6.1)

and

Mi = αi + βi
2 + µûi − βi

2 erf
(
βi − µûi√

2σûi

)

−µûi − αi2 erf
(
αi − µûi√

2σûi

)
− σûi√

2π

exp
−(βi − µûi√

2σûi

)2


− exp
−(αi − µûi√

2σûi

)2
 (6.2)

where σûi is the standard deviation of ûi, ûi is the actuator input in the stochastically

linearized system, and

erf (x) = 2√
π

∫ x

0
e−t

2
dt

is the error function. Recall that αi and βi are the generator saturation limits in area

i. For more details, please refer to [89,111].

As seen from equations (6.1) and (6.2), calculation of N1, N2, M1 andM2 requires

knowledge of µû1 , µû2 , σû1 and σû2 . Since the system is interconnected, these values

depend on each other. For the sake of illustration, I assume that the disturbance in

load power takes place only in the first area, i.e., ∆PL2 = 0. Considering that the

system is operating in the stationary regime, the values of σû1 and σû2 can be found

using the transfer function T1 (s) from the change in load power ∆PL1 to the actuator

104



input û1:

σû1 = ‖FΩd (s)T1 (s)‖2 σL1 = f1 (N1, N2, S1, S2) (6.3)

where ‖ · ‖2 is the H2-norm. Similarly, using the transfer function T2 (s) from the

change in load power ∆PL1 to the second actuator input û2:

σû2 = ‖FΩd (s)T2 (s)‖2 σL1 = f2 (N1, N2, S1, S2) (6.4)

The values of µû1 and µû2 can be found by first finding the transfer functions from

Pm01, Pm02, µL1, m1 and m2 to û1 and û2 and then evaluating the DC gains, which

leads to:

µû1 = Pm01 + L

S1
= f3 (M1,M2, S1) (6.5)

µû2 = Pm02 + L

S2
= f4 (M1,M2, S2) (6.6)

where:

L = DL1DL2

DL1 +DL2
(µL1 −M1 −M2) (6.7)

The values of N1, N2, M1 and M2 can thus be found by substituting (7.3)-(7.4) into

(6.1) and (6.2), which results in a system of four transcendental equations in the four

unknowns N1, N2, M1 and M2. MATLAB’s fsolve command provides a convenient

way to solve this numerically.

6.2.3 Selection of Suitable Cost Function

To find an optimal controller, a suitable cost function is required. It is desirable to

have small change in frequency and low actuator input. Several possible objective
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functions were plotted as a function of the droop parameters S1 and S2, which are the

optimization variables. In each case, actuator saturation was neglected, as it mainly

serves to impose constraints and does not change the nature or shape of the cost

function. Also, no change in load power of area 2 was assumed, i.e., ∆PL2 = 0.

An objective function defined as the sum of variances of frequency deviations in

the two areas, i.e., σ2
∆f̂1

+ σ2
∆f̂2

, results in a surface shown in Fig. 6.5. Note that

∆f̂i are the outputs of the stochastically linearized system shown in Fig. 6.2b. For

plotting this surface, the values of σ∆f̂1
and σ∆f̂2

were calculated using the following

equations, similar to equations (7.3) and (6.4):

σ∆f̂1
= ‖FΩd (s)T3 (s)‖2 σL1

σ∆f̂2
= ‖FΩd (s)T4 (s)‖2 σL1

where T3 (s) and T4 (s) are the transfer functions from ∆PL1 to ∆f̂1 and ∆f̂2 respec-

tively.

The surface has an infimum at zero, leading to infinite gain in the proportional

controller, as the control action is not penalized. A surface similar to that of Fig. 6.5

results when the objective function is defined as the sum of variances of frequency

deviations: ∆f̂1 and ∆f̂1, and also the variances of rate of change of frequency (RO-

COF): d
dt

(
∆f̂1

)
and d

dt

(
∆f̂2

)
. Unlike the surface in Fig. 6.5, the surface shown

in Fig. 6.6, which is generated using the objective function defined as the sum of

variances of changes in frequency and lowly penalized variances of actuator inputs, is

more suitable for implementation. This is because the surface has a specific minimum

leading to a finite controller gain unlike the other. Hence, this surface is chosen for
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formulating the optimization problem, as explained in the following subsection. This

is also consistent with standard practice in optimal control, for example in designing

a linear quadratic regulator (LQR), which optimizes the combined state and control

costs for a system.

6.2.4 Optimization Problem

Using the surface explained in the previous subsection, the optimization problem is

formulated as:

min
S1,S2

σ2
∆f̂1

+ σ2
∆f̂2

+ ρ
(
σ2
û1 + σ2

û2

)

subject to (6.1)–(6.6) and S1, S2 > 0 (6.8)

where ρ > 0 is a sufficiently small scalar. Since this problem is non-convex, with

transcendental constraints (6.1) and (6.2), it cannot be solved analytically. How-

ever, it can be approached numerically, for example, using MATLAB’s lsqnonlin

command.

6.3 Performance Evaluation and Discus-

sion of Results

To evaluate the performance of the designed optimal controller, the two-area power

system in Fig. 6.1 was simulated for a sufficiently long time, first with droop pa-

rameters from the baseline design of [1], and then with the designed optimal QLC

controller. The value of ρ for the optimization was 1.27 × 10−8, which was selected
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Figure 6.5: Surface contour plot of objective function σ2
∆f1

+ σ2
∆f2

neglecting actuator sat-
uration. The surface can be seen to have an infimum at the origin.

by analyzing the Pareto optimal front discussed below. The system parameters of

area 2 were chosen to equal those of area 1, as in Table 6.1, so that both areas were

of the same size. In both cases, the load power change in area 1 was modeled as a

zero-mean white Gaussian noise with a standard deviation of σL1 =200 MW, passed

through a 3rd-order Butterworth filter FΩd (s), with bandwidth Ωd chosen to be the

same as the closed loop bandwidth of one of the power system areas (around 0.56

Hz):

FΩd (s) =
√

3
Ωd

(
Ω3
d

s3 + 2Ωds2 + 2Ω2
ds+ Ω3

d

)
,Ωd = 0.56 Hz (6.9)

For illustration, the load power change in the second area was assumed to be zero.

For both areas, the value of α was chosen to be -100 MW and β = 5 MW, so that

the saturation is asymmetric as explained in Section 6.1.2.
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Figure 6.6: Surface contour plot of objective function σ2
∆f1

+ σ2
∆f2

+ 10−6 (σ2
u1 + σ2

u2

)
ne-

glecting actuator saturation. The non-zero minimum of this surface allows for the design
of a finite controller gain compared to the surface of Fig. 6.5.

The numerical optimization required trying several initial conditions before con-

verging to the global minimum. The results, tabulated in Table 6.2, show that the

optimal droop parameters reduced the objective function from 0.0197 to 0.0164, i.e.,

by 17%, compared to the baseline design. Note that the optimization results in an

increase in S2 (i.e., a decrease in 1
S2
), which is reasonable, since the disturbance does

not dynamically affect the second area as much as it does the first area. Although the

sum of variances of changes in frequency (i.e., the state cost) increased by 4% from

0.0152 to 0.0158, the control effort reduced by 88% from 34.74 × 104 to 4.05 × 104.

Hence, this optimal controller achieves a minimal combined state and control cost at

the expense of a slight increase in state cost.
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Table 6.1: Parameters and their values used for Simulation

Parameter Value
H1 = H2 5 s
Sb1 = Sb2 10 GW

f0 50 Hz
Dl1 = Dl2

1
200 Hz/MW

W01 = W02 0 MW/Hz
S1 = S2

1
5000 Hz/MW

P̂t 533.33 MW

To demonstrate the trade-off between state and control costs, a Pareto optimal

front was generated by varying the control penalty from ρ = 10−10 to ρ = 10−5,

computing the quasilinear gains and biases for each ρ, and calculating the resulting

costs using the QLC equations. The result is depicted by the curve in Fig. 6.7, where

the optimal QLC gains are shown to produce a reduced combined cost compared

to those in the baseline design of [1]. Note from Fig. 6.7 that, in contrast to the

data above, the QLC equations predict a reduction in the state cost compared to the

baseline design. This discrepancy is due to the inaccuracy of stochastic linearization

for highly asymmetric systems [110], which will be a topic of future investigation.

Nevertheless, at the optimum, the state cost of the nonlinear system is 0.0247, while

that of the stochastically linearized version is 0.0231, indicating the high accuracy of

stochastic linearization.

To illustrate the fact that QLC allows us to systematically redesign the controller

upon parameter changes, I performed the following experiment. I assumed that σL1

in the previous experiment increased from 200 MW to 300 MW due to, for example,

increased renewable penetration. If the same QLC-based droop parameters are ap-

plied, the optimal value of the cost function increases from 0.0164 to 0.0481. This

increase is reasonable, because a larger input forces the system to operate closer to its
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Table 6.2: System Parameters Before and After Optimization

Parameter Baseline Optimal
S1 0.00020 0.0006
S2 0.00020 50.6705
N1 0.0694 0.1979
N2 1.0000 1.0000
M1 -44.1950 -37.9331
M2 0.0011 0.0000

σ2
∆f1

+ σ2
∆f2

0.0152 0.0158
σ2

∆f̂1
+ σ2

∆f̂2
0.0156 0.0160

σ2
∆f1

+ σ2
∆f2

+ ρ
(
σ2
u1 + σ2

u2

)
0.0197 0.0164

σ2
∆f̂1

+ σ2
∆f̂2

+ ρ
(
σ2
û1

+ σ2
û2

)
0.0201 0.0166

Figure 6.7: Pareto optimal front of cost function with ρ ranging logarithmically from 10−10

to 10−5.

limits, which constrains achievable performance. However, if the droop parameters

are re-designed with the new information on σL1, the value of the cost function is

lowered to 0.0479, a decrease by 0.5%. Note that this decrease is small compared to

that in the previous case, since the optimization is being performed on an already

optimal QLC-based controller produced using σL1 = 200 MW. This experiment il-

lustrates the effectiveness of QLC in systematically redesigning controllers based on

available information on system parameters, which can be found out experimentally.
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Chapter 7

Optimal Control of Virtual Bat-

teries using Stochastic Lineariza-

tion

In this chapter, the optimal control of virtual batteries using stochastic linearization is

described. The outline of this chapter is as follows. Section 7.1 describes the modeling

of VBs and the optimization problem. Section 7.2 showcases the advantages of an SL-

based optimization over a non-SL based optimization in improving VB usage while

attaining the grid objective. In Section 7.3, analyses are provided to explore the effect

of various parameters on the capabilities of this method. Finally, Section 7.4 extends

the design to VBs with variable power limits.
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7.1 Modeling and Problem Formulation

7.1.1 Virtual Battery Model

Aggregated distributed energy resources (DERs) can be modeled as a virtual battery

(VB) (consistent with abstractions in [137,177,178]) with a saturation in power deliv-

ered, defined by the lower and upper power limits, Pmin and Pmax, respectively. The

VB is assumed to be operating at a nominal power set-point denoted by Pset (which

can be computed, for example, optimally at a slower time-scale, as described in [142]).

The input and output of the VB are related by the following transfer function:

Pu(s)
Pin(s) = e−Tds

τs+ 1 (7.1)

where Pu(s) is the Laplace transform of the unsaturated output of the VB, pu(t), and

Pin(s) that of the power desired (input) from the VB, pin(t), τ is a first-order lag, and

Td is a pure time delay.

The model of (7.1) is obtained by taking into account the following facts [142]: i)

The DERs composing a VB turn on/off (possibly) sequentially, and power electronic

components present inside each VB, both contribute to a net lag τ ; ii) There are

communication delays (generally of the order of 200 ms) between the head node of

the feeder and each VB [132, 179], and delays associated with disaggregating the

control signal into device-level signals [180]. The delays I consider in the VB model

(Td) are of both these types lumped together.

Defining u(t) := Pu(t) − Pset, the saturated output of the VB is then Pb(t) =
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Figure 7.1: Nonlinear Feedback System

Figure 7.2: Stochastically Linearized System

Pset + satβα(u(t)), where α := Pmin − Pset, β := Pmax − Pset, since the DC gains of the

first-order transfer function and of the time delay are both unity, and satβα (u) is as

in (2.4).

7.1.2 Problem Setup

Consider a distribution feeder with sets of distributed energy resources (DERs) mod-

eled by VBs (as in the previous subsection) located at its various nodes. The objective

is to control the head node active power demand of the feeder, such that it tracks

an economic reference by rejecting uncontrolled nodal disturbances, using available

flexibility of the DERs. The control scheme is shown in Fig. 7.1, and is adapted
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from [142]. It consists essentially of a bank of proportional controllers Ki that multi-

ply the error between the head node power ph(t) of the feeder and a desired economic

trajectory Puf (t) to control the ith VB with the model described in Section 7.1.1

(with suffix i added in all the parameters).

As described in [142, 146], the gains Ki in Fig. 7.1 can be designed optimally by

first (Jacobian) linearizing the feeder at an operating point, depending on the nomi-

nal set-point Pset,i of the ith VB and the base load, neglecting the power saturation

in the VBs (see Fig. 7.2, but with Ni = 1 and mi = 0 - these will be defined later

- essentially, this means locally linearizing all saturations and removing them from

the analysis). This linearization leads to gains Api, which indicate the sensitivities

of the head node active power of the feeder to the corresponding nodal active power

injections. Next, a stationary Gaussian stochastic process is assumed as nodal distur-

bance (representing aggregate random fluctuations in solar PV over possibly a large

geographic region [181]) with mean µd and standard deviation (SD) σd, and an mth

order Padé approximation Rm(Tdis) is assumed for the delay. The gains are then

chosen by minimizing the sum of the variance of the tracking error, p̂e(t), denoted by

σ2
p̂e , and a weighted sum of the variances of the control inputs to the VBs, p̂in,i(t),

denoted by σ2
p̂in,i

:

minimize σ2
p̂e + ρ

n∑
i=1

σ2
p̂in,i

(7.2)

where the variances are computed using the H2-norm of the transfer functions from

the standard white Gaussian noise wd(t) to p̂e(t) and p̂in,i(t) (setting µd = 0), and

ρ > 0 is a constant chosen according to the power capacity of the VBs.

However, the optimization problem (7.2) does not include the saturation nonlin-

earities due to VB power limits. Note that while the nonlinear feeder can be linearized
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with Jacobian linearization, the saturation nonlinearities in the VBs cannot. This is

because the power flows in the nonlinear system due to nodal injections are close to

that predicted by the linearized feeder and do not change their region of operation

drastically. However, when VBs are nearly saturated, even a small disturbance can

change the region of operation (by saturating), rendering a Jacobian linearization

inaccurate. Moreover, although the control penalty ρ can be chosen to be inversely

proportional to the power capacity of the VBs, as done in [142], it is difficult to choose

it according to the saturation level of the VBs and is rather heuristic. Hence, the

focus of this chapter is to overcome these problems by leveraging SL instead of Jaco-

bian linearization to linearize the saturation functions. The method of SL provides a

method to systematically include the saturation authorities and the saturation level

(based on the operating point) of the VBs into the optimization problem. Also, it

utilizes the statistical properties of the disturbance signal to linearize the system. In

the next section, the procedure of SL is reviewed before using it to solve the above

problem.
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7.2 Optimal Controller Design for Vir-

tual Batteries using Stochastic Lin-

earization

7.2.1 Formulation using SL

Leveraging the method of SL, the nonlinear system in Fig. 7.1 can be approximated

using (2.5)-(2.6) by an equivalent linear system shown in Fig. 7.2, where the saturation

function for the ith VB, satβiαi(ui), has been replaced by an equivalent quasilinear gain

Ni and a bias mi = Mi − Niµûi such that Mi is the quasilinear bias and µûi is the

mean of the input to the saturation, ûi(t) = Pû,i(t)− Pset,i.

As seen from (2.5)-(2.6), calculation of Ni, Mi requires knowledge of µûi, and σûi,

and hence, these variables depend on each other and all other system parameters.

Considering that the system is operating in the stationary regime, the values of σûi

can be found using the transfer function from the nodal disturbance wd(t) to P̂u,i(t):

σûi =
∥∥∥∥∥ FΩd(s)Ki

1
1+sτiRm(Tdis)

1 +∑n
i=1 Ki

1
1+sτiRm(Tdis)NiApi

∥∥∥∥∥
2
σd (7.3)

The values of µûi can be obtained by finding the transfer functions from µd, and mi

to P̂u,i(t) and evaluating their DC gains, which leads to:

µûi = (Puf − µd −
n∑
j=1

MjApj)Ki (7.4)
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where Mj are functions of µûi and σûi, obtained using (6.2).

The values of Ni, Mi can thus be found by substituting (7.3)-(7.4) into (2.5)-

(2.6) for each Ni, Mi, σûi and µûi , which results in a system of 2n transcendental

equations in the unknowns Ni and Mi, for i = 1, . . . , n. Note that compared to

Jacobian linearization, which assumes Ni = 1, mi = 0, SL provides 0 < Ni < 1 and

mi not necessarily 0, such that the statistical properties of the signals in the linearized

system and the nonlinear system match closely. Thus, SL-based optimization involves

formulating the optimization problem described in (7.2) by considering the values of

Ni, Mi (and thus mi = Mi −Niµûi) while evaluating σP̂e and σP̂in,i
:

minimize σ2
P̂e

+ ρ
∑n
i=1 σ

2
P̂in,i

subject to: (7.3), (7.4), i = 1, 2, . . . , n

Ni = FN(µû(Mi), σûi(Ni)), i = 1, 2, . . . , n

Mi = FM(µû(Mi), σûi(Ni)), i = 1, 2, . . . , n

(7.5)

where:

σP̂e =
∥∥∥∥∥ FΩd(s)Ki

1 +∑n
i=1Ki

1
1+sτiRm(Tdis)NiApi

∥∥∥∥∥
2
σd

and σP̂in,i
= KiσP̂e .

Note that (7.5) defines a static optimization problem that is dependent on system

parameters (like σd) that can be estimated and/or measured. If the system parameters

change, the optimization can be re-done. This adaptive nature of SL is discussed in

more detail in Section 7.2.3.
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(a) VB Usage - No SL (b) VB Usage - SL

(c) Head node power - No SL (d) Head node power - SL

Figure 7.3: VB Usage and Head Node Power. This is for VBs with fixed power limits (i.e.,
univariate saturation).

7.2.2 Simulation

Setup

The simulation setup consists of an IEEE 37-node feeder (single-phase equivalent)

[182], with two VBs at two different nodes (specifically, 701 and 737), where the base

loads are 140 kW each. The upper and lower power limits of the VBs are taken to be

20 kW and -20 kW respectively. The nominal power set-points are optimally found

to be 20 and 18 kW (using the optimal set-point dispatcher described in [142]) to

meet a head node power demand of 700 kW, resulting in a highly saturated system.

The maximum state-of-charge capacities of the VBs were taken to be 80 kWh (rep-

resenting a maximum of four hours of operation at maximum power capacity) each.
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Table 7.1: Signal Statistics

Quantity With
No SL With SL Improve-

ment (%)
SD of VB 1 Power (P) 15.2 kW 9.9 kW 35.2
SD of VB 2 P 14.8 kW 10.3 kW 30.1
Mean of Head Node P 713.8 kW 709.2 kW 0.6
SD of Head Node P 33.9 kW 30.0 kW 11.8
Cost 3609.3 kW2 1121.9 kW2 68.9

The time constants of the first-order VB model were taken to be 600 ms and 400 ms

respectively, and the time delays to be 100 ms and 200 ms respectively. I assume

Gaussian random active and reactive power noise injected into certain locations of

the feeder (as is expected, for example, due to random cloud cover). A 10 min sim-

ulation was performed using both the SL-based optimization and the non-SL-based

optimization to illustrate the effectiveness of SL. The value of ρ was assumed to be

0.1 and a 3rd order Padé approximation was considered for the delays in both cases.

Results and Discussion

Fig. 7.3 shows the power delivered by one of the VBs, both by not using SL (Fig. 7.3a)

and using SL (Fig. 7.3b). It can be seen that there is significant saturation using

the controller gains designed without SL. This is because there is no knowledge of

VB power bounds in that design. Moreover, the variability of the head node power

shown in Fig. 7.3c is also high. However, with SL-based design, the saturation and

variability of VB power are significantly reduced, along with a reduction in the head

node power deviation (Fig. 7.3d) from the desired value of 700 kW. The mean and SDs

of the signals were found numerically after the simulations, and the improvements

are summarized in Table 7.1. Note that although a single simulation is reported
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(a) Non-SL (b) SL

Figure 7.4: Optimal Cost, evaluated over one minute intervals. Y-axis is in log scale.

here to illustrate the effectiveness of SL, other simulations performed with the similar

conditions also resulted in similar improvements with SL. Of course, the exact system

parameters will dictate how effective SL will be in a given situation, and I discuss the

effect of some system parameters in Section 7.3.

7.2.3 Data Driven SL Formulation

Since the SL process mentioned in the previous section takes into account all system

parameters (as in (7.5)), the controller gains can be designed adaptively, considering

changes in system parameters (such as saturation limits in VB power) or exogenous

signal statistics (such as the mean and SD of the head node power). In situations

when these parameters can be estimated using real-time data, e.g., using Kalman

filters, recursive least squares, or running averages [183]), the controller gains can

be adaptively re-tuned based on this data. If done sufficiently slowly, the system

stability is not comprised, though the proof of this is a topic for future research. This

subsection illustrates the effectiveness of SL for adaptive control of VBs by using
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Figure 7.5: Headnode power. Statistics are evaluated over one minute intervals.
updated head node power statistics at regular intervals.

Setup

The same system is considered as described in Section 7.2.2. However, in this case,

the disturbance statistics µd and σd are estimated over a running window of two

minutes using measured head node statistics and the linearized system model. The

VB optimization problem is run every minute using updated head node power (over

the last two minutes), first by not using SL and then using SL. As before, ρ was

assumed to be 0.1 in both cases.

Results and Discussion

First, the results indicate several advantages of an SL-based optimization over a non-

SL based optimization. For instance, Fig. 7.4 shows the calculated (using (7.3)-(7.5))

and actual optimal cost (by numerical simulation) over every one minute interval. It
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(a) Non-SL (b) SL

Figure 7.6: Saturation of VBs

can be seen that non-SL based optimization method grossly underestimates the cost

that it minimizes (Fig. 7.4), by more than an order of magnitude, whereas the SL

based optimization, due to knowledge of updated VB bounds and noise statistics,

estimates the cost more accurately. Moreover, using the improved estimation of the

statistics of the error and the control input in SL-based optimization, a slightly lower

value of SD can be obtained and the mean of the head node power with SL is also

slightly closer to the desired value (Fig. 7.5). The mean is lower due to the additional

bias term that is added due to SL in the operating points of the VBs. With SL, the

amount of saturation in VB power is reduced by about 10-30% (Fig. 7.6), indicating

that VBs are being pushed lesser to their limits. This is a major advantage of an SL-

based design compared to the non-SL-based design and results in much lesser usage

of power to achieve the same or better grid objective.

Second, the adaptive nature of SL is specifically highlighted in Fig. 7.7. Unlike

the non-SL based optimization, whose solution (i.e., optimal gains) is independent of

noise statistics or VB bounds (since σ2
d is just a multiplying factor for, and µd does

not feature in, the objective function (7.5), while Ni = 1 and mi = 0 always), the
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(a) Controller Gain 1 (b) Controller Gain 2

Figure 7.7: Controller Gains

SL-based optimization takes into account this information about the system to find

the quasilinear gain/bias and updates the gain accordingly (Fig. 7.7). Hence, the

SL-based optimization is adaptive, unlike the non-SL based optimization.

7.3 Analysis on Effect of Parameters

In this section, I provide the results of simulations to show the effect of various system

parameters on the SL-based optimization procedure. This provides various insights

into the design and analysis of nonlinear stochastic systems using SL.

7.3.1 Effect of Control Penalty

First, the value of the control penalty ρ is varied. In this specific study, the delay is

neglected. This is because delays are not accurately modeled when the bandwidth of

the control system is high, which can occur with high values of controller gains, or

due to modeling errors resulting from discrete-time simulation of the continuous-time

system, unless the sampling time is very small.
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Figure 7.8: Effect of ρ. Axes are in log scale.

On Optimal Cost

The effect of ρ on the optimal cost is displayed in Fig. 7.11a. The solid lines show

the value of the cost obtained numerically from a 10-minute simulation of the VBs,

while the dotted lines show the calculated cost. It can be seen that with small ρ,

the non-SL-based design is not able to reduce the actual cost due to no knowledge

of bounds. Effectively, for very small ρ, the control input is not penalized much, and

hence its variability is high and the VB ouput is saturated. For large ρ, the costs

from both the non-SL and the SL-based optimizations converge since, for large ρ, the

control action is highly penalized, and thus there is no VB saturation. However, SL

captures the cost more accurately due to the knowledge of bounds, and hence, it can

make the actual cost smaller even for small values of ρ.

On Head Node Power

With SL-based optimization, the mean of the head node power is generally closer to

the desired value (it is still away from the desired value due to the fundamental limit
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Figure 7.9: Effect of ρ on Head Node Power

of VB saturation). As mentioned earlier, the lower mean of the head node power is

due to the additional bias term (mi) that is added due to SL in the operating points

of the VBs. The two methods converge for large ρ due to the same reason mentioned

in the previous paragraph. Moreover, the SD of the head node power is much smaller

for small values of ρ and is relatively the same as that obtained by not using SL for

higher values of ρ. Note that the SD of the head node power sometimes increases and

decreases since it forms only a part of the cost function in (7.5).

7.3.2 Effect of different saturation limits

Next, I investigate the effect of changing the power limit of one of the VB with respect

to the other. Keeping the same time constants (= 400 ms), delays (= 400 ms), and

feeder locations, the power limit of one VB (VB 2) was varied, keeping that of the

other (VB 1) fixed, and the controllers were redesigned with new information on VB

limits.
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Figure 7.10: Effect of VBs on SL and optimization

(a) Effect of ρ. Axes are in log scale. (b) No. of SL function evaluations vs. number of
VBs

Figure 7.11: Effect of VBs on SL and optimization

7.3.3 Effect of the number of VBs

Since SL involves solving a system of transcendental equations, the computational

complexity increases as the number of equations increases. For each VB added,

there are added two equations involving Ni and Mi. To quantify the computational

complexity, the number of evaluations of the SL functions for fixed controller gains

were noted as the number of VBs were increased. This would roughly indicate a lower

bound on the number of evaluations required of the SL functions when they are part of
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the optimization problem as equality constraints, as solving the optimization problem

involves finding a solution to these SL equations. The equations were solved using

a modification of the Powell hybrid method, as implemented in MINPACK [184]

(other numerical methods were also tried, like the Broyden method, but this was

the best in terms of the number of function evaluations). The results are shown in

Fig. 7.11b. It can be seen that with the increase in the number of VBs, the number

of function evaluations (for solving SL equations with fixed controller gains) also

increases, indicating that SL becomes more computationally expensive, but grows

polynomially rather than exponentially.

7.4 Extension to Variable Virtual Bat-

tery Power Bounds

7.4.1 Modeling

In practice, the power limits of the VB’s underlying DER aggregation are generally

not constant [139]. The DERs that make up a VB can choose not to participate in

providing grid services due to user preferences or to avoid Quality-of-Service (QoS)

violations, leading to a change in the power and energy limits. To deal with such a

case, a trivariate saturation in the VB model can be considered, where instead of the

saturation authorities α and β being constants in (2.4), they are time-varying, i.e.,
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α(t) and β(t):

satβ(t)
α(t) (u(t)) =



β(t), u(t) ≥ β(t)

u(t), α(t) < u < β(t)

α(t), u(t) ≤ α(t)

(7.6)

when α(t) < β(t), and 0 otherwise (since then there is no flexibility and the VB

output is nominal, i.e., pb(t) = Pset).

7.4.2 Multivariable SL

Open-Loop

Equation (7.6) describes a trivariate nonlinearity. To find SL of this nonlinearity,

(2.2)-(2.3) is not applicable. Hence, I apply the procedure of multivariable SL de-

scribed in [144], where instead of (2.2)-(2.3), the quasilinear gain N vector and the

bias M are computed for a multivariate function f : Rn → R using:

N = E [∇f(u(t))] := GN(µ,Σ), M = E [f (u(t))] := GM(µ,Σ) (7.7)

where GN(·, ·) and GM(·, ·) are functions representing the dependence of N and M

on µ and Σ, the mean and covariance matrix of u(t) respectively. Note that µ is

composed of µu, µα, and µβ (the means of the inputs u(t), α(t), and β(t), respectively),

and the covariance matrix Σ is composed of σu, σα, and σβ (their corresponding

SDs), and ρuα, ραβ, and ρuβ (the correlation coefficient between u(t) and α(t), that

between α(t) and β(t), and that between u(t) and β(t) respectively). Assuming

that α(t), β(t), and u(t) form a trivariate Gaussian process, on substituting the
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nonlinear function (7.6) for f(·) in (7.7), the value of N can be found as follows: N =

[N1 N2 N3]T = E[∇sat(u(t), α(t), β(t))]. Here note that since the saturation function

is not differentiable at certain points, the gradient ∇ has to be taken piecewise.

Closed-Loop

Now consider the feedback system of Fig. 7.1, but with trivariate saturation in VBs

instead of univariate saturation. Since αi(t) and βi(t) are intrinsic properties of the

ith VB and are not influenced by the nodal disturbance d(t), I assume that the values

of µαi, µβi, σαi, σβi, ρuαi, ραβi, and ρuβi are known (based on, e.g., historical data),

and evaluate µûi and σûi as before from (7.3)-(7.4), in place of µui and σui (due to

the same reason mentioned in Section 3.2). Then, similar to (2.2)-(2.3), the SL of the

closed-loop system is performed by solving:

Ni = GN(µ̂i(M), Σ̂i(N)), Mi = GM(µ̂i(M), Σ̂i(N))

where µ̂i and Σ̂i in the stochastically linearized system denote the moments corre-

sponding to µi and Σi in the nonlinear system. This completes the SL procedure of

the closed-loop system. For more details, please refer to [144].

7.4.3 Simulation

Setup

To illustrate the SL of the system with trivariate saturation, an IEEE 37-node feeder

with a VB of 600 ms time constant and 100 ms time delay at one of its nodes was

considered for the simulation. The time-varying upper and lower power limits of the
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(a) No SL (b) With SL

Figure 7.12: VB Actuation. The red lines indicate time-varying power limits.

VB were taken to Gaussian, with 40 and −40 kW as mean respectively, and 6 kW as

the SD (for both limits). For the optimization, the value of ρ was taken to be 0.1.

The power limits were assumed to be uncorrelated to the input to the saturation.

Results

The results are shown in Fig. 7.12. It can be seen that with SL, the VB power is

significantly less variable than that by not using SL. The SD of the VB power in

case of no SL is 28.5 kW and that with SL is 14.9 kW (an improvement of 47.7%).

The mean head node power with no SL is 715.1 kW and with SL is 710.2 kW (an

improvement of 0.7%) while the SD of the head node power with no SL is 32.6 kW and

with SL, it is 29.7 kW (an improvement of 8.9%). The overall cost function improved

from 9826.5 kW2 (no SL) to 1042.3 kW2 (SL), an improvement of 89%. Moreover, it

was observed that if the VB power limits were not assumed stochastic while designing

the controller gains, but in reality they were, the actual optimal cost would increase

by 2.3%, the SD of VB power by 6%, and the head node power mean by 0.1%. These

serve as preliminary results to illustrate that variable power bounds can be handled

in the context of VBs. A full exposition of this idea is a topic for the future.
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Chapter 8

Conclusion and Future Works

In this dissertation, the theory of QLC has been extended to systems with multivariate

nonlinearities, the numerical properties of QLC have been investigated, and QLC has

been applied to power system applications like frequency control and control of virtual

batteries in distribution feeders. Detailed conclusions are discussed below.

8.1 QLC of Systems with Multivariate

Nonlinearities

In Chapter 3, SL of systems with multivariate nonlinearities is discussed. The for-

mulae for the equivalent gains and bias resulting from SL are derived. The formulae

are then applied to a trivariate saturation nonlinearity and the SL coefficients are

interpreted. The process of multivariable SL has been applied to find an equivalent

realization of a stochastic system with stochastic parameters or state multiplicative

noise, and its effectiveness in finding optimal controllers has been illustrated. A recipe
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for finding the robustness of SL is also given. A numerical example is presented to

show that the method can be used to design optimal controllers for systems with

multivariate nonlinearities.

8.2 Investigation of Accuracy, Robust-

ness and Computation of SL

In Chapter 5, the open-loop accuracy, robustness, and computational performance

of SL for a typical stochastic nonlinear feedback system with both asymmetric and

symmetric saturation have been investigated. From the study on open-loop accuracy,

a mathematical relationship has been established between the actuator authority

and the worst-case error, and its implications on closed-loop accuracy described.

From the study on the robustness of SL to system parameters, it is found out that

the SL coefficients are more sensitive in the case of asymmetric saturation than in

the case of symmetric saturation, and that the sensitivity is more towards those

parameters that affect the saturation directly (e.g., gain, actuator authority, signal

statistics). Also, in the case of asymmetric saturation, the mean of the actuator

input and tracking error is more sensitive to changes in SL coefficients. Finally, from

the study on computational efficiency, it is found that the Broyden method is best

suited for applying SL to symmetric saturation in a reference tracking problem since

it requires a low computational effort. In the case of asymmetric saturation, it is

found that a coordinate transformation can lead to significant improvements in the

number of tries required by an algorithm, and the Trust Region Reflective method

requires the least number of tries. For both asymmetric/symmetric saturation, it is
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found out that fixed point iteration is not an effective method for solving the SL

gain/bias.

8.3 Droop Control of Power Systems

In Chapter 6, the method of QLC has been applied to design an optimal droop

controller for primary frequency control of power systems with generator saturation.

Numerical simulations show that the controller achieves a reduced combined state

and control cost, compared to a baseline design, at the expense of a slightly increased

state cost. Since the process depends on the values of all the system parameters, the

optimal controller can dynamically update itself on change of parameters, for example,

the load variability or the saturation limits, to produce optimal performance.

8.4 Optimal Control of VBs

In Chapter 7, an SL-based method of optimizing the power delivered by VBs in

distribution feeders is described. Since SL takes into account VB power limits and

other system parameters, it provides a superior method of analysis and design of gains

optimally. Simulation results show that compared to a non-SL-based optimization,

SL results in a more accurate estimation of signal statistics. They also indicate that

SL-based optimization can reduce head node power deviation from the nominal while

optimizing VB usage and can use updated information to change the gains, i.e., is

adaptive. Some analysis on the effect of the control penalty ρ in the cost function

shows that even at small values of this parameter, with proper models of the devices,
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SL can lead to a reduction in the cost. Moreover, it is shown that with an increased

number of VBs, the computational complexity of SL increases. Finally, the design is

extended to VBs with variable power limits.

8.5 Future Works

There are many interesting directions of investigation in this field, including:

• Investigation of the accuracy, robustness and computation of multivariable SL.

• Investigation of accuracy of SL for systems with low phase margin, and of the

causes for outliers in the sensitivity studies of Chapter 5.

• SL of systems with nonlinearities other than saturation.

• Applications of QLC to handle saturation in the slew rate of generators and

energy constraints, apart from power constraints, in virtual batteries.

• SL of systems in discrete-time and QLC theory for discrete-time systems.

• Comparison of SL with other common nonlinear control techniques.

• Exposition on data-driven SL, including methods of estimating the probability

density function, and the effects on computed quasilinear gain/bias, as new data

points are obtained on the fly.

• Effect of SL on the controllability and observability of control systems.
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