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Abstract

Extreme–mass–ratio inspirals (EMRI) are prospective sources for the detection of
observational signals with the Laser Interferometer Space Antenna (LISA) mission,
built to accurately detect and measure gravitational waves – ripples in the curvature,
and fabric of space–time. EMRIs are typically comprised of a supermassive black
hole (SMBH) one million times more massive than our Sun, and a stellar–origin black
hole several orders of magnitude smaller. As the smaller black hole spirals into the
supermassive black hole, thousands of cycles of the gravitational waveform serve as a
precision probe for the extreme space-time curvature of the system. The goal of this
research is to model the dynamics of and calculate the gravitational waveforms from
“Trojan analog” EMRIs: multiple EMRIs in a single system, locked in 1:1 resonant
orbits, analogous to Jupiter’s Trojan asteroids.

In this thesis we present and confirm the accuracy of the methods used to calculate
the equations of motion of such a system using Newtonian, 1st post-Newtonian (PN),
and 2.5 PN terms of motion with Hamiltonian Mechanics. Using the resulting motion
of the three–body system, we present methods used to calculate the gravitational
waves produced by the system’s inspiral using the quadrupole formula. We then
conduct a comparison test of the Resonant Trojan system to a Single, classical EMRI
system which concludes that these Trojan EMRIs hold a mix of unique observational
potentials, distinct from those of Single EMRI systems, that may be detectable with
the LISA mission, while simultaneously providing detailed orbital dynamics around
a supermassive black hole.
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Introduction
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Gravitational waves are ripples in the fabric of space–time that remain undis-

turbed after creation and serve as a precision probe for the space–time curvature

of any system [4], [5]. NSF’s Laser Interferometer Gravitational–Wave Observatory

(LIGO) is the first terrestrial interferometer to detect gravitational waves with a sig-

nal frequency band of 10 Hz − 10 kHz [6]. The Laser Interferometer Space Antenna

(LISA) will be the first space–based gravitational wave detector, comprised of an

equilateral triangular spacecraft configuration [7], [8]. The LISA mission is led by

ESA with major contributions from NASA. The goal of this mission is to detect and

accurately measure the gravitational waves of a lower frequency band ranging from

0.1 mHz−0.1 Hz, which is undetectable from terrestrial interferometers [4], [5], [7], [8].

Due to LISA’s low–frequency sensitivity, this mission will unveil regions of space

that are absent from light, inaccessible from electromagnetic observations. The LISA

mission will be capable of detecting signals from coalescing supermassive black hole

(SMBH) mergers, extreme and intermediate mass ratio inspirals (E/IMRI), galactic

binaries, and stochastic gravitational-wave background [7], [9]. The observed gravi-

tational wave signals from the LISA mission will expand our understanding of fun-

damental physics by testing General Relativity in the most extreme regimes through

gravitational waveform phase and amplitude. Gravitational wave detection will also

advance our understanding of astrophysics by mapping the environments around su-

permassive black holes. As supermassive black holes are expected to lie at the center

of galaxies and create matter–rich systems, gravitational wave signals will allow us to

identify the dynamics of objects that populate SMBH systems [4], [9].

In this thesis we will focus on LISA’s detection of Extreme Mass–Ratio Inspirals

(EMRIs). EMRIs are typically comprised of a supermassive black hole (SMBH)
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with mass [105 − 107]M⊙, and a stellar–origin black hole with mass [1 − 100]M⊙.

As the stellar–mass black hole spirals into the supermassive black hole, thousands

of gravitational waveforms serve as a precision probe for the extreme space–time

curvature of the system [5]. An EMRI system can form due to a stellar–mass BH

being trapped by a SMBH or a collapse within the SMBH accretion disk, both of

which will lead to an ultimate inspiral into the SMBH [8]. EMRI gravitational wave

frequency falls within the LISA band and is expected to be one of the main detection

targets for this mission. EMRIs are expected to provide us with detailed space–time

dynamics around supermassive black holes as the stellar–mass black hole acts as a

test–body for the SMBH, testing the Theory of General Relativity. EMRI detection

will provide insight into parameters of individual systems, mass distributions, and

stellar environments throughout the Universe as they act as probes for the dynamics

of galactic nuclei [5]. Due to their extreme mass ratio, EMRIs follow a slow, gradual

inspiral such that ∼ 104−105 inspiral cycles fall within the LISA frequency band which

will allow us to observe and measure EMRI parameters extensively [10], [11]. While

the astrophysical uncertainties of EMRIs are complex, it has been estimated that the

detection of EMRI systems from LISA ranges from at least a few detections per year

to a few thousand per year with about three orders of magnitude of uncertainty and

a signal–to–noise ratio of several hundred [10], [11], [12].

Due to their extreme gravitational pull, SMBHs are expected to be surrounded

by a dense–matter accretion disk. Through random disruption or formation, it is

possible for EMRI systems to capture a third stellar–mass black hole to create a

three–body system [9]. These three–body black hole systems can create resonances,

such that, the two stellar–mass black holes have characteristic frequencies that match
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an integer–number ratio [13]. Due to this resonance, the two stellar–mass black holes

fall into a stable periodic orbit, locked into orientation, with phase libration around

a fixed point [14]. The resonant stellar–mass black holes will oscillate around this

stable fixed point while continuing to inspiral towards the supermassive black hole.

Various studies have looked at EMRI systems capturing a small third body with

hierarchical resonance, but in this thesis, we examine a multiple EMRI system with

1:1 orbital resonance between the two stellar–mass black holes inspiraling towards the

supermassive black hole.

For a three–body system with two bodies locked into 1:1 orbital resonance around

a third, larger body, it has been shown that the only stable configuration of the three

bodies consists of three bodies forming an equilateral triangle [15]. Other three–

body configurations will lead to the ejection of the third body or a merger of the

two stellar–mass black holes within the accretion disk of the central, supermassive

black hole. This 1:1 resonant configuration is the only stable configuration such that

all three bodies will merge simultaneously [16], [17]. For the purpose of this thesis,

we will focus on the gravitational waveforms from “Trojan analog” EMRIs: multiple

EMRIs in a single system, locked into a 1:1 resonant orbit, analogous to Jupiter’s

Trojan asteroids.

A French-Italian mathematician Joseph Lagrange wrote the “Essai sur le prob-

lème des trois corps” (Essay on the Three–Body Problem) [18] in which he researched

a solution to the Three–Body Problem, a classical dynamics problem which incorpo-

rates the initial conditions of positioning and velocities of three massed bodies in a

system. Using Newton’s Laws of Motion and Universal Gravitation, the Three–Body

Problem attempts to solve and understand the motion of all three bodies within the
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system. Although the general solution to the Three–Body Problem is chaotic, within

Lagrange’s research he came across the discovery of the planar and circular Restricted

Three–Body Problem, a system containing three bodies in which the third body has

a negligible amount of mass and does not affect the motion and orbit pattern of

the other two bodies in the system. Through Lagrange’s research, he discovered his

Lagrange points, which are five points within a three–body system in space that rep-

resent the location of the third, negligible–mass body in the Restricted Three–Body

Problem. These five Lagrange points consist of three unstable points (L1, L2, and

L3) and two stable points (L4 and L5), each forming a Restricted Three–Body system

with the other two bodies in the system. For this three–body system to create a stable

resonance, the first two masses must satisfy a mass ratio of M1/M2 > 24.960 [18].

These five points have been shown to exist in the natural world in Planet–Sun

systems such as the Jupiter–Sun system with Trojan asteroids in the location of

the L4 and L5 Lagrange points [15]. The stable, three–body equilateral triangle

configuration discussed above is analogous to the Jupiter–Trojan system such that

the supermassive black hole resides in the location of the Sun, the first stellar–mass

black hole resides in the location of Jupiter, and the third massed object, the second

stellar–mass black hole lies in the location of the L4 or L5 Lagrange point. As the L4

and L5 Lagrange points are symmetrical, for the purpose of this thesis we choose our

third body to reside in the location of the L4 Lagrange point. This configuration of

the three bodies in the Resonant Trojan EMRI system can be viewed in Figure 1.1.
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Figure 1.1: The stable, three black hole equilateral triangle configuration, analogous to the
Jupiter–Trojan system. The supermassive black hole (M1) resides in the location of the Sun,
the first stellar–mass black hole (M2) resides in the location of Jupiter, and the third object,
the second stellar–mass black hole (M3) lies in the location of the L4 Lagrange point.

While Lagrange found this stable restricted three–body system to have a negligible

third mass, it has been shown that the system will remain stable when the two stellar–

mass black holes in the system have comparable masses with the condition that the

two stellar–mass black holes are small compared to the central, supermassive black

hole [15]. In this thesis, we will look at an analogous multiple EMRI system such

that by definition of an EMRI, the mass ratio between the SMBH and stellar–mass

black holes satisfy this mass condition.

The objective of examining the Resonant Trojan EMRI system is to determine

the potential orbital dynamics of the three bodies and simulate the gravitational

wave signal expected from LISA given various initial parameters. In this thesis, we

compare the dynamics and gravitational wave results of the Resonant Trojan EMRI

with a Single EMRI system to identify whether there exists a unique difference in the

expected gravitational signal detection from LISA. This provides an understanding
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of EMRI system dynamics and their evolution, ultimately learning about the gravi-

tational waves produced by such a system to gain knowledge about the environment

and curvature of space–time around multiple EMRI systems.

To accurately calculate the equations of motion of such a system we use New-

tonian, 1st post–Newtonian (PN), and 2.5 PN terms of motion with Hamiltonian

Mechanics. The Hamiltonian approach is particularly suited for the classical me-

chanics of dynamical systems with resonant behavior, such as the system we are

considering [14]. The Newtonian term takes into consideration terms of gravitational

pull of each body while the post–Newtonian terms take into account terms of general

relativity, the theory of gravitation developed by Albert Einstein to calculate the

gravitational effect bodies have on each other based on their curvature of space–time.

The 2.5 PN is a dissipative, gravitational radiation reaction term that considers the

loss of energy and angular momentum within a system, ultimately leading to an in-

spiral of the given bodies [4], [19]. These equations are simulated using the Adaptive

Runge–Kutta–Fehlberg Order 4–5 numerical integration method. Using the resulting

position dynamics, we calculate the gravitational waveform produced by the three–

body system using the quadrupole formula, as the LISA mission will detect both

polarizations of gravitational wave signals [4]. We will show that the resulting gravi-

tational waveform displays sensitive dependence upon initial condition [10], [20] due

to the mass, position, and velocity of each body.

In this thesis, we first discuss related research studying the dynamics and grav-

itational waves of Resonant Trojan EMRIs along with previous papers that have

used similar methods of calculation. Next, we present methods used to accurately

calculate the equations of motion and gravitational waves produced by the system’s
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inspiral. We then conduct a comparison test of the Resonant Trojan system to a Sin-

gle, classical EMRI system. First, we present the orbital dynamics of the Resonant

Trojan systems, looking at short term differences in the gravitational wave results

compared to those of a Single EMRI system. We then present the long–term inspiral

results of Single and Resonant Trojan EMRI systems for various stellar–mass black

hole mass–ratios.

Lastly, we conclude our findings from this comparison test, present the future

work of this project, and emphasize the scientific importance of this work to both

the LISA mission and to our understanding of EMRIs, three–body interactions, and

general relativity. Modeling these orbital dynamics and gravitational wave signals

provides us with information about the curvature of space–time around these three–

body systems and the unique dynamics produced by the Resonant Trojan EMRI

system compared to that of a Single EMRI system.

8



Chapter 2

Related Work
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Post–Newtonian approximation is a method of solving Einstein’s field equations

for systems with slow motion and weak gravitational fields, but has been proven to

be a highly effective method in strong-field, fast-motion systems such as a black hole

system with gravitational radiation [21]. Since we are conducting a source comparison

test of the waveforms produced by single and multiple EMRI systems using the post–

Newtonian equations of motion within this thesis, we must validate our numerical

integration of these equations for a two– and three–body system.

Bonetti, et al. [2] has produced an analysis of the numerical implementation of

the 1PN, 2PN, and 2.5PN terms applied to three–body hierarchical black hole sys-

tems. We use a negligible third mass to simulate the motion of a two–body system

to compare their results to the first–order coupled orbit–averaged equations for the

time derivative of eccentricity and semi-major axis created by Peters and Mathews to

numerically integrate the orbital evolution of a two–body system [1]. The evolution

of the eccentricity and semi–major axis are related to the loss of energy and angular

momentum due to the 2.5PN term [22]. Therefore, within their comparison to the

Peters and Mathews orbit–averaged equations, Bonetti et al. includes only the 2.5PN

term in the equations of motion for this analysis. They also examine the separation,

circularity, and inclination between the inner binary of various eccentric three–body

hierarchical systems. We replicate their methods and analysis to confirm our numer-

ical implementation of the post–Newtonian terms using a Hamiltonian approach.

While many papers discuss two–body and three–body hierarchical systems, within

this section we discuss previous work done on the understanding of Resonant Trojan

three–body systems. Each of the following papers use the post–Newtonian approx-

imation to simulate the motion of three–body systems, and the papers that discuss
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gravitational waves use the quadrupole or octupole formulas to determine the result-

ing waveforms of these systems.

It has previously been found that the inclusion of the 1PN term in the equilateral

triangular configuration leads to reduced stability compared to the Newtonian trian-

gular configuration of the Restricted Three–Body Problem [23]. Yamada and Asada

have found that the PN corrections for general relativity cause the triangular config-

uration to break its perfect equilateral positioning, while still remaining stable [24].

While various mass ratios and hierarchical three–body systems demonstrate chaotic

evolution, even with consideration of the 2.5PN gravitational radiation reaction term,

the Resonant Trojan system appears to remain stable long–term throughout the in-

spiral, maintaining its orbital plane, center of mass, and equilibrium while the system

sees a loss of energy and angular momentum with increasing orbital frequency.

Numerous papers have discussed the sensitivity of the system’s mass–ratio and

initial separations on the stability of the equilateral triangular configuration when

using PN approximation due to the relativistic effects of the system [16], [17], [24],

[22], [25]. In this thesis, we consider various mass–ratios, initial separations, and initial

velocities of the three bodies in Lagrange’s equilibrium configuration to demonstrate

the stable orbital dynamics as indicated by the system’s sensitive dependence upon

initial condition.

A previous paper by Seto and Muto [16] looks at a binary black hole system that

traps a third body with negligible mass, located at either the L4 or L5 Lagrange point,

considering the 1PN and 2.5PN terms of motion approximation. In their paper they

find that due to gravitational radiation, the system will become less stable overtime.

Based on the defined mass–ratio and separation of each body, they find that the
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third negligible–mass body can be resonantly “held” by the system up to their final

separation based on numerical precision. They state that due to the inspiral’s reduced

stability, it is possible that at close separations, the third negligible–mass body may be

ejected from the system before merger. In either case, they state that the gravitational

emission of the third body may allow us to probe various astrophysical effects based

on the gravitational signal produced by the merger of such a system.

A similar paper by Schnittman [17] uses only the 2.5PN correction to look at a

binary black hole system that traps a third body with negligible mass, located at

either the L4 or L5 Lagrange point. He shows that with the inclusion of only the

2.5PN gravitational radiation term, the L4 point will move towards the secondary

BH (in the analogous location of Jupiter), losing stability, and the L5 point will move

away from the secondary BH, gaining stability. In this study, Schnittman constructs

the gravitational waveforms of this Trojan analog system and finds that this circular–

orbit system, with no libration of the secondary and negligible–mass third body, will

be indistinguishable from a circular–orbit binary system, producing a pure sinusoidal

gravitational waveform. He does state however that with libration of the second and

third body, it is possible that the Trojan analog system will produce distinct signals

detectable by the LISA mission.

In the two papers by Seto and Muto [16] and Schnittman [17], they state that a

further analysis of the gravitational wave signals produced by the Resonant Trojan

system will provide a deeper understanding of the system dynamics as well as the

potential detection for the LISA mission. In this thesis, we confirm both the indis-

tinguishable and distinct features of the Trojan analog system for the detection of

EMRI systems with the LISA mission.
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Two papers from Torigoe et al. [3] and Asada [26] conduct a gravitational wave

comparison test of a binary source to the Resonant Trojan source with a non–

negligible third body in the location of the Lagrange point. Using the gravitational–

wave inverse problem to produce the evolution chirp mass of each system, they deter-

mine whether there exists a detectable difference in the gravitational waves produced

by each system using Newtonian equations of motion and considering only perfectly

circular orbits. Both papers conclude that the quadrupole formula used to calculate

the gravitational waveforms does not present a distinguishable difference between the

two systems, while the inclusion of the octupole formula demonstrates a recognizable

difference between the two sources. These papers present the importance of including

higher multipole terms to distinguish a difference in gravitational wave sources, as

lower multipole terms will cause an indistinguishable gravitational signal between the

two test sources.

In this thesis, we confirm their indistinguishable results from the quadrupole for-

mula using PN approximations and simulate the resulting gravitational waves of each

system instead of their analysis using the gravitational inverse problem. In the fu-

ture of this research we will use the octupole formula to demonstrate the difference

in gravitational waveforms as well as compute the expected chirp mass evolution of

each system to confirm the results of this prior research and provide a more detailed

orbital dynamic analysis. While these previous papers only consider perfectly circular

orbits, in the future of this research we will also explore the possibility of detecting

libration motions in the gravitational waveforms, unique to the three–body system.
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Chapter 3

Methods
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3.1 Equations of Motion

In the scope of this paper, we present numerous EMRI systems with varying initial

conditions. For our three–body EMRI system we define the central, supermassive

black hole to have mass m1, the analogous Jupiter, stellar–mass black hole to have

mass m2, and the Lagrange stellar–mass black hole to have mass m3. For the simu-

lated two–body, Single EMRI system comparison we define m3 to be negligible, but

otherwise employ the identical equations and methods. Let G represent the gravita-

tional constant and c be the speed of light. With coordinates (x, y, z), we set each

body’s position as x⃗α, velocity as v⃗α = ˙⃗xα, and linear momentum as p⃗α = mα · v⃗α

such that α = 1, 2, 3 for each body α. This general formulation of the equations of

motion would easily allow for additional particles beyond N = 3.

The Hamiltonian expansion of our black hole system including the Newtonian

(H0), 1PN (H1), and dissipative 2.5PN (H2.5) terms, is defined as [2], [27], [28], [29]

H = H0 + 1
c2 H1 + 1

c4 H2 + 1
c5 H2.5. (3.1)

By taking the partial derivative of H, we result in the equations of motion for each

black hole α [19], [2], [28], [30]

˙⃗xα =
∑

i

∂Hi

∂p⃗α

(3.2)

˙⃗pα = −
∑

i

∂Hi

∂x⃗α

. (3.3)
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In the Hamiltonian expansion, the Newtonian term H0 is given by [16], [2], [29]

H0 = 1
2
∑

α

|p⃗α|2

mα

− G

2
∑

α

∑
β ̸=α

mαmβ

rαβ

(3.4)

which takes into consideration the gravitational pull of each massed–body. The post-

Newtonian equations of motion take general-relativity into account, such that first

post-Newtonian (1PN) and second post-Newtonian (2PN) terms introduce different

relativistic corrections to the equations of motion. As both the 1PN and 2PN terms

conserve energy and angular momentum, but the 2PN includes secondary order terms,

we do not include the 2PN term within this paper. However, as the 1PN is the leading

order conservative post–Newtonian term, we do account for the 1PN term H1 defined

by [16], [2], [24], [29]

H1 = − 1
8
∑

α

mα

(
|p⃗α|2

m2
α

)2

− G

4
∑

α

∑
β ̸=α

1
rαβ

[
6mβ

mα

|p⃗α|2 − 7p⃗α· p⃗β − (n⃗αβ· p⃗α)(n⃗αβ· p⃗β)
]

+ G2

2
∑

α

∑
β ̸=α

∑
γ ̸=α

mαmβmγ

rαβrαγ

(3.5)

where rαβ and n⃗αβ are

rαβ = |r⃗αβ| (3.6)

n⃗αβ = r⃗

rαβ

(3.7)
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such that

r⃗αβ = x⃗α − x⃗β. (3.8)

Considering only the Newtonian and 1PN terms thus far, we test the numerical accu-

racy of our simulation, showing the three–body system conserves energy and angular

momentum. The inclusion of the dissipative 2.5PN term takes into account the sys-

tem’s loss of energy and angular momentum through gravitational radiation emission.

To model the inspiral phase of an EMRI system, this term is required. The 2.5PN

term is given by [2], [30] [31]

H2.5 = G

45χij(x⃗α, p⃗α)χ̇ij(x⃗α, p⃗α) (3.9)

where

χij(x⃗α, p⃗α) =
∑

α

2
mα

(|p⃗α|2δij − 3pα,i)pα,j)

+
∑

α

∑
β ̸=α

Gmαmβ

rαβ
(3nαβ,inαβ,j − δij) (3.10)

and

χ̇ij(x⃗α, p⃗α) =
∑

α

2
mα

[
2( ˙⃗pα· p⃗α)δij − 3(ṗαipαj + pαiṗαj)

]
+
∑

α

∑
β ̸=α

Gmαmβ

r2
αβ

[ 3( ˙rαβinαβj + nαβiṙαβj)

+ (n⃗αβ· ˙⃗rαβ)(δij − 9nαβinαβj) ] (3.11)
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such that i, j are the i-th and j-th coordinates of the α-th body, and δij represents

the Kronecker delta function. With the inclusion of this term, the system no longer

conserves energy and angular momentum. We validate the loss of energy by the

system in Section 3.3 of this paper.

3.2 Adaptive Runge-Kutta-Fehlberg

In order to approximate the equations of motion, we use the adaptive Runge–Kutta–

Fehlberg Order 4/5 (RKF45) numerical integration method [32]. This method uses

an order 4/5 embedded Runge-Kutta pair to readjust the step–size at every time–step

in order to control error and ensure numerical accuracy within the approximation. As

the numerical solution to the equations of motion varies between periods of fast and

slow numerical change due to libration of the two stellar–mass black holes and the

system’s inspiral, the adaptive step–size adjusts for smaller step–sizes with periods of

fast change, and larger step–sizes with periods of slow change.

The Runge–Kutta Method is an iterative–method used to approximate the solu-

tion of ordinary differential equations using only the initial conditions of a system.

The RKF45 method uses the fourth–order Runge–Kutta to approximate the solution

while using the fifth–order Runge–Kutta as an error estimator to determine the error

produced by the fourth–order method. By setting an error tolerance, the estimator

is used to determine the error produced by the current step–size to adjust as needed.

Let us choose an initial time t(0) = t0, a final time tn with n time–steps, an initial

step–size h > 0, and a tolerance T . For implementation with our system, let us define

the state of the system by yi(ti) = [x⃗1i, x⃗2i, x⃗3i, p⃗1i, p⃗2i, p⃗3i]T such that we define the
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function dyi

dti
= f(ti, yi) as our equations of motion (i.e. eqs. 3.2 and 3.3), where

i = 0, 1, 2, . . . , n.

The definition of the fourth–order approximation wi+1 is given by

wi+1 = wi + h
( 25

216s1 + 1408
2565s2 + 2197

4104s4 − 1
5s5

)
(3.12)

and the fifth–order approximation zi+1 is defined as

zi+1 = zi + h
( 16

135s1 + 6656
12825s3 + 28561

56430s4 − 9
50s5 + 2

55s6

)
(3.13)

such that

s1 = f(ti, wi) (3.14)

s2 = f
(

ti + 1
4h, wi + 1

4hs1

)
(3.15)

s3 = f
(

ti + 3
8h, wi + 3

32hs1 + 9
32hs2

)
(3.16)

s4 = f
(

ti + 12
13h, wi + 1932

2197hs1 − 7200
2197hs2 + 7296

2197hs3

)
(3.17)

s5 = f
(

ti + h, wi + 439
216hs1 − 8hs2 + 3680

513 hs3 − 845
4104hs4

)
(3.18)

s6 = f
(

ti + 1
2h, wi − 8

27hs1 + 2hs2 − 3544
2565hs3 + 1859

4104hs4 − 11
40hs5

)
(3.19)

where the coefficients in this equation are defined by the Butcher tableau.

Using equations 3.12 and 3.13, the error estimate is then calculated by

ei+1 = |zi+1 − wi+1|. (3.20)
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This error estimate is then used in a relative error test,

ei+1

|wi+1|
< T (3.21)

comparing the relative error to the set tolerance (T ) to determine whether the error

produced by the current step–size requires adjustment. Whether the relative error

test fails or succeeds, the new step–size hnew becomes

hnew = 0.9 · h·
(

T |wi+1|
ei+1

)1/5

. (3.22)

If the relative error test in eq. 3.21 is successful, the proceeding state yi+1 becomes

yi+1 = yi+zi+1 and the numerical integration process continues with step–size hnew for

the next step. If the relative error test fails, the current step is repeated, calculating

the fourth and fifth–order approximations with h replaced by hnew until the relative

error test is successful.

The Runge–Kutta–Fehlberg Method (RKF45) is one of the best–known adaptive

step–size, one–step method used to accurately approximate the numerical solution of

ordinary differential equations. In reference to this study, this numerical integration

method approximates the state solution of the equations of motion for the three–body

system over time.
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3.3 Numerical Validation

In this section, we validate our implementation of the relativistic post–Newtonian

terms given a three–body, supermassive black hole system. To do so, we replicate

two numerical validation methods from Bonetti, et al. [2].

The first test validates the numerical implementation of the 2.5PN dissipative

radiation term in our simulation. We use our three–body equations of motion to

simulate a binary system by considering the third mass to be negligible. In this

numerical test, we model the binary system’s semi–major axis (a) and eccentricity

(e), as these Keplerian orbital elements are related to the system’s loss of energy and

angular momentum due to the inclusion of the 2.5PN term. The semi–major axis and

eccentricity are given by the equations

a =
(

2
R

− V 2

G(m1 + m2)

)−1

(3.23)

e =

√√√√1 − h2

G(m1 + m2)a
. (3.24)

such that

R =
√

X2 + Y 2 + Z2 (3.25)

V 2 = Ẋ2 + Ẏ 2 + Ż2 (3.26)

h⃗ = (Y Ż − ZẎ , ZẊ − XŻ, XẎ − Y Ẋ) (3.27)

h2 = h⃗ · h⃗ (3.28)
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where (X, Y, Z) represents the distance between the two bodies with respective carte-

sian coordinates and h⃗ = (hx, hy, hz) [33].

We then compare these results to Peters and Mathews [1] first–order coupled

orbit–averaged equations for the time derivative of the eccentricity and semi-major

axis

ȧ = −64G3

5c5
m1m2(m1 + m2)

a3(1 − e2)7/2

(
1 + 73

24e2 + 37
96e4

)
(3.29)

ė = −304G3

15c5
m1m2(m1 + m2)

a4(1 − e2)5/2

(
e + 121

304e3
)

. (3.30)

These equations only include the 2.5PN correction to the Newtonian equations of mo-

tion to numerically integrate the orbital evolution of a two–body system. Therefore,

for this comparison to the Peters and Mathews orbit–averaged equations, we exclude

the 1PN term from the equations of motion to validate our 2.5 post–Newtonian im-

plementation.

To simulate a comparable binary system, we set the system’s masses to be 2m2 =

m1 = 1M⊙, the initial semi-major axis a0 = 160G(m1 +m2)/c2 (i.e. 160 gravitational

radii), and the initial eccentricity e0 = 0.1. Figure 3.1 displays the results of the

orbital evolution comparison, demonstrating exact agreement between our simulated

equations and the Peters and Mathews numerically integrated equations of semi-

major axis and eccentricity. This confirms that our implementation of the 2.5PN

dissipative radiation reaction term accurately loses energy and angular momentum,

such that the inspiral evolution ultimately leads to a merger of the black hole system.
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Figure 3.1: The orbital evolution of the semi-major axis and eccentricity of a binary sys-
tem with masses 2m2 = m1 = 1M⊙, initial eccentricity e = 0.1, and time of merger tf ,
considering only the Newtonian and 2.5PN terms in the equations of motion. The blue
dotted–curves present our numerically simulated evolution of the system’s semi-major axis
and eccentricity. The orange curves present the Peters & Mathews [1] orbit–averaged in-
tegration of the semi-major axis and eccentricity. Note: this numerical test was confirmed
for various initial eccentricities.
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For the second validation test, we replicate two figures from Bonetti, et al. shown

in Figures S1 and S2 of Appendix A1. We use this validation test to confirm the

expected qualitative results of a three–body system with post–Newtonian correction.

We construct a hierarchical three–body system with masses [m1, m2, m3] = [109, 3 ·

108, 5 · 108]M⊙. The inner binary of this system is comprised of body 1 and body

2 with semi–major axis ain and eccentricity ein. The outer binary of this system is

defined by body 3 and the center of mass for the inner binary with semi–major axis

aout and eccentricity eout.

We then model the relative separation, circularity, and inclination of the inner

binary in the hierarchical three–body system defined above. The circularity of the

inner binary is defined as 1 − eccentricity (1 − e) and orbital inclination of the inner

binary is calculated using eqs. 3.27 and 3.28 to get [33]

I = arccos hz

h
. (3.31)

Figures S1 and S2 from Bonetti, et al. plot the separation, circularity, and incli-

nation of the inner binary of the hierarchical three–body system defined above such

that, initially, ain = 0.44 pc, aout = 4.43 pc, and eout = 0.5. The respective initial

eccentricities of the inner binary for Figures S1 and S2 are defined as ein = 0.8 and

ein = 0. Figures 3.2 and 3.3 present our replicated results of the inner binary of

each hierarchical three–body system. Let us note that the red curve plotted in each

separation plot represents the semi-major axis of the inner binary (ain).
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Figure 3.2: The relative separation, circularity, and inclination for the inner binary (con-
structed of bodies 1 and 2) of a hierarchical three–body black hole system with masses
[m1, m2, m3] = [109, 3 · 108, 5 · 108]M⊙. The initial semi-major axis and eccentricity of
the inner and outer binary are set as ain = 0.44 pc, ein = 0.8, aout = 4.43 pc, eout = 0.5,
such that the outer binary is constructed of the inner binary center of mass (m1 + m2) and
body 3. The initial relative inclination of the two orbits is i = 80◦. The red curve in the
inner binary separation plot represents the evolution of the inner binary’s semi-major axis
ain.
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Figure 3.3: The relative separation, circularity, and inclination for the inner binary of a
hierarchical three–body black hole system with masses [m1, m2, m3] = [109, 3 ·108, 5 ·108]M⊙.
The initial semi-major axis and eccentricity of the inner and outer binary are set as ain =
0.44 pc, ein = 0, aout = 4.43 pc, eout = 0.5 and the initial relative inclination of the two orbits
is i = 80◦. The red curve in the inner binary separation plot represents the evolution of the
inner binary’s semi-major axis ain. Note the different time scale with respect to Figure 3.2:
even after 2 · 108 yrs, the inner binary has experienced very little evolution.
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Figures 3.2 and 3.3 display differing time scales as the inner binary in Figure 3.2

rapidly merges in approximately t ∼ 4 ·107 years, while the inner binary in Figure 3.3

displays very little evolution even after approximately t ∼ 2 · 108 years. This occurs

due to the variability in the respective inner binary’s initial eccentricities. With a

high initial eccentricity of ein = 0.8 in Figure 3.2, we identify a rapid merger of the

inner binary, while a zero initial eccentricity in Figure 3.3 displays very little evolution

on a much longer time scale.

Figures 3.2 and 3.3 are qualitatively identical to Figures S1 and S2 from Bonetti,

et al. In the respective plots shown in Figures S1 and S2 from Bonetti, et al, they

present two variations of numerical precision for each system, finding that the results

of the differing numerical precision lead to consistent qualitative behavior, but vary-

ing quantitative behavior. From these findings, they determine that the three–body

problem is quantitatively dependent upon numerical precision due to its intrinsic

chaotic nature. This implies that the quantitative differences found in our resulting

Figures 3.2 and 3.3 are due to numerical precision. Let us note that Bonetti, et al.

includes the 2PN corrective term to simulate these system, while we do not, which

may also act as a factor in our differing quantitative results. Despite these numerical

difference, our Figures 3.2 and 3.3 demonstrate identical qualitative behavior com-

pared to Figures S1 and S2 from Bonetti, et al., confirming that our implementation

of the post–Newtonian corrections to the equations of motion accurately simulate the

expected results.

Provided the results of the two numerical tests presented in this section, we have

validated our numerical implementation of the first and 2.5 post–Newtonian corrective

terms in the equations of motion of a three–body black hole system. This confirms
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that we accurately simulate the expected results of the various systems we present in

this paper.

3.4 Quadrupole Formula

In order to accurately capture a system’s inspiral evolution within a gravitational wave

signal, it is necessary to evaluate the multipole plus and cross terms of the quadrupole

formula [34], as the LISA mission will detect both polarizations of gravitational wave

signals [4]. To simulate the gravitational waveform produced by each system, we use

the numerically–integrated position of each body (x⃗α) to calculate the quadrupole

expansion of the gravitational wave field, far from the black hole system.

The quadrupole formula describes the system’s leading order gravitational wave

emission based on the mass quadrupole moment over time. The quadrupole moment

Q at each time is defined as the sum of Qi,j such that [29], [34], [35], [36], [37]

Qij =
∑

α

mα

(
3xα,ixα,j − |x⃗α|2δij

)
(3.32)

over each α–body such that i and j sum over the coordinates (x,y,z) where δi,j

represents the Kronecker delta function. Taking the second time derivative of the

quadrupole moment Qi,j, the resulting gravitational wave quadrupole formula is de-

fined as the sum [29], [35], [36], [37]

hi,j(t, d) = 2G

c4d
Q̈(t − d/c) (3.33)

which is a function of time t and the observational distance d. In this work, we do

28



not specify a distance to the source, but for typical LISA EMRI systems, the distance

d will be of the order of 100 − 1000 Mpc.

The multipole expansion, plus and cross terms of the quadrupole formula at each

time are given by [34]

h+ = −h1,1 (3.34)

hx = h1,0 (3.35)

which model each system’s expected gravitational waveform.

Taking the Fast Fourier Transform (FFT) of h+(t) and hx(t), we determine the

power spectrum of each multipole waveform. These individual signals then allow us

to calculate the total amplitude of the gravitational waveform over time defined as

h̃tot(f) from the FFT formula such that

h̃tot =
√

h̃2
+ + h̃2

x. (3.36)

In Section 4 we use eqs. 3.34, 3.35, and 3.36 to present the amplitude of short–term

gravitational wave emissions and simulate the expected signal from LISA using the

long–term inspiral waveform.
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Chapter 4

Results
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In the following section of this paper, we present various Resonant Trojan EMRI

systems to identify their unique orbital features and determine whether the LISA mis-

sion will find a detectable difference between the gravitational wave signals produced

by this system compared to a Single EMRI system. To do so we use the numerically

integrated post–Newtonian equations of motion from Section 3.1 to plot various posi-

tion dynamics and use the quadrupole formula to model gravitational waveforms and

their respective amplitude.

In order to visualize the orbital dynamics of each system, we consider a co-

rotational frame of reference around the system’s center of mass such that the super-

massive black hole initially resides in this location. For the following analyses, we

define a0 to be the initial separation of each body to be used as a factor to set each

initial position x⃗α(0). The value a0 is considered in terms of the gravitational radius

rg of the system such that

rg = G(m1 + m2 + m3)
c2 . (4.1)

Using this initial separation a0, the initial orbital period P0 of each system is defined

as

P0 =

√√√√ 4a3
0π

2

G(m1 + m2 + m3)
. (4.2)

The initial velocity factor v0 is then given by

v0 = (2πa0)/P0 (4.3)
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to set the initial velocity ˙⃗xα(0) of each body. These initial velocities are used to set

the initial linear momenta p⃗α(0) = mα · ˙⃗xα(0) to calculate eqs. 3.2 and 3.3, i.e. the

equations of motion.

Let the initial position of each body be defined as

x⃗1(0) =
(

−(m2x⃗2,0 + m3x⃗3,0)/m1, 0, 0
)

(4.4)

x⃗2(0) =
(

a2,0 cos(λ2), a2,0 sin(λ2), 0
)

(4.5)

x⃗3(0) =
(

a3,0 cos(λ3), a3,0 sin(λ3), 0
)

(4.6)

where a2,0 and a3,0 represent variations to the initial separation a0 and λ2, λ3 represent

the initial angle of each body. The initial velocity of each body is then given by

˙⃗x1(0) =
(

0, −(m2 ˙⃗x2,0 + m3 ˙⃗x3,0)/m1, 0
)

(4.7)

˙⃗x2(0) =
(

−v0 sin(λ2), v0 cos(λ2), 0
)

(4.8)

˙⃗x3(0) =
(

−v0 sin(λ3), v0 cos(λ3), 0
)

. (4.9)

For each system, we redefine a2,0, a3,0, and λ2, λ3 to simulate differing orbital dy-

namics of the Resonant Trojan system. Let us note that the changes made to these

variables are very minor, as the three–body problem is inherently chaotic in nature

and Lagrange’s equilibrium configuration produces stable orbital dynamics based on

the system’s sensitive dependence upon initial condition.

In this section, we first consider a perfectly equilateral configuration of the three

bodies in the Resonant Trojan system. Modeling the short–term gravitational wave-

form of this system, we identify no unique features compared to a Single EMRI
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system. We then vary the system’s initial conditions to model the two stable orbital

dynamic families based on the libration of the two stellar–mass black holes. The

short–term gravitational waveforms of each variation exhibit identifiable unique fea-

tures compared to a Single EMRI system. Lastly, we present a comparison test of

the expected gravitational wave signal produced by the inspiral of a circular Single

EMRI and equilateral Resonant Trojan EMRI. Based on this test, we determine that

the LISA mission will not be able to identify a unique signal produced by a perfectly

circular Resonant Trojan system in the quadrupole limit [26]. We will discuss this

research’s future comparison tests to determine whether LISA will be able to detect

unique signals from a Resonant Trojan EMRI given various orbital dynamics of the

system.

4.1 Fundamental Resonant Trojan EMRI

The Fundamental Resonant Trojan EMRI represents a perfectly equilateral configu-

ration of the three–body system such that the initial positions of the two stellar–mass

BHs are the exact analogous locations of Jupiter and the L4 point, with initial con-

ditions a2,0 = a0, a3,0 = a0, λ2 = 0, λ3 = π/3 where we let a0 = 50 · rg. We choose to

model a 1 : 1 mass-ratio of m2 : m3 such that (m1, m2, m3) = ([105, 10, 10]M⊙). To

examine the orbital behavior of this system, we plot only the short–term results of

this simulation.

The resulting co–rotational dynamics of this system are shown in Figure 4.1.

Based on the perfectly equilateral initial configuration, the two stellar–mass BHs

show extremely minimal libration from the analogous stable Jupiter and L4 fixed
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points. As these stellar–mass bodies co–rotate counter–clockwise around the SMBH,

their lack of libration produces a purely sinusoidal gravitational waveform shown in

Figure 4.2.

Figure 4.1: The co–rotational dynamics of the Fundamental Resonant Trojan EMRI system
in the x − y projection plane. The given initial conditions are a2,0 = a0, a3,0 = a0, λ2 =
0, λ3 = π/3 where a0 = 50 · rg, with masses m1 = 105M⊙ (SMBH) and m2 = m3 = 10M⊙
(1:1 mass ratio M2:M3).

Figure 4.2: The gravitational waveform of the system plotted in Figure 4.1. This system
produces a pure sinusoidal waveform, demonstrating an exact match to the gravitational
waveform produced by a Single EMRI system.
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It is known that at the leading quadrupole order, a non-eccentric Single EMRI

system produces a purely sinusoidal gravitational waveform [26], which would exactly

match the results shown in Figure 4.2. This implies that the lack of libration from the

two stellar–mass BHs, causes the gravitational waveform of the Fundamental Reso-

nant Trojan EMRI system to be indistinguishable from a Single EMRI system. To

analyze this result further, we plot the power spectrum of this gravitational waveform

in Figure 4.3.

Figure 4.3: The gravitational wave amplitude of the system plotted in Figure 4.1. The single
peak shown in this figure occurs at twice the orbital frequency of the system which represents
the motion of the two stellar–mass black holes co–rotating around the central, supermassive
black hole.

The single peak shown in Figure 4.3 occurs at twice the orbital frequency of the

system which represents the motion of the two stellar-mass BHs co–rotating around

the central, SMBH. While the motion of a body around the SMBH is detected, there

is no indication of three bodies within this system as the relative motion of the

two stellar–mass BHs is negligible. This confirms our result from Figure 4.2, that
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the short–term gravitational waveform of the Fundamental Resonant Trojan EMRI

system is indistinguishable from a Single EMRI system as the system presents no

unique features. Let us note that the height of single peak shown in Figure 4.3

informs us of the mass and separation of the detected bodies, and the width displays

the libration frequency detected.

Based on the results of the Fundamental Resonant Trojan EMRI system shown

in Figures 4.1, 4.2, and 4.3, we conclude that the gravitational waveform produced

by this system is identical to the Single EMRI system waveform. This implies the

expectation that the system’s gravitational wave signal detected from LISA, will be

indistinguishable from a Single EMRI system. We present the long–term inspiral

evolution of these systems in Subsection 4.4 to simulate LISA’s expected signal de-

tection. In the following two Subsections 4.2 and 4.3, we use the results produced by

this system from Figures 4.1, 4.2, and 4.3 to represent the resulting orbital dynamics

and gravitational waveform of a Single EMRI system, as we have identified no unique

features between a Fundamental Resonant Trojan EMRI and Single EMRI system.

4.2 Tadpole Orbital Family

By slightly varying the initial conditions a2,0, a3,0, and λ2, λ3, the Resonant Trojan

system consists of two stable orbital dynamic families based on the libration of the

two stellar–mass BHs. The first of these families is known as the Tadpole, or Oval

orbital dynamics. The initial conditions presented for the Tadpole family minimally

differ from the exact analogous locations of Jupiter and the L4 point such that a2,0 =

a0, a3,0 = a0, λ2 = 0.1, λ3 = π/3−0.1 where we let a0 = 50 ·rg. The system’s sensitive
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dependence to initial conditions is considered to produce this stable orbital dynamic.

We choose to model a 1 : 1 mass-ratio of m2 : m3 such that (m1, m2, m3) =

([105, 10, 10]M⊙). To examine the orbital behavior of this system, we plot only the

short–term results of this simulation. The resulting effects of these initial conditions

on the co–rotational dynamics of this system can be viewed in Figure 4.4. With this

slight change to the initial conditions compared to that of Figure 4.1, we identify a

libration of the two stellar-mass BHs from their initial positions, offset from that of

the analogous Jupiter and the L4 points in Figure 4.4. This comparison of Figures

4.1 and 4.4 demonstrates the sensitivity of the initial conditions when modeling the

position dynamics of Resonant Trojan EMRI systems, but also shows the stability of

the triangle configuration. The stellar–mass BHs in this system deviate from their

initial positions such that they follow a “tadpole” or ovular orbital shape, such as

defined by this dynamical family name.

Figure 4.4: The co–rotational tadpole dynamics of the Resonant Trojan EMRI system in the
x − y projection plane. The given initial conditions are a2,0 = a0, a3,0 = a0, λ2 = 0.1, λ3 =
π/3 − 0.1 where a0 = 50 · rg, with masses m1 = 105M⊙ (SMBH) and m2 = m3 = 10M⊙
(1:1 mass ratio M2:M3). The orbital dynamics of this system exhibit differing libration of
the two stellar–mass black holes compared to the Single EMRI system.
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The gravitational waveform produced by the Tadpole Resonant Trojan EMRI

shown in Figure 4.5, displays identifiable, unique features compared to the purely

sinusoidal waveform of the Fundamental Resonant Trojan EMRI, shown in Figure

4.2. This result demonstrates that the tadpole libration of the two stellar–mass BHs

affects the waveform of the Resonant Trojan EMRI. Therefore, in the short–term

waveform results, the Tadpole Trojan EMRI system is distinguishable from a Single

EMRI system.

Figure 4.5: The gravitational waveform produced by the Tadpole Resonant Trojan EMRI
system in Figure 4.4. This waveform exhibits unique features compared to that of a Single
EMRI system.

To analyze this result further, we plot the power spectrum of the Tadpole gravi-

tational waveform in Figure 4.6. The three main peaks presented in Figure 4.6, from

left to right, occur at one, two, and three times the orbital frequency of the system.

The inner, largest peak at twice the orbital frequency represents the motion of the

two stellar-mass BHs co–rotating around the central, SMBH. The two outer peaks at

one and three times the system’s orbital frequency represent the eccentricity of the
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two stellar–mass BHs. The height of each peak shown in Figure 4.6 informs us of the

detected bodies, and the width displays the librational frequency detected, such that

these two bodies meet at their closest and furthest relative approach at these detected

frequencies. It is identified that the width of each peak in Figure 4.6 is greater than

the width of the single peak in Figure 4.3.

Figure 4.6: The gravitational wave amplitude produced by the Tadpole Resonant Trojan
EMRI system in Figure 4.4. The three main peaks presented left to right, occur at one,
two, and three times the orbital frequency of the system. The inner, largest peak at twice
the orbital frequency represents the relative motion of the two stellar-mass black holes co–
rotating around the central, supermassive black hole. The two outer peaks at one and three
times the orbital frequency represent the eccentricity of the two stellar–mass black holes.

This analysis of the gravitational wave signal in Figure 4.6 indicates that both the

motion around the SMBH and the libration of the two stellar–mass BHs are detected

in the gravitational waveforms produced by the Tadpole Resonant Trojan EMRI sys-

tem. This implies that it is possible to determine whether the source system consists

of two or three bodies based on the resulting gravitational waveform. Therefore, in

the short–term waveform results, the Tadpole Trojan EMRI system is distinguishable
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from a non-eccentric Single EMRI system. We will note that the eccentric signal will

also appear in an eccentric Single EMRI system which will be further explored in

future work.

In the next subsection 4.3, we model the second stable orbital dynamic family

known as the Horseshoe orbits. We also identify the effects of changing another

initial condition, the mass–ratio of m2 : m3, which was not adjusted in our tadpole

dynamic analysis.

4.3 Horseshoe Orbital Family

The Horseshoe orbital dynamic family represents the second stable orbital dynamic

system produced by the Lagrange solution. The Horseshoe Resonant Trojan EMRI

system minimally differs from the Fundamental and Tadpole Trojan EMRI system

such that its initial conditions are given by a2,0 = 1.01 · a0, a3,0 = 0.99 · a0, λ2 =

0.01, λ3 = π/3 − 0.01 where we let a0 = 50 · rg.

In this horseshoe dynamic analysis, we choose to model three mass–ratios of m2 :

m3 to display the orbital adjustments made by changing the mass of each body.

We first choose to model a 1 : 1 mass-ratio of m2 : m3 such that (m1, m2, m3) =

([105, 10, 10]M⊙). The resulting effects of these initial conditions on the co–rotational

dynamics of this system can be viewed in Figure 4.7.
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Figure 4.7: The co–rotational horseshoe dynamics of the Resonant Trojan EMRI system
in the x − y projection plane. The given initial conditions are a2,0 = 1.01 · a0, a3,0 =
0.99 · a0, λ2 = 0.01, λ3 = π/3 − 0.01 where a0 = 50 · rg, with masses m1 = 105M⊙ (SMBH)
and m2 = m3 = 10M⊙ (1:1 mass ratio M2:M3). The orbital dynamics of this system
exhibit differing libration of the two stellar–mass black holes compared to the Single EMRI
and Tadpole Resonant Trojan EMRI systems.

With this slight change to the system’s initial conditions compared to that of Fig-

ures 4.1 and 4.4, we identify a major change in the libration of the two stellar-mass

BHs from both the Fundamental and Tadpole Resonant Trojan EMRIs. This demon-

strates the sensitivity of the initial conditions when modeling the position dynamics

of Resonant Trojan EMRI systems. Figure 4.7 demonstrates the orbital behavior of

this system such that the two stellar–mass BHs deviate from their offset analogous

Jupiter and the L4 points initial positions such that they follow a “horseshoe” orbital

shape. While co–rotating around the central SMBH, the two stellar–mass BHs be-
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ginning at their initial positions, horseshoe down to the bottom left hand corner of

the plot where they meet at their first closest approach. The stellar–mass BHs then

horseshoe back around to the upper right hand corner of the plot where they meet at

their second closest approach.

By varying the masses of the two stellar–mass BHs in such a system, we also

identify the differing orbital dynamics produced by this change in initial condition.

We choose to model the horseshoe dynamics produced by a 2 : 1 mass-ratio of m2 : m3

such that (m1, m2, m3) = ([105, 10, 5]M⊙) and a 3 : 1 mass-ratio of m2 : m3 such that

(m1, m2, m3) = ([105, 10, 10/3]M⊙). The resulting x − y projection plane of these

varying mass–ratio systems are shown in Figure 4.8 such that the top panel displays

the 2 : 1 mass–ratio and the bottom panel presents the 3 : 1 mass–ratio of the

Horseshoe Resonant Trojan EMRI system.

Based on the varying mass–ratio of each system, there is an identifiable difference

between Figure 4.7 and both panels of Figure 4.8. Due to the 1 : 1 mass–ratio in

Figure 4.7, the gravitational effect of each stellar-mass BH are equivalent, causing

the width and length of each stellar-mass BH’s horseshoe orbital dynamics to be

equivalent. The 2 : 1 mass–ratio shown in the top panel of Figure 4.8 visualizes

the gravitational effect of stellar–mass BH m2 being twice that of stellar–mass BH

m3. The gravitational effect of each stellar–mass BH adjusts the resulting horseshoe

dynamics such that the width and length of orbital path taken by BH m3 is twice

that of BH m2. The 3 : 1 mass–ratio shown in the bottom panel of Figure 4.8 then

visualizes the gravitational effect of stellar–mass BH m2 being three times that of

stellar–mas BH m3. This gravitational effect adjusts the horseshoe dynamics of each

stellar–mass BH such that the width and length of orbital path taken by BH m3 is
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three times that of BH m2. An identical effect is seen in the orbits of Saturn’s moons

Epimetheus and Janus which roughly have a 3 : 1 mass-ratio.

Figure 4.8: The co–rotational horseshoe dynamics of the Resonant Trojan EMRI system
in the x − y projection plane. The given initial conditions of each panel are the same as
Figure 4.7. The top panel consists of a 2:1 mass ratio of M2:M3 with masses m1 = 105M⊙
(SMBH) and m2 = 2m3 = 10M⊙. The bottom panel consists of a 3:1 mass ratio of M2:M3
with masses m1 = 105M⊙ (SMBH) and m2 = 3m3 = 10M⊙.
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As we have increased the mass-ratio of m2 : m3 throughout Figure 4.7 and each

panel of Figure 4.8, the width and length of the orbital dynamics taken by each

stellar–mass BH have been adjusted based on the gravitational effect of m2 and m3.

This implies that the stellar–mass BH orbital features are related to the mass–ratio

of m2 : m3 such that this trend continues to occur for various adjustments to the

mass–ratio. While not visualized in this paper, the same orbital trend will occur if

the mass–ratio is adjusted for the Tadpole orbital family.

This overall analysis of the Resonant Trojan EMRI horseshoe orbital dynamics

presents identifiable unique orbital features compared to that of the Fundamental and

Tadpole Resonant Trojan EMRI systems. To further analyze the effects of the Horse-

shoe Resonant Trojan EMRI initial conditions, we model the gravitational waveform

of the 2 : 1 mass–ratio Horseshoe Resonant Trojan EMRI shown in Figure 4.9.

Figure 4.9: The gravitational waveform produced by the Horseshoe Resonant Trojan EMRI
system from the top panel of Figure 4.8 with a 2 : 1 mass-ratio of M2:M3. This waveform
exhibits unique features compared to the Tadpole Resonant Trojan and Single EMRI systems.
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The gravitational waveform produced by the Horseshoe Resonant Trojan EMRI

shown in Figure 4.9, displays identifiable, unique features compared to the purely

sinusoidal waveform of the Fundamental Resonant Trojan EMRI, shown in Figure

4.2. This result demonstrates that the horseshoe libration of the two stellar–mass

BHs affects the waveform of the Resonant Trojan EMRI. Therefore, in the short–

term waveform results, the Horseshoe Trojan EMRI system is distinguishable from a

Single EMRI system.

This gravitational waveform presented in Figure 4.9 also displays identifiable,

unique features compared to the gravitational waveform of the Tadpole dynamic Res-

onant Trojan EMRI, shown in Figure 4.5. This result demonstrates that not only

is there distinguishable difference between the librated and Fundamental Resonant

Trojan EMRI systems, but there is also an identifiable difference between the gravita-

tional waveform of the two stable libration dynamics of the Resonant Trojan EMRI,

i.e. between the Tadpole and Horseshoe orbital dynamic systems. Therefore, based

on the short–term gravitational waveform produced by a Resonant Trojan EMRI, we

are able to determine the type of orbital path taken by the two stellar–mass BHs in

a system.

To analyze this result further, we present the amplitude of the Horseshoe gravi-

tational waveform shown in Figure 4.10. The three main peaks presented in Figure

4.10, from left to right, occur at one, two, and three times the orbital frequency of

the system, just as discussed for the Tadpole gravitational waveform shown in Figure

4.5. In Figure 4.9, the inner, largest peak at twice the orbital frequency represents

the motion of the two stellar-mass BHs co–rotating around the central, SMBH.
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Figure 4.10: The gravitational wave amplitude produced by the Horseshoe Resonant Trojan
EMRI system from the top panel of Figure 4.8 with a 2 : 1 mass-ratio of M2:M3. The three
main peaks presented left to right, occur at one, two, and three times the orbital frequency
of the system. The inner, largest peak at twice the orbital frequency represents the motion
of the two stellar-mass black holes co–rotating around the central, supermassive black hole.
The two outer peaks at one and three times the orbital frequency represent the non–circular
nature of the orbits. The width of the main peak represents the libration frequency.

The three peaks in Figure 4.10 indicate that both the motion around the SMBH

and the eccentricity of the two stellar–mass BHs are detected in the gravitational

waveforms produced by the Horseshoe Resonant Trojan EMRI system. Just as dis-

cussed for the Tadpole gravitational waveform, this implies that the source of this

waveform consists of three bodies. Therefore, in the short–term waveform results,

the Horseshoe Resonant Trojan EMRI system is distinguishable from a non-eccentric

Single EMRI system. We will note that the eccentric signal will also appear in an

eccentric Single EMRI system which will be further explored in future work.

The height of each peak shown in Figure 4.10 informs us of the detected bodies,

and the width of the main peak represents the libration frequency. The two outer
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peaks at one and three times the orbital frequency represent the non–circular nature

of the orbits. It is identified that the width of each peak in Figure 4.10 differ from

the peaks presented in Figure 4.6 for the Tadpole Resonant Trojan EMRI system.

This confirms our previous result that there is an identifiable difference between the

Tadpole and Horseshoe libration dynamics of the Resonant Trojan EMRI system.

This analysis of the Horseshoe Resonant Trojan EMRI presents a variety of orbital

features and gravitational waveform results. We have further demonstrated the sen-

sitivity of initial conditions when modeling the position dynamics of Resonant Trojan

EMRI by comparing the Horseshoe results to the Fundamental and Tadpole Reso-

nant Trojan EMRI systems. We have also shown that by adjusting the mass–ratio

of m2 : m3 in a Resonant Trojan EMRI system, the width and length of orbital path

taken by m2 and m3 are related to this mass–ratio. Through this analysis, we have

concluded that the Horseshoe orbital dynamics display identifiable unique features

compared to that of the Fundamental and Tadpole Resonant Trojan EMRI systems.

These orbital dynamics conclude that in short–term waveform results, the Horseshoe

Trojan EMRI system is distinguishable from both a non-eccentric Single EMRI and

a Tadpole Resonant Trojan EMRI, such that we are able to determine the type of

orbital path taken by the two stellar–mass BHs based on the resulting gravitational

waveform.
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4.4 Single EMRI Gravitational Wave Test

In this final subsection of our results, we determine whether the LISA mission will

find a detectable difference between the gravitational wave signals produced by the

Fundamental Resonant Trojan EMRI system compared to a Single EMRI system

considering the long–term evolution. Based on the results of the Fundamental Res-

onant Trojan EMRI system shown in Figures 4.1, 4.2, and 4.3 of Subsection 4.1, we

concluded that the short–term gravitational waveform produced by this system is

identical to a Single EMRI system waveform. This previous analysis implied the ex-

pectation that the Fundamental Resonant Trojan EMRI system’s gravitational wave

signal detected from LISA, will be indistinguishable from a Single EMRI system

given non–eccentric orbits. We present the long–term inspiral evolution of these two

systems due to gravitational radiation emission to simulate LISA’s expected signal

detection.

To model each system, we set their initial conditions to be a2,0 = a3,0 = a0, λ2 =

0, λ3 = π/3 where we let a0 = 30 · rg such that their initial separation is closer

to the ultimate merger of the given bodies to model the inspiral evolution of these

two systems before merger. For the Fundamental Resonant Trojan EMRI we set the

system’s masses to have a 1 : 1 mass-ratio of m2 : m3 such that (m1, m2, m3) =

([105, 10, 10]M⊙). To construct the Single EMRI system, we set m1 = 105M⊙,

m2 =
√

3 · 10M⊙, and m3 to have negligible mass to replicate a two–body system.

Calculating the gravitational waveform of each system, we present their resulting

amplitudes in Figure 4.11.
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Figure 4.11: The gravitational wave amplitude of the Fundamental Resonant Trojan EMRI
system and Single EMRI system given a2,0 = a0, a3,0 = a0, λ2 = 0, λ3 = π/3 where
a0 = 30 · rg. The Fundamental Resonant Trojan EMRI has masses m1 = 105M⊙ (SMBH)
and m2 = m3 = 10M⊙ (1:1 mass ratio M2:M3). The Single EMRI system has masses
(m1, m2, m3) = [105,

√
3 · 10, 0]M⊙. The single peak shown in this figure occurs at twice the

orbital frequency of each system which represents the motion of the stellar-mass black hole(s)
co–rotating around the central, supermassive black hole. The initial velocity of m2 in the
Single EMRI system is adjusted slightly from the Fundamental Resonant Trojan EMRI m2
to compensate for the differing total masses of these systems. This result displays numer-
ically close agreement between the Fundamental Resonant Trojan EMRI and Single EMRI
systems’ gravitational wave amplitude.

The resulting gravitational wave amplitude of the Fundamental Resonant Trojan

EMRI and Single EMRI systems in Figure 4.11 display numerically close agreement

in frequency, height, and width. This demonstrates that the gravitational waveforms

produced by the non–eccentric Fundamental Resonant Trojan EMRI and Single EMRI

systems are indistinguishable. Let us note that given the presented initial conditions,

the resulting gravitational waveforms produced identical quantitative signals, with

differing amplitude height. This is due to the varying masses of the two systems,
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causing a difference in orbital period and initial velocity. In order to closely match

the frequency of each system, as shown in Figure 4.11, the initial velocity of the

Single EMRI system was adjusted to compensate for the differing total masses of

these systems using the chirp mass formula from Asada [26].

Given the results shown in Figure 4.11, if this non–eccentric Fundamental Res-

onant Trojan EMRI were detected from the LISA mission, the signal would show a

Single EMRI system with
√

3 times the mass of the stellar–mass BH (m2) and
√

3

times as far away from LISA’s detection site. This is because the combined mass

of the stellar–mass BHs (m2 and m3) in the Fundamental Resonant Trojan EMRI

would be double that of the Single EMRI system’s stellar–mass BH (m2), and only

the motion of a stellar–mass BH around the SMBH is detected. If we somehow knew

the distance from the merger, this degeneracy could be broken.

To further analyze the results from Figure 4.11, we simulate the signals expected

from LISA’s detection for each system. To do so, we calculate the gravitational wave

amplitude of each system given various initial separations up to merger. We then

combine these separation amplitudes and their frequencies into a contour plot of the

gravitational wave normalized amplitude throughout the long–term inspiral evolution

of each system.

This process will produce the characteristic gravitational wave signal “chirp” ex-

pected from LISA’s detection. This chirp refers to the increasing frequency and

amplitude of a system due to the loss of energy and angular momentum of the inspi-

ral evolution up to merger. The result of these simulations are presented in Figures

4.12 and 4.13 such that Figure 4.12 displays the Single EMRI signal and Figure 4.13

shows the Fundamental Resonant Trojan EMRI signal.
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Figure 4.12: The gravitational wave normalized amplitude contour map of the Single EMRI
system given a2,0 = a0, a3,0 = a0, λ2 = 0, λ3 = π/3 with various initial separations a0 in
terms of the gravitational radius rg. The masses of this system are defined as (m1, m2, m3) =
[105, 10, 0]M⊙. This plot simulates the expected LISA signal given the inspiral evolution
up to merger. Note that the initial velocity used to produce this plot corresponds to the
Keplerian circular orbit, which is slightly eccentric in 1PN. The frequency axis in this figure
demonstrates that this system inspiral falls within the LISA detectable frequency band. This
expected signal is nearly indistinguishable from that of the Fundamental Resonant Trojan
EMRI system in Figure 4.13.
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Figure 4.13: The gravitational wave amplitude contour map of the Fundamental Resonant
Trojan EMRI system given a2,0 = a0, a3,0 = a0, λ2 = 0, λ3 = π/3 with various initial
separations a0 in terms of the gravitational radius rg. The masses of this system are m1 =
105M⊙ (SMBH) and m2 = m3 = 10M⊙ (1:1 mass ratio M2:M3). Note that the initial
velocity used to produce this plot corresponds to the Keplerian circular orbit, which is slightly
eccentric in 1PN. This plot simulates the expected LISA signal given the inspiral evolution
up to merger. The frequency axis in this figure demonstrates that this system inspiral falls
within the LISA detectable frequency band. This expected signal is nearly indistinguishable
from that of the Single EMRI system in Figure 4.12.
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Figure 4.12 and 4.13 display nearly imperceptible differences in their normalized

expected signals from the LISA mission based on their inspiral evolution up to merger.

Let us note that the gradual increase of frequency and amplitude shown in these plots

demonstrates each system’s loss of energy such that energy loss rate is proportional

to the square of the gravitational wave amplitude.

To produce each of these of these plots we use an initial velocity that corresponds

to the Keplerian circular orbit, which is slightly eccentric in 1PN. Due to this slight

eccentricity, we identify four main signals detected. From top to bottom, the first

three signals occur at three, two, and one times the orbital frequency of the system

over the inspiral evolution. The main signal detected (second signal from the top)

that occurs at two times the orbital frequency represents the motion of the stellar–

mass BH(s) around the SMBH in each of these EMRI systems. The fourth main

signal, located fourth down in each figure, represents the systems’ radial frequency

evolution such that the “hook” right before merger is a common feature of general

relativity.

Lastly, we note that the frequency range shown in Figures 4.12 and 4.13 demon-

strate that these system inspirals fall within the LISA detectable frequency band.

This implies that both Single and Resonant Trojan EMRI systems will be detectable

from the LISA mission.

Based on the nearly identical results shown in Figures 4.12 and 4.13, this source

comparison test determines that the LISA mission will not be able to identify a unique

signal produced by a non-eccentric Fundamental Resonant Trojan system compared to

the signal produced by a non-eccentric Single EMRI system. In practice, eccentricity

will shrink for the Single EMRIs, but grow for the Trojan EMRIs. In the next section,
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we discuss this research’s future planned comparison tests to determine whether LISA

will be able to detect unique signals from a Resonant Trojan EMRI given various

stable orbital dynamics of the system.
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Chapter 5

Conclusion
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Within the natural world, three–body systems have shown to be abundant amongst

various planet and star systems. Based on our observation of three–body systems

within the universe, the question remains whether a three–body black hole system

will be detected. Through electromagnetic observation, two possible three–body black

hole system candidates have been identified. The first being a triple quasar [38]

and the second being an electromagnetic (EM) counterpart to a binary black hole

merger [39].

More specifically, orbital resonance has been shown to be a common feature

amongst these three–body systems [28]. For example, within our own solar system

resonant relations occur between bodies such as in the Earth–Moon, Saturn–Moon,

and Jupiter–Trojan asteroid systems. In this thesis, we discuss an analogous Jupiter–

Trojan black hole system known as the Resonant Trojan EMRI system. We use this

system to determine whether the LISA mission will be able to detect a three–body

black hole system.

In this thesis, we use the numerically–integrated post–Newtonian equations of

motion and quadrupole formula to accurately model the effects of general relativity

on the Resonant Trojan EMRI system to gain the best understanding of what a real–

world example would look like if the LISA mission were to receive a gravitational

signal from a Resonant Trojan EMRI system. We first consider a perfectly equilateral

configuration of the three bodies in the Resonant Trojan system. Modeling the short–

term gravitational waveform of this system, we identify no unique features compared

to a Single EMRI system. We then vary the system’s initial conditions to model the

two stable orbital dynamic families of the Lagrange solution based on the libration

of the two stellar–mass black holes. These stable solutions are known as the Tadpole
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and Horseshoe orbital dynamic families. The short–term gravitational waveforms

of each variation produce identifiable, unique features compared to a Single EMRI

system. Lastly, we present a comparison test of the expected gravitational wave signal

produced by the inspiral evolution of a non-eccentric, Single EMRI and equilateral

Resonant Trojan EMRI. Based on this test, we determine that the LISA mission will

not be able to identify a unique signal produced by a non-eccentric Resonant Trojan

EMRI system because the signal will appear identical to a Single EMRI system.

In the future of this research, we will further explore the expected LISA signals

produced by various orbital dynamics of the Resonant Trojan EMRI system in com-

parison to the Single EMRI system. As EMRIs are typically captured in highly

eccentric orbits [10], we will investigate the inspiral evolution effects of various mass–

ratios, eccentricities, and non-planar orbits of the Resonant Trojan EMRI system.

We will also explore the two stable orbital dynamics of the Tadpole and Horseshoe

Resonant Trojan EMRIs in comparison to the Single EMRI system. As two previous

papers from Torigoe, et al. [3] and Asada [26] have demonstrated that the Resonant

Trojan EMRI system is distinguishable from a Single EMRI system when using the

octupole formula to model gravitational wave emissions, we will also expand our use

of the qadrupole formula to include the octupole formula to confirm their found re-

sults. If we can independently determine the distance d to the merger, then the chirp

mass and the total mass can be determined.

As LISA’s detection will contain thousands of overlapping gravitational wave sig-

nals, the mission’s search algorithm uses a “matching” filter to extract merger event

signals [27]. This algorithm matching filter uses a collection of gravitational wave-

form “templates” containing all possible detection events and their possible param-
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eters produced by theoretical research [27], such as this work. This collection of

waveform templates will allow the LISA mission to optimize the sensitivity of its

searching algorithm to extract specific signals amongst the detectors noise, measure

the properties of the gravitational source, and present statistical confidence in its

detection [8], [21], [9], [14]. Due to this template matching technique, LISA relies

heavily on the accuracy of detection templates, as the inaccuracy of these models

could lead to missed detections [27], [14]. Thus far, LISA templates have only been

produced for single EMRI systems [27], displaying an important need for multiple

EMRI waveform templates. If unique signals from multiple EMRI systems are de-

tectable, without their template inclusion the LISA mission may not detect these

event signals. Therefore, the further exploration of the Resonant Trojan EMRI sys-

tem is crucial to LISA detection of multiple EMRI systems.

By producing anticipated waveform signals, this work assists in interpreting the

future received signals from the LISA mission. Through our theoretical gravitational

wave signals, we hope to identify not only how many bodies are within a system, but

also what the orbital dynamics of these bodies looked like throughout the inspiral

before merger. This research will continue to teach us about the different types of

orbital dynamics possible with the Resonant Trojan EMRI system and continue to

provide us with more information about the relativistic three–body problem. If we do

detect Trojan EMRIs, it will provide strong evidence that these systems form in the

accretion disk around the SMBH, but like Jupiter’s Trojans, they may be captured

dynamically. Overall, studying these Resonant Trojan dynamics and gravitational

wave signals will ultimately assist in our understanding of the structure and curvature

of space-time around EMRI systems.
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A1 Bonetti, et al. Numerical Valida-
tion

Figure S1: Bonetti, et al. Figure 6, showing the relative separation (upper panels), circu-
larity (middle panels) and inclination (lower panels) for the inner binary of a hierarchical
triplet such that m1 = 109M⊙, m2 = 3 · 108M⊙, m3 = 5 · 108M⊙, aout = 4.43pc, eout =
0.5, ain = 0.44pc, ein = 0.8, andi = 80◦. The solid red line in the separation plot is ain. The
left figures show quadruple precision calculation and the right figures show double precision
calculation [2]. This figure compares to Figure 3.2 displaying qualitatively identical results.

64



Figure S2: Bonetti, et al. Figure 7, showing the relative separation (upper panels), circu-
larity (middle panels) and inclination (lower panels) for the inner binary of a hierarchical
triplet such that m1 = 109M⊙, m2 = 3 · 108M⊙, m3 = 5 · 108M⊙, aout = 4.43pc, eout =
0.5, ain = 0.44pc, ein = 0, andi = 80◦. The solid red line in the separation plot is ain. The
left figures show quadruple precision calculation and the right figures show double precision
calculation [2]. This figure compares to Figure 3.3 displaying qualitatively identical results.
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A2 Torigoe, et al. Octupole Precision

Figure S3: Torigoe et al. Figure 4, showing the gravitational waveforms in arbitrary units
for a binary (solid black curve) with m1 : m2 = 2 : 3 and a Lagrange solution (dotted red
and dashed blue curves) with m1 : m2 : m3 = 1 : 2 : 3. The quadrupole waveform (dash
blue curve) will overlap with the binary (solid black curve) by choosing an initial phase to
shift the waveform. Considering the same source, the quadrupole and octupole expansion
waveform (dotted red curve) demonstrates variation from the binary (solid black curve) [3].
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