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Abstract

Internet of Things (IoT) is an emerging technological paradigm connecting numerous smart objects
for advanced applications ranging from home automation to industrial control to healthcare. The
rapid development of wireless technologies and miniature embedded devices has enabled IoT systems
for such applications, which have been deployed in a variety of environments. One of the factors
limiting the performance of IoT devices is the multipath fading caused by reflectors and attenuators
present in the environment where these devices are deployed. Leveraging polarization diversity
is a well-known technique to mitigate the deep signal fades and depolarization effects caused by
multipath. However, neither experimental validation of the performance of polarization diversity
antenna with more than two branches nor the potency of existing antenna selection techniques on
such antennas in practical scenarios has received much attention.

The objectives of this dissertation are threefold. First, to demonstrate the efficacy of a tripolar
antenna, which is specifically designed for IoT devices, in harsh environments through simulations
and experimental data. Second, to develop antenna selection strategies to utilize polarized signals
received at the antenna, considering the restrictions imposed due to resource limitations of the IoT
devices. Finally, to conduct comparative analyses on the existing standard diversity techniques and
proposed approaches, in conjunction with experimental data.

Accordingly, this dissertation presents the testing results of tripolar antenna integrated with
Arduino based IoT devices deployed in environments likely to be experienced by IoT devices in
real life applications. Both simulation and experimental results from single point-to-point wireless
links demonstrate the advantage of utilizing tripolar antennas in harsh propagation conditions over
single branch antenna. Motivated by these empirical results, we deploy a small-scale IoT network
with tripolar antenna based nodes to analyze the impact of tripolar antenna on neighbor nodes per-
formance as well as to investigate end-to-end network performance. This work illustrates that the
selection of antenna branches, while considering network architecture and the level of congestion on
the repeater nodes, minimizes excessive antenna switching and energy consumption. Similar results
are shown for IoT networks with predetermined and dynamic routing protocols, where the proposed
techniques yielded lower energy consumption than the conventional diversity schemes. Furthermore,
a probabilistic, low complexity antenna selection approach based on Hidden Markov model is pro-
posed and implemented on wireless sensor nodes aiming to reduce energy consumption and improve
diversity gain. Finally, we develop a dual-hop based technique where a node selects the antenna
element for optimal performance based on its immediate network neighbors antenna configuration
status during selection. The performance of the proposed technique, which is verified through sim-
ulation and measured data, illustrates the importance of considering network-wide evaluations of
antenna selection techniques.
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Chowdhury S. A., Hébert-Dufresne L., and Frolik J.. “Effective Implementation of Energy Aware
Polarization Diversity for IoT Networks Using Eigenvector Centrality,” in International Conference
on Network Science. Springer, pp. 245-257, 2020.

Chowdhury S. A., Golmohamadi M., and Frolik J.. “Improving reliability in hybrid mesh net-
works with tripolar antennas,” 2018 IEEE International Symposium on Antennas and Propagation
& USNC/URSI National Radio Science Meeting, pp. 189–190, 2018.

Chowdhury S. A., Frolik J., and Benslimane A.. “Polarization matching for networks utilizing tripo-
lar antenna systems,” in 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, pp.
206–212, 2018.

Chowdhury S. A., Jamison J., and Frolik J.. “Leveraging tripolar antenna diversity to improve link
reliability in severe multipath environments,” in 2018 IEEE 19th Wireless and Microwave Technol-
ogy Conference (WAMICON). IEEE, 2018.

ii



Acknowledgements

Firstly, it is my utmost pleasure to dedicate this work to my dear parents and my family, who have

always been supportive of my academic pursuits and actively encouraging of them.

My mother, Amina Begum, has been my de facto therapist for all these years to manage my

constant stress. My father, Shahid Ullah, was just the absolute example of a hard-working, family

loving dad, whose passing encouraged me to begin this journey.

Thank you to my dear wife Farzana who has stood by me as I worked late nights and weekends

on this, and to my dear kids Afnan and Aaraf who are the light of my life. This work would not

have been possible without the support and taunting of Shahana and Shetu who are my best friends

in life.

I wish to express my appreciation and thanks to those who provided their time, effort and

support for this project. To the members of my dissertation committee, thank you for your support,

insightful comments and encouragement. I owe a big thank you to Dr. Benslimane, who has helped

me continually in my academic research. I would also like to thank my labmates: Marcia, Blake and

Jimmy, who helped me tremendously along the way.

Finally, a special thanks to Dr. Jeff Frolik for his continuous support, encouragement and

guidance. Thank you for always backing me and being patient throughout my unusually rewarding

PhD journey. I have learned more than I could have ever imagined during my time at the UVM and

I owe most of that to him.

iii



Table of Contents

Citations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Internet of Things definition and applications . . . . . . . . . . . . . . . . . . 2

1.2.2 IoT network topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Routing protocols for IoT networks . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.4 Multipath Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.5 Rayleigh fading model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.6 Polarization and depolarization . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.7 Forms of antenna diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.8 Diversity combining techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.9 Tripolar antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Research Objectives and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Improving Network Reliability Using Tripolar Antenna . . . . . . . . . . . . . . . 20

2.1 Improving Reliability in Hybrid Mesh Networks with Tripolar Antennas . . . . . . . 20

2.1.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Leveraging Tripolar Antenna Diversity to Improve Link Reliability in Severe Multi-

path Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iv



2.2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.4 Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Polarization Matching for Networks Utilizing Tripolar Antenna Systems . . . . 33

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Neighbor Matching Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Opportunistic Polarization Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Effective Implementation of Energy Aware Polarization Diversity for IoT Net-

works Using Eigenvector Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Distributed Eigenvector Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5.1 Centrality based diversity scheme . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6.1 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Coordinating Three-Branch Diversity Switching Using a Hidden Markov Model 61

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 HMM Coordinated Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 An overview of HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.2 Proposed HMM approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

v



5.5 Defining State Transition Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6 Implementation and Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 75

5.6.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6.2 Learning HMM parameters: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Switching-based Selection Techniques for Tripolar Antennas in Multi-hop IoT

Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Proposed Multi-hop Based Switched Diversity for Tripolar Antennas . . . . . . . . . 90

6.4.1 Joint SNR maximization (Max-Sum) . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.2 Maximization of the minimum SNR (Max-Min) . . . . . . . . . . . . . . . . . 96

6.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.6 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6.1 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6.2 Performance of two-hop network . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6.3 Performance of four-hop network . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6.4 Diversity performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6.5 End-to-end reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.6.6 Switching frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6.7 Energy efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6.8 Impact of network size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6.9 Algorithmic complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.1 Real life implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.2 Testing scalability and robustness . . . . . . . . . . . . . . . . . . . . . . . . 117

vi



7.2.3 Leveraging machine learning techniques . . . . . . . . . . . . . . . . . . . . . 118

7.2.4 Different fading environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.5 Hybrid approaches combining routing and antenna diversity . . . . . . . . . . 119

7.3 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

vii



List of Figures

1.1 Typical example of an IoT network. End nodes forward data to nearest router to
route the data to the base station. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Example of various topologies used in IoT networks: (a) point-to-point, (b) star, (c)
mesh and (d) hybrid mesh topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Categories of routing protocols based on IoT network organization. . . . . . . . . . . 5
1.4 Reflected, scattered multipath components received at the antenna. . . . . . . . . . . 6
1.5 Left: Sample sensor data collected over time in an harsh multipath environment

using single branch antenna where y-axis is showing the received signal power, Right:
Histogram plot of the received signal level along with a fitted Rayleigh curve. . . . 8

1.6 Different types of polarization of an electromagnetic wave . . . . . . . . . . . . . . . 9
1.7 Block diagram of selection diversity with three antenna branches . . . . . . . . . . . 14
1.8 Block diagram of a receiver using switched diversity technique with three diversity

branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.9 An Arduino based sensor node with humidity sensor and a thermistor. . . . . . . . . 17
2.1 Left : Fabricated prototype 3D tripolar antenna on top of a wireless sensor node.

Right : Example channel loss (i.e., S21) for each of the three elements of the tripolar
antenna [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Hybrid mesh network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Link loss for 50 transmissions with single element and with tripolar antenna systems.

Threshold (τ) = Mean - 3 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Dropped packet rates for single antenna element and tripolar antenna networks.

Threshold (τ) = Mean - 3 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 A tripolar antenna connected to an XBee wireless module and controlled by an Ar-

duino embedded system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 A simple network with end devices and coordinator. . . . . . . . . . . . . . . . . . . 28
2.7 RSSI data for three elements of the tripolar node taken at 50 different positions in

the track . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8 RSSI data for 50 transmissions for monopole antenna and tripolar antenna systems.

Threshold (τ) = Mean - 3 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1 Left : Fabricated prototype of single-piece additive manufactured 3D tripolar antenna.

Right : Example channel loss (i.e., S21) for each of the three elements of the tripolar
antenna [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Fig. showing different polarization patterns selected by nodes and routers.Here H and
V are the traditional horizontal and vertical in 2D and P is orthogonal to both. . . 36

3.3 Typical example of data forwarding from source to coordinator for tree-based ZigBee
network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Different phases of polarization selection in a tree-based ZigBee network . . . . . . . 39
3.5 Example of available routes for nodes in a ZigBee network in presence of mobile routers. 40
3.6 Different phases of polarization selection for a node in ZigBee network where mobile

routers are present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Tripolar antenna placed inside of a reverberation chamber for channel measurement. 41
3.8 Left: Comparison between dropped packet rates for NM scheme and simple diversity

technique, Right: Comparison between dropped packet rates for OPM scheme and
simple diversity technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.9 Left: Power loss comparison between NM and simple diversity technique, Right:
Power loss comparison between OPM and simple diversity technique, . . . . . . . . . 43

3.10 Left: Comparison of polarization mismatches between NM and simple diversity tech-
nique, Right: Comparison of polarization mismatches between OPM and simple di-
versity technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Block diagram of transmission and reception using tripolar antenna. . . . . . . . . . 52
4.2 Sample network of two routers and five sensor nodes with routers depicted in green

and sensors depicted in light blue color. . . . . . . . . . . . . . . . . . . . . . . . . . 53

viii



4.3 An illustration of data transmission by sensors and router. Solid circles indicate usage
of selection diversity before transmission while empty circles indicate no antenna
switching occurred and colors represent different polarizations. Top: Router R1 uses
conventional selection diversity Bottom: R1 uses centrality based selection diversity. 55

4.4 (a): Basic architecture of an IoT network consisting of 50 sensors and 10 routers.
Colors represents different polarizations, sizes represents different type of IoT devices.
(b): Representation of the network presented in Fig. (a) using DEC. Color coding
and size indicates centrality of sensor and router nodes. Less central nodes have
smaller size and lighter color compared to more central nodes which have larger size
and darker colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 (a): The number of packets received by routers, plotted against their normalized
centrality. We observe that routers which receive more data packets have higher
centrality. (b): Comparison between selection diversity and the proposed technique
in terms of switching frequency. Routers are plotted in ascending order based on the
number of switching. Note that the number of switching is decreased for high scoring
routers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Comparison between selection diversity and the proposed technique for different values
of α in terms of (a) packet drop rate and (b) energy consumption rate, for a network
consisting of 50 sensor nodes and 10 routers. As can be seen in the figure, for α =
3, our proposed scheme has approximately 99% successful packet delivery rate and
reduces energy consumption by 13% compared to the selection diversity technique. . 59

5.1 Left : A 3D tripolar antenna on top of a commercial sensor node. Right : Channel
loss data (i.e., S21) for each of the three mutually orthogonal elements of the tripolar
antenna (i.e., V , H, and W ) [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Block diagram of an HMM-based diversity system. H, V , and W correspond to the
three mutually orthogonal antenna elements as well as the three hidden states in the
HMM. Ot is the observable state (RSSI) at time t. . . . . . . . . . . . . . . . . . . . 66

5.3 Block diagram of HMM states. Observations, Ot, i.e., RSSI values, which are explicit
and antenna polarizations (H, V , W ), which are hidden. . . . . . . . . . . . . . . . . 68

5.4 An example of partitioning RSSI values in three groups Z1, Z2 and Z3, where τ
is the predetermined threshold. The likelihood that the antenna selects one of the
polarizations at each time step under a given observed state is provided in emission
probability matrix B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 (a) Utilizing a compact reverberation chamber along with the end node (i.e., IoT
sensor) on top of a linear track to create harsh propagation environment (b) Block
diagram of the experimental setup used to collect signal strength data from embedded
devices enabled with tripolar antenna system. . . . . . . . . . . . . . . . . . . . . . 76

5.6 Empirical CDF of measurement data obtained from horizontal (H), vertical (V ), and
the third element (W ) of the tripolar antenna, where mean values of the RSSI values
obtained from three branches are α = −63 dBm, β = −61 dBm and γ = −64 dBm,
respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.7 Flowchart of basic operation of the Arduino temperature sensor utilizing the proposed
HMM approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.8 Comparison of empirical CDF among selection diversity, switched diversity, HMM
approach and non-diversity techniques when tripolar antenna is used . . . . . . . . 80

5.9 Comparison between selection diversity, switched diversity, HMM approach and non-
diversity schemes in terms of data packet delivery . . . . . . . . . . . . . . . . . . . . 81

5.10 Current consumption vs time during packet transmission for different diversity tech-
niques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.11 Comparison between selection diversity, switched diversity and the proposed HMM
approach in terms of battery energy consumption . . . . . . . . . . . . . . . . . . . 82

6.1 Correlation between RSSI values obtained at upper-level node and lower-level node
when the intermediate node used vertical (V ) polarization. . . . . . . . . . . . . . . 90

ix



6.2 A block diagram of IoT network with end nodes and routers illustrating upper hop
and lower hop node from router R2’s perspective. . . . . . . . . . . . . . . . . . . . 91

6.3 Illustration of an IoT network where router R2 utilizes channel information from two
hops for antenna selection. H, V and W represent the three branches of tripo-
lar antenna and the highlighted elements represent the currently used branch of
nodes R1 and R3. Received signal strengths for the hop branches are represented
by LH , LV , LW , UH , UV , and UW , where L and U depicts the lower and upper hops,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Outage probability of Max-Sum (Eq. (30)) and Max-Min (Eq. (44)) scheme for
three independent but non-identical Rayleigh branches with mean values (in dBm)
as follows: (a) Max-Sum with E[lh] = −61, E[lv] = −63, E[lw] = −64, E[uh] =
−62, E[uv] = −64 and E[uw] = −65. (b) Max-Sum with mean - 3 dB (c) Max-Sum
with mean + 3 dB, (d) Max-Min (e) Max-Min with mean - 3 dB (f) Max-Min with
mean + 3 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 Block diagram of testbed setup that utilizes a reverberation chamber to create a
severe multipath environment. The fabricated prototype tripolar antenna acts as a
transmitter and receiver for the XBee module. . . . . . . . . . . . . . . . . . . . . . 100

6.6 Cumulative distribution function (CDF) plots of RSSI data for three individual an-
tenna elements of the end node (Fig. 6.5) when the router node is vertically polarized,
where the mean RSSI values of H, V and W antenna branch are -63 dBm, -61 dBm
and -64 dBm, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.7 Diversity gain comparison of Max-Sum and Max-Min with selection diversity (sim-
ulated) for different switching thresholds with E[lh] = −61, E[lv] = −63, E[lw] =
−64, E[uh] = −62, E[uv] = −64 and E[uw] = −65. . . . . . . . . . . . . . . . . . . 104

6.8 Comparison of CDF of signal strength values, which a router receives from the upper-
hop router in a forty (40) node four-hop IoT network, for various antenna selection
strategies in multipath environment with channel characteristics akin to those from
our empirical data set (Fig. 6.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.9 Average number of dropped packets for selection diversity, Max-Sum, Max-Min,
switched diversity and single element antenna system. . . . . . . . . . . . . . . . . . 107

6.10 Comparison of antenna branch switching between selection diversity, Max-Sum, Max-
Min and switched diversity scheme. Note: switching is not applicable to the single
element approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.11 Energy consumption comparison of single element antenna and tripolar antenna sys-
tem while using various diversity schemes. . . . . . . . . . . . . . . . . . . . . . . . 109

x



List of Tables

2.1 Percentage of failed packet transmissions . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Comparison between empirical and simulated data . . . . . . . . . . . . . . . . . . . 31

2.3 Packet delivery statistics for tripolar node . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Loss of power due to polarization mismatch . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Comparative analysis of NM scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Comparative analysis of OPM scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Calculated HMM Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Gain Comparison Among Various Schemes . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 Comparison of simulated performance between diversity schemes for various network

sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xi



1 Introduction

1.1 Motivation

The Internet of Things (IoT) will be enabled by the integration of everyday objects and sensors

allowing them to collect and exchange information gathered from the environment without neces-

sarily human intervention. Networks consisting of interconnected low-powered autonomous sensors

and embedded devices have already shown great potential in home automation, smart grid, envi-

ronmental and industrial monitoring [4, 5]. However, a major challenge for IoT systems is the need

to mitigate multipath fading effects. A transmitted radio signal may be scattered, reflected and at-

tenuated by different objects during propagation resulting multiple copies of the same signal at the

receiver end [6]. The phase shifting and interference caused by these waves are known as multipath

effect. Multipath fading also depolarizes electromagnetic waves which alters the orientation of the

transmitted wave and transforms energy to other orthogonal planes from the original plane [7]. It

has been shown that approximately one in every five transmitted message can be lost or received

incorrectly due to signal strength fluctuations resulting from severe multipath fading [8]. Retrans-

mitting data packets would prompt the IoT device to remain active longer, require more transmit

power, and increase latency (delay) of the overall network. Since most IoT devices are battery

powered and more than two-thirds of their energy is spent for sensing, transmission and reception

purposes [9], mitigating packet loss and lowering energy consumption is crucial for IoT networks.

Polarization diversity antenna with two or more branches have been researched extensively due

to their ability to mitigate multipath fading and depolarization effects [10,11]. In harsh propagation

environments, the wireless link for each branch of the antenna becomes sufficiently decorrelated and

the probability that all branches will experience deep fading simultaneously becomes very low mak-

ing polarization diversity an effective mechanism to combat the fading. Additionally, the compact

size of the polarization diversity antenna due to the colocated antenna branches provides added

advantage in seamlessly integrating the antenna with miniature embedded devices. Although closed

form analytical solutions such as deriving bit error rate, outage probability, etc., showing the ef-

ficiency of the multi-branch antennas are available in literature [12, 13], performance evaluation of

such antennas, particularly through experimental setup has received less attention. In a harsh prop-

agation environment, which changes randomly, the fading response are statistically independent and

consequently, the signal power at different branches varies over time thereby motivating a means

to choose the antenna element that satisfies the application requirement during transmission and
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reception. Using optimal selection strategy for multi-element antenna leads to better diversity gain,

which improves the signal-to-noise ratio at the receiver and increases wireless link resilience. Addi-

tionally, improvement in diversity gain also reduces packet retransmission rate and improves energy

efficiency and lifetime of the IoT network.

Most of the existing antenna diversity techniques require complex calculations, large memory [14],

and sometimes external hardware [15] to exploit antenna diversity, which is not suitable for existing

or envisioned IoT devices due to resource limitation and low energy. Developing adaptive algorithms

to utilize polarized signals received at the antenna while taking into account of the restrictions

imposed due to low resource of the IoT devices can improve overall performance of the IoT networks

significantly.

1.2 Background

In this section, the overview of some fundamental concepts and background material that have been

largely used throughout this dissertation is provided.

1.2.1 Internet of Things definition and applications

Internet of Things (IoT) can be described as a network of interconnected things or devices that

enables seamless machine-to-machine and human-to-machine communication in a continuous basis

[16–18]. IoT consists of spatially distributed sensors, actuators with routers, which can communicate

with each other using wireless links, to monitor and produce sensory data based on real-time events.

The low cost sensor nodes, with or without data forwarding capabilities, act as end-nodes and

connects to router to facilitate information gathering and decision making. The sensory data is

forwarded to a remote base station or to remote server in cloud for data collection, data analysis,

and controlling these devices in real time. Fig. 1.1 depicts a typical IoT architecture with multiple

routers and end nodes.

IoT aims to integrate human beings with their surroundings through numerous context aware

and responsive IoT devices, which opens door for diverse applications in different domains. IoT ap-

plications range widely from automation such as industrial [19] and automotive control systems [20]

to energy efficiency such as, smart grids [21] and residential energy control systems [22]. Besides, in

recent years interest has grown on IoT based healthcare application for personal health monitoring,

patient support and fitness programs [23, 24]. Advances in sensor technology have made it conve-

nient to use IoT for environmental and agricultural purposes [25, 26]. Among some of the existing
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Figure 1.1: Typical example of an IoT network. End nodes forward data to nearest router to route
the data to the base station.

Figure 1.2: Example of various topologies used in IoT networks: (a) point-to-point, (b) star, (c)
mesh and (d) hybrid mesh topology.

environmental applications of IoT are pollution monitoring [27], wildfire surveillance [28], and water

quality monitoring [29]. More recently, researchers have been developing IoT based solutions for

traffic monitoring [30], underground mining [31] and structural health monitoring [32]. The growing

interest on miniature sensor devices and their expanding capabilities will inspire many other useful

applications in the years to come.

1.2.2 IoT network topologies

While IoT devices can be used in isolation depending on the application type, integration of multiple

devices in higher-level topologies are used to deliver real-world applications. For wireless communica-

tion, network topology refers to the layout of the network which defines how a network communicates

with different devices [33]. IoT devices can be deployed using either random or a predetermined

strategy. In a predetermined topology, the routes are determined before they are needed and indi-

vidual nodes are aware of the relative locations of the neighbors [34]. While in random deployment,

nodes are unaware of the topology and discover their neighbours during routing [35]. IoT networks

are built using point-to-point or multi-level based configurations:

• Point-to-point topology: This is the simplest topology which connects two end devices, for
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example, a single sensor node and a smartphone, as shown in Fig.1.2(a).

• Star topology: In small IoT networks, where devices and the base station are in close proximity,

the end nodes can communicate directly with the base directly without any repeater node [33].

Fig. 1.2(b) demonstrates how all data traffic flows through the base, which acts as a central

node. A personal area network where a smartphone gathers data from indoor IoT devices, is

an example of such topology.

• Mesh topology: Most IoT applications require substantial number of devices to be deployed

to cover large area, where base is outside of the communication range of the end nodes. In

such cases, nodes establish communication path from source to base through multiple router

nodes which acts as a repeater node in multi-hop fashion [36]. As shown in Fig. 1.2(c), in

a fully connected mesh network, each device is connected with every other device, which is

redundant and difficult to realize in large IoT networks. While hybrid mesh networks (Fig.

1.2(d)), utilizes sparse connections to reduce redundancy and easier to install.

For large-scale IoT networks, such as industrial IoT and smart grids, hybrid mesh networks

enables increased coverage and seamless connectivity by allowing autonomous nodes to act routers

and hosts simultaneously in a self-organizing manner [37]. The energy efficiency, reduced routing

overhead, and better adaptability to frequent topology changes offered by hybrid mesh networks

encouraged us to adopt such topology for our research [38,39].

1.2.3 Routing protocols for IoT networks

Routing protocol decides data transmission path from source to destination. Since IoT consists

of devices with limited power supply, limited memory and little computation capability, routing

protocols are mostly designed to be energy efficient and non-redundant. Although the topology of

the IoT networks are mostly static, some applications consider mobile routers or sink nodes which

affects the network structure and subsequently the routing paths need to updated dynamically.

There are many ways to classify network architecture and routing [40, 41]. Depending on network

structure, routing protocols can be classified in four sub-categories, as shown in Fig. 1.3, which we

describe here briefly [42].

• Location based: In this category, the location of each nodes, which is determined either by

Global Positioning System (GPS) or localization techniques, is used during routing of the
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Figure 1.3: Categories of routing protocols based on IoT network organization.

sensory data. Examples of such techniques are discussed in [43] and [44], where geographic

information about neighboring regions are used to deliver data.

• Hierarchical: In a hierarchical network, nodes play different roles according to their classifi-

cation. The nodes with high energy level and high capability can be assigned as router to

receive and forward data packets from other nodes, while the nodes with a lower energy level

can be specified as end nodes with no data forwarding capability. Commonly used protocols

for hierarchical network architecture, as presented in [45] and [46], uses cluster-based approach

to reduce power consumption of IoT devices.

• Flat-based: In flat-based network topology, every node is considered to have same functionality

and uses flooding or broadcasting to deliver data. A node simply broadcasts data to all the

nearest neighbor nodes, who then repeat the same process until the data is received at the

destination. To address the data redundancy and energy consumption, other enhanced version

of flat-based network architecture such as directed diffusion protocol [47] and negotiation based

protocol [48] have been proposed which reduces redundant data.

• QoS-based: While many routing protocols for IoT networks prioritizes to minimize energy

consumption, for some applications, for example, smart distribution grids [49], real-time video

streaming applications [50], performance metrices such as end-to-end delay and throughput

is also important. QoS based protocols use multi-path approach to establish routes between

nodes considering remaining energy of a node, cost of the routing path (related to energy

and/or delay) and then select a routing path based on QoS and packet priority.

To realize cost-effective IoT applications, large scale hybrid IoT networks are considered with a

reduced number of routers which will be beyond the wireless transmission range for most of the power

constrained IoT devices [51]. Hierarchical multihop routing allows IoT users to serve as a potential

intermediate relaying node for their nearest neighboring devices and reduces routing overhead by

eliminating the requirement of maintaining a fixed routing table [37]. Furthermore, hierarchical

routing protocol achieves higher network bandwidth by transmitting data through multiple short
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Figure 1.4: Reflected, scattered multipath components received at the antenna.

hops to the final destination, and hence is perfectly suitable for hybrid IoT network architecture

that we considered here for our work [38].

1.2.4 Multipath Fading

In wireless communication, fading refers to the attenuation of the transmitted signal power due to

changes in transmission medium or paths [38]. The loss of signal power due to fading results in

reduced signal-to-noise ratio (SNR) and affects the quality of wireless links. During propagation, a

radio signal can reach the receiver antenna from the transmitter antenna via two or more different

paths, which is known as multipath propagation [52]. When a signal propagates through the trans-

mission medium or radio channel, it can be reflected, refracted or diffracted by different interfering

objects such as buildings, cars and wall, etc. As shown in Fig. 1.4, the resulting multipath signal

components have distinct attenuation in power, delay, and angle of arrival, which lead to shifting

in phase with respect to the line of sight path at the receiver. At the receiver, which sums the

transmitted and multipath signals together, interference between the multipath components can be

constructive or destructive, and often causes degradation of the quality of communications. The

distortion of the radio signal and drop in signal-to-noise ratio seen at the receiver, is refereed to

as multipath induced fading. Different transmitted signals may experience distinct fading effects

depending on the relation between signal properties (such as amplitude, phases etc.) and channel

characteristics during multipath propagation.

Another concept related to fading is the coherence time which is a measure of time duration over

which impulse response of the channel becomes decorrelated from the previous value. Typically,

IoT devices are expected to send sensory data periodically, and hence, two different transmissions

from same node arriving at the receiver with a time separation greater than the coherence time

are affected differently by the channel. The receiver may take advantage of the varying channel

conditions using antenna diversity to mitigate the multipath induced fading. The most common
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type of fading used in the literature for IoT networks is flat fading, where the spectral features of

the transmitted signal are conserved at the receiver but the received signal strength fluctuates with

time because of the variations in gain of the channel caused by multipath [53]. Rayleigh distribution

is frequently used to represent the statistical time varying properties of the received envelope of a

signal that undergoes flat fading. For our work, we considered that IoT devices are deployed in an

environment where channels exhibit Rayleigh fading, which we describe next.

1.2.5 Rayleigh fading model

Rayleigh distribution is a standard statistical model that is used to describe multipath fading effects

where no direct line of sight content is present. Rayleigh channel model is widely used in wireless

communication due to mathematical convenience and its excellent conjecture of many practical

scenarios. The distribution depends only on mean received power, which can be derived either from

measured data or various prediction methods. In Rayleigh fading, the magnitude of the received

complex envelope α(t) has the Rayleigh distribution [53]

pα(r) =
r

σ2
exp

(
− r2

2σ2

)
0 ≤ r ≤ ∞ (1)

where, r, σ and σ2 are the received signal amplitude, the rms value of the received signal strength and

time-averaged power of the received signal before envelope detection, respectively. The corresponding

cumulative distribution function is

P (R) = Pr(r ≤ R) = 1− exp

(
R2

2σ2

)
(2)

The corresponding squared of the received complex envelope is exponentially distributed at any

time t with density [54]

pα2(r) =
1

γ
exp

(
r

γ̄

)
, γ ≥ 0 (3)

where γ̄ is the mean power. At any time, the squared-envelope is proportional to the instantaneously

received signal power at time t. Fig. 1.5 demonstrates received signal level power seen at the

received which follows a Rayleigh distribution. In wireless communication, the Rayleigh distribution

represents the worst case scenario with no line of sight signal component present, which helps

designing robust systems. When planning for IoT networks, Rayleigh fading model are preferable

as it provides a great approximation for large number of practical scenarios [6]. Additionally, it is

mathematically convenient to derive probabilities and other parameters with Rayleigh distribution
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Figure 1.5: Left: Sample sensor data collected over time in an harsh multipath environment using
single branch antenna where y-axis is showing the received signal power, Right: Histogram plot of
the received signal level along with a fitted Rayleigh curve.

since it depends only a single parameter, which is the mean received power.

1.2.6 Polarization and depolarization

When incorporating an antenna into small wireless sensor devices, it is important to consider the

desired application of the device, specially, the environment where the device will be deployed. An

antenna with a particular polarization will obtain improved signal strength and performance gain

when receiving signals aligned in orientation and polarization of that antenna and hence, will not

be effective while receiving signals with different polarization. Here we discuss how polarization is

determined and depolarization of the radio signal.

1.2.6.1 What is polarization? An electromagnetic wave’s electric and magnetic field, which

are perpendicular to each other, travel in single direction of the wave with no field variation between

them. An electromagnetic wave’s polarization refers to the direction of the electric field component

or the plane in which the electric wave vibrates. There are several types of polarizations in antenna

systems which we discuss briefly below [55]:

• Linear polarization: In a linear polarization, the oscillation of the electromagnetic wave’s

electric field is in one plane. Depending on the electric field vector, linear polarization can be

vertical or horizontal. For example, a horizontally polarized wave has oscillating electric field

parallel to the earth’s surface while traveling along a direction. Conversely, when the electric

field vector is transverse to the direction of the wave propagation, it is said to be vertically

polarized. Fig. 1.6 illustrates different kinds of polarization.
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Figure 1.6: Different types of polarization of an electromagnetic wave

• Circular polarization: In circular polarization, the electric field vector will have both x and

y components and the tip of the vector will form a circle (i.e., rotating electric field) as the

signal propagates. If the rotation is clockwise then it is called Right Hand Circular Polarization

(RHCP) and if the wave rotates counterclockwise then its is Left Hand Circularly Polarization

(LHCP).

• Elliptical polarization: When the electromagnetic wave consists of two electric field components

that are perpendicular to each other and different in magnitude, then the curve traced at a

given position as a function of time will be an ellipse.

In our work, we considered IoT devices equipped with either single branch or multiple branch

antenna systems. The single branch antenna has only one linearly polarized antenna branch with

either vertical or horizontal polarization. On the other hand, a tripolar antenna system consists

of three, mutually orthogonal and linearly-polarized elements with vertical polarization, horizontal

polarization and a third polarization which is perpendicular to the other two.

1.2.6.2 Depolarization The partial scattering of an electromagnetic wave during its propaga-

tion over an environment consist of reflectors and retarders is known as depolarization. In this

process, the polarization of a wave changes as the original plane of polarization losses electromag-

netic energy which appears in opposite plane. For example, a horizontally polarized radio signal may

have both vertical and horizontal components during propagation due to depolarization effect. The

ratio of the consequential horizontal to vertical components is used to measure depolarization, which
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is referred to as cross-polar discrimination, or XPD. Moreover, in a highly cluttered environment,

depolarization causes a three-dimensional effect where a signal of a given polarization is transformed

into all three planes [56].

1.2.7 Forms of antenna diversity

The idea of diversity is to use multiple channels to increase the signal to noise ratio where the

propagation environment is affected by random fading losses. The use of multiple replicas of the

signal reduces the probability that all of the replicas will see deep fading simultaneously and thus,

effectively mitigates performance degradation due to multipath fading. Diversity can be achieved

in several ways and each has its advantages and disadvantages. Next we discuss the most common

antenna diversity methods [6].

1.2.7.1 Time diversity Time diversity technique leverages the time variance property of wire-

less propagation channel and transmits a symbol at different times to achieve decorrelation [57].

For sufficient decorrelation, the temporal distance must be at least half of the maximum Doppler

frequency [58]. The simplest form of time diversity can be achieved by repetition coding, where

the signal is repeated several times with intervals long enough to make the signal uncorrelated [59].

While repetition achieves diversity, it causes redundancy and loss of spectral efficiency. Another

approach is using automatic repeat request where receiver sends acknowledgement message to the

transmitter indicating whether the received signal is acceptable or not [60]. If the received signal

does not have sufficient quality, the transmitter will resend the message after a certain wait period

to achieve decorrelation. While this technique is more efficient than repetition coding, a feedback

channel is required between the receiver and transmitter to send acknowledgement messages. An

advanced and popular version of time diversity is combination of interleaving and forward error

correction (FEC) coding where a transmitter transmits different symbols of a codeword at different

times to ensure that at least some of them are received with sufficient quality [61]. When FEC is

applied, a loss of one data packet is dispersed over multiple blocks of data interleaved into packets

that could be recovered and reconstructed by the receiver. However, the available rate for sources

decreases due to the increase of data transmission rate due to FEC approach.

1.2.7.2 Frequency diversity Frequency diversity uses multiple replicas of information signal

over several frequency bands [62]. Frequencies that are further apart than the coherence bandwidth

will experience uncorrelated frequency response and thus at least one will have strong signal. Instead
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of repeating the same information at two different frequencies, it is spread over a large bandwidth to

ensure that the small parts of the transmitted information are carried by different frequency com-

ponents. The diversity is then achieved at the receiver, which resolves the multipaths caused by the

inherent diversity in frequency-selective channels [63]. Since only one symbol can be transmitted in

every delay spread, the diversity gain achieved by frequency diversity is nullified by consumption of

extra bandwidth. Frequency diversity also suffers from inter-symbol interference (ISI), where delayed

replicas of previously transmitted symbols interfere with the current symbols. Several approaches

exist that address the mitigation of ISI while exploiting frequency diversity in a wideband channel.

One such approach leverages linear and non-linear processing at the receiver to mitigate ISI, which

enables the receiver to detect the current symbol with very low interference from the other symbol

and have lower complexity [64]. Another technique, known as direct sequence spread spectrum,

modulates the information symbols by a pseudonoise sequence and transmit them at very low rate

over a bandwidth that is much larger than the data rate [65]. Although this technique simplifies

the receiver structure, it also reduces the total degrees of freedom of the system. Orthogonal Fre-

quency Division Multiplexing (OFDM) is the most common frequency diversity technique where ISI

channel is converted to non-interfering orthogonal sub-carriers by using transmit precoding across

the symbols [66]. While all the different techniques can increase the bit error rate and decrease the

effects of fading, the use of frequency diversity requires the channel to be frequency selective.

1.2.7.3 Space diversity Since multipath fading changes rapidly over space, the received signal

at antennas across space can have a low correlation coefficient. Space diversity is achieved by placing

multiple antennas far apart such that the channel gains between different antenna pairs become

independent [67]. The required separation between antenna elements not only depends on the local

scattering environment but also on the carrier frequency. Mobile devices in a cellular system are

generally near the ground with many scattering objects around which decorrelates the channel over

shorter spatial distances. Additionally, the wavers are assumed to be received by the mobile receiver

from all directions, where multipath components (either constructive or destructive interference) are

apart approximately by λ/4 [68]. Thus, for standard cellular systems at the 1800 MHz band the

distance between antenna elements is about 4 cm, which can be achieved readily [69]. However, for

base stations in cellular systems, all the incident waves are from one direction and the arrival of

incident waves are not uniform. Therefore, the correlation coefficient will be much higher for the base

stations resulting in further increase of antenna spacing to obtain sufficient decorrelation. Numerical

evaluations of the correlation coefficient as a function of antenna spacing (Figure 13.1, [6]) illustrate
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that antenna spacing has to be on the order of 2–20 wavelengths for angular spreads between 1◦ and

5◦ in order to achieve decorrelation. The results also implied that the required antenna spacing is

determined by the rms angular spread and the impact of the shape of the angular power spectrum

is insignificant. While space diversity is widely used for cellular systems, it can not be applied to

compact IoT devices where space is very limited.

1.2.7.4 Polarization diversity Most channel models that analyze propagation of transmitted

and received waveform consider vertical polarization. Transmitted signal from a vertically polarized

antenna gets scattered and diffracted resulting in energy being transferred into the horizontal polar-

ization component before reaching at the receiver antenna [70]. Since the amplitude and phase of the

depolarized signals with opposite polarizations will be dissimilar due to different reflection coefficient,

they can be considered to be nearly uncorrelated. These signals can be processed separately using

a dual-polarized receiver antenna with vertically (co-polarized) and horizontally (cross-polarized)

polarized element, which is known as polarization diversity [71]. Depending on the deployed envi-

ronment, the horizontally polarized signal can be some 3–20 dB weaker than the vertical signal and

vice versa. Various antenna arrangements have been proposed in order to achieve polarization di-

versity. The antenna elements can be horizontal/vertical or ±45◦ slanted ensuring that the antenna

elements are orthogonal to achieve uncorrelated signals [72]. Polarization antenna can also be recon-

figured in a way such that it can switch between linear and circular polarization [73]. Experiments

with dual-polarized base station antenna with various configurations showed that the diversity gain

received from polarization diversity is approximately 1 dB less than the gain received from space

diversity [74]. The study also revealed that the performance of polarization diversity is strongly

dependent on the environment where the receiver is deployed and the inclination angle of the trans-

mitting antenna. For example, when the terminals were deployed in sub-urban areas, which are

less densely populated than cities, results were identical for both space and polarization diversity

technique. While historically polarization diversity antennas have been favoured for mobile radio

base stations, the collocated positions of the antenna branches allows the antenna to be compact

and makes it suitable to integrate with embedded devices used in IoT networks.

1.2.7.5 Antenna diversity used in this work Performance of wireless communication systems

can be enhanced by utilizing diversity techniques [75]. Spatial diversity and polarization diversity

are the most commonly used techniques among all other diversity techniques, due to the simplicity

of their implementation. Although spatial diversity is capable of realizing great range improvements,
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it comes at the cost of substantial separation between the antennas, making it impractical to use

for miniature low-cost IoT devices. On the other hand, polarization diversity offers diversity by

leveraging multiple antenna elements with separate vertically and horizontally polarized receivers

and provides a simple and effective way to reduce the fading effects in harsh wireless propagation

environment. Furthermore, polarization diversity can achieve up to three or more additional degrees

of diversity by exploiting three possible components of the electric field and magnetic field [6], which

can be utilized to combat multipath fading efficiently. Considering the benefits of compact size and

performance superiority, we focused on polarization diversity antenna systems at the transmitter

and receiver end for our work.

1.2.8 Diversity combining techniques

To take advantage of antenna diversity, we need to combine two or more independent and uncorre-

lated faded signals available at the diversity branches of the antenna. Diversity combining, which

increases SNR or the received power of the signal, can be applied for both transmission and recep-

tion to choose the optimum signal. The signals from diversity branches can be combined coherently

before detection (i.e., pre-detection) or after detection (i.e., post-detection). We now describe four

diversity techniques that are most used in wireless communication.

1.2.8.1 Selection Combining Under selection combining, the receiver monitors all the diversity

branches and selects the antenna branch with the highest SNR, i.e., the diversity branch with

the strongest instantaneous signal-to-noise ratio (SNR), for signal reception [76]. Thus, selection

combining ensures the best possible performance among the other diversity schemes that uses only

one receiver chain but requires monitoring the SNR on each branch simultaneously. Additionally,

selection combining can be used with either coherent or differential modulation since it uses a single

branch output and does not require co-phasing of multiple branches [77]. Fig. 1.7 illustrates the

technique through a block diagram. In the literature, several approaches have been considered to

analyze the performance of selection combining under various fading conditions. For example, [78],

[79] studied the performance of selection combining combining for independent Rayleigh, Rician, and

Nakagami-m fading channels. However, the fading among the channels can be correlated, which will

degrade the diversity gain of the system. Various selection diversity based models have been proposed

corresponding to correlated channels with specific fading conditions [80–82]. In [80], the authors

studied the effect of correlation and fading parameter on an N-order conventional selection diversity

system under the assumption that diversity branches experience Nakagami-m fading conditions. The
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Figure 1.7: Block diagram of selection diversity with three antenna branches

authors derived the joint distribution of the output of a dual-diversity selection combining receiver

and obtained the average probability of error by averaging the conditional probability of error over

the distribution of the output of the combiner. Later, the authors in [81] derived an analytical

expression of the switching rate for correlated dual selection diversity combining by considering

balanced and unbalanced correlated Rayleigh channels that are identical but nonindependent. An

approach to the performance analysis of a selection-diversity system over correlated Rician fading

channels is presented in [82], which derived the closed-form expressions of converged sums for both

outage and average error probabilities. However, most of these approaches are limited to the case of

dual diversity and do not consider the space or energy constraint of low-cost embedded IoT devices.

1.2.8.2 Switched Combining Monitoring all diversity branches is infeasible for most of the

applications due to implementation complexity and energy consumption. Switched diversity moni-

tors the currently used branch only and switches to other branches when signal quality falls below a

certain threshold [83]. Since antenna branches of a diversity antenna experience independent fading,

the switching to a better branch lead to certain amount of diversity gain. Many variants of switched

diversity have been proposed depending on how an antenna branch during switching and also de-

pending on how the threshold is determined over the past four decades. For example, Blanco and

Zdunek proposed switch-and-stay combining where switching depends on two consecutive channel

quality estimates, and switching between diversity branches occurs only when a downward crossing

of the predetermined threshold is identified [84]. Later, Abu-Dayya and Beaulieu [85,86] introduced

threshold based switched diversity technique, where an antenna switches branch only when the cur-

rent signal level or SNR is below the predetermined threshold. In this case, the receiver uses only

the current channel estimate and uses a single receiver chain only, which is simpler to implement.

The structure of typical threshold based switched diversity receivers is shown in Fig. 1.8. In [87]

and [88], the authors analyzed the performance of switched diversity based approach in conjunction
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Figure 1.8: Block diagram of a receiver using switched diversity technique with three diversity
branches

with binary non-coherent frequency shift-keying (BFSK) for correlated diversity branches over the

Rician and Nakagami-m fading environments. The outage probability and average error-rate per-

formance of the switched diversity technique for predetermined and adaptive switching threshold

have been analyzed in [89] and [90], where the authors considered general fading/branch scenar-

ios along with various modulation schemes. Selecting an optimal switching threshold is crucial for

switched diversity. Two different approaches exist for selecting switching threshold in the literature,

one based on analytical derivation [91], and another based on the minimum receivable power by

the actual antenna [92]. While switched diversity offers simpler implementation and reduction of

complexity, the diversity gain achieved by selection diversity is better than switched diversity. Also,

the existing works on switched diversity mostly considered dual-branch antenna scenarios and have

not addressed a network-wide analysis of such techniques.

1.2.8.3 Maximal Ratio Combining (MRC) In this technique, signals received at different

antenna branches are co-phased and summed using optimal weighting by using summing circuits.

The weight factor, which is proportional to the SNR of the received signal, amplifies the strong

signal and attenuates the weak signal to maximize the combiner output SNR [93]. For an efficient

communication system that uses MRC, it is required to estimate complex channel gains as well as to

quantify the effect of noisy channel estimates on the error probability performance. Several studies

have addressed the performance of MRC with noisy channel estimates. The performance of MRC

on independent Rayleigh-fading channels was analyzed through a pilot signal, which is decorrelated

from the data signal, in [94]. In [95], the authors derived the pdf of the SNR at the output of MRC

for Rayleigh-fading channels. Additionally, the outage probability of MRC and the density function
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of the MRC combiner has been extensively analyzed for other fading channels models such as Rician

and Nakagami-m fading [96,97]. Recently, the authors in [98] obtained the bit error performance of

MRC for dual-branch diversity system under the assumption of one dominant cochannel interference

in a Rayleigh fading environment. While MRC achieves best performance, most of the studies are

constrained to dual branch antenna systems only. Furthermore, the requirement of phase correction

and multiple receiver chain makes MRC unsuitable for low-complexity, low-powered IoT devices.

1.2.8.4 Equal Gain Combining (EGC) Similar to the MRC, the EGC technique co-phases

the received signals and then adds them together. Unlike, MRC there is no weighting of the signals.

By adjusting the phase for each received signal and adding the in-phase vectors, EGC achieves bet-

ter performance than selection diversity [99]. Various analytical techniques have been proposed to

analyze the performance of EGC for different fading channel conditions (e.g., [100–104]). In [100],

a frequency-domain EGC scheme was proposed with an aim to improve the receive performance of

a single tap receiver or a minimum mean square error (MMSE) receiver with distributed antenna

systems (DAS). Fucheng et al. investigated a synchronous fast-frequency-hopping M-ary frequency

shift keying system with non-coherent envelop detection over Rayleigh fading channels. The pro-

posed algorithm selects multiple most likely estimations based on the EGC outcome and then uses

maximum likelihood detector to make final decision [101]. Recently, the authors in [102] derived

error-rate formulas based on EGC with BPSK/QPSK signalling over Rayleigh fading channels with

independent diversity branches using Gauss hyper-geometric functions. Additionally, hybrid schemes

that combines EGC with other existing diversity scheme such as selection or switch diversity have

also been studied for different channel conditions [103] and [104]. However, most of the works in

the literature considered EGC for cellular systems as it requires additional circuitry and complex

algorithms for detection, which is incompatible for IoT devices.

1.2.8.5 Diversity technique used in this work In the context of low complexity diversity

reception, conventional selection diversity as well as switched diversity are promising enabling tech-

nique for low powered IoT devices due to low cost implementation. While selection diversity contin-

uously selects the branch with the largest signal-to-noise ratio (SNR) among the available branches,

the hardware requirement of multiple RF-chains and energy consumption with continuously moni-

toring each branch is not suitable for energy constrained IoT devices, especially as the number of

branches grows [6]. An alternative approach for IoT devices is switched diversity which offers a

cost-effective technique by using single RF chain to monitor a particular branch and switches to an-
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other branch when the signal strength drops below a predetermined threshold. However, the power

gain achieved by the conventional switched diversity technique is less than selection diversity and

the complexity of switched diversity increases when the number of antenna elements extends more

than two due to the time required to sense all the available diversity branches. Motivated by these

findings, we focused on developing specific implementations of switched diversity technique which

will provide increased link reliability and energy efficiency compared to the conventional switched

diversity.

Figure 1.9: An Arduino based sensor node with humidity sensor and a thermistor.

1.2.9 Tripolar antenna

When an IoT device equipped with a multi-element antenna is deployed in a harsh environment,

for example, inside of a factory, it will experience distinct fading conditions at different antenna

branches [105]. A tripolar antenna, with three orthogonal antenna elements has been presented

in [106], where through simulated and empirical data the authors showed how tripolar antenna

can mitigate the multipath fading effects using antenna diversity. The proposed antenna, which

can be readily integrated with sensor devices, has three λ/4 monopoles tuned at 2.4 GHz. Using

3D printing and additive manufacturing techniques the antenna branches are at an angle of 45°

relative to a vertical antenna to achieve orthogonality which enables them to receive signals with

any polarization (X, Y , or Z). Fig. 1.9 demonstrates an Arduino based sensor node with XBee

wireless module and tripolar antenna.
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1.3 Research Objectives and Organization

The main research question addressed in this thesis was: given the harsh wireless propagation envi-

ronment experienced by resource-constrained IoT devices, how can multi-branch diversity antenna

selection techniques provide high link reliability and increase energy efficiency in such diversity-rich

environment.

The specific objectives of this research were to: (1) conduct comparative analysis of tripolar

antenna and single element antenna based on single point-to-point link using simulations and ex-

perimental data; (2) conduct end-to-end network assessments for existing diversity techniques using

prototype tripolar antennas, including developing three-branch antenna diversity techniques that

takes into account the network structure and routing protocols; (3) conduct a probabilistic antenna

selection approach and determine its suitability by varying threshold and leveraging over-the-air test-

ing data; and (4) develop and assess the performance of dual-hop based antenna selection techniques

compared to single hop based techniques. The dissertation is organized as seven chapters. Chapters

2-6 are presented as published or submitted for publication. Chapter 7 presents the conclusions and

avenues for future work. Each Chapter’s goal is summarized as follows.

• The efficacy of using polarization diversity with multi-branch antenna has received much at-

tention due to the high diversity gain and compact size of the antenna elements. However,

demonstrating the performance in real-life scenarios through experiments has not been studied

in detail so far in the context of IoT. In Chapter 2, the performance of a 3D printed tripolar

antenna system is analyzed based on single point-to-point link performance by leveraging an

Arduino platform with a XBee wireless module and highlights the impact of tripolar antenna

in mitigating multipath effects.

• In Chapter 3, we conduct experiment on the impact of tripolar antennas from a network-wide

perspective. While existing works focus on point-to-point links only, we demonstrate that a

network-wide consideration is necessary as selection of antenna branch effects the signal power

of its neighbor nodes that exchange data packets with the node. Through simulation and

empirical results, it was illustrated that polarization aware antenna selection techniques can

improve link reliability and increase network lifetime.

• The results obtained in Chapters 2 and 3 motivated development of diversity technique that

exploits the IoT network architecture. Chapter 4 focuses on determining crucial routers of a

network using ‘centrality’ measures by leveraging Complex Network theory. The representation
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of an IoT network using graph objects and subsequent identification of highly congested routers,

enables implementing adaptive antenna selection where antenna switching varies according to

the load of the router and thus reduces excessive antenna switching.

• In Chapter 5, a switched diversity technique based on Hidden Markov model (HMM) is devel-

oped in consideration of the limited capabilities of the IoT devices. The proposed HMM coor-

dinated approach utilizes empirical data and determines the best antenna branch for switching

when the current antenna branch’s signal quality drops below a certain threshold under un-

correlated, independent and non-identical Rayleigh fading conditions. Both analytical and

simulation results show that the proposed approach can reduce unnecessary switching and

improve diversity gain of IoT devices deployed in harsh wireless environments.

• The diversity gain provided by multi-branch antennas has motivated the exploration of various

diversity schemes analytically by means of deriving expression for bit error rate and outage

probability. There is, however, little knowledge about end-to-end network performance of

these diversity schemes. Chapter 6 discusses a switched based diversity technique that con-

siders neighbor nodes antenna configuration status and adapts antenna selection accordingly.

The study explores the impact of the multi-branch polarization antenna from network-wide

perspective and demonstrate that using local antenna configuration knowledge leds to better

antenna selection for the IoT devices.

• Conclusions and avenues for future work are summarized in Chapter 7.
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2 Improving Network Reliability Using Tripolar Antenna

Foreword

This chapter studies the performance of a tripolar antenna in harsh wireless propagation environment

likely to be seen by practical IoT devices. Section 2.1 is the work as presented at the 2018 Antennas

and Propagation & USNC/URSI National Radio Science Meeting. In this work, we introduce a

hybrid mesh wireless network simulator, explicitly designed for IoT applications operating at 2.4

GHz and then discuss how it realizes multitude of links for single element and multi-branch antenna

in different instances. Thereafter, performance comparison between single element and the tripolar

antenna is provided based on simulation results which leveraged empirical channel data measured

in slowly-varying, severe multipath environment. However, relying on simulation heavily can be a

problem as modeling precision worsens in a complex network with multiple interconnected users or

devices including many variables not associated with the output. Therefore, to verify the simulation

results, we extend the work by building a testbed with two prototype sensor devices equipped with

tripolar antennas inside of a reverberation chamber. Section 2.2 presents the paper published at

the 2018 IEEE Wireless and Microwave Technology Conference, which compares the empirical data

obtained from 3D printed tripolar antennas with the simulation results. Experimental results show

that the tripolar antenna is capable of maintaining the same packet delivery ratio (i.e., three times

better than monopole antenna) both under static and dynamic conditions with various antenna

switching rates.

2.1 Improving Reliability in Hybrid Mesh Networks with Tripolar An-

tennas

2.1.1 Abstract

The work herein demonstrates how hybrid mesh network reliability can be improved by leveraging

the channel diversity enabled by a compact, tripolar antenna. Specifically, through simulation, we

show that a tripolar antenna can reduce packet drops to a third of that of when a single element

antenna is used. These results were achieved assuming a slowly-varying, but highly-multipath,

propagation environment such as those that may be expected in industrial IoT settings [2].
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Figure 2.1: Left : Fabricated prototype 3D tripolar antenna on top of a wireless sensor node. Right :
Example channel loss (i.e., S21) for each of the three elements of the tripolar antenna [1].

2.1.2 Introduction

The Internet of Things (IoT) will be built from networks of connected embedded devices and will

couple physical infrastructure with information and communication technologies [107]. These de-

vices will be wireless and will smartly monitor, manage and transmit sensory data to a central

system. A multi-hop, expandable and hybrid mesh network, which does not rely on dedicated

central infrastructure, will be necessary to enable the devices to perform such activities [108].

Depending on the IoT application, devices (i.e., network nodes) may be deployed in less than

ideal propagation environments, such as inside of a vehicle or a factory. In these highly cluttered

environments, critical information might be lost due to fading and multipath effect and therefore

will affect the performance and robustness of a hybrid mesh network.

Diversity techniques such as two dimensional multi-polarization, maximum ratio combining, and

equal-gain combining have been long considered to mitigate multipath effects in wireless communi-

cations [109]. Our recent work [1] has shown that a compact 2.4 GHz tripolar antenna (65 mm ×

60 mm × 21 mm) can leverage polarization diversity to mitigate fading in a single point-to-point

communication link. This 3D antenna system was realized using single-piece additive manufacturing

and can be integrated with a commercially available wireless sensor hardware.

In this paper, we compare, via simulation, the reliability of a hybrid mesh network consisting of

a multitude of links, where in one instance devices use a single element antenna and in the second

instance, a tripolar antenna system. Channel data utilized in this this work was that measured in

a slowly-varying, high-multipath environment. Simulation results showed that networks leveraging

nodes with tripolar antennas performed approximately three times better in terms of packet delivery

than those with nodes using a single element antenna.
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2.1.3 Methodology

2.1.3.1 Channel measurements For this work, we leveraged the channel data measured for

and presented in [1]. To emulate a slowly-varying, high-multipath propagation environment, S21

measurements were made between transmit and receive antennas place in a compact reverberation

chamber. This chamber is capable of creating conditions ranging from benign (i.e., Rician, high-K)

to severe (i.e., hyper-Rayleigh). With the transmit antenna fixed, the receive antenna systems were

placed on a track and moved moved to 50 repeatable positions in 1 cm increments. At each location,

S21 measurements were made for each antenna element at 551 frequencies in the 2.40 to 2.48 GHz

band.

2.1.3.2 Hybrid mesh network simulator We developed a Python-based simulator to imple-

ment a hybrid mesh topology network. The network allows communication from end nodes to a base

station through a router node as illustrated in Fig. 2.2. The network uses IEEE 802.15.4 standard

for transmission, which is ideal for IoT applications operating at 2.4 GHz. Each simulation starts

with user defined field size, number of end nodes, number of routers and total number of transmis-

sions per end node. The randomly deployed end nodes, which do not relay data from other nodes,

send their own data to a router. End nodes maintain their own routing table and if a router stops

functioning, end nodes can use an alternate router. Routers form a mesh network among themselves

and find an optimized route to relay the information until it reaches the base station.

The simulator implements a simple communication protocol which allocates communication chan-

nels between network entities without collisions. Each end node is assigned S21 (i.e., channel loss)

data described in the previous section. For the case where the network’s end nodes implement a

single element antenna, this data is a single list of 551 values. For the tripolar case, each end node

has three lists of channel loss data. When a node with a tripolar antenna prepares to transmit a

message, the simulator randomly assigns S21 values to each element of the antenna from the node’s

three lists. The lowest link loss is then associated with the message. For linearly polarized antenna,

the simulator picks only one S21 value. When entity sends a message, the message contains the

sender and receiver address and channel loss value. The receiver sends an acknowledgement message

if the channel loss is above a certain S21 threshold (τ). Otherwise it discards the message (i.e., the

simulated packet is “dropped”). τ is calculated separately for each node based on its own lists of

S21 values. The simulation stops after simulating specified number of transmissions per node (e.g.,

1000).
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Figure 2.2: Hybrid mesh network topology

2.1.4 Simulation results

For the presented results, we set the field size to 1000 m2, total number of end nodes to fifty (50)

with four (4) routers and one base station. Fig. 2.3 illustrates the channel loss associated with a

single end node for both antenna configurations. The number of times the S21 value went below the

threshold value for an end node with tripolar antenna was much lower than for the node with the

single element antenna. Fig. 2.4 compares the performance of 50 sensor nodes with and without

tripolar antenna systems in terms of successful data transmission from one node to another when τ

= Mean - 3 dB.

Mesh networks employing tripolar systems had considerably higher packet transmission success

rate (82-95%) than nodes using single element antennas (55-78%). Table 2.1 compares the perfor-

mance for various threshold values in terms of packet throughput. Consistently, the percentage of

average number of failed transmissions for single element antenna nodes was approximately three

times higher than for when nodes used the tripolar antenna system.
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Figure 2.3: Link loss for 50 transmissions with single element and with tripolar antenna systems.
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Figure 2.4: Dropped packet rates for single antenna element and tripolar antenna networks. Thresh-
old (τ) = Mean - 3 dB.

Table 2.1: Percentage of failed packet transmissions

Threshold (τ) Tripolar Antenna Single Element Antenna

Mean 31% 53%

Mean - 1 dB 9% 30%

Mean - 3 dB 4% 15%

Mean - 10 dB 2% 9%

2.1.5 Conclusion

In this work, we compared the link reliability for two hybrid mesh networks, one network utilized

wireless nodes with a single element antenna, in the second, nodes leveraged diversity enabled by
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a tripolar antenna system. Results, using measured channel loss data sets, show that the tripolar

antenna can significantly improve the communication reliability in such networks. Subsequent work

will implement these approaches in hardware to demonstrate the benefits in practice.
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2.2 Leveraging Tripolar Antenna Diversity to Improve Link Reliability

in Severe Multipath Environments

2.2.1 Abstract

In this work, empirical results demonstrate the efficacy of tripolar antenna diversity to improve

data packet delivery in environments prone to severe multipath, i.e., those that may be seen for

industrial IoT applications. The work leveraged an Arduino platform with a XBee wireless module

and compared performance (i.e., link reliability) when a baseline monopole antenna was used versus a

prototype, 3D printed tripolar antenna system. The testing was conducted by placing both antennas

inside of a compact reverberation chamber. We also compared empirical data with simulated data

and showed that for both cases, the tripolar antenna system performed approximately three times

better than the monopole antenna. Finally, we conducted tests under dynamic conditions where

the wireless node switched, at various rates, between the three antenna elements, choosing the best

option to send data packets and results showed that the tripolar antenna can mitigate the high

multipath effect with 95% successful packet delivery [110].

2.2.2 Introduction

The Internet of Things (IoT) will be enabled by the integration of billions of sensory devices with

physical objects and through collecting and exchanging information without direct human interven-

tion. Networks consisting of interconnected low-powered autonomous sensors and embedded devices

have already shown great potential in home automation, smart grid, environmental and industrial

monitoring [4], [5]. However, a major challenge for industrial IoT systems is the need to mitigate

multipath fading effects caused by the highly reflective and dynamic environments in which these

wireless embedded devices may be deployed. Such fading can impact network performance in terms

of link reliability and data throughput.

Various diversity techniques such as frequency diversity [111], spatial diversity [112], and polar-

ization diversity have been used to improve the link reliability and overcome fading loss. Consider

the following as recent examples. A dual mode multi-band antenna, which used unit cell radiators

in the horizontal and vertical plane to achieve polarization diversity, was introduced in [113]. The

antenna was designed for vehicular networks and can operate at 2.4, 3.5 and 5.8 GHz. Another

dual-polarized antenna used a single-layer frequency selective surface and can operate for ultra-

wideband (UWB) applications [114]. Finally, the design presented in [115] consists of three-element
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Figure 2.5: A tripolar antenna connected to an XBee wireless module and controlled by an Arduino
embedded system.

multiple-input-multiple-output (MIMO) antenna. The technique used both pattern and polarization

(linear/circular) diversity and was proposed for upper WLAN frequency band (5.6 GHz). Although

these proposed techniques are promising, they are yet to be tested on a realistic scenario, for example

with an IoT based smart device deployed in a high multipath environment.

Our recent work has shown that a compact (65 mm × 60 mm × 21 mm) 2.4 GHz tripolar antenna,

consisting of three mutually orthogonal elements, can improve channel induced losses such as depo-

larization and fading through polarization diversity [1]. This 3D antenna system was realized using

single-piece additive manufacturing and is suitable for slowly-varying, high-multipath environment.

We have also shown, using simulations, that the tripolar antenna performed approximately three

times better than single element antenna in terms of data packet delivery for a single point-to-point

communication link with harsh propagation conditions [2]. In the work herein, we validate these

simulation results with experimental data.

The experiments were conducted by integrating a prototype tripolar antenna system with an

Arduino-controlled XBee wireless module (Fig. 2.5). This antenna system, employing three-element

selection diversity, was compared to a similar Arduino-controlled systems that leveraged a monopole

antenna. The performance (i.e., success rate of data packet delivery) of the two designs are com-

pared in static but highly-reflective environment and under dynamic conditions. Empirical evidence

illustrated that the tripolar antenna system can achieve approximately 95% successful packet de-

livery versus 85% if a monopole antenna is used. At the same the tripolar antenna is capable of

maintaining that success rate under dynamic conditions that require fast switching between antenna

elements.

The remainder of this paper is organized as follows. In Section 2.2.3 we describe experimental
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Figure 2.6: A simple network with end devices and coordinator.

setup and integration of the tripolar node with the XBee/Arduino platform. Empirical data showing

the data delivery performance of the tripolar antenna in severe wireless propagation environment

and in dynamic environment are presented in Section 2.2.4. We finish with concluding remarks in

Section 2.2.5.

2.2.3 Methodology

The introduction of IoT based smart devices and processors for industrial automation has increased

the possibilities of improved security, low-cost and high productivity. However, these devices are

often deployed in heterogeneous environments, such as factories, complex and confined areas, which

affects the wireless propagation environment. Therefore, any device intended for such dynamic

environments should have the adaptability to mitigate the fading and multipath effects. In this

section, we describe how we setup the experiment to create severe multipath environment to test

the adaptability of the tripolar antenna.

2.2.3.1 Arduino-based nodes In an industrial IoT scenario, multiple embedded devices, i.e.,

sensor nodes or actuators, consists of microcontroller and sensors, acquires and forwards sensory

data to a central location, known as IoT gateway. For our setup, we used XBee S2C modules,

which work as a highly configurable wireless transceiver and an Arduino Uno as microcontroller

to build a self-contained, battery-powered deployable node (Fig. 2.5). Nodes used the ZigBee

communication protocol, which is based on an IEEE 802.15.4 standard and is suitable for low data-

rate communication.

The tripolar and monopole antenna was connected to the XBee module through RPSMA connec-

tor and we refer to them as ‘tripolar node’ and ‘monopole node’ respectively. We used a coordinator
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node, as illustrated in Fig. 2.6, to collect data from end devices and configure the network for

point-to-point communication operating at 2.4 GHz. The coordinator node acts as a parent for the

end devices by setting the Personal Area Network (PAN) ID of the network, handing out addresses

and keeping the network secure.

XBee module can operate at AT/API mode. Using AT mode, also known as ‘Transparent’ mode,

the XBee module can be configured by the user or a host microcontroller (Arduino) by first placing

the module in command mode and then sending predefined AT commands. For large networks,

where each XBee module communicates with multiple XBee modules, Application Programming

Interface (API) mode is used. Using built-in library called ‘xbee-arduino’, an Arduino can build,

send and receive API frames [116]. To measure the RSSI, the host Arduino sends AT command: ‘AT

DB ’, which reads the signal level in decibels (dB) of the latest received packet, to the XBee module

through the UART port. Thus the receiver XBee module measures the strength of the signal and

determine the quality of the communication link.

2.2.3.2 Test environment To emulate a slowly-varying, highly reflective and multipath propa-

gation environment, RSSI measurements were made by putting an end device (tripolar or monopole

node) inside of a compact reverberation chamber. This chamber is capable of creating conditions

ranging from benign (i.e., Rician, high-K) to severe (i.e., hyper-Rayleigh). To make the setup re-

alistic, only the end nodes were deployed inside the chamber and the coordinator node was on top

of a table in normal propagation environment. With the coordinator node fixed, the end node was

placed on a linear track and moved to 50 repeatable positions in 1 cm increments. At each location,

the Arduino measures RSSI for each of the three elements of the tripolar antenna and then selects

one antenna element with the best channel conditions for data transfer. Polarization switching of

the tripolar antenna was achieved by the multiple analog and digital pins of the Arduino. The

experiment was repeated for the monopole node.

The end devices send data message to the coordinator, i.e., receiver after certain time intervals,

which contains the sender’s address and sensory data. The receiver checks the RSSI of the received

packet and sends an acknowledgement message if the channel loss is above a certain RSSI threshold

(τ). Otherwise it discards the message (i.e., the packet is lost). Fig. 2.7 shows sample RSSI

measurement data from three antenna elements of the tripolar antenna deployed inside the chamber.

To test the effectiveness of the tripolar antenna under high switching rate, we used various switching

rate ranging from 100 ms to 1 second.
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Figure 2.7: RSSI data for three elements of the tripolar node taken at 50 different positions in the
track
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Figure 2.8: RSSI data for 50 transmissions for monopole antenna and tripolar antenna systems.
Threshold (τ) = Mean - 3 dB.

2.2.4 Empirical results

For the presented results, the coordinator node was placed outside of the chamber and the distance

between the nodes was 13 feet (approximately 4 meter). As illustrated in Fig. 2.7, signal strength

varied when the node was moved along the linear track and it is unpredictable which antenna

element will be dominant at a certain time. The Arduino chooses the best antenna element, which

will provide highest RSSI before each transmission. An illustration of this technique can be seen in

Fig. 2.8, where tripolar antenna uses polarization diversity to minimize channel loss. Fig. 2.8 also

the signal strength values observed by the monopole node. We set the threshold value τ to Mean -

3 dB, where Mean is calculated over all the RSSI values of both antenna systems. We can see that
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Table 2.2: Comparison between empirical and simulated data

Threshold (τ) Packet Loss (%)
Tripolar Node

Packet Loss (%)
Monopole Node

Empirical
Mean - 3 dB 3 14

Mean - 10 dB 1 7

Simulated
Mean - 3 dB 4 15

Mean - 10 dB 2 9

Table 2.3: Packet delivery statistics for tripolar node

Polarization
switching time

(sec/pol.)

Avg. RSSI difference between highest
and lowest element of the tripolar

antenna (dBm)

Packet loss (%)

0.1 6.0300 4

0.2 4.1650 3

0.5 4.3600 1.5

1 5.2000 1

the number of times the RSSI value crossed the threshold value for the tripolar antenna was much

lower than for the monopole node. Thus the tripolar node was able to avoid the deep fades caused

by the severe multipath environments and reduces loss of data packets.

Table 2.2 provides an illustration of the link loss performance between the tripolar node and the

monopole node and compares the empirical results with simulated data that were presented in [2].

When end devices were placed inside of the chamber, the packet loss was approximately three (3)

times lower for the tripolar node. In [2], we used a simulator and chamber data to emulate severe

wireless propagation environment. From the empirical evidence, the results were similar for both

cases when τ was set to Mean - 3 dB and Mean - 10 dB, which not only validates the simulation

results but also expands the possibility of reusing the simulator for future applications.

Table 2.3 compares the performance of the tripolar antenna for various polarization switching

speed. To create fast fading propagation conditions, we measured the RSSI values when the track

was moving. As can be seen from the Table 2.3, loss of data packets increased with the increase in

switching rate. For example, packet loss was doubled when switching speed was changed to 200 ms

from 500 ms. Still, we note that the tripolar antenna can reduce the packet loss and ensure better

channel conditions for IoT based smart devices.

2.2.5 Conclusion

Herein, we compared the performance of two wireless systems, one that utilizes a tripolar antenna

system and the other a monopole antenna, both deployed in a high multipath environment. Through
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experimental data, we showed that a tripolar antenna can provide better link reliability and end-to-

end network throughput in severe propagation environments, such as those expected for industrial

IoT applications. For future work, we plan to use the empirical data to simulate a large-scale, mesh

IoT network, where devices will use intelligent algorithm to find the optimal of the three polarizations

considering both channel conditions and neighboring devices’ polarization.

Summary

In this work, we illustrated the benefits of tripolar antenna systems over single branch antennas in

point-to-point communication links. First, we developed a hybrid wireless IoT network simulator to

analyze the performance of three-branch polarization diversity antenna systems and demonstrated

that the multi-branch antenna systems can enhance the link reliability significantly in multipath

environment compared to single branch antenna. Although simulation offers a low-cost solution, it

is often difficult to emulate real life channel conditions due to complex interaction of many variables.

Hence, we followed-up the work by using two Arduino based wireless modules with tripolar antennas

deployed in a high multipath channel conditions. The real-life experimental work compliments the

simulation model as empirical data collected from tripolar nodes exhibit similar performance to

earlier results obtained through simulation. The observations prompted further investigation on the

impact of using multi-branch polarization diversity antennas among the nodes of an IoT network in

regards to antenna switching and energy performance, which we examine next.
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3 Polarization Matching for Networks Utilizing Tripolar An-

tenna Systems

Foreword

The chapter is presented as published in 2018 IEEE Global Communications Conference [117]. In

this study, several experiments are conducted to investigate the impact of polarization mismatch

between multi-branch transmitter and receiver antennas for different network architectures. First,

a polarization matching technique is proposed for networks where nodes use predetermined routing

paths to forward the data packets. In this router based approach, each router uses Binary Integer

Linear Programming to reduce polarization mismatch with the active nodes under the router during

data packet transmission. Next, a network with flexible routing is considered where nodes have

multiple routers to forward the data packets and consider various factors such as router’s distance and

polarization, load on the router etc. to select antenna branch. The results show that implementing

polarization-aware techniques can improve the packet delivery ratio by at least 6% compared to

antenna systems that do not consider polarization matching.

3.1 Abstract

The recent proliferation of IoT based networks in diverse applications has seen various embedded

devices deployed in harsh propagation environment. These conditions often induce polarization

mismatch between transmitter and receiver antennas and degrade overall network performance.

Our work proposes two techniques to prevent power loss due to polarization mismatch for IoT

based sensor networks. We first propose the Neighbor Matching (NM) technique to find optimal

polarization pattern by solving a Binary Integer Linear Programming optimization problem for

routers in a network with fixed routes for data packets. Using empirical data and simulation results,

we show that the NM technique has a successful data delivery ratio of approximately 88% compared

to 71% for networks which do not consider polarization mismatch. Next, we propose Opportunistic

Polarization Matching (OPM) technique for networks with flexible data packet forwarding routes

to find polarizations for nodes and routers. Combined with load balancing approach, the proposed

OPM technique improves polarization matching by 13% than simple diversity technique. We are

also able to show that along with high link reliability both NM and OPM reduce power loss and

extend lifetime of nodes [117].
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3.2 Introduction

Internet of Things (IoT), which enable sensors, actuators or embedded devices to collect data,

exchange information, and act on the environment without direct human intervention, has been

considered in diverse applications, such as civil transportation, electric power grid, and medical

treatment etc [118]. Unlike other wireless systems, sensors or actuators in an IoT are highly likely to

be subject to harsh propagation environments, where multipath and fading may degrade the system

performance significantly. Furthermore, these low cost, low powered tiny sensors often do not have

any apriori knowledge about propagation conditions of the environment where they are deployed.

Therefore, mitigating multipath effects and adapting to channel randomness in real time is crucial

for end-to-end network throughput.

Performance of wireless systems can be improved by leveraging diversity techniques [75]. Among

all the diversity techniques, spatial diversity and polarization diversity are most popular due to

the simplicity of their implementation. While conventional spatial diversity can achieve significant

range improvements, it requires large separation between antennas which is not practical for small

sensors. On the other hand, polarization diversity, which replaces multiple antennas with separate

vertically and horizontally polarized receiving antennas, offers simple and effective way to mitigate

signal fading in a multipath environment. Considering these benefits, most studies have focused

on dual polarized antennas at transmitter and receiver end [119]. In [73], authors proposed a

polarization reconfigurable antenna for portable devices which can switch between linear and circular

polarization. Both [120] and [121] proposed antennas with reconfigurable radiation pattern for

biomedical applications with operating at 2.2 to 3.1 GHz and 2.45 GHz, respectively. Our recent work

[106] has demonstrated that a tripolar antenna system (Fig. 3.1), which leverages three mutually

orthogonal linear polarizations in 3D, is able to improve data delivery ratio of a ZigBee network by

employing three-element selection diversity.

Nodes leveraging polarization diversity in an IoT network may select one of the available polar-

ized antenna element to reduce frequency selective fading. However, due to distinct fading scenarios

seen by different nodes, selection of the antenna element may vary, which causes polarization mis-

match due between the transmitter and the receiver. As presented in [122], mismatch in polarization

angle can result in loss of received power up to 12 dB approximately. Polarization-mismatch between

linear-polarized antennas can be characterized using their misalignment angle; 0◦ and 90◦ represents

completely aligned angle and completely mismatched angle, respectively. A polarization matching

factor based on transmitting and receiving antenna pattern was introduced on [123]. In [124], the
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Figure 3.1: Left : Fabricated prototype of single-piece additive manufactured 3D tripolar antenna.
Right : Example channel loss (i.e., S21) for each of the three elements of the tripolar antenna [2].

authors proposed a polarization error matrix based on field circuit co-simulation model to ana-

lyze the impact of polarization basis mismatch. Both [125] and [75] showed that the performance

of dual-polarized antenna can be improved by opportunistic polarization-matching through actual

measurements and simulations. However, none of the works considered highly cluttered environment

which can depolarize a transmitted signal across all three spatial dimensions [56].

We propose two polarization matching schemes between transmitting and receiving antennas

to mitigate multipath effects for harsh propagation conditions, where IoT devices are likely to be

deployed. The first one, Neighbor Matching (NM) technique, where routers’ polarization selection

are driven based on their child nodes’ selected polarization, uses fixed routes for data forwarding. By

solving a Binary Integer Programming problem, the proposed technique enables routers to reduce

polarization mismatch when receiving packets from nodes and during forwarding packets to other

routers. Our second technique, Opportunistic Polarization Matching (OPM), proposes a load aware

packet forwarding scheme, where nodes’ polarization selection are driven based on the polarization of

their nearest static and mobile routers. For each node, the proposed scheme makes routing decision

based on polarization, distance and their energy status to minimize power loss. Both NM and OPM

scheme reduce polarization mismatch approximately by 40% and 13%, respectively compared to

their baseline simple diversity technique and thus ensure extended network lifetime.

The work is organized as follows. Section 3.3 describes the system configuration of the IoT

network that we consider for this work. We present polarization matching techniques for IoT based

sensors in Section 3.4 and 3.5. Simulation methodologies and results are presented in Section 3.6

and Section 3.7 concludes the paper and gives future research directions.
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Figure 3.2: Fig. showing different polarization patterns selected by nodes and routers.Here H and
V are the traditional horizontal and vertical in 2D and P is orthogonal to both.

3.3 System Model

In this section, we introduce the system architecture and assumptions underlying the network archi-

tecture. We consider a ZigBee tree-based network based on IEEE 802.15.4 standard which consists of

a coordinator, multiple routers and end devices, i.e., nodes. Fig. 3.2 shows an illustration of different

polarization patterns selected by nodes and routers of a network. The reliable, cost-effective and

much lower power consumption of ZigBee network makes it suitable for applications such as smart

home monitoring, inventory tracking, industrial control and monitoring. The coordinator, which

receives data from nodes for further processing, are responsible for initialization, maintenance, and

control functions for the network. Nodes autonomously gather physical sensing information and

forward sensed data to the coordinator in a multi-hop manner through a sequence of routers. The

sensing area is partitioned into equal sized square sub-areas and movement of routers are restricted

along the grid lines only. Further, nodes are homogeneous, deployed randomly over the 2D sensing

field and do not participate in routing packets. We assume that each node, which relies on batteries

for power supply, has their location information and the routers may be static or mobile with reliable

power supplies.

When a node joins the network, it first scans the network and chooses the nearest static router

as parent device. Upon successful joining, the router assigns an address, which is unique within

a particular network, to the node using a distributed address allocated mechanism. We consider

that all the nodes and routers are equipped with tripolar antenna and they are deployed in highly

cluttered propagation environment. Initially, nodes are in sleep mode. When any node intends to

send data to the coordinator, it measures RSSI (received signal strength indicator) for each of the
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three elements of the tripolar antenna and then selects one antenna element based on one of our

proposed algorithm. For networks where mobile routers are present, each node maintains a routing

table consisting of routers’ address that are within its transmission range; otherwise it always sends

data to the parent router. The receiver router checks RSSI of the received packet and sends an

acknowledgement message if the channel loss is above a certain RSSI threshold (τ). Otherwise it

discards the message which means the packet is lost.

3.4 Neighbor Matching Technique

In a tree-based ZigBee network, routing paths are pre-determined with focus on minimizing hop

delay. Nodes forward data packets, which consists of sensed data, sender address and destination

address, to the parent router. The router then forwards the data packet to the next router which

is closer to the coordinator. Fig. 3.3 shows an illustration of such network where a data packet is

forwarded from to the coordinator through intermediate routers. We can see that it is crucial for

a router to match polarization with child nodes as well as with next router since it will forward all

the received data packet to the next router. Considering this, we propose Neighbor Matching (NM)

technique, which selects a polarization pattern for ZigBee routers, considering polarization pattern of

both child nodes and next level router. When a child node joins the network, it exchanges messages

with neighbor child nodes to discover nearest router. Based on the initial exchanges child nodes then

determine best polarization to transmit sensed data. We assume that a parent router has knowledge

of all child nodes’ selected polarization. Sensor nodes are put into sleep modes to save energy and

if they sense any event, they measure RSSI of all three polarizations to find best polarization first.

After switching into best polarization, nodes send polarization information to the nearest router

first to ensure that the router can switch its polarization based on child node’s information and then

send data packet to router. Routers’ polarization is selected using top-down approach. The router

that is closest to the coordinator selects best polarization and send information to the below routers.

The bottom routers then use that information to find their polarization by solving an optimization

problem which we describe next.

Lets assume P = {p1, p2, p3} is a set were p1, p2 and p3 represents 3 different polarizations.

Suppose a router has n child nodes and m neighbor routers. We denote, N = [x1, x2, . . . , xn] as

polarization vector of child nodes, where xi is the selected polarization pattern of the ith node and

xi ∈ P . If a router does not have information of a node or if a node’s RSSI is below RSSI threshold,

then router simply sets xi to zero. We also define Rk to represent the polarization selected by next
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Figure 3.3: Typical example of data forwarding from source to coordinator for tree-based ZigBee
network.

router, where Rk ∈ P . By leveraging child nodes’ and next level router’s polarization information,

router tries to find a polarization that reduces polarization mismatches both during receiving packets

from child nodes and forwarding packets to the next router. Routers update their polarization after

certain time intervals and send messages to neighbor routers if they switch polarization. Fig. 3.4

shows different steps of polarization selection by routers and nodes in a flowchart. Let r, which

represents polarization of the parent router, be the optimization variable and our goal is to find r

that maximizes polarization matching.

Next, we formulate a Binary Integer Linear optimization problem where we let r = p1, p2 and p3,

and compare total number of matches for each polarization selections. For example, when r = p1, we

compare r with each element of N . If Ni = p1 then there is a match and we set Nir = 1. However,

if Ni = p2 or p3, then there is no match and we set Nir = 0. We do the same calculation for next

router Rk and multiply the result, which is either 0 or 1, with n, since the parent router is expected

to forward n data packets to the next router. Our optimization problems finds polarization that

leads to highest number of matches between a parent router, child nodes and next router. Thus by

solving equation (1), a parent router can find a suitable polarization in a distributed manner which
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Figure 3.4: Different phases of polarization selection in a tree-based ZigBee network

reduces polarization mismatch.

Maximize

n∑
i=1

Nir + nRkr (4)

subject to: Nir =


1, if Ni = r.

0, otherwise.

(4a)

Rkr =


1, if Rk = r.

0, otherwise.

(4b)

r,Rk ∈ P (4c)

r,Rk ≥ τ (4d)

3.5 Opportunistic Polarization Matching

While tree-based network is simple, the downside is that with a rigid routing structure, if any router

stops functioning, the performance of the network will be significantly affected. To fix this issue,

mobile routers have been introduced, which collects sensory data from nodes and forwards to the
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Figure 3.5: Example of available routes for nodes in a ZigBee network in presence of mobile routers.

next router which is closer to the coordinator [126]. Presence of mobile nodes also works as an

alternative for nodes and routers to match their polarization (see Fig. 3.5). To route a packet to the

coordinator, a device will check the polarization pattern of its neighbor routers and will try to reduce

polarization mismatch by selecting the next level router which matches with the best polarization

pattern of its own. Thus, the routing decision made by the device solely depends on polarization

of neighbor routers and unlike tree-based network, nodes do not need to send their polarization

information to their parent routers. However, since mobile nodes are not always available on the

same area, nodes may forward data packets based on their routing table when mobile nodes are not

present. If a node does not get any authentication message from mobile router after two attempts,

it will forward the message to its parent router. Depending on the polarization pattern, nodes

may forward data packets to a particular router only, which will slow down routers performance

and eventually will affect the overall performance of the network. To prevent this, the proposed

technique attempts to balance loads between routers through balance factor α. To identify which

router is getting most flow of data packets, devices will keep track of the number of packets that

they are sending to each neighbor routers. Assuming a node or router has m routers within its

transmission range, we define α as:

αi =
Number of packets sent to ith router

Total number of packets sent by the node
(5)

Devices compute αi, where i = 1, . . . ,m and for any router when αi > αL, where αL is the balancing

threshold (0 < αL < 1), devices will select other router for data forwarding. Besides load balancing,

these low-powered sensor nodes also need to be energy efficient. As the energy status of a device
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Figure 3.6: Different phases of polarization selection for a node in ZigBee network where mobile
routers are present.

becomes low and gets below a threshold β, the device will prefer energy saving to load balancing

and polarization matching, and will forward data packets to the nearest router instead of the router

that is far away. By switching into this greedy forwarding mode, devices ensure to perform longer

and maximize utilization of remaining energy. Fig. 3.6 shows steps of polarization selection for a

device using Opportunistic Polarization Matching (OPM) technique. Routers will go through same

phases except event detection and sleeping.

Figure 3.7: Tripolar antenna placed inside of a reverberation chamber for channel measurement.
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Table 3.1: Loss of power due to polarization mismatch

Alignment angle Loss (dB)

± 0 0

± 15 0.301

± 30 1.249

± 45 3.010

± 60 6.020

± 75 11.740

± 90 ∞

3.6 Simulation Results

For simulation, a 2D 100m × 100m area is considered, where nodes are deployed randomly. After

joining in a network, nodes add nearest router as their parent. Each node is initialized with same

amount of energy and they do not route data packets. To emulate a slowly-varying, multipath

propagation environment, we leveraged empirical data presented in [2]. For channel measurements,

a tripolar antenna integrated with XBee and Arduino was placed on top of a linear track inside

of a reverberation chamber (see Fig. 3.7) along with a linearly polarized antenna [56]. We moved

the node to repeatable positions and at each position, measurements (in dBm) were taken for all

three polarizations during transmissions and receptions. During simulations, we randomly assign

these empirical data to nodes and routers and choose one of the three polarization based on the

RSSI values or using polarization matching technique. When polarization mismatch occurs between

a receiver and transmitter, the loss of power depends on the alignment angle of their respective

antennas. For each transmission, our Python based simulator randomly assigns an alignment angle

and uses data presented in Table 3.1 to calculate power loss due to polarization mismatch [122].

First, we present the performance of our proposed NM scheme. To analyze the performance

of the proposed NM technique, we consider a network where data packet routing paths are fixed

and all devices use tripolar antenna systems. We use simple diversity technique as the baseline,

which allows each node and router to choose best polarization regardless of their next hop router’s

polarization. Fig. 3.8(a) illustrates the impact of NM scheme on reducing dropped packet rate.

For the mentioned figures, we use fifty sensor nodes that are deployed randomly and we set RSSI

threshold to -90 dBm. Fig. 3.8(a) illustrates that in a highly cluttered environment, the NM scheme,

where routers’ polarization selection decisions depends on neighbors’ polarization, has approximately

88% successful data delivery rate compared to 71% data delivery rate achieved by simple diversity

technique.

42



0 100 200 300 400 500 600 700 800 900 1000

Number of Transmissions

0

50

100

150

200

250

300

D
ro

p
p

e
d

 P
a

c
k
e

ts

Simple diversity

NM

(a)

0 100 200 300 400 500 600 700 800 900 1000

Number of Transmissions

0

50

100

150

200

250

300

D
ro

p
p

e
d

 P
a

c
k
e

ts

OPM

Simple diversity

(b)

Figure 3.8: Left: Comparison between dropped packet rates for NM scheme and simple diversity
technique, Right: Comparison between dropped packet rates for OPM scheme and simple diversity
technique
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Figure 3.9: Left: Power loss comparison between NM and simple diversity technique, Right: Power
loss comparison between OPM and simple diversity technique, .
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Table 3.2: Comparative analysis of NM scheme

Number of
nodes

Packet drop
(%)

Polarization
mismatch (%)

Power loss (dB)
per

transmission
(%)

50 12 26 1.57

100 12 27 1.62

150 13 28 1.67

200 13 28 1.65
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Figure 3.10: Left: Comparison of polarization mismatches between NM and simple diversity tech-
nique, Right: Comparison of polarization mismatches between OPM and simple diversity technique.

Fig. 3.9(a) and 3.10(a) compares performance of the NM technique with simple diversity tech-

nique in terms of power loss and polarization mismatch. Although average power consumed by

simple diversity technique is less then the proposed NM scheme, simple diversity techniques are

prone to more polarization mismatch. We can observe that the proposed NM scheme has approx-

imately 28% polarization mismatches, compared to 66% of simple diversity technique. Minimizing

polarization mismatch results in reduced power loss; as a result, the NM technique has an average

-1.1 dB loss per transmission compared to -1.5 dB loss per transmission of simple diversity tech-

nique. By reducing power loss, the NM scheme successfully increases lifetime of nodes and routers

and improves the performance of the network. Table 3.2 demonstrates scalability of the NM scheme

where we varied number of nodes between 50 to 200 and the performance of the proposed scheme

was consistent.

Next, we analyze the performance of the OPM scheme, which is employed in a network with

mobile routers that provide alternate routes for nodes to transmit data packets. Simple diversity

technique where nodes use tripolar antenna system to choose best polarization and forward data
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Table 3.3: Comparative analysis of OPM scheme

Number of
nodes

Packet drop
(%)

Polarization
mismatch (%)

Power loss (dB)
per

transmission

50 25 56 3.34

100 24 54 3.16

150 24 54 3.2

200 24 55 3.21

packet to the nearest router (either parent router or mobile router) regardless of the router’s po-

larization, is considered as a baseline for performance analysis. Fig. 3.8(b) and 3.9(b) and 3.10(b)

illustrates the impact of the proposed OPM technique on data packet delivery rate, power loss, and

polarization mismatch respectively. The OPM technique are able to reduce polarization mismatch

by 13% comparing to simple diversity technique, where nodes use diversity but do not consider

polarization matching. The OPM scheme, where devices aim to reduce power loss by matching

polarization pattern with the next router, has 6% higher data delivery rate and less power loss than

the simple diversity technique. Table 3.3 demonstrates that the performance of the OPM technique

remains consistent when we varied the number of nodes up to 200.

3.7 Conclusion

Several polarization matching techniques that try to minimize the power loss due to polarization

mismatch and improve data delivery ratio for an IoT based sensor network where nodes are equipped

with tripolar antennas have been presented in this work. Our proposed Neighbor Matching and

Opportunistic Polarization Matching techniques target networks that use fixed data packet routing

and flexible data packet routing, respectively. Neighbor Matching scheme allows nodes to choose

best polarization pattern and formulates a Binary Integer optimization problem to find suitable

polarization pattern among three polarizations for each router. Opportunistic Polarization Matching

scheme is designed to enable nodes and routers to choose next hop router in a manner that not only

reduces polarization mismatch but also focuses on load balancing among routers. While both schemes

require additional messages containing selected/desired polarization information between nodes and

routers, the proposed schemes can still achieve high successful data delivery ratio than the baseline

networks as manifested in our extensive simulations. For future works, we would like to implement

the proposed schemes in real nodes and confirm the validity of simulation results presented in this

paper.
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Summary

In this chapter, we investigated the performance of multi-branch antenna diversity schemes for

tripolar antenna systems by analyzing the power loss associated with selecting same or different

antenna branch for transmitter and receiver, respectively. The proposed Neighbor Matching and

Opportunistic Polarization Matching techniques utilized predetermined routing paths and dynamic

routing paths, respectively with an aim to increase energy efficiency and link reliability. Results

showed that better load balancing can be achieved among the nodes of an IoT network by leverag-

ing the knowledge of the underlying network structure. These findings lead to several interesting

research questions - whether implementation of diversity schemes should depend on the IoT network

architecture, and how structure-dependant employment of antenna diversity technique will impact

IoT network performance. In the next chapter we explore these issues by leveraging complex network

theory.
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4 Effective Implementation of Energy Aware Polarization

Diversity for IoT Networks Using Eigenvector Centrality

Foreword

In this chapter, we focus on the implementation of an adaptive multi-polarized antenna selection

approach that is aware of the IoT network structure. The work was presented in 2020 International

Conference on Network Science [127]. A criterion to evaluate the network-structure dependence of

antenna branch selection is presented through the complex network representation of an IoT net-

work. Analyzing a given network topology using complex network theory and eigenvector centrality

measures helps to categorize highly congested nodes that see more data flow and have higher en-

ergy consumption rates than other nodes. The centrality metric, which is calculated autonomously

by every nodes present in the network, is used to control the switching frequency of the tripolar

antenna such that a node will alternate between selection diversity and switched diversity based

on its centrality. The data shows that, in a propagation environment where each transmission sees

independent fading, adaptive switching for multi-branch antenna reduces energy consumption by

approximately 13% compared to standard diversity technique.

4.1 Abstract

The Internet of Things (IoT) is one the most promising area of applications for complex networks

since we know that both the efficiency and fidelity of information transmission rely critically on

our understanding of network structure. While antenna diversity schemes improve reliability and

capacity for point-to-point links of an IoT network that employs multi-polarized antennas, it is

currently unclear how implementation should depend on the network structure of the IoT and what

impact structure-dependent implementations will have on the energy consumption of IoT devices.

We propose an antenna diversity scheme that leverages local network structure and a distributed

calculation of centrality to reduce power consumption by 13% when compared to standard selection

diversity technique. The proposed approach exploits distributed eigenvector centrality to identify

the most influential nodes based on data flow and then limits their antenna switching frequency

proportionally to their centrality. Our results also demonstrate that by taking routers’ centrality

metric into account, a network can reduce antenna switching frequency by 17% while ensuring

approximately 99% packet delivery rate. More broadly, this study highlights how network science
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can contribute to the development of efficient IoT devices [127].

4.2 Introduction

The Internet of Things (IoT) interconnects heterogeneous entities like sensors, actuators, wearable

items and phones to develop an integrated system where these multipurpose devices can monitor

their surrounding environment, react to a certain event, collect sensory data and forward the data

in multi-hop fashion to back-end systems for further processing [128]. The applications of IoT span

from small scale implementation such as patient monitoring, smart homes, to large scale implementa-

tions of industrial monitoring, smart farming, smart cities, etc. [129,130]. In many of these potential

applications, IoT devices are deployed in environments which are not ideal for wireless communica-

tion. Environments such as industrial facilities are particularly harsh where reflection, diffraction

and scattering from metal structures cause distortion to the radio signal, known as multipath fad-

ing [131]. Signal attenuation, phase shifting and inter-symbol interference caused by multipath

fading significantly degrade reliability and throughput of the network.

Multi-polarized antennas are an effective solution to overcome multipath effects as they allow the

receiver to have multiple copies of the transmitted signal by using orthogonally polarized antenna

elements [132]. However, the problem is then to choose which antenna polarization should be

used given local conditions, including network structure. Selection diversity is the simplest diversity

technique used in conjunction with multi-element antennas in which the antenna polarization having

the highest signal strength is chosen for transmission or reception. Due to cost constraints and

limited processing capabilities of IoT devices, selection diversity uses a single radio-frequency (RF)

chain and switches between polarizations to determine the ‘best’ polarization using a RF switch.

Existing works in the literature related to selection diversity schemes primarily focus on ensuring

link reliability, minimizing low bit error rate (BER) and attaining high signal-to-noise (SNR) ratio.

For example, the authors of Ref. [133] developed an algorithm with quartic complexity to select

optimal subset of antennas that ensures maximum SNR for systems with many transmit antennas.

In Ref. [134], a low-complexity generalized selection combining (GSC) scheme is introduced, which

is able to match the performance of a full diversity system in terms of outage probability and symbol

error rate while utilizing only a subset of the available antennas to transmit and receive. In Ref. [13],

capacity maximizing suboptimal antenna selection algorithm for medium to high SNRs is proposed

to determine the transmit antenna in a Rayleigh fading environment. However, all the mentioned

works required either multiple RF chains to be active simultaneously or the device to solve complex
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optimization problems, which is not suitable for low-cost, constrained IoT devices. Moreover, the

network structures of IoT systems are often complex and hierarchical, suggesting that diversity

technique might be an interesting avenue of research.

In multi-hop communication based routing, router nodes that are near the base station relay

the data collected by the sensor nodes that are further away from the base. Thus, in this network,

the closer a router is to the base, the higher its data traffic load will be, resulting in frequent use

of selection diversity to select antenna polarization. This will cause faster depletion of energy of

the routers with high data traffic compared to the routers with less traffic, i.e., far away routers.

Intuitively, in an IoT network operating in multipath environment, the time between consecutive

data transmission by a sensor node can be large compared to the coherence time (time over which the

channel changes significantly) of the channel and thus, each transmission sees independent fading. On

the contrary, as routers manage packets from multiple sensor nodes, the coherence time for routers

is large relative to the time between consecutive transmission/reception which implies that the

fading seen by packets are correlated. For example, IoT networks aimed at wildfire detection, forest

environment and agriculture monitoring require geographically dispersed sensor nodes to transmit

sensed information periodically at a low data rate. The base station can provide valuable forecast,

improve safety and efficiency by integrating the sensed data that is relayed through routers [135,136].

The findings from above discussion motivates us to consider controlling the use selection diversity

according to nodes’ data traffic load as approximated by their position in the network structure.

Indeed, an IoT network can be effectively represented as a complex network [137], a graph object

whose vertices correspond to sensor or router nodes while edges stand for data transmission between

nodes. More specifically, we consider the problem of finding routers with high data traffic in an IoT

network as a problem of finding the crucial nodes in a complex network. Then, we can leverage

centrality metrics [138], which rank the nodes of a network based on their importance in a network,

to identify highly congested routers. Our focus in this paper is to apply ideas from complex network

science in order to implement a device-specific diversity scheme that considers nonuniform depletion

of energy of routers in an IoT network.

By combining complex network theory and the concept of antenna diversity, we propose a

network-wide diversity technique, where devices will use selection diversity in a periodic manner

instead of using it before every transmission or reception and the period will be proportional to

their centrality. In summary, the main contributions of this paper are as follows.

1. We employ the concept of eigenvector centrality to determine crucial nodes in an IoT network
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consisting of a large number of stationary nodes from the view point of data packet transmission

and reception. The centrality is calculated by autonomous sensor and router nodes in a

distributed manner which reduces computation complexity and ensures low-memory usage for

low-resource, energy-constrained IoT devices compared to centralized computation.

2. In contrast to the conventional selection diversity technique that allows all devices to switch

antenna element before every transmission or reception, our proposed energy-aware diversity

scheme controls the switching of devices such that low-scoring routers are allowed to switch an-

tenna more frequently compared to the high-scoring ones and hence, reduces excessive switch-

ing and is able to minimize antenna switching by at least 17%.

3. We demonstrate through simulation that the reduction of excessive antenna switching achieved

by our Distributed Eigenvector Centrality (DEC) diversity approach decreases energy con-

sumption of routers by at least 13% compared to simple network-wide selection diversity

approach, without degrading network reliability.

The paper is organized as follows: Section 4.3 reviews related works. In Section 4.4, we give an

overview of the type of target IoT networks and deployment environment considered. Section 4.5

introduces a distributed calculation of eigenvector centrality and proposes an implementation for

IoT network in which an individual antenna switching rate is controlled based on its centrality in

the network structure. Section 4.6 describes the comparison between our proposed centrality based

diversity scheme and simple selection diversity scheme and Section 4.7 concludes the paper.

4.3 Related Works

A network consists of a set of nodes connected by edges which can be directed or undirected,

weighted or unweighted. Centrality is often used in complex network systems to identify the relative

influence of a node or edge with respect to the entire network. Various centrality measures such

as betweenness, closeness and eigenvector centrality have been studied in the literature based on

application context and different characteristics of a network. Betweenness centrality determines

the amount of influence a node has over the information flow of a network. The algorithm first

calculates the shortest path between every pair of nodes in a network and assigns a centrality to

nodes based on how frequently they lie along shortest paths [139]. Closeness centrality is defined as

the inverse of the average distance between a given node and all other nodes in the network [140]

such that high closeness centrality indicates central nodes that have shorter distances to other nodes.
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However, most centrality measures are calculated based on global topology information which is

prohibitive for memory-constrained, low-cost devices of an IoT network with a large number of

nodes. Another popular measure is eigenvector centrality, which calculates a node’s importance in a

network by summing the importance of its neighbors [138]. Eigenvector centrality is defined based

on the eigenvector of the network adjacency matrix such that the centrality ~x satisfies A~x = λ~x

where A is the N ×N adjacency matrix, ~x is the eigenvector associated to the greatest eigenvalue

λ of A and N is the number of nodes.

Although a node which is central by one centrality measure may be central by other centrality

measures, this is not necessarily always true. Compared to betweenness centrality (measures the

number of paths that pass through each node) and closeness centrality (based on average distances),

eigenvector centrality is based on the idea that a central node is connected to other central nodes,

which is a natural definiton for centrality in an IoT network. However, one of the major disadvantage

of eigenvector centrality measure is that the calculation is quite complex and complexity grows as

N increases which is challenging for battery-powered nodes with limited storage and processing

capabilities. In this present work, we utilize the concept of eigenvector centrality and leverage the

tree structure of our IoT networks for a distributed computation of centrality, where a node relies

on its next hop neighbors only to compute its individual centrality. Restricting the topology means

nodes do not have to obtain information about far-away nodes which reduces resource usage.

Recently, several studies have focused on exploiting eigenvector centrality in a distributed way.

For example, Ref. [141] presented a reception-equal rate allocation strategy for cooperative streaming

so that all nodes receive the stream with the minimal global use of resources by using a distributed

version of the eigenvector centrality. Although the proposed centrality measure can be computed

distributedly, every node still needs to be aware of the full network topology to calculate the central-

ity. In Ref. [1], the authors studied a distributed computation of the PageRank algorithm, a variant

of the eigenvector centrality. In our work, we focus on a distributed version of the classic eigenvector

centrality, which can be measured individually by each node of a directed loop-free wireless network

consisted of resource constrained devices.

4.4 System Model

Due to scalability, low cost and ease of deployment, IoT networks are gaining increasing interests

in the research community. Depending on the particular application, different network architecture

may be of interest. We consider an IoT network, where both nodes and routers are autonomous and
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Figure 4.1: Block diagram of transmission and reception using tripolar antenna.

characterized as energy-constrained devices with limited memory and poor processing capabilities.

Routers function as data aggregators and relay the received data to the base station, which has

unlimited power supply and is far from the sensing area, in a directed multi-hop fashion through

other routers. In addition, all the deployed devices are only aware of their next hop neighbors and

have no global knowledge of network. An example of such network is a time-driven IoT network, used

to collect spatio-temporal readings of various environmental parameters through densely deployed

sensor nodes.

We assume that all devices are equipped with tripolar antenna consisting of three orthogonal

mutual collocated antenna elements to create vertical (V) polarization, horizontal (H) polarization

and a third polarization (W) which is perpendicular to the other two [1].

Figure 4.1 demonstrates available channel gains for such systems which can be described using

a 3 × 3 complex channel matrix. During transmission, we assume that the signal gets affected

by Rayleigh fading, which is independent and identically distributed on each antenna element.

Both nodes and routers use selection diversity to determine the best polarization for transmission

and reception. To reduce hardware complexity, a single RF chain is used by the tripolar antenna

which changes antenna element using a RF switch. IoT devices receive pilot symbols using different

polarization from their next hop router to estimate the channel gain of all three antenna elements

by means of received signal strength. The receiver antenna then selects one of the polarizations

based on its estimates. The base is assumed to be unaffected by multipath fading and uses vertical

polarization only for transmission.
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Figure 4.2: Sample network of two routers and five sensor nodes with routers depicted in green and
sensors depicted in light blue color.

4.5 Distributed Eigenvector Centrality

Classic eigenvector centrality, which measures how well connected a node is to other well-connected

nodes in the network, is computed globally. To facilitate faster computation and reduce memory

usage of resource-constrained IoT devices, we use distributed eigenvector centrality (DEC), where

each device (sensor or router) will calculate their own centrality. To model the IoT network, we let

G(V,E) be a directed graph with N sensor nodes and R router nodes, where V is a set of vertices

representing all devices of the network and E is a set of edges representing links between the devices.

To calculate the centrality of node k with neighbor set {1, 2, . . . , j}, we define an edge-weight matrix

W, which is a j×1 column matrix, and neighbor-centrality matrix C̄vk , which is a 1×j row matrix,

as,

W =



w1,k

w2,k

...

wj,k


j×1

and C̄vk = [cv1 cv2 . . . cvj ]1×j (6)

here weight of each edge wi,k is either 1 or 0 and i is one hop neighbor of node k. In the context of

our network, a directed edge from node i to node k indicates data packet flow direction from i to k.

If there is an edge from node i to node k, then wi,k = 1, otherwise wi,k = 0. Also, cvi denotes the

centrality of the node i. The proposed centrality scheme in initialized by awarding one centrality

point to each vertices. After that each node calculates its own centrality by summing the centrality

of its neighbor nodes that have edges directed towards them. Thus, DEC for node k is defined as

the weighted sum of the centralities of all its neighbor sensor nodes and routers and can be written
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as

cvk = 1 + WC̄vk = 1 +

j∑
i=1,i6=k

wi,kcvi (7)

Fig. 4.2 illustrates an example of centrality calculation using two routers and five sensors. Sensor

nodes n1, n2 and n3 do not have any directed edge towards them and hence each sensor has centrality

1. On the other hand, R1 has a centrality of 4 since there are three directed links from three neighbor

nodes each having a centrality of 1. Although R2 is a neighbor of R1, it does not contribute to the

centrality of R1 as there is no directed edge from R2 to R1. Similarly R2 has a centrality of 7 since

it has directed edges from neighbors with centrality 1, 1 and 4.

Under the assumption that each device knows their type and total number of devices present in

the network, it can compute their centrality by only using local interactions with its neighbor. Our

goal is to allow nodes to limit their antenna switching based on their centrality. We can then define

the interval slot for node k as

bskc =
1

(N +R)
αcvk (8)

where, N and R are the total number of sensors and routers, respectively. Also, sk is the number of

transmissions during which a node will not use selection diversity unless the signal strength of the

currently used antenna branch falls below the threshold and α is an integer that denotes the interval

parameter. We note that the interval slot, i.e., the waiting period between two consecutive antenna

switching is proportional to a node’s centrality and it increases for large values of α.

Fig. 4.3 presents an illustration of transmission rates between nodes and a router for the exam-

ple network presented in Fig. 4.2, where sensor nodes (denoted as n1, n2, and n3) are transmitting

data packets to the router R1 at different rates. We note that, when R1 uses conventional selection

diversity (see Fig. 4.3 Top), it requires antenna switching before every transmission. On the other

hand, when R1 employs centrality based switching (see Fig. 4.3 Bottom), antenna checks for best

polarization among the three elements only after some fixed (3 in this example) transmission slots.

For high centrality routers, the interval between consecutive receptions and transmissions will be

smaller and hence it’s highly likely that the channel conditions will not change between consecutive

transmissions. Thus, restricting the use of selection diversity for such routers before every trans-

mission will reduce excessive switching and minimize energy consumption at the same time. With

a time complexity scaling linearly with the number of vertices in the network, DEC offers fast com-

putation and requires little memory usage. Moreover, with DEC, any changes in network topology

can be dealt locally as only a part of nodes need to recalculate their centrality.
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Figure 4.3: An illustration of data transmission by sensors and router. Solid circles indicate usage
of selection diversity before transmission while empty circles indicate no antenna switching occurred
and colors represent different polarizations. Top: Router R1 uses conventional selection diversity
Bottom: R1 uses centrality based selection diversity.

4.5.1 Centrality based diversity scheme

We now describe the infrastructure of the IoT network that is used for simulation and also how

experimental data is incorporated to assess the performance of the proposed scheme in a Rayleigh-

fading environment. The network is initialized with random sensor node deployment and the base

is located at one corner of the monitoring area. The routers are equidistant form one another and

when a router joins the network, it sends a multicast packet to discover its adjacent sensors and

routers and creates a routing table based on the received response. The time difference between two

consecutive data packet transmission by sensor nodes is varied randomly between one to ten seconds.

Centrality is calculated in a bottom-up approach, where each sensor and router use their own routing

table to calculate their centrality and share the score to their next level router only. Once calculated,

devices will keep using the centrality unless there are changes in their neighborhood. If a new sensor

or router joins, then their neighboring devices update centrality. After computing centrality, devices

determine their individual switching rate, which defines how often a device will use selection diversity

to select the best antenna element. Once a device selects a polarization for transmission/reception, it

may need to wait for a couple of transmission slots to use selection diversity again and, importantly,

this waiting period is chosen proportionally to its centrality. During the interval, the antenna will

keep monitoring the signal strength of the currently used antenna branch and if the branch falls

below a predetermined threshold, it will use selection diversity to select the best branch among the
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Figure 4.4: (a): Basic architecture of an IoT network consisting of 50 sensors and 10 routers. Colors
represents different polarizations, sizes represents different type of IoT devices. (b): Representation
of the network presented in Fig. (a) using DEC. Color coding and size indicates centrality of sensor
and router nodes. Less central nodes have smaller size and lighter color compared to more central
nodes which have larger size and darker colors.

three branches. To asses the performance under a setting similar to real world environment, we

exploit the signal strength and energy consumption data obtained experimentally, as described in

Ref. [1], using embedded devices equipped with tripolar antennas in a high multipath environment.

4.6 Performance Evaluation

In this section, we describe the simulation parameters used to evaluate the performance of the

proposed diversity scheme. Furthermore, we also compare the results with existing selection diversity

technique.

4.6.1 Simulation model

We present the results for a case with 50 sensors and 10 routers as depicted in Fig. 4.4a, where

devices are using different antenna polarization at a certain time. We note that, routers that are

closer to the base station see substantially more data traffic compared to the routers that are far

away from the base or on the edge of the sensing area. Fig. 4.4b demonstrates the use of DEC,

where high centrality is assigned to the routers that are closer to the base and tend to aggregate
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Table 4.1: Simulation parameters

Parameter Value

Area of deployment 300 × 300 m2

Number of sensors 50

Number of routers 10

Energy: transmission 0.01 J

Energy: reception 0.008 J

Energy: switching 0.001 J

Energy: pilot packets
(transmission/reception)

0.002 J

Data packet size 32 bytes

Data rate 250 kbit/s

Pilot packet size 16 bytes

Battery capacity 18.7 KJ

Frequency 2.4 GHz

MAC protocol 802.15.4

Number of repetitions 10

more data packets compared to routers that are far from the base.

In order to evaluate the performance of the proposed centrality based diversity scheme, we

consider an IoT network that performs periodic data collection through sensor nodes based on IEEE

802.15.4 protocol. Sensor nodes are static and unable to relay data from other nodes. Routers

receive data from other nodes and forward the data to the next hop routers in a tree-based routing

fashion. We built a discrete event simulator based on Matlab where a rectangle region is used to

deploy the nodes. The default parameters used in our simulation are presented in Table 4.1.

We then run a comparative analysis between our proposed scheme and selection diversity tech-

nique. Three performance metrics are used: switching frequency, packet delivery ratio and energy

consumption. In the baseline scenario, we consider a network, where each device uses selection

diversity to determine the best antenna element for transmission and reception. To analyse the per-

formance of our proposed model, we experiment with different network sizes in terms of the number

of sensors and routers.
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(a) (b)

Figure 4.5: (a): The number of packets received by routers, plotted against their normalized central-
ity. We observe that routers which receive more data packets have higher centrality. (b): Comparison
between selection diversity and the proposed technique in terms of switching frequency. Routers are
plotted in ascending order based on the number of switching. Note that the number of switching is
decreased for high scoring routers.

4.6.2 Simulation results

Figure 4.5 presents our results on the impact of the centrality metric in decreasing antenna switch-

ing rate. We focus on the routers only since sensor nodes are assumed to be unable to perform

data forwarding. Figure 4.5a illustrates the centrality of routers calculated based on Eq. (7) and

normalized by the total number of devices 60. We note that few routers stand out amongst other

routers due to high centrality and thus, serve as central points of data aggregations. We also see that

the high scoring routers receive and forward more data traffic, which deplete their energy rapidly,

compared to other routers with low centrality values. The results also show the heterogeneity among

routers in terms of data traffic through them and hence, reinforces the requirement of node-specific

diversity scheme. Figure 4.5b shows the effect of using interval parameter α, where the antenna

switching of routers with high centrality are restricted compared to other routers. Even though the

number of switching varies for routers for different simulation runs, we observe that when α is set

to 2, our proposed diversity scheme decreases antenna switching approximately by 17% compared

to the conventional selection diversity.

Figure 4.6 demonstrates the use of interval parameter by comparing the centrality based diver-

sity scheme with selection diversity technique in terms of packet delivery and energy consumption

for different values of α. From Fig. 4.6a, we note that when 2 ≤ α ≤ 3, the proposed centrality

based diversity scheme is on par with selection diversity technique in terms of packet delivery rate.

However, as α increases, packet drop rate increases for our proposed scheme compared to the se-
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Figure 4.6: Comparison between selection diversity and the proposed technique for different values
of α in terms of (a) packet drop rate and (b) energy consumption rate, for a network consisting
of 50 sensor nodes and 10 routers. As can be seen in the figure, for α = 3, our proposed scheme
has approximately 99% successful packet delivery rate and reduces energy consumption by 13%
compared to the selection diversity technique.

lection diversity. Since a large value of α increases the waiting time between consecutive antenna

polarization selection, network reliability decreases. Fig. 4.6b demonstrates the influence of α on the

energy consumption of routers, where energy consumption includes power consumed due to antenna

switching, transmission and reception of both pilot packets and data packets. Since a large value

of α implies that more routers have reduced switching rate, the energy consumption decreases con-

siderably. However, restriction in updating antenna polarization for longer period results in greater

packet loss compared to the selection diversity. Therefore, selecting an appropriate value of α is

crucial for achieving satisfactory performance in terms of reliability and energy efficiency.

4.7 Conclusion

In this work, we present an energy-aware polarization diversity scheme based on node centrality

metric for IoT networks. We consider a typical IoT network composed of sensor devices that peri-

odically sense data and utilizes tripolar antenna to forward it to the base station through routers

in a multi-hop fashion. The proposed diversity scheme leverages distributed eigenvector centrality

metric, calculated by all IoT devices individually without requiring global information about the

network topology, to measure a router’s importance based on the importance of its connected neigh-

bors. The identification of most influential router nodes allows us to employ a node-specific diversity

scheme that lets low scoring routers to switch polarization more frequently compared to high scoring

routers and hence decreases excessive switching over the whole network.
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Our results suggest that methods to rank the influence of different nodes in complex networks

can be applied in IoT networks to save energy consumption without compromising fidelity. Indeed,

our simulation results demonstrate that the proposed centrality based approach reduces switching

by at least 17% compared to the approach of utilizing selection diversity for all sensor and router

nodes irrespective of their roles. The results show that the proposed scheme is able to lessen energy

consumption by at least 13% compared to the conventional selection diversity while offering similar

network reliability. In future work, we plan to implement the proposed scheme in real devices using

various topologies and routing strategies.

Summary

In this work, we developed an adaptive switched diversity technique where antenna switching fre-

quency of a particular node depends on the number of neighbors it is connected with. Using central-

ity metric we determined which nodes will see more data flow and limited their antenna switching

frequency compared to the nodes with small number of child nodes. Results demonstrated that

our node-specific antenna selection technique reduced the energy depletion rate of the routers sig-

nificantly and satisfactory network reliability. Following the exploration of the connection between

antenna diversity and network architecture, we continue investigating on possible improvement of the

switched diversity technique. For multi-element antennas, when several branches have signal level

below the threshold, the conventional switched diversity need to switch branches multiple times to

determine the antenna that has acceptable signal strength. To prevent such unnecessary switching,

we developed a diversity technique where antenna switching is based off of probabilistic relation-

ship between observed signal strength values and antenna elements. The proposed technique, which

leverages Hidden Markov Model (HMM) to model the antenna polarizations as hidden states and

RSSI values as output observations, is described in the next chapter.
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5 Coordinating Three-Branch Diversity Switching Using a

Hidden Markov Model

Foreword

In this chapter, we evaluate the performance of a switched diversity technique for a tripolar antenna

systems that uses probabilistic approach based on Hidden Markov model and measured data to

determine antenna branch during data transmission. Section 5.1 presents the paper published at 2019

IEEE Internet of Things Journal [142]. By leveraging experimental received signal strength data

collected in a high multipath environment, the proposed technique models the antenna polarizations

as hidden Markov states and calculates the transition probability between antenna branches for

different thresholds. The work considered IoT applications where the time between consecutive

transmissions by the transmitting node is large compared to the coherence time of the channel and

thus, each transmission experiences independent fading. Compared to standard switched diversity

where a device needs signal strength data from multiple branches during switching, the proposed

technique monitors the currently active branch only and thus reduces excessive antenna switching.

Experimental implementation of the proposed approach shows increased diversity gain, reduced

energy consumption compared to standard switched diversity approach.

5.1 Abstract

Multi-element antenna systems have been shown to provide improved performance over single-

element antennas in harsh, depolarizing propagation environments. However, how best to leverage

these systems is still a challenge for low-cost implementations, e.g., for Internet of Things (IoT)

devices. In this paper, we present a three-branch switched diversity scheme that models the tran-

sition between the elements of a tripolar antenna by means of a Hidden Markov Model (HMM),

parameterized from measurement data. The proposed technique determines antenna polarization

before each transmission using RSSI values, their probabilistic relationship with antenna elements,

and transition probabilities among the diversity branches. Simulation and experimental results show

that in high multipath environments, similar to those expected for many IoT networks, selection

of the most likely antenna element before every transmission using the HMM approach leads to a

median gain of 0.4 dB and -0.9 dB and a 1% diversity gain of 2.4 dB and -6.8 dB over conventional

switched diversity and selection diversity, respectively, with no additional hardware costs. In addi-
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Figure 5.1: Left : A 3D tripolar antenna on top of a commercial sensor node. Right : Channel loss
data (i.e., S21) for each of the three mutually orthogonal elements of the tripolar antenna (i.e., V ,
H, and W ) [3].

tion, a hardware implementation demonstrates that the proposed method can reduce power drain

from the battery by at least 15% as compared to selection and switched diversity techniques, with

no degradation in packet delivery rates [142].

5.2 Introduction

The Internet of Things (IoT) will enable physical objects to act as intelligent interconnected devices

that can recognize events and changes in their surrounding environments and to gather, process, and

share the collected data without any human intervention [143]. With the advent of small, low-power

and low-cost embedded sensors and actuators, billions of physical objects around the world can be

transformed into IoT devices to generate large amount of information of real-world physical processes

in real time; thus effectively integrating the digital and physical world. There are numerous real-

world applications of IoT such as smart grid [144], smart homes [145], industrial monitoring [146],

object tracking [147], surveillance [148] and healthcare monitoring [149]. Depending on the applica-

tion, IoT devices may be deployed in environments with less than ideal propagation environments

due to the presence of significant multipath [150].

Cluttered conditions, as experienced by the industrial IoT networks deployed to monitor various

industrial equipment [151] or environment inside of a factory [152], not only create multipath fading

conditions, but have been shown to depolarize signals across all three spatial dimensions [7, 153,

154]. Antenna polarization diversity is an effective technique in such propagation environment as it

leverages the depolarization phenomena to increase the capacity of wireless communication by using

orthogonal polarizations (e.g., vertical vs. horizontal linear or right-hand vs. left-hand circular

polarizations) [6].

Multipolarized antennas that exploit three-dimensional electric field vectors and realize different
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polarizations by controlling the on/off states of PIN diodes or RF electromechanical switches have

been investigated in recent years [155], [156]. For example, our recent works [3], [1] have shown that

a compact three-element tripolar antenna performs better than dual-branch or monopole antenna

system in multipath environments. As shown in Fig. 5.1, a tripolar antenna consists of three

mutually orthogonal elements to create vertical (V ) polarization, horizontal (H) polarization and a

third polarization (W ) which is perpendicular to the other two, experiences distinct fading conditions

and illustrates the importance of using more than two antenna elements. To date, however, the

implications of integrating multi-polarized antennas in IoT devices does not appear to have received

much attention, which motivates the work presented herein.

One simple technique to leverage multi-polarized antennas is selection diversity, which continu-

ously monitors each polarization branch in order to select the one with highest instantaneous power

or received signal strength indication (RSSI) [6]. Although selection diversity ensures that the best

diversity branch is always chosen, the hardware cost and energy associated with always monitoring

each branch is not tenable for long-life, low-cost IoT devices, especially as the number of branches

grows.

An alternative approach is switched diversity, where the receiver switches to alternative branches

only when currently used branch has signal quality that is not acceptable, i.e., below a predetermined

threshold [157]. A specific implementation of switched diversity is switch-and-examine combining,

where if the RSSI goes below the threshold, the receiver keeps examining all available diversity

branches until it finds a branch that satisfies the threshold. In case the receiver finds that none of

the branches satisfy the RSSI requirement, it switches to the branch that has largest RSSI [158].

Although switched diversity offers an economical and cost-effective technique by reducing the

number of receivers, the power gain is less than selection diversity as it keeps using currently selected

antenna as long as the signal strength is above threshold and will not switch even though other

antenna branches have better signal strength. Moreover, as the number of diversity branches grows

more than two, the complexity of the scheme increases and the delay necessary to cycle through all

the branches becomes problematic.

In this paper, we focus on implementing an energy efficient, reliable, and cost effective switch

diversity technique for IoT networks. We introduce Hidden Markov Model (HMM) coordinated

switching by modeling the antenna polarizations as hidden states and RSSI values as output obser-

vations. The proposed technique uses the received signal strength values from only the currently

used branch and determines whether to stay at the current antenna element or switch to a differ-

ent one before each transmission. In addition, the advantages of using the HMM approach over
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conventional diversity schemes are quantified.

The original contributions of this paper are as follows:

• We propose a discrete-time, three-state HMM to implement switched diversity on a three-branch

diversity antenna. The proposed technique requires monitoring only the currently used diversity

branch and infers the most likely antenna element for transmission by analyzing the sequence of

observed RSSI values, statistical properties of the observations, and derived transition probabilities

of antenna elements.

• We conduct comprehensive experimental studies to analyze the performance of the proposed HMM

approach and compare its performance with selection and switched diversity. We demonstrate that

the proposed HMM approach, which is the most energy efficient compared to the other diversity

schemes, yields a median gain of 0.4 dB and a 1% diversity gain of 2.4 dB over the conventional

switched diversity, without additional hardware costs or compromising network reliability.

The subsequent parts of the paper are organized as follows. In Section 5.3, related works are

discussed. We describe how an embedded device reaches the switching decision using a three-state,

discrete-time HMM approach before every transmission in Section 5.4. The transition probabilities

between the antenna elements are derived in Section 5.5. Section 5.6.1 describes experimental setup

used for this work. The collected data are then used to determine the HMM model parameters

(Section 5.6.2). In Section 5.6.3, both performance of the proposed approach is evaluated and

compared to conventional diversity schemes using experimental and simulation results. Finally,

Section 5.7 concludes this paper and discusses directions for future works.

5.3 Background

Related studies of note, both theoretical and experimental, have focused on switched diversity tech-

niques and their performance in the presence of various fading conditions [1, 12,91,157–159].

The work of Blanco and Zdunek [12] analyzed the performance of ideal switched diversity, switch-

and-stay diversity, and switch-and examine diversity strategies theoretically for detecting frequency

shift keying signals under Rayleigh fading environment and compared the performance to non-

diversity and maximal ratio combining. Yang and Alouini [91] proposed a modified dual-branch

diversity scheme by allowing the receiver to use the best branch when it cannot find any acceptable

diversity branch after examining all available ones. Later, Nam and Alouini proposed a dual-branch

switched diversity technique which used adaptive switching thresholds instead of a fixed thresh-
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old [159]. Although the strategy of using a different threshold in every switching improves perfor-

mance over conventional switched diversity, it also increases computation complexity. In [92], Tsouri

et al. considered dual-branch switched diversity for compact wireless devices using a single RF com-

biner and analyzed the performance of implementing the the Karhunen-Loeve transform prior to

down-conversion to baseband prior to the RF switch. Despite demonstrated performance improve-

ments over conventional switched diversity, further studies are needed to explore the implementation

complexity of the proposed techniques in low-cost, low-resourced IoT embedded devices.

Recent studies have shown an increased interest in diversity schemes with more than two branches

[91, 92, 159–163]. For example, Lukama et al. [160] proposed a three-branch polarization diversity

antenna system for indoor wireless communications and demonstrated that the antenna can achieve

more than 2 dB diversity gain over dual-branch diversity antenna. In that work, diversity gain was

defined as the difference between the equal-gain combined diversity signal and the antenna with

the strongest signal. Similarly, [161–163] also proposed polarization reconfigurable diversity antenna

systems with switchable radiation patterns realized through different combinations of PIN diodes

and analyzed the RF characteristics in terms of sensitivity and overall gain of the antenna. In [164],

Alexandropoulos, et al. studied the performance of switch-and-examine diversity over L arbitrarily

correlated Nakagami−m fading channels which were not necessarily identically distributed. The

work also presented analytical performance expressions for L ≤ 3. In [165], Peppas et al. analyzed

the compared the performance of triple-branch, generalized selection combining (GSC) receivers

under Nakagami−m fading to other conventional diversity techniques. However, few related studies

have addressed the issue of realizing diversity schemes in an energy efficient manner for resource-

constrained IoT devices.

In the work presented herein, we investigate the performance of a HMM coordinated switched

diversity technique in a relatively static and slowly varying Rayleigh-fading environment where

minimal changes occur over longer periods of time and analyze the performance of our proposed

scheme through simulation and experimental study to demonstrate that the proposed method can be

an attractive alternative to the conventional selection and switched diversity scheme for constrained

IoT devices.

To our knowledge, the closest match to the work herein is a second study conducted by Yang

and Alouini [166], where the authors presented a Markov chain-based analytical framework for dual-

branch switched diversity schemes under various fading environments. In the Markov approach,

with a transition probability matrix that does not change over time, the next state (i.e., chosen

antenna element) is determined only by the current state and RSSI is not considered. In contrast,
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Figure 5.2: Block diagram of an HMM-based diversity system. H, V , and W correspond to the
three mutually orthogonal antenna elements as well as the three hidden states in the HMM. Ot is
the observable state (RSSI) at time t.

the switching decisions in HMM-based approach presented herein (Fig. 5.2) are also informed by

the RSSI observations, Ot, and how close they are from a predetermined threshold, τ , thus enabling

better branch selection results. When conventional switched diversity is employed, the antenna will

not switch to a new branch until signal strength gets below a chosen threshold. Whereas, under

our HMM approach, the antenna may switch even though the signal strength is above τ given

the sequence of observations and the conditional distribution of the RSSI values governed by the

antenna polarizations, i.e., unobserved states, and thus has higher probability to improve power

gain. Additionally, in the case where multiple branches have signal strength below the threshold,

the conventional switch diversity may have to switch branches several times to find the branch that

has signal strength above the threshold. We show herein however that by choosing branches based

on an HMM, ineffective switching can be avoided thereby reducing energy consumption.

5.4 HMM Coordinated Switching

In this section, we present our proposed HMM coordinated switched diversity scheme. A brief

overview of the HMM is provided first. Next, we formulate switched diversity based on an HMM,

including defining the probabilistic relationship between the observed RSSI values and antenna

elements. Finally, we describe the steps of the algorithm employed by the proposed HMM approach

to determine the most likely antenna element. The notation used in this work and respective

descriptions are presented in Table 5.1.
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Table 5.1: List of Notations

Symbol Definition

Xt state variable at time t

N the number of hidden states

K the number of distinct observation
states

A state transition probability matrix of
size N × N , where ai,j represents the
probability of moving from state i to
state j and i, j ∈ {H,V,W}

{H,V,W} three polarizations of the tripolar an-
tenna which correspond to the three
hidden states of HMM

Ot RSSI observation at time t

τ received signal strength threshold, be-
low which the signal is considered un-
acceptable

B the emission probability matrix of size
N ×K and consists of emission proba-
bilities bi(Ot)

bi(Ot) probability that the antenna selects
state i at time t, when the observation
is Ot

π the initial state probability vector of
the hidden states of length N , where∑N
i=1 πi = 1

{Z1, Z2, Z3} set of possible observation states

δt(j, i) probability of HMM being in state j
and transitioning to state i at based on
obsevation Ot time t

µti the highest probability that antenna se-
lects state i at time t

{ht, vt, wt} the signal strength received on the hor-
izontal, vertical and the third antenna
elements, at time step t, respectively

{α, β, γ} mean received power at the horizontal,
vertical and the third antenna elements,
respectively
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Figure 5.3: Block diagram of HMM states. Observations, Ot, i.e., RSSI values, which are explicit
and antenna polarizations (H, V , W ), which are hidden.

5.4.1 An overview of HMM

Characterizing the outputs of real-time processes, which can be discrete or continuous, is crucial

in many research works. One way to do so is to model the output observations as a parametric

random process using well-defined mathematical formalism while providing a theoretical framework

for the underlying process which is hidden from the observer. The HMM is one such statistical

tool that consists of a finite state Markov Chain with unobservable states and observable sequences

that are associated with each state of the underlying Markov chain through probabilistic functions

[167]. HMMs can be used to estimate model parameters, find most likely state sequences, and train

models. Interested readers are referred to [168], [169], [170] for a comprehensive study of the topic.

HMMs and their variants have been extensively used in a wide range of applications ranging from

speech recognition [171] to biological sequence analysis [172]; in addition, HMMs have also been

successfully used in time-series analysis [173], computational finance [174], pattern recognition [175],

and transportation forecasting [176].

5.4.2 Proposed HMM approach

We model the switching between antenna polarizations as a discrete-time HMM, where at different

time instances (i.e., transmission slots) the device is selecting one of the states (polarizations) in the

finite state space for data transmission. The HMM modeling of the polarization diversity system

is illustrated in Fig. 5.3, where the antenna elements (hidden states) are not directly observed.

The observed states, i.e., RSSI values, which do not necessarily exhibit the Markov property and

depend only on the currently used antenna polarization, are assumed statistically independent of

the previous observations. Let X1, X2 . . . , Xt represent the state variables at different time steps

denoted by the subscript with state space S = {H,V,W}, where H, V and W are the three hidden

states of the HMM and represent the three mutually orthogonal antenna elements (Fig. 5.1). We now
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Figure 5.4: An example of partitioning RSSI values in three groups Z1, Z2 and Z3, where τ is the
predetermined threshold. The likelihood that the antenna selects one of the polarizations at each
time step under a given observed state is provided in emission probability matrix B.

introduce the parameters used in our proposed HMM approach to determine the appropriate antenna

polarization. For simplicity, mathematical notations are kept similar to prior work [171–173].

5.4.2.1 Transition probability matrix The matrix A of size N ×N , where N is the number

of hidden states, is expressed as follows

A =


aH,H aH,V aH,W

aV,H aV,V aV,W

aW,H aW,V aW,W


(9)

Here aH,H is the transition probability from hidden state H at time step t− 1 to hidden state H at

time step t. Section 5.5 describes the derivation of these transition probabilities in detail.

5.4.2.2 Emission probability matrix As illustrated in Fig. 5.4, we classify the output RSSI

observations (Ot) into three groups: Z1, Z2 and Z3, where Ot ≤ τ ∈ Z1, τ < Ot ≤ τ + 5 dB ∈ Z2,

and Ot > τ + 5 dB ∈ Z3, where Ot is the RSSI observation at time t. Thus, the emission probability

matrix, B of size N ×K, where K is the number of distinct observation states per hidden state, can
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be expressed as:

B =


bH(Z1) bH(Z2) bH(Z3)

bV (Z1) bV (Z2) bV (Z3)

bW (Z1) bW (Z2) bW (Z3)


(10)

Here, bH(Z1) = P (Xt = H | Ot ∈ Z1) is the probability that the antenna selects state H at time t,

when the observed RSSI being in Z1. The probability is calculated using our collected RSSI dataset

by monitoring the frequency of selection of different antenna polarizations given the observation

state.

5.4.2.3 Initial probability matrix The initial probability distribution vector, which has a

length of N , can be written as

π = {πH , πV , πW }, πi ∈ [0, 1] (11)

where, πH , πV and πW are the probabilities that the antenna will be in H, V or W state during

the first transmission. The probabilities are initialized from uniformly distributed random numbers

withing the interval (0, 1) such that
∑3
i=1 πi = 1.

5.4.2.4 Algorithm The objective of the algorithms is to infer the best antenna polarization

at different time instances based on just the RSSI observations of the currently used branch. The

proposed approach consists of three steps as follows.

1. The first step is to initialize the polarization selection and we start with an uniform probability

for all the polarizations of the antenna. Let, Z0 be one of the observation groups depending on

the initial RSSI observation O0 at t = 0. Then, we can compute µoi , where i ∈ {H,V,W}, by

multiplying the initial probability of each states with bi(Z0).

2. The next step is to determine the transition probabilities based on observed RSSI. Now, at time

t = 1, let’s say the observed signal strength of the currently used antenna element belongs in Z1.

Having this observation will change our choice of antenna polarization. Now we will have higher

probability of switching the antenna element as RSSI of the currently used antenna element is

below the acceptable level, as shown in Fig. 5.4. If we are at time instance t = 2 and have signal

strength in Z3, we expect to have the highest probability to remain in same hidden state. To

determine the probability of being in sate j at time t − 1 and selecting state i at time t given
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the observation being in Zt, for each state i, we multiply µt−1
j with the transition probability aj,i

and emission probability bi(Zt). Since, we know the currently used antenna element form which

the observation is generated, we don’t have to iterate over j.

3. In the final step, we find the most likely state i and maximum probability µti, where the maximum

is taken over the index i. Thus combining transition probabilities between antenna elements,

emission probabilities and the information of the current RSSI readings, we can select the most

likely antenna element before each transmission.

We describe the pseudocode that is used to implement the proposed HMM approach in the Arduino

based embedded devices during the experiments below. Since we sort a N × 1 array for N

individual antenna polarizations, which has a time complexity of O(N), and then find the maximum

value among the N antenna elements, the computational complexity of the proposed HMM approach

becomes O(N2), where N is the number of hidden states.

Algorithm 1: Algorithm for HMM approach

Input: Ot, A,B, π
Output: Most probable antenna polarization
Init: - evaluate group for the first observation O0

- µ0
i ← πib

i(Z0), i = 1, . . . , N
foreach state i from 1 to N do

δt(j, i) = µt−1
j aj,ib

i(Zt)

end
/* find most probable polarization */

for i = 1 to N do
value← δt(j, i)
if value > µti then

µti ← value;
maxindex← i;

end

end
return maxindex

5.5 Defining State Transition Probability

The transition probability matrix, denoted by A, describes the probability of transition from one an-

tenna element to another and depends on the channel conditions where the devices are deployed. We

consider three independent Rayleigh channels which may not necessarily be identically distributed

for the operating environment, where the power of the signal is exponentially distributed the PDF

is given by Eq. (7.56) of [53].

P (xi) =
1

x̄i
exp

(
−xi
x̄i

)
(12)
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where x̄i and xi is the mean and received power at the ith branch and i ∈ {H,V,W}. We also assume

perfect channel estimation and negligible time delay between channel estimation, diversity technique

implementation, and packet transmission. Channel realization are drawn randomly at each time step

and remains fixed during each time step. We start with deriving the probability that the antenna

will not switch for two consecutive time steps. For example, aH,H represents the probability that

the antenna will stay at the same state H at time t− 1 and t. Now, to determine aH,H , we need to

consider two events. One scenario is when the received signal strength at the horizontally polarized

antenna element stays above the threshold τ at time steps t − 1 and t. Another when at time t

the signal strength at the horizontal branch falls below τ but none of the other branches has better

signal strength than the horizontal branch. Hence, aH,H can be expressed as

aH,H = {Xt = H | Xt−1 = H}

= P (ht−1 > τ)P (ht > τ)

+ P (ht ≤ τ)P (ht > vt, wt | {ht, vt, wt} ≤ τ) (13)

where ht, vt and wt represent the signal strength received on the horizontal, vertical and the third

antenna element at time step t, respectively.

Next, we define the probability of transition from one state to another. For example, aH,V

represents the probability that the antenna was in state H at time t− 1 and will switch to state V

at time t as the signal strength at the horizontal branch falls below the threshold at time t. We can

express this as

aH,V = {Xt = V | Xt−1 = H}

= P (ht ≤ τ)P (vt > τ)P (vt > wt)

+ P (ht ≤ τ)P (vt > ht, wt | {ht, vt, wt} ≤ τ) (14)

aH,W is similar to aH,V if we replace V withW . Now we want to find P (vt > ht, wt | {ht, vt, wt} ≤ τ).

Let, ∧ ≡ max and we note that

P (vt > ht ∧ wt | {ht ∧ vt ∧ wt} ≤ τ) =
P ((vt > ht ∧ wt) ∩ ({ht ∧ vt ∧ wt} ≤ τ))

P ({ht ∧ vt ∧ wt} ≤ τ)
(15)
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Let h, v and w have exponential distributed densities with mean x̄h, x̄v and x̄w, respectively, where

x̄h = α, x̄v = β and x̄w = γ [ [53] Eq. (7.56)].

P ({ht ∧ vt ∧ wt} ≤ τ) = P (ht ≤ τ)P (vt ≤ τ)P (wt ≤ τ)

=
(
1− e− τα

) (
1− e−

τ
β

)(
1− e−

τ
γ

)
(16)

The numerator of Eq. (15) can be determined as follows

P ((vt > ht ∧ wt) ∩ ({ht ∧ vt ∧ wt} ≤ τ)) =

∫ τ

0

∫ τ

0

∫ τ

h∧w
fv(v)fh(h)fw(w)dvdhdw (17)

We can then rewrite Eq. (17) as

P ((vt > ht ∧ wt) ∩ (ht ∧ vt ∧ wt ≤ τ)) ≡
∫ τ

0

fw(w)

I2(w)︷ ︸︸ ︷∫ τ

0

fh(h)

∫ τ

h∧w
fv(v)dv︸ ︷︷ ︸

I1(h,w)

dh dw (18)

We can write the innermost integral of Eq. (18) as:

I1(h,w) =
1

β

∫ τ

h∧w
e−v/βdv = e−(h∧w)/β − e−τ/β (19)

and the middle integral of Eq. (18) as:

I2(w) =

∫ τ

0

fh(h)I1(h,w)dh

=
1

α

∫ τ

0

e−
h
α

(
e−(

h∧w)
β − e−

τ
β

)
dh

=
1

α

∫ τ

0

e−( hα+
(h∧w)
β ) − e−( hα+ τ

β )dh (20)

73



Now, the easiest way to handle h ∧ w in Eq. (20) is to split the integral up into “cases”, which can

be written using the indicator function. In particular, since w ≥ 0, then

I2(w) =
1

α

∫ τ

0

e−( hα+w
β )1(0,w)(h) + e−( hα+h

β )1(w,τ)(h)dh

− 1

α

∫ τ

0

e−( hα+ τ
β )dh

=
1

α

∫ w

0

e−( hα+w
β )dh+

1

α

∫ τ

w

e−( hα+h
β )dh

− 1

α

∫ τ

0

e−( hα+ τ
β )dh

= e−
w
β

(
−e− hα

)∣∣∣w
0

+
β

α+ β

(
−e−h(

1
α+ 1

β )
)∣∣∣τ
w

+ e−
τ
β

(
e−

h
α

)∣∣∣τ
0

= e−
w
β − e−w( 1

α+ 1
β ) +

β

α+ β
e−w( 1

α+ 1
β )

− β

α+ β
e−τ(

1
α+ 1

β ) + e−τ(
1
α+ 1

β ) − e
τ
β

= e−
w
β −

(
α

α+ β

)
e−w( 1

α+ 1
β ) − e

τ
β

+

(
α

α+ β

)
e−τ(

1
α+ 1

β ) (21)

where 1 is the indicator function. The indicator function can be considered as a simple function

that takes value “1” when an event happens and value “0” when the event does not happen. Lastly,

plugging Eq. (19) and Eq. (21) in Eq. (18), we can write,

P (vt > ht ∧ wt, {ht ∧ vt ∧ wt} ≤ τ)

=
1

γ

∫ τ

0

fw(w)I2(w)dw

=
1

γ

∫ τ

0

e−w( 1
γ+ 1

β )dw − α

γ(α+ β)

∫ τ

0

e−w( 1
α+ 1

β+ 1
γ )dw

+
α

γ(α+ β)
e−τ(

1
α+ 1

β )
∫ τ

0

e−
w
γ dw − 1

γ

∫ τ

0

e−
w
γ −

τ
β dw

=
β

β + γ

(
1− e−τ(

1
β+ 1

γ )
)
− α2β

(α+ β)(αβ + βγ + αγ)

(1− e−τ(
1
α+ 1

β+ 1
γ )) +

α

α+ β
e−τ(

1
α+ 1

β )
(

1− e−
τ
γ

)
−e−

τ
β

(
1− e

τ
γ

)
=

β

β + γ

(
1− e−τ(

1
β+ 1

γ )
)
− α2β

(α+ β)(αβ + βγ + αγ)

+
α

α+ β
e−τ(

1
α+ 1

β ) − αγ

(αβ + βγ + αγ)
e−τ(

1
α+ 1

β+ 1
γ )

(22)
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To define all the transition probabilities of the underlying Markov chain for our proposed HMM

approach, we compute α, β and γ by exploiting the RSSI data obtained from embedded devices

equipped with tripolar antenna (see Section 5.6.1). The collected data from multiple devices are

used to validate our assumption of exponential densities, estimate the mean, and compute transition

and emission matrices of HMM.

5.6 Implementation and Performance Evaluation

In this section, we describe how experiments were performed to collect channel measurements and

how the obtained data were used to train and implement our proposed HMM approach. Furthermore,

we compare the HMM approach with selection diversity and conventional switched diversity using

real and simulated datasets.

5.6.1 Data collection

IoT networks consist of power conserving, tiny embedded devices that use very little bandwidth.

ZigBee is a protocol that offers secure and robust communications and that considers these con-

straints [177]. For our setup, we used an Arduino-based temperature sensor supported by XBee

wireless modules to exchange data between the deployed devices. The Arduino, whose main compo-

nent is a microcontroller, supports a number of analog and digital pins that can be used to manage

hardware devices effectively while ensuring scalability and power efficiency.

To collect data from real-world environment, we deployed three prototype devices classified as end

device, router and base station, respectively. The end device sensed temperature in every minute and

forwarded temperature data to the router along with RSSI values obtained from all three elements

of the tripolar antenna operating at 2.4 GHz. To emulate a high multipath environment, the end

node was placed inside of a reverberation chamber (see Fig. 5.5), which can create highly reflective

wireless propagation conditions. The router, which was deployed outside of the chamber, forwarded

the data packets to the base station for further processing. The base station, connected to a desktop

computer via USB cable, acted as a coordinator of the ZigBee network. The distance between

the devices were varied from 1 meter to 3 meter by placing an end device on a LabVIEW [178]

controlled linear actuator, which moved the device to 50 repeatable positions and retracted to the

initial position once measurements were done. The tripolar antenna uses a low-cost non-reflective

single pole triple throw RF switch (model HMC245AQS16) to control the switching between antenna

polarizations [3]. The antenna, which is fabricated on 3D printed acrylonitrile butadiene styrene
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(a)

(b)

Figure 5.5: (a) Utilizing a compact reverberation chamber along with the end node (i.e., IoT sensor)
on top of a linear track to create harsh propagation environment (b) Block diagram of the exper-
imental setup used to collect signal strength data from embedded devices enabled with tripolar
antenna system.
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filament, has three microstrip lines along with the RF switch manually placed in the bottom ground

plane.

During the data collection phase, data observed at all three antenna branches are collected at

the base station to create the database for HMM modeling. Since the XBee modules used in our

experiment have receiver sensitivity of -100 dBm, which is the minimum signal power level for the

receivers to be able to demodulate the transmitted data successfully [179], we set τ to 15 dB higher

than the receiver sensitivity, i.e., τ = −85 dB.

5.6.2 Learning HMM parameters:

The transition probability matrix for the proposed HMM approach was calculated using Eq. (5 -

14), which are derived based on the definition of switched diversity as described in Section 5.5. It is

worth mentioning that for the tripolar antenna there could be multiple scenarios such as all three

branches may have RSSI less or above the threshold and the state transition will vary according

to that. We ran the experiment by deploying an end node sensor device equipped with tripolar

antenna inside of the reverberation chamber and collected 3000 data points (RSSI value) for each of

the antenna polarizations. Next, we determined the mean received signal strength values from the

experimental data for each antenna polarization and entered them into the probability equations to

calculate the transition probability matrix.

The emission probability matrix was calculated based on the observed frequencies of antenna

branch switching for each of the defined observation states Z1, Z2 and Z3. Using a Matlab script,

we processed a single trace of RSSI data captured using one of the polarizations. First, we determined

the group for each observation (RSSI value) based on the classifications defined in Section 5.4. We

then determined the polarization selected by the antenna given the observation state at time t by

leveraging the definition of switched diversity. When observation value is in group Z3, the antenna

will continue using the same polarization and it will switch to other polarization if RSSI value is

in Z2 or Z1 provided that either of the remaining polarizations has RSSI value that is in Z3. If

all three branches have RSSI that belong in either Z2 or Z1, it switches to the branch that has

the largest RSSI among all the branches. We then repeated the same procedure for the rest of the

data points captured using other antenna polarizations and determined the frequency of selection of

each antenna polarization from different observation states. To analyze the effects of using different

group intervals for observation states on the proposed HMM approach, we varied the width of Z2

ranging from τ + 3 dB to τ + 15 dB and found that for large intervals performance degrade due to

excessive switching. While we present the results when τ < Ot ≤ τ + 5 dB is defined as the interval
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Table 5.2: Calculated HMM Parameters

Matrix A Matrix B

H V W
H 0.6 0.2 0.2

V 0.2 0.7 0.1

W 0.2 0.3 0.5

Z1 Z2 Z3
H 0.2 0.3 0.3

V 0.7 0.5 0.4

W 0.1 0.2 0.3

Figure 5.6: Empirical CDF of measurement data obtained from horizontal (H), vertical (V ), and
the third element (W ) of the tripolar antenna, where mean values of the RSSI values obtained from
three branches are α = −63 dBm, β = −61 dBm and γ = −64 dBm, respectively

for Z2, similar performance were obtained when interval was varied ±2 dB.

Table 5.2 presents the calculated transition probability matrix, A and the probabilities of emission

matrix B. Fig. 5.6 shows three empirical CDF plots along with mean values for RSSI values observed

at three elements of the tripolar antenna. We found that the link for vertical polarization exhibited

approximately Rayleigh fading and other two polarizations had fading response worse than Rayleigh.

To properly investigate the performance of the proposed HMM approach and validate our assumption

of a static wireless propagation environment, we collected several datasets over time (each containing

9000 data points in total) and repeated the noted calculations. The probabilities for each cell in

matrix A and B varied ±0.1 across the datasets, which demonstrate that the conditions remain

fairly constant and time variance can be neglected in the presented analysis. We also note that the

matrices computed from the experimental data are asymmetric, which indicates that each branch

has unique behavior which is captured by the HMM. Fig. 5.7 illustrates how the end device employs

diversity using our proposed HMM approach. The HMM modeling on the right side of the Fig.

5.7 fits the experimental dataset to an appropriate exponential distribution. After determining the
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Begin

XBee wake-up

Sense Temperature and RSSI

Select polarization
employing HMM

Transmit temperature reading

Return to cyclic sleep

Database

Fit Distribu-
tion to data

Model HMM
parameters
π, A and B

HMM modeling
Temperature

sensing

Figure 5.7: Flowchart of basic operation of the Arduino temperature sensor utilizing the proposed
HMM approach

A and B matrices, to compare the performance between selection diversity, switched diversity and

the proposed HMM approach, we let the end node to transmit 1000 packets to the base station

using the three strategies separately. We repeated the procedure 10 times and for each subsequent

experiment, the track was moved to a different place inside of the chamber and the position of the

stirrers was changed. Next, we present and discuss the findings of the study based on simulation

and experimental results.

5.6.3 Results

In this section, the performance of our proposed HMM approach is evaluated through simulation

and empirical studies. We categorize the results in three parts and compare the effectiveness of

our proposed technique with other related schemes in terms of power gain, reliability, and energy

efficiency.

5.6.3.1 Power gain Fig. 5.8 shows the empirical CDF of different RSSI-driven diversity schemes

when three diversity branches are used. We note that selection diversity has higher probability

to obtain best RSSI values, but requires always observing all three antenna branches. For IoT

systems, we assume only one receiver is available to keep costs low and the device will need to

switch between all branches to monitor RSSI and then select the best branch. In case of switch
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Figure 5.8: Comparison of empirical CDF among selection diversity, switched diversity, HMM ap-
proach and non-diversity techniques when tripolar antenna is used

and examine technique, the device only switches when signal strength of the currently used branch

becomes lower than the threshold. In contrast, the proposed HMM approach allocates three distinct

observation groups per branch, using observed signal strength of the currently selected antenna

element, transition probability, and emission probability associated with each branch, the device

might switch to another diversity branch even when the active branch is above τ . As illustrated in

Fig. 5.8, the proposed HMM approach has high probability of obtaining better RSSI values than

the switched diversity.

Table 5.3: Gain Comparison Among Various Schemes

Gain difference Median (dB) 1% Gain (dB)

HMM vs Monopole 0.6 6.5

HMM vs Switched diversity 0.4 2.4

HMM vs Selection diversity -0.9 -6.8

Table 5.3 summarizes the gain difference between the proposed HMM approach versus selection,

switched diversity and monopole antenna system i.e., non-diversity system. Diversity gain is crucial

since we prefer the received power to be greater than the receiver sensitivity so that the signal can

be decoded successfully. We see that although selection diversity outperforms all other diversity

schemes, our proposed scheme was able to perform better than switched diversity and non-diversity

system. The results also show that the 1% link margin gain is 2.4 dB for our proposed technique

relative to switched diversity with a median gain of 0.4 dB.
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Figure 5.9: Comparison between selection diversity, switched diversity, HMM approach and non-
diversity schemes in terms of data packet delivery

5.6.3.2 End-to-end packet delivery To assess the reliability of our proposed HMM coordi-

nated diversity scheme, we compare the performance of packet delivery rate with selection and

switched diversity. For this experiment, we configured an end device to transmit temperature data

at an interval of 1 minute to its nearest router using each of the three diversity schemes. A packet

is considered to be dropped if its RSSI is less than τ . Fig. 5.9 shows the simulation results, which

were averaged over 10 runs. While selection diversity has the lowest packet drop rate (1%), our

proposed HMM approach has slightly better packet delivery rate (98%) compared to the switched

diversity (97%). Thus, the experimental results prove that the efficiency of the HMM coordinated

switched diversity in terms of packet delivery reliability is on par with switched diversity, but again

with non-insignificant received power gains.

5.6.3.3 Energy efficiency Finally, we evaluate the energy efficiency of the proposed HMM

coordinated switched diversity scheme in terms of total energy consumed by the device during

active period and compare to other existing diversity techniques. From Fig. 5.10, it can be seen

that selection diversity requires the device to remain active for highest amount of time among

the three schemes as the device has to switch between all three branches and compare the RSSI

values to determine the best branch. When multiple receivers are available, wake time is not a

concern for selection diversity as the device will be able to monitor all branches simultaneously (at

a cost of more current draw). In case of the switched diversity, the device only switches when the

RSSI of the currently used diversity branch drops below τ , and when the device is not switching

both HMM approach and switched diversity consume the same amount of energy as the device
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Figure 5.10: Current consumption vs time during packet transmission for different diversity tech-
niques

Figure 5.11: Comparison between selection diversity, switched diversity and the proposed HMM
approach in terms of battery energy consumption
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only monitors the active branch. However, under the switched diversity technique when the device

switches between diversity branches, it can consume more energy than the HMM approach which

selects the diversity branch based on probabilistic calculation. As illustrated in Fig. 5.11, energy

consumption by the proposed HMM approach is 15% and 49% lower compared to the conventional

switched diversity and selection diversity, respectively. We find from our results that power gain,

data delivery and energy efficiency of IoT networks can be improved by using the proposed HMM

coordinated switched diversity scheme compared to the conventional switched diversity technique.

Although results presented here only show improvements for three-branch diversity antennas, the

HMM approach, which has a quadratic time complexity, can easily be extended for antennas with

more than three branches provided that the transition and emission matrices are derived properly

from the RSSI data of the respective antenna.

5.7 Conclusion

In this paper, we have proposed a Hidden Markov Model based coordinated diversity technique

that infers the best possible state, i.e., diversity branch, before every transmission by combining the

underlying Markov chain structure of diversity branches along with the sequence of observations

(RSSI values). The proposed approach eliminates ineffective or unnecessary switching between

antenna elements that may result when conventional switched diversity is used.

We demonstrated the approach on a three-element, tripolar antenna integrated with a Zigbee-

based system. We found that the HMM approach improved the median and 1% diversity gains by

0.4 and 2.4 dB, respectively, over a switch diversity implementation that utilized the same decision

threshold. We also demonstrated that the developed approach, whose parameters were calculated

using a large dataset of RSSI values collected in a highly cluttered environment, is on par with

switched diversity in terms of packet delivery reliability. Finally, the efficacy of the proposed scheme

was assessed in terms of energy use, where it reduced consumption by approximately 15% compared

to the switched diversity. As the proposed approach does not require any additional hardware for

this performance gain (as opposed to implementing selection diversity), we contend that it could be

applicable for low-cost IoT devices.

In future work, the performance of online HMM coordinated diversity scheme that can determine

and update model parameters dynamically by analyzing RSSI observation sequence over time rather

than relying on previously-obtained datasets will be studied. In addition, determining appropriate

number of observation states for experimental RSSI data and tuning the threshold to find optimal

83



group intervals will be examined. Finally, we would like to develop and illustrate the suitability of

the HMM approach for diversity antennas with four or more branches.

5.8 Appendix

In this Appendix, we describe the pseudocode that is used to implement the proposed HMM approach

in the Arduino based embedded devices during the experiments.

Algorithm 2: Algorithm for HMM approach

Input: Ot, A,B, π
Output: Most probable antenna polarization
Init: - evaluate group for the first observation O0

- µ0
i ← πib

i(Z0), i = 1, . . . , N
foreach state i from 1 to N do

δt(j, i) = µt−1
j aj,ib

i(Zt)

end
/* find most probable polarization */

for i = 1 to N do
value← δt(j, i)
if value > µti then

µti ← value;
maxindex← i;

end

end
return maxindex

Since we sort a N × 1 array for N individual antenna polarizations, which has a time complexity

of O(N), and then find the maximum value among the N antenna elements, the computational

complexity of the proposed HMM approach becomes O(N2), where N is the number of hidden

states.

Summary

In this work, a Hidden Markov Model based approach is developed to deduce the best diversity

branch by modeling antenna transition probabilities as a Markov chain in addition to the signal

strength values received at the currently active branch. Results demonstrated that by reducing

unnecessary switching between diversity branches, our proposed approach achieved higher energy

efficiency and better diversity gain compared to the conventional switched diversity scheme. Al-

though the findings were promising, the results were based on point-to-point single link performance

only and did not examine global network behaviour. We followed up the work by building an IoT

network with three practical sensor devices equipped with tripolar antennas and explored the impact
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of antenna selection of one node on its neighboring devices. The subsequent chapter described the

work, where we focused on techniques to configure antenna element for tripolar antenna devices in

a multi-hop network.

85



6 Switching-based Selection Techniques for Tripolar Anten-

nas in Multi-hop IoT Networks

Foreword

Multi-hop based antenna selection techniques that consider lower and upper layer nodes’ current an-

tenna configuration status during antenna switching is presented in this chapter. The work presented

here was accepted for publication in IEEE Internet of Things Journal on February, 2022. Multi-

element antennas deployed in a high multipath environment experience different fading conditions

between the lower link and upper link, which is used for reception and transmission, respectively. In

contrast to standard diversity techniques, which considers single point to point link and determines

antenna branch prioritizing transmission only, this work investigates the impact of antenna selec-

tion during reception and transmission. Two different multi-branch antenna selection approaches,

namely Max-Sum and Max-Min, are proposed which maximizes joint SNR over different antenna

branches and maximizes minimum SNR, respectively. Both analytical and experimental results are

obtained and comparative analysis with standard diversity techniques are presented to emphasize

the incorporation of dual-hop antenna configuration information during antenna selection of a node

in a multi-hop based IoT network.

6.1 Abstract

Adaptive multi-element antennas can be leveraged to improve the reliability of wireless systems

deployed in cluttered, depolarizing environments, such as those expected for Internet of Things

(IoT) applications. While the performance improvement provided by such antennas has been well

studied for individual links, multiple-hop networks have received little attention. In this work, we

consider the problem of how devices in a multi-hop network should configure a three-element, tripolar

antenna when deployed in a Rayleigh fading environment. We propose two switching-based antenna

selection strategies, Max-Sum and Max-Min, each of which considers the channel conditions for

communicating to nodes both higher and lower in the network hierarchy. We first derive the outage

performance of the proposed schemes analytically and compare their performance with the well-

known approaches of selection and switched diversity. Through simulations, which utilize empirical

channel data from IoT devices equipped with a tripolar antenna, we show that the proposed Max-

Sum and Max-Min scheme reduces antenna switching by over 80%, when compared to selection
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diversity. In addition, these two approaches lead to a median gain of 1.8 dB and 0.3 dB and a 1%

diversity gain of 3.6 dB and 1.4 dB, respectively, relative to switched diversity1.

6.2 Introduction

The rapid development of wireless communications and sensor hardware technology over the past

years have stimulated the widespread usage of low cost IoT devices and enabled a wide range of

novel applications and services, e.g., industrial monitoring [180], intelligent vehicular networks [181],

agricultural monitoring [182] and smart grids [183]. The pervasiveness of IoT applications implies

systems being deployed in evermore complex environments with no line-of-sight and severe multipath

conditions that reflect, refract, diffract and depolarizes the signal [184]. The loss of polarization

orthogonality due to depolarization causes antenna imperfection at the transmitting end or receiving

end or both which degrades the system’s performance [185], [186]. Tripolar antennas, which achieve

polarization diversity either by using three orthogonal ports [187] or a single port connected to three

antenna elements placed orthogonally to each other [188], have recently garnered interest due to

their robust performance in cluttered environments.

The compact size and low cost implementation of multi-polarized antennas have attracted re-

searchers in designing and testing of polarization diversity antenna systems [189], [190]. However, the

existing works have mainly focused on the performance analysis of antenna properties (e.g., return

loss or patterns) [191], [192] either through simulations or theoretical analysis [193], which may be

quite different from final location where the antennas will be deployed. The problem is further com-

plicated by the fact that the test environment for the developed antennas considers point-to-point

single link performance only and does not consider global network behaviour. In the latter case, an-

tenna selection of one device impacts one or more neighboring networked devices. Furthermore, for

actual representation of antenna performance the measurements should be taken on multipolarized

antenna systems integrated with practical sensor devices in an IoT network consisting of multiple

devices.

In this paper, we address the antenna selection problem for a single-port, tripolar antenna that

uses the same element for transmission and reception - a scenario that would be expected for low-cost

IoT deployments - and study the network-wide impact of this approach. Closest work to our approach

is that by Delibasic et al. [194], which proposed maximal ratio combining based diversity scheme for

multi-hop scenario and presented mathematical model of diversity gain, error rate performance and

1S. Chowdhury, J. Frolik, and A. Benslimane, “Switching-based Selection Techniques for Tripolar Antennas in
Multi-hop IoT Networks.” in IEEE Internet of Things Journal. Early Access. Date of Publication: February 16,
2022.
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total received SNR for a two-hop relay system with dual-polarized antennas. Our approach differs

from [194] in both the usage of tripolar antenna, the switched-based antenna selection technique,

and the incorporation of real data captured from IoT devices with multi-polarized antenna. More

specifically, we present two switched based antenna selection techniques: (i) joint SNR maximization

(Max-Sum) and (ii) minimum SNR maximization (Max-Min) and confine our focus on end-to-end

network reliability and energy efficiency. The proposed switched-based schemes consider both upper

and lower links at each node (as shown in Fig. 6.3) to select an antenna element for joint transmission

and reception. The main contributions of this paper are shown as follows:

• We present two antenna selection schemes for tripolar antenna systems deployed in a multihop

based IoT network. We derive closed-form expression for both schemes, showing relationship

between outage probability and switched diversity based antenna selection over Rayleigh fading

channels which are independent but not necessarily identically distributed.

• We provide comparative analysis of the proposed multi-hop based antenna selection schemes and

single-hop based schemes through extensive simulations that leverages an experimental data set

of channel losses. The proposed Max-Sum and Max-Min scheme achieve a median gain of 1.8 dB

and 0.3 dB and a 1% diversity gain of 3.6 dB and 1.4 dB, respectively, over switched diversity

that considers a point-to-point link only.

• We show that by considering multi-hop structure of the network, our proposed schemes can reduce

antenna switching by more than three quarters and two fifths compared to selection and switched

diversity, respectively. Furthermore, both schemes perform closely to the single hop based selection

diversity approach in terms of reliability with packet drop probability of 1% only.

The manuscript is organized as follows. Section 6.3 highlights related work on antenna selection

strategies in multi-hop networks. The two switched-based diversity schemes which we refer to

as Max-Sum and Max-Min, respectively, are introduced and closed-form expression of the outage

probability is derived in Section 6.4, followed by experimental setup and performance analysis of the

schemes in Section 6.5 and 6.6, respectively. Finally, we present the concluding remarks and future

work directions in Section 6.7.

6.3 Related Works

In many compact IoT devices proximity between antenna elements makes polarization diversity

an useful form of improving overall system performance compared to other schemes [195]. In this
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section, we describe existing state-of-the-art multi-element antenna based diversity techniques.

Many efforts have been devoted to improve the performance of diversity antenna selection for

conventional wireless systems at both transmitter and receiver ends, e.g., [196], [197]. In [198],

an analysis of link signal strength and correlation with respect to frequency and polarization of a

dual-polarized antenna was presented for maximal-ratio combining and selection diversity scheme.

Meanwhile, in [199], a multiple-input single-output mmWave system where transmitter utilizes joint

transmit antenna selection and analog beamforming by low-resolution phase shifters to maximize

the spectral efficiency is proposed. The authors in [200] numerically analyzed the performance of a

multi-element antenna that has partial channel sensing information and uses a detection vector to

improve outage performance. However, in these systems there exists a trade-off between performance

and complexity, since, based on the implemented channel selection scheme and the number of active

antennas, there is an increased need for channel information and/or circuit power consumption,

which may not be an ideal choice for IoT devices.

Antenna selection techniques that exploit single RF chain and switchable antenna branches,

which is an alternative to multiple RF chains, have been widely studied [201], [202]. As more

antenna polarization or branches are added, antenna systems using selection diversity experience

frequent switching and increased energy consumption [203]. Recently, many variations of switching

strategies that offers low cost implementation and less energy consumption, have been proposed for

multiple transmit and/or receive antenna systems [204], [205] and showed significant gains in capacity

and reliability over single element antenna systems. In [206], the authors experimented with switch-

and-stay and switch-and-examine diversity techniques for multi-element indoor off-body antenna.

The work was followed by the performance analysis of a L-branch antenna (L ≥ 2) that uses scan-

and-wait combining scheme while operating over Nakagami-m fading channels [207]. However, these

works either considered ideal channel conditions or focused on the performance of a single pair or

nodes only while overlooking the network-wide impact of diversity schemes.

For large scale IoT networks, multihop relaying leads to reduced routing overhead, energy ef-

ficiency and better adaptability to frequent topology changes [38], [39], [208]. Furthermore, in

cluttered environment with high multipath and path losses, multipath transmission with a short

distance is more effective as error probability decreases when the number of hop increases [209].

However, very few studies have looked into exploiting the network topology or routing protocols

to aid antenna selection of multiple antennas system. Fig. 6.1 demonstrates the correlation of

Received Signal Strength Indicator (RSSI) values obtained from a tripolar antenna receiver’s upper-

level node and lower-level node, respectively during the indoor experiments described in Section

89



Figure 6.1: Correlation between RSSI values obtained at upper-level node and lower-level node when
the intermediate node used vertical (V ) polarization.

6.5. A low correlation coefficient implies that the channel condition of a single hop does not affect

another hop, even though they share a common node. Thus, in a hierarchical IoT network, when a

receiver selects a branch only based on next level node’s channel condition (i.e., only single source

and destination pair), the channel state information at the transmitter of the lower level nodes may

become obsolete due to the possibility of fading variation at the other branch. For such reasons,

therefore, it is necessary to consider the multi-hop based antenna selection scheme for hierarchical

networks. In what follows, we present our proposed multi-hop polarization diversity schemes, derive

analytical expressions for outage probability and verify their effectiveness by simulation results.

6.4 Proposed Multi-hop Based Switched Diversity for Tripolar Antennas

In this section, first we give a brief description about the hierarchical IoT network dealt with in our

work. In addition, we also describe the wireless channel conditions and assumptions considered for

this work. We then derive the closed form expressions of the proposed diversity schemes.

The wireless network considered in this work is a multi-hop IoT network comprised of stationary

end devices, routers and a remote server as illustrated in Fig. 6.2. In order to evaluate end-to-end

network performance of diversity schemes, we assume that no direct link is available between end

devices to the remote server. Based on the application, the end devices either monitor environment
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Figure 6.2: A block diagram of IoT network with end nodes and routers illustrating upper hop and
lower hop node from router R2’s perspective.

or detect events and send the sensing information to the nearest router. The routers, which have

data relaying capability, forward the sensing data from individual sensors to the remote server for

post-processing. In addition, we assume that all the devices in the network are equipped with tripolar

antenna system. Each channel realization, which are drawn randomly at each time step is assumed

to remain fixed during that step. Finally, we also assume the channel estimation by the receivers

are perfect and the time delay between channel estimation, diversity technique implementation, and

packet transmission is negligible [210], [211], [212].

Consider H, V and W are three independent Rayleigh fading channels available at the tripo-

lar antenna system such that channel power gain changes independently with each channel use.

We assume that both lower and upper hop nodes have already selected a branch for transmission

and reception, which are W and H, respectively, as demonstrated in the sample case of Fig. 6.3.

Specifically, we examined the scenario where the repeater node R2 needs to select the appropriate

element to communicate to the nodes both lower and higher in the network hierarchy, i.e., to receive

data packets from R1 and forward them to R3. Because of the multipath created by a cluttered

environment, the channel conditions in the two links will differ and thus considering signal quality

of both lower and upper hops may lead to better antenna selection. Thus the problem we address

is how to choose the element (H, V or W ) that provides the best network-wide performance.

Let LH , LV , LW be the random variables representing instantaneous SNR for wireless links be-

tween the lower hop node and router at H, V and W branch of the router (as depicted in Fig.

6.3). The distribution of the SNR at any branch, for example LH , is exponentially distributed and

91



Figure 6.3: Illustration of an IoT network where router R2 utilizes channel information from two
hops for antenna selection. H, V and W represent the three branches of tripolar antenna and
the highlighted elements represent the currently used branch of nodes R1 and R3. Received signal
strengths for the hop branches are represented by LH , LV , LW , UH , UV , and UW , where L and U
depicts the lower and upper hops, respectively.

proportional to the instantaneously received signal power at any time, which can be described by

the following equation [53]

P (LH ≤ lh) = αh exp−αhlh (23)

Here P (LH ≤ lh) means the probability that the random variable LH is less than or equal to the

realization lh. The lowercase lh is the instantaneous SNR at the horizontal branch (H) of the receiver

and defined as lh = rh
2/N , where rh is Rayleigh fading received signal amplitude at the H branch

and N is the noise power. Also, αh = 1/E[lh], where E[lh] represents the average SNR on the H

branch [213]. Similarly, LV and LW have exponentially distributed density defined as, αv exp−αvlv

and αw exp−αwlw , where αv = 1/E[lv], and αw = 1/E[lw], E[lv] and E[lw] are the average SNR,

lv and lw are the realizations of the random variables on the V and W branch of the lower hop,

respectively. Also let UH , UV , UW be the random variables representing instantaneous SNR for

wireless links between the router and upper hop destination (which can be a router or base station)

at H, V and W branch of the router (as depicted in Fig. 6.3) with average SNR values E[uh], E[uv]

and E[uw], respectively.

6.4.1 Joint SNR maximization (Max-Sum)

In Max-Sum scheme, router considers all the available transmit/receive links between its lower

level and upper level nodes and selects a polarization that maximizes the joint signal strength of

the transmission and reception links. Unlike selection diversity, where receiver monitors the signal
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strength of all available branches, the switching event for the Max-Sum scheme depends on the

received SNR of the current branch only.

First, we need to find the probability distribution of summation of Li and Ui, where i ∈ T and

T = {H,V,W}. Now, for the ease of analytical derivation, we start by deriving the probability

distribution for the horizontal branch (H) first. Let SH has the distribution of the sum of the two

random variables LH and UH . We want to find the probability P (SH > sh | LH > τ and UH > τ),

where τ is the signal strength threshold and both LH and UH are conditioned to be greater than

τ . The threshold τ , which is a pre-determined number and depends on the receiver’s sensitivity,

determines whether the received signal is acceptable or not. A packet will be dropped if the signal

strength between two nodes falls below the threshold τ . Now since LH and UH are both exponentially

distributed, using the memoryless property of these continuous random variables, we see that the

conditional distribution of the event LH − τ given that LH > τ is αhe
−αhlh dlh for lh > 0, and

the density function does not depend on lh. If we condition on the event that both LH > τ and

UH > τ, the conditional distribution of LH − τ is still the same, since UH and LH are independent.

Similarly the conditional distribution of UH − τ given that same event is βhe
−βhuh duh for uh > 0,

where βh = 1/E[uh]. Therefore, the probability that the sum of two independent (but not identical)

exponentially distributed random variables is greater than a specified quantity

P (SH > s | LH > τ and UH > τ) = P ((LH − τ)

+ (UH − τ) > s− 2τ | (LH − τ) > 0 and (UH − τ) > 0) (24)

We get

∫∫
lh> 0
uh> 0

lh +uh>s− 2τ

αhβhe
−αhlh−βhuh d(lh, uh) (25)
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This can be expressed as

∫ s−2τ

0

(∫ ∞
s−2τ−lh

αhβhe
−αhlh−βhuh duh

)
dlh+∫ ∞

s−2τ

(∫ ∞
0

αhβhe
−αhlh−βhuh duh

)
dlh

=

∫ s−2τ

0

(
−αh expαhlh

∫ ∞
s−2τ−lh

exp−βhuh duh

)
dlh+∫ ∞

s−2τ

(
αh exp−αhlh

∫ ∞
0

exp−βhuh duh

)
dlh

=

∫ s−2τ

0

αh exp−αhlh exp−(s−2τ−lh)βh dlh+∫ ∞
s−2τ

αh exp−αhlh dlh

=
αh

(αh − βh)

(
expβh(2τ−s)− expαh(2τ−s)

)
+

expαh(2τ−s) (26)

Thus, the density function of SH is [ [214] , Eq. (8)]

fSH |LH>τ,UH>τ (s)

=
d

ds
(P (SH ≤ s | LH > τ,UH > τ))

= − αh
αh − βh

(
d

ds

(
exp2βhτ−βhs

)
d

ds

(
− exp2αhτ−αhs

))
− d

ds

(
expαh(2τ−s)

)
=
αh
((
−βh + d

ds (2βhτ)
)

exp2βhτ−βhs
)

αh − βh

−
αh exp2αhτ−αhs d

ds (2αhτ − αhs)
αh − βh

− αh expαh(2τ−s)

=
αhβh exp−(βh+αh)s

(
expβhs+2αhτ − expαhs+2βhτ

)
βh − αh

(27)

Suppose SV = LV +UV and SW = LW +UW , SV having the distribution function FSV (sv) and

SW having the distribution function FSW (sw). Then, we can write the conditional CDF of SV and

SW using Eq. (25) as
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P (SV > s | LV > τ and UV > τ) =

αv
(αv − βv)

(
expβv(2τ−s)− expαv(2τ−s)

)
+ expαv(2τ−s) (28)

and

P (SW > s | LW > τ and UW > τ) =

αw
(αw − βw)

(
expβw(2τ−s)− expαw(2τ−s)

)
+ expαw(2τ−s) (29)

Now, let ZA = max(SH , SV , SW ), where ZA is the event when the tripolar antenna selects

the branch with joint maximum signal strength over the two hops. Then for s > 0, using the

independence of the conditional probability of SH , SV and SW given that Li and Ui are greater

than the signal strength threshold τ for H, V and W branches, we obtain the distribution function

of ZA

P (ZA ≤ s) = P (SH ≤ s | LH > τ,UH > τ)P (SV ≤ s |

LV > τ,UV > τ)P (SW ≤ s | LW > τ,UW > τ)

= (1− P (SH > s | LH > τ,UH > τ))

(1− P (SV > s | LV > τ,UV > τ))

(1− P (SW > s | LW > τ,UW > τ)) (30)

By substituting Eq. (26), (28) and (29) into Eq. (30), the latter becomes

P (ZA ≤ s) =
∏
i∈T

(1− Ωi
(
expβiφ− expαiφ

)
− expαiφ) (31)

where

Ωi =
αi

(αi − βi)
(31a)

φ = 2τ − s (31b)

Equation (31) provides the probability that the instantaneous signal strength of the selected branch

using three-branch Max-Sum switched based selection scheme will be above the specified threshold
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value τ and by using [ [215], Eq. (4)] the outage probability for Max-Sum scheme is written as

P sO = 1− P (ZA ≤ s) (32)

Eq. (32) is evaluated numerically.

6.4.2 Maximization of the minimum SNR (Max-Min)

With Max-Min antenna selection approach, the goal of the receiver is to select a branch that max-

imizes the minimum received SNR of all links. The receiver obtains channel state information of

all the transmission and reception links and exploits the advantage of diversity to determine an

acceptable branch.

Similar to the previous derivation, we start with the horizontal branch. Let MH be the mini-

mum of the exponential random variables LH and UH given that LH and UH denote the received

signal strength at the router receiver from the lower level node and upper level node, respectively.

Furthermore, MH is conditioned on the event that LH > τ and UH > τ .

To determine the expression for P (MH > m), where MH = min(LH , UH), for some m > 0, we

write the distribution function of MH as

FMH
(m) = P (MH ≤ m) = P (min(LH , UH) ≤ m) (33)

which is equivalent to

FMH
(m) = 1− P (min(LH , UH) > m) (34)

Using the fact that LH and UH are independent, we get

P (min(LH , UH) > m) = P (LH > m,UH > m)

= P (LH > m)P (UH > m) (35)

This means that

P (LH > m) = 1− FLH (m) =

∫ ∞
m

fLH (lh) dlh (36)
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and

P (UH > m) = 1− FUH (m) =

∫ ∞
m

fUH (uh) duh (37)

where FLH (m) and FUH (m) are the cumulative distribution function of LH and UH , respectively.

Also, fLH (lh) and fUH (uh) are the probability density function of LH and UH . Therefore, we can

write Eq. (34) as

FMH
(m) = 1−

(∫ ∞
m

fLH (lh) dlh

)(∫ ∞
m

fUH (uh) duh

)
= 1−

(∫ ∞
m

αh exp−αhlh dlh

)(∫ ∞
m

βh exp−βhuh duh

)
= 1− exp−αhm exp−βhm (38)

Thus, MH is an exponential random variable with parameter (αh + βh). The density function of

MH is

fMH
(m) =

d

dm
FMH

(m)

= − d

dm

(
exp−αhm−βhm

)
(39)

Using the chain rule,

d

dm

(
exp−αhm−βhm

)
=
d expu

du

du

dm
(40)

where, u = −αhm − βhm and d
du (expu) = expu. Then, differentiating the sum term by term and

factor out constants, we get

fMH
(m) = − exp−αhm−βhm

(
−αh

d(m)

dm
− βh

d(m)

dm

)
= (αh + βh) exp−(αh+βh)m (41)

Suppose that Mi is the minimum of Li and Ui, where i = {H,V,W}, then when Mi ≤ mi, it

means that the minimum of Li and Ui is less than mi, where i = {H,V,W}. In other words, when

the minimum is greater than mi, i.e., (Mi > mi), then both Li and Ui must be greater than mi.
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Thus, the density function of MH conditioned on LH , UH > τ is

fMH |MH>τ (m) =
fMH

(m)

P (MH > τ)

=
(αh + βh) exp−(αh+βh)m

exp−(αh+βh)τ

= (αh + βh) exp(αh+βh)(τ−m) when m > τ (42)

It can be shown that
∫∞
τ
fMH |MH>τ (m) = 1, which validates the density function. Then the distri-

bution function can be obtained as

P (MH ≤ m |MH > τ) =

∫ m

τ

fMH |MH>τ (m)

= (αh + βh) exp(αh+βh)τ

∫ m

τ

exp−(αh+βh)m dm

= exp(αh+βh)τ
(

exp−(αh+βh)τ − exp−(αh+βh)m
)

= 1− exp(αh+βh)(τ−m) (43)

Similarly, we can obtain the conditional distribution function of MV and MW . Now let ZB

denotes an event where the receiver of the tripolar antenna selects a branch whose minimum signal

strength over the two hops is greater than the minimum signal strength of the other two branches.

Therefore, we can write ZB = max(MH ,MV ,MV ). Since MH , MV and MW are independent, we

can write

P (ZB ≤ m) = P (MH ≤ m |MH > τ)

P (MV ≤ m |MV > τ)P (MW ≤ m |MW > τ) (44)

Substituting Eq. (43) in the above equation yields the desired distribution function of ZB

P (ZB ≤ m) =
∏
i∈T

(1− expΓi(τ−m)) (45)

where

Γi = αi + βi (45a)

Thus, the outage probability becomes [ [216] Eq. (12)]

PmO = 1− P (ZB ≤ m) (46)
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Figure 6.4: Outage probability of Max-Sum (Eq. (30)) and Max-Min (Eq. (44)) scheme for three
independent but non-identical Rayleigh branches with mean values (in dBm) as follows: (a) Max-
Sum with E[lh] = −61, E[lv] = −63, E[lw] = −64, E[uh] = −62, E[uv] = −64 and E[uw] = −65.
(b) Max-Sum with mean - 3 dB (c) Max-Sum with mean + 3 dB, (d) Max-Min (e) Max-Min with
mean - 3 dB (f) Max-Min with mean + 3 dB.

As an illustration of the analytical results, Fig. 6.4 shows the outage probability (or, equivalently,

the CDF) of the RSSI for the proposed Max-Sum and Max-Min schemes and investigates the effect

of different mean values. The mean values used in case (a) and (d) are obtained from experimental

data at the H, V and W antenna branch of the end node and destination node, respectively (shown

as continuous lines). Under Max-Sum scheme, assuming the horizontal branch is in operation, when

s > τ , outage condition can occur: if lh < τ or uh < τ even though sh > τ as given in Eq. 24. In

such case, the receiver will keep switching branches until signal strength at both lower and upper

hop nodes satisfy the threshold Lj > τ , Uj > τ , j ∈ {H,V,W}. For Max-Min scheme, outage

occurs if the currently selected branch of R1 and/or R3 are below τ . We observe that for a router

with tripolar antenna receiver, maximizing the joint signal strength leads to higher diversity gain

than maximize the minimum RSSI. While the impact of lower or higher mean signal power is quite

similar on both techniques, the 1% diversity gain is higher (∼ 0.3 dB) for Max-Sum compared to

Max-Min scheme. This is expected since Max-Min tries to maximize the lowest signal power of the

three branches of a tripolar antenna device, resulting in lower RSSI values.
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Figure 6.5: Block diagram of testbed setup that utilizes a reverberation chamber to create a severe
multipath environment. The fabricated prototype tripolar antenna acts as a transmitter and receiver
for the XBee module.

6.5 Experimental Setup

We conducted our experiments with prototype devices consisted of Arduino, Xbee and the tripolar

antenna operating at 2.4 GHz. The tripolar antenna, which is fabricated on 3D printed acryloni-

trile butadiene styrene filament, achieves three different polarization by using three microstrip lines

in the bottom ground plane along with a non-reflective single pole triple throw RF switch (model

HMC245AQS16). The Arduino controls the antenna and activates a desired polarization by con-

trolling the RF switch. The overall structure of our experimental setup is depicted in Fig. 6.5. To

emulate highly reflective wireless propagation environment, we deployed the end node and a router,

denoted as R1 and R2, respectively, inside of a reverberation chamber that can simulate high mul-

tipath conditions. The chamber and reflectors inside help to achieve rotation of polarization which

eventually causes the decoupling of the transmitted polarization. The end node was placed on top

of a LabVIEW [178] controlled linear actuator that moved the device to 50 different repeatable

positions. Furthermore, to randomize channel fading, we also moved the track to different positions

inside of the chamber during data collection. To measure energy consumption during various stages

of operation of the device, a high precision digital multimeter in current mode with the probes of

the multimeter inserted in series with the power supply to measure the current through the circuit.

During the data collection phase, the end node R1 collected temperature data using a low-cost

digital temperature and humidity sensor DHT22 with 10-second intervals and forwarded the sensed

data using all three antenna polarization to R2, which is also placed inside of the chamber. Further,

the router R2 switches its polarization and receives and records the RSSI of the nine distinct links
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Figure 6.6: Cumulative distribution function (CDF) plots of RSSI data for three individual antenna
elements of the end node (Fig. 6.5) when the router node is vertically polarized, where the mean
RSSI values of H, V and W antenna branch are -63 dBm, -61 dBm and -64 dBm, respectively

between the two tripolar nodes (R1 and R2) and thereafter forwards the data to the next router (R3)

which is located outside of the chamber at a certain distance (varied between 1 to 3 meter). Finally,

R3 forwards the received data to the server where post-processing is done. The measured RSSI,

which is measured in dBm, determines the signal strength, i.e., the amount the of power present in

a radio signal and hence indicates the quality of a radio link for a particular antenna branch.

Fig. 6.6 illustrates the RSSI data measured during the data collection phase between a vertically

polarized router and three mutually orthogonal antenna elements of the end node with mean values

-61 dBm, -63 dBm, and -64 dBm for H, V and W branch, respectively. The variation among the

CDF plots also confirms the deploarization of the transmitted wave caused by the highly reflective

propagation environment inside of the reverberation chamber. Comparing curves for H, V and W

polarization, we can conclude that for independent but non-identical branches with similar fading

statistics, where no channel appears significantly better than others, the more available antenna

elements, the better the performance of the switched-based diversity schemes, in particular, in

multipath environments. Consequently, useful diversity gain can be obtained by using switched-

diversity based three-branch receiver over dual-diversity based selection receivers [217], which further

motivates us analyzing the performance of three-branch diversity systems in various scenario.
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6.6 Performance Analysis

In this section, first we describe the simulation environment that leverages the empirical data to

analyze the performance of various diversity schemes. Next, we present the results of our proposed

Max-Sum and Max-Min diversity scheme and correlate their performance with popular one-hop

based diversity schemes, namely, selection diversity and switched diversity. For comparison’s sake,

the performance of no diversity scheme, i.e., vertically polarized single input single output omni-

directional antenna system, is also compared. For performance metrics, we consider the output

RSSI, packet delivery rate, antenna switching frequency, energy consumption and network size. We

also compare the analytical and simulated performance of the proposed algorithms and present an

analysis on algorithmic complexity of the proposed techniques.

6.6.1 Simulation model

For this work, the simulations are run in the MATLAB environment on an IoT network with fixed

number of hops where source node (i.e., end device) is located at one end of the network and base

station is at the other end (see Fig. 6.2). The routers receive the message from lower hop and

forward it to the next hop router or to base station. For simplicity, we assume a single multihop

path where each router can receive single message at any time and send it out to next destination

which is pre-determined. During simulation, we leverage experimental signal strength data obtained

from Arduino-based XBee wireless modules deployed inside of a reverberation chamber by assigning

different RSSI traces for all three antenna branches that we measured to individual nodes. Nodes

are selected randomly to emulate an inherently non-static environment between the transmitter and

receiver. Nodes then use the RSSI values of all the diversity branches to determine an acceptable

antenna branch depending on the predetermined threshold and other criteria required by the simu-

lated diversity scheme. For assessing energy performance, transmit current and receive current for

the nodes are set to 45 mA and 31 mA, respectively according to the specification of XBee S2C

802.15.4 models to simulate the actual performance. Furthermore, the receiver sensitivity of the

nodes are set to -100 dBm and the DC bias current for ON operation of the non-reflective RF switch

in the tripolar antenna is varied randomly between 10 to 15 mA.

To simulate selection diversity scheme deployed on a single receiver with three antennas, a node

compares the RSSI traces of three branches received from the next level (i.e., upper layer) node

neighbor only and selects the best branch for each transmission. Consider R2 from Fig. 6.3 as

an example, where UH , UV and UW denote the signal power at the antenna branch H,V and W ,
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respectively. Let, Xt represent the selected antenna branch of R2 at different time steps. Then the

selection diversity operation can be described mathematically by the following equation

Xt =



UV , if UV ≥ UH , UW at time t

or

UH , if UH ≥ UV , UW at time t

or

UW , if UW ≥ UV , UH at time t

(47)

The selected branch is then used to transmit packets to the upper hop node R3 and receive packets

from lower hop node R1. A RSSI array index is incremented by 1 after each transmission to loop

through the entire trace data assigned to that particular node.

For switched diversity, the receiver starts with either of the antennas connected and before every

transmission it compares the quality of the currently active antenna with a fixed threshold and

switches to another branch only if the signal quality falls below the threshold. The strategy can be

mathematically described as follows

If Xt−1 = UV

Xt =



UV , if UV ≥ τ

or

UV , if UV , UH , UW < τ

or

UH , if UV < τ and UH ≥ τ and UW unknown

or

UW , if UV , UH < τ and UW ≥ τ

(48)

where, Xt−1 denotes the selected branch for R2 at time t− 1 and τ is the switching threshold. For

Xt−1 = UH or Xt−1 = UW , switching strategy will be as above with interchanging V with H and

W , respectively. Thus, compared to selection diversity, which needs to examine all three signals

coming from the tripolar antenna, switched diversity examines the currently active branch only as

long as the signal strength of the branch is above the threshold.

In the Max-Sum strategy, the receiver gets RSSI from multiple nodes and branch selection is
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Figure 6.7: Diversity gain comparison of Max-Sum and Max-Min with selection diversity (simu-
lated) for different switching thresholds with E[lh] = −61, E[lv] = −63, E[lw] = −64, E[uh] =
−62, E[uv] = −64 and E[uw] = −65.

performed in the following manner: receiver adds the RSSI received from the lower and upper

hop neighbor nodes for H, V , and W branches and selects the branch that maximizes the sum of

the RSSI. Under the Max-Min approach, the receiver determines the minimum of the two RSSI

values received from the lower and upper hop neighbors for each branch and selects the branch that

maximizes the minimum signal quality. Similar to the conventional switched diversity approach, for

both Max-Sum and Max-Min schemes, the receiver stays on the currently active branch as long as it

is acceptable, i.e., Li, Ui > τ , where i ∈ {H,V,W}, Li and Ui are the RSSI of the lower and upper

hop for the currently used branch, respectively. Both schemes use a top-down approach to perform

antenna selection. In this approach, all the nodes are initialized with vertical antenna selected as the

currently active branch; subsequently, router nodes closest to the base station is configured. Hence,

referring to Fig. 6.3, R3 is configured first and afterward, R2 selects its antenna. We assume that

the base will use vertical polarization only and do not experience harsh propagation environment.

6.6.2 Performance of two-hop network

To confirm the correctness of our analytical expressions through simulations, first we consider a

two-hop network having two routers and the number of end nodes assigned to each router is nine

(9). Fig. 6.7 depicts comparison between the proposed diversity techniques and selection diversity

for various switching threshold. Besides comparing the simulation results with theoretical data,

the figure also highlights an inverse relationship between diversity gain (left y-axis) and antenna
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Figure 6.8: Comparison of CDF of signal strength values, which a router receives from the upper-
hop router in a forty (40) node four-hop IoT network, for various antenna selection strategies in
multipath environment with channel characteristics akin to those from our empirical data set (Fig.
6.6).

switching frequency (right y-axis). We note that the simulation results (continuous lines) were in

very good agreement with the analytical results (dotted lines) for both Max-Sum and Max-Min

techniques for varying switching thresholds. The delta between the two proposed schemes is smaller

(∼ 0.5 dB) when threshold is high and increases (∼ 2.3 dB) as threshold is lowered. When threshold

is high, the receiver using Max-Sum or Max-Min switches more frequently to find an antenna branch

with acceptable signal level which causes considerable signal fluctuation. Moreover, when receiver

switches form the currently active antenna branch, the signal level of the other branch can be even

lower than the current branch which also contributes to increase switching rate. Such observation

is also supported by the simulation result as Fig. 6.7 shows that switching frequency of the tripolar

antenna receiver doubles when threshold was changed from -75 dBm to -70 dBm. On the other hand,

selecting low threshold compared with the average received signal level, increases probability of a

branch to be acceptable and decreases the antenna switching frequency. However, this also results

in poor diversity gain and makes switch diversity ineffective. Thus, it is clear that the performance

of any switched based diversity technique strongly depends on the switching threshold and choosing

an optimal threshold can improve the achievable diversity gain significantly.
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6.6.3 Performance of four-hop network

In this subsection, we present the simulation results obtained from simulations of a four-hop IoT

network. Nodes are selected randomly to emulate the changes of diversity receiver in a dynamic

environment with respect to time. While the object oriented network architecture allows to deploy

large IoT network and simulate for substantial number of packets, here we present the case where

simulation runs until each router receives and forwards 1000 data packets. The presented results are

the average of 10 simulation runs and each run corresponds to one unique set of randomly assigned

RSSI data for each of the nodes.

6.6.4 Diversity performance

Fig. 6.8 demonstrates the CDF of RSSI values obtained from a router node deployed at the second

hop of a multi-hop network that is comparable to the network illustrated in Fig. 6.2. Although

our proposed strategies uses RSSI from multiple hops, to compare the performance with single hop

based diversity schemes, Fig. 6.8 only plots the RSSI between the diversity receiver that is selecting

an antenna and it’s next hop router. For example, consider R2 in Fig. 6.3, which uses either a single

hop or dual hop technique to select antenna branches during simulation of a particular scheme and

forwards packets to R3. To make the comparison between various schemes, we compare the RSSI of

link between R2 and R3 only, since single hop based techniques are not concerned with the signal

strength values of links between R1 and R2.

We observe that the use of selection diversity scheme for tripolar antenna systems provides the

best power gain amongst all other schemes. The 1% link margin gain for selection diversity is higher

than 5 dB and 7 dB approximately, compared to the Max-Sum and Max-Min scheme with a median

gain of 1.9 dB and 3.4 dB, respectively. This is followed by Max-Sum, which is better than the

Max-Min scheme and switched diversity (median gain of 1.5 dB and 1.8 dB and a 1% link margin

gain is approximately 2 dB and 3.6 dB, respectively), whereas single element vertically polarized

antenna has the lowest power gain among all strategies. We also note the the Max-Min scheme

performs slightly better than the conventional switched diversity leading to a median gain of 0.3

dB and a 1% diversity gain of 1.4 dB. Although selection diversity achieves the highest SNR, it

incurs excessive power consumption, which is prohibitive for low-powered IoT devices. On the other

hand, our proposed strategies are able to achieve better SNR than conventional switched diversity

by maximizing the SNR of both uplink and downlink which support our argument that the link

quality of previous hop and next hop should be considered during antenna selection.
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Figure 6.9: Average number of dropped packets for selection diversity, Max-Sum, Max-Min, switched
diversity and single element antenna system.

6.6.5 End-to-end reliability

Fig. 6.9 presents the packet delivery performance of selection diversity, Max-Sum, Max-Min and

switched diversity based on simulation. To analyze the reliability of the transmissions, we compared

the amount of data packets sent with the amount of data packets received successfully by the nodes

where any data packet received with RSSI value less than the predetermined threshold, is considered

as a ‘lost’ packet. The threshold is set to -75 dBm, which is 25 dB higher than the receiver’s sensi-

tivity that was used during channel measurement experiment. We can see that employing tripolar

antenna minimizes packet loss across hops by at least 2% compared to a single element vertically

polarized omnidirectional antenna system. Since the tripolar antenna has three available diversity

paths, the receiver can switch away from the currently active branch if it becomes unacceptable,

whereas the single element antenna has to wait until vertically polarized link becomes acceptable.

In terms of network reliability, selection diversity offers the best packet delivery performance with a

packet delivery rate of 99.8%. However, it comes with the cost of frequent switching and increased

communication overhead. The results also indicate that although our proposed switching strategies

with a approximate packet delivery rate of 99%, do not outperform the selection diversity scheme,

they perform marginally better than the conventional switched diversity.
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Figure 6.10: Comparison of antenna branch switching between selection diversity, Max-Sum, Max-
Min and switched diversity scheme. Note: switching is not applicable to the single element approach.

6.6.6 Switching frequency

In diversity systems, switching frequency plays a key role in system’s reliability since each switching

transient corrupts the receiver filters which may affect data reception. Fig. 6.10 shows a comparison

between selection diversity, Max-Sum, Max-Min and switched diversity scheme for independent

Rayleigh fading diversity branches. We observe that considering single hop and selecting the best

branch results in significantly higher switching compared to the schemes that considers two hop

switched-based scheme. Despite the transmission and reception of extra information required by

the Max-Sum and Max-Min scheme due to their communication with upper and lower layer node,

the overall antenna branch switching is reduced by the Max-Sum scheme is approximately 88% and

58% and by the Max-Min scheme is 83% and 37%, as compared to selection diversity and switched

diversity approach, respectively, which eventually decrease system outage and contributes to the

reduction of energy consumption in IoT devices. The results highlight the potential of dual-hop

based antenna selection scheme over single hop based strategies and encourages more research on

this area.

6.6.7 Energy efficiency

Fig. 6.11 compares the energy efficiency under different diversity methods. We observe a substantial

increase in energy consumption when single element antenna is used, where the receiver consumed
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Figure 6.11: Energy consumption comparison of single element antenna and tripolar antenna system
while using various diversity schemes.

more than 15% and 50% of the total energy of selection diversity and switched diversity, respectively.

The higher packet drop rate for single element antenna systems contributes to a large number of

retransmissions and results in decreased power efficiency. On the other hand, selection diversity

requires the RSSI value of all three diversity branch to selection the best antenna for every trans-

mission which makes it the second highest scheme with respect to energy consumption. Meanwhile,

the switching-based schemes allow the receiver to use a branch as long as its signal strength is above

the pre-determined threshold, which reduces the energy consumption significantly by over 40% com-

pared to selection diversity. As shown in Fig. 6.11, after forwarding 1000 data packets, a router that

employed either of the proposed techniques consumed at least 15% less energy than the conventional

switched diversity. The use of feedback from the lower and upper hop in the proposed Max-sum

and Max-min schemes allow the receiver to stay in the currently active branch longer and increases

energy efficiency over time by reducing overall feedback messages and antenna switching compared

to single hop based switched diversity scheme.

6.6.8 Impact of network size

Table 6.1 summarizes the simulated performance of the proposed and tradition diversity schemes

for three different network sizes. During simulation, with each hop increase, the network size was

increased by 5% and the results obtained are from routers only. As expected, 1% diversity gain of

two-hop based diversity scheme is greater than the conventional switched based diversity scheme for
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Table 6.1: Comparison of simulated performance between diversity schemes for various network sizes

Diversity
Technique

Number
of hops

Packet
Loss
(%)

Switching
freq.

increase
(%)

Mean
residual

energy on
routers (%)

Diversity gain
(compared to

switched
diversity)

Max-sum

10 2 6 83 4.1

15 4 12 77 4.4

20 5 16 66 4.9

Max-min

10 3 7 81 1.9

15 4 10 78 2.2

20 6 15 69 2.7

Switched diversity

10 3 8 80 x

15 5 14 74 x

20 7 19 63 x

Selection diversity

10 2 13 76 9.5

15 2 21 68 10.7

20 3 35 47 11.8

all considered scenarios. We notice that as the number of hop is increased in a multihop network,

switching frequency of the devices also increases irrespective of the diversity technique used. The

nodes using selection diversity experience the worst switching rate (highlighted in shaded cells),

which increases energy consumption of the nodes and reduces network lifetime. On the other hand,

the proposed Max-min and Max-sum scheme achieved better energy efficiency, while providing relia-

bility. Thus we can conclude that antenna selection by leveraging the channel knowledge of multiple

nodes instead of a single transmitter leads to improved energy efficiency, without sacrificing reliabil-

ity. We also note that as the network size increases Max-Min performs better than the Max-Sum in

every metric except diversity gain. The reason behind this is most likely due to Max-Min aiming to

maximize the lower bound ensures that the selected link for both transmission and reception satisfies

the threshold and thus require less packet re-transmission and antenna switching. However, maxi-

mizing the sum may lead to selection of a link, which is good for transmission but not for reception

or vice versa and will eventually require packet re-transmission. Based on the results, Max-Sum and

Max-Min schemes should be considered for small scale and large scale networks, respectively.

6.6.9 Algorithmic complexity

For time complexity analysis of the proposed algorithms, we consider the worst-case time complexity

to find the upper bound of the running time of the algorithms regardless of the network size. For

Max-Sum scheme, the first step is to add signal strength values of each polarization obtained from

110



the upper level and lower level node, respectively and the second step is to sort the outputs of the

first step. Assuming that searching for maximum or minimum in a data set will take a constant

time, the required time complexity is O(n ∗ o), where n is the number of inputs and o is the number

of outputs. We also note that both n and o are “3”, since both nearest neighbour nodes are using

tripolar antenna. Similarly, the Max-Min algorithm will also have same time complexity given that

the diversity receiver will have same input size to process to make antenna selection. Although both

algorithms offer low time complexity, the execution time of the algorithm will increase with the

increment of the number of antenna branches since it is directly proportional to the input size.

The findings from the above results establishes that it is important to evaluate the impact of

various diversity schemes from a global network perspective. We can also conclude that there

is considerable benefit in practically implementing dual-hop based antenna selection techniques

specially in energy constricted IoT networks, since it allows the receiver to dwell on the received

signal for some time and decreases switching transients, which eventually ensures high reliability

and minimize energy consumption.

6.7 Conclusion

In this work, we presented a performance analysis of three branch, switched diversity systems for

resource-constrained IoT networks operating on independent but non-identical Rayleigh fading chan-

nels. The core feature of the proposed schemes is that the receiver switches antenna branch based

on channel conditions of both preceding hop and the next hop, while satisfying a specific threshold

and hence utilizes the inherent diversity of wireless links in a multi-user IoT network. First, we

derived the closed-form expressions of outage probability for the proposed Max-Sum and Max-Min

scheme. Through extensive simulations we then demonstrated the diversity gain obtained by Max-

Sum and Max-Min are 3.6 dB and 1.4 dB, respectively compared to conventional switched diversity

scheme. Results also showed that the proposed diversity schemes reduced antenna branch switching

frequency by more than three quarters and two fifths compared to classic selection and switched di-

versity, respectively. In addition to achieving diversity gain over the conventional switched diversity

system, the proposed schemes also provided satisfactory packet delivery ratio commensurate with

selection diversity. Finally, comparison between the proposed techniques indicates that Max-Sum

should be preferred for small-scale IoT networks while Max-Min should be preferred for large scale

IoT networks.

Future works in this area includes the real-life implementation of multi-branch antenna systems
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in hierarchical IoT networks under other channel fading conditions than the Rayleigh. Finally,

an overall end-to-end network-wide energy efficiency analysis will be conducted to investigate the

impact of antenna switching and communication overhead for various schemes on the lifetime of IoT

devices.

Summary

In this work we highlighted the potential improvement in the received signal for IoT devices equipped

with tripolar antennas using modified switched diversity techniques, which leveraged channel infor-

mation from multiple neighbor nodes to make better antenna selection decisions. To verify the

accuracy of the proposed analytical models, numerical results evaluated from the theoretical expres-

sions have been obtained and compared against the simulation results. The goal of our research

was to address the challenges faced by IoT devices in high multipath environment by leveraging 3D

printed compact three-branch antenna system to achieve enhanced energy efficiency and better link

reliability. The existing works in the literature considered dual-branch antenna systems and relied

heavily on simulation to analyze the performance. Our work intended to bridge the gap in exist-

ing research by implementing IoT networks with prototype multi-branch antenna systems deployed

in cluttered environment, likely to be experienced by many practical IoT applications. The next

chapter concludes this work by reflecting upon our research as a whole and provides a incisive, yet

insightful summary of our overall journey, findings and highlights other directions or approaches

that could be further investigated.

112



7 Conclusion and Future Work

We aimed to investigate the efficacy of multi-branch antenna systems for IoT networks. The results

demonstrate that both link reliability and energy efficiency can be improved by using multi-branch

antenna systems with efficient diversity techniques developed for IoT devices. Sections of the chapter

include summary of the findings, course of actions for future works and final remarks. The sum-

mary section condenses the central ideas in regards to the research goals and highlights the value

and contribution thereof. In the future works sections, we make suggestions for further study to

improve the performance of IoT networks by considering various indoor and outdoor wireless envi-

ronments, utilizing testbeds and machine learning techniques. We conclude the chapter with some

final thoughts on how IoT and emerging technologies will benefit by creating new experiences and

opportunities.

7.1 Summary

Internet of Things (IoT) is a network of interconnected physical objects that are characterized by

sensing, limited data processing and data sharing capabilities. Emerging applications of IoT devices,

for example, industrial automation, power grid, smart automotive solutions, transportation, will

use sensors, embedded devices that are expected to perform autonomously using standard wireless

communication protocols with sparse human intervention. Due to the nature of the applications,

IoT devices are expected to be deployed in particularly harsh radio propagation environment where

the radio wave will be affected by severe multipath effects and signal depolarization. The use of

polarization diversity antenna systems, which uses two or more orthogonally polarized signals at the

diversity receiver, can improve the performance of IoT networks operating in high multipath fading

environments. Since the different antennas can be co-located, polarized antenna systems offers added

advantage for IoT devices with their compact size while providing antenna diversity. The idea behind

this work is to investigate the performance of tripolar antenna systems in an IoT network consists

of devices equipped with antenna containing three perpendicularly oriented antenna elements. The

other aspect of this dissertation is to develop efficient antenna diversity techniques for the tripolar

antenna that are specifically designed for low-cost, low-powered and small IoT devices.

We begin with proof-of-concept experiment to show that the tripolar systems can be effective in

enhancing network reliability by mitigating multipath fading. Chapter 1 presents the work, where we

compared the link reliability for two wireless mesh networks using hybrid wireless network simulator,
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one network utilized wireless nodes with a single element antenna, in the second, nodes leveraged

diversity enabled by a tripolar antenna system. Simulation results of measured channel loss data

sets, show that the tripolar antenna can significantly improve the communication reliability in such

networks. In the subsequent work we implement these approaches in hardware to demonstrate the

benefits in practice. A prototype fabricated tripolar antenna mounted on Arduino based XBee

devices is placed inside of a reverberation chamber which can emulate severe propagation environ-

ments, such as those expected for industrial IoT applications. Through experimental data obtained

from point-to-point links, we showed that a tripolar antenna can provide better link reliability and

end-to-end network throughput compared to single element antenna and thus prove the the necessity

of employing tripolarized systems in multipath conditions.

Motivated by the efficacy of tripolar antenna systems over single point-to-point links, we fo-

cus on evaluating the impact of tripolar antenna systems on neighbouring nodes on a large-scale,

mesh IoT network. Distinct fading scenarios seen by the IoT devices will led to different antenna

branch selection for nodes that are far from each other resulting in polarization mismatch between

two neighbour devices which either send or receiver data packets from each other. Chapter 3 an-

alyzes the effect of choosing same and different antenna branches for the transmitting node and

the receiving node on power loss of the received signal and link reliability. To address the issue,

two polarization matching techniques are proposed that aims to minimize the power loss due to

polarization mismatch and improve data delivery ratio for an IoT network. The proposed Neighbor

Matching and Opportunistic Polarization Matching approaches consider IoT network that employs

predetermined routing paths and dynamic routing paths, respectively. Neighbor Matching scheme

enables nodes to determine the best antenna branch among the three polarizations using Binary In-

teger Optimization which requires the knowledge of neighbour nodes’ antenna branch status. Under

the Opportunistic Polarization Matching scheme, nodes select antenna branch based on the load on

the next level router. A load balance factor for routers is defined based on which child nodes select

the next level router from multiple available options and determine antenna branch according to the

selected routers’ antenna configuration status. Through extensive simulations, we demonstrate that

by utilizing antenna polarization information from neighboring nodes, the proposed schemes can

still achieve high successful data delivery ratio than the baseline networks which uses single antenna

systems.

The observations from Chapter 3 prompted further investigation on relationship between IoT

network structure and antenna selection techniques for tripolar antenna systems. Chapter 4 proposed

energy-aware polarization diversity scheme that leverages complex network theory to identify the
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most influential router nodes. The work considers a typical IoT network where sensed data are

forwarded to a base station from the end nodes in a multi-hop manner. The proposed algorithm uses

distributed eigenvector centrality metric to rank the routers where a router’s score or importance

is proportional to the number of child nodes that are connected to the router. The centrality

score, which is calculated by IoT devices autonomously based on antenna configuration information

from their neighbour connected nodes only, enables implementing a node-specific antenna diversity

approach. Since a router with high centrality score will consume more energy than routers with low

centrality score as it will see increased data flow from its child nodes, it is essential to consider a

diversity technique that varies antenna switching frequency depending on the energy depletion rate

of the routers. Results demonstrate that by using the adaptive antenna selection technique, which

allows low scoring routers to switch polarization more frequently compared to high scoring routers,

we successfully decrease the energy consumption by at least 13% compared to the conventional

selection diversity while offering similar network reliability. Simulation results also show that the

proposed centrality based approach reduces switching by at least 17% compared to the technique of

employing selection diversity for all the nodes of an IoT network irrespective of their roles.

Chapter 3 and 4 encouraged our exploration for improved antenna selection techniques for tripo-

lar antennas that can improve overall antenna switching and network performance. Considering

that most of the conventional switching techniques are proposed for mobile devices that have more

capabilities than the low-cost IoT devices and lack of research on suitability of these algorithms

in the context of IoT networks, it is necessary to evaluate the performance of the existing algo-

rithms on an IoT network as well as improving the conventional diversity techniques to address the

resource-limitation of IoT devices. Chapter 5 proposed an antenna selection technique that utilizes

Hidden Markov Model based approach to infer the best diversity branch, before every transmis-

sion by modeling the probabilistic relationship between antenna branches as an underlying Markov

chain structure along with the sequence of observations (RSSI values) obtained form the currently

active antenna branch. The parameters required by the HMM coordinated diversity technique were

calculated using a measured dataset obtained from an Arduino based sensor devices equipped with

tripolar antenna deployed in a highly clutter environment. Experimental results demonstrate that

the HMM approach improved the median and 1% diversity gains by 0.4 and 2.4 dB, respectively,

over a switch diversity implementation that utilized the same decision threshold. By eliminating

ineffective or unnecessary switching between antenna elements that may result when conventional

switched diversity is used, the developed approach reduced energy consumption by approximately

15% compared to the switched diversity.

115



Finally, in Chapter 6, we continue network-wide performance analysis of three branch switched

diversity receivers while emphasizing on the importance of leveraging the diversity of wireless links

in a multi-user IoT network and incorporating neighbor nodes antenna selection polarization status

during antenna selection. The work proposed two antenna selection schemes where the receiver

switches antenna branch based on channel conditions of both preceding hop and the next hop

while maintaining signal quality above a predefined threshold. Closed-form expressions of outage

probability for the proposed Max-Sum and Max-Min schemes are derived for radio propagation

environment where antenna branches see independent but not identical Rayleigh fading. Both

analytical and simulation results demonstrate the improvements provided by the proposed diversity

schemes over classic selection diversity and switched diversity scheme in terms of decreased antenna

switching and reduced energy consumption. Simulation results, which utilized measured data from

over the air testing that included three distinct 3D printed tripolar antennas deployed in a high

multipath environment and operating at ∼ 2.4 GHz, demonstrated that the proposed dual-hop

based diversity schemes can achieve better diversity gain while reducing antenna switching frequency

compared to conventional switch diversity systems.

7.2 Future Work

There are a number of different ways that the work in this dissertation could be extended. These

proposed paths for future research can be described as follows.

7.2.1 Real life implementation

The current works with the tripolar antenna conducted over the air measurements for a pair of devices

using reverberation chamber to create multipath environment. While there are several existing

research works related to hardware implementation of IoT devices, they either focus on specific

wireless environment [218], [219] or focuses on data processing from the IoT devices [220]. Extending

the number of devices that uses polarization diversity based multi-element antenna systems and the

state-of-the-art diversity techniques is essential to evaluate the performance of such approaches in real

life scenarios. Validating the performance of the tripolar antenna through hardware implementation

of a large network in indoor and outdoor environment, for example, inside of a factory or in an

agricultural field, is significant for analyzing the efficiency of the antenna in real-life scenarios.

Moreover, a large scale experimental platform with tripolar antenna systems will allow to apply

and optimize different diversity techniques, leading to the development of low complexity antenna
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diversity techniques for low-cost IoT devices. Recent development of wireless cellular technology

structure and design have enabled 5G communication systems to meet the diverse requirements of

IoT networks [221], [222]. Current works in the literature studied suitable random access channel

model [222], transceiver design [222] and channel conditions [222] and analyzed proposed solutions

for 5G IoT applications based on simulations only. A framework that will deploy a low-cost testbed

infrastructure, which can empirically validate and evaluate any proposed methodology or diversity

technique through realistic emulation and analyze the obtained results, is necessary to assess these

technologies. Investigating the framework of the IoT testbed, for example, the workflow of each single

experiment, the process of nodes communicating with other, software artefacts and data collection

etc. is the next step in the development of practical implementation of IoT.

7.2.2 Testing scalability and robustness

Selection of routing strategies is crucial in IoT networks for not only ensuring efficient delivery of

the packets to their destination but to help preventing the resource-limited devices from exhausting

significant energy during data packet routing. Various energy-efficient routing protocols have been

designed and developed for IoT based sensor networks aiming to provide satisfactory data delivery

performance in an energy-efficient manner. Due to the wide variety of IoT applications and services

with vastly varying requirements, both network architecture and routing protocol may have specific

characteristics suited to a particular application. Researchers have studies several IoT network

architecture such as centralized [223], decentralized [224] and hierarchical [225]. Clustered network

topology where cluster can be formed using top-down or a bottom-up approach based on pre-defined

or dynamic requirements have also been studies extensively [226], [227]. Our works have shown that

antenna diversity performance can be improved when network-structure is taken into account and

nodes have local knowledge of neighbours’ antenna configuration. However, the proposed works

only considered a centralized multi-hop network. The lack of understanding of the network-wide

impact of multi-branch antennas may result in many unresolved or unclear issues in performance

analysis, since performance measurement based on single communication link only provides a partial

view and may not be sufficient or accurate. Studies have shown that packet drop rate induced by

fading and energy consumption grows linearly as network size increases [228]. As the scale of the

network increases, the data packets are routed through more hops and the probability one of the

links in the routing path will experience severe fading increases. Furthermore, the cascading effect

due to the change of branch of a higher level node will propagate through the network and the

subsequent frequent switching of lower level nodes may cause loss of sensed data due to issues
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with synchronization or possible delays, corrupt receiver filters. [229]. Hence, the effectiveness of

the tripolar antenna diversity needs to be evaluated for different network topologies and routing

protocols that are likely to be implemented in various IoT applications.

7.2.3 Leveraging machine learning techniques

The current HMM coordinated diversity scheme require measured data from the environment where

the IoT devices will be deployed to calculate the transition probabilities between antenna branches.

However, for practical implementation of the technique, the algorithm needs to update its parameters

dynamically according to the surrounding environment where the device is operating. Therefore,

further study is needed on how the HMM coordinated approach can analyze the time series data

obtained from the RSSI observation and model the parameters in real time. In addition, determining

appropriate number of observation states and tuning the threshold to find optimal group intervals

needs to be examined. Developing and illustrating the suitability of the HMM approach for diversity

antennas with more than three branches can also be addressed. On the other hand, Machine Learning

(ML) techniques can be used to optimize the diversity performance of multi-branch antenna systems.

Data-driven ML techniques have the ability to utilize empirical data in order to learn and model

behaviours of a system by classification and feature extraction from the dataset [230]. Therefore,

ML can be used to infer knowledge from signal strength data and antenna switching decisions of

IoT devices with multi-branch antenna systems under certain fading conditions and subsequently

leverage the knowledge to adapt the antenna selection based on the acquired knowledge. While

existing works studied the use of ML for managing massive data generated from IoT devices with

minimized resources [231] and various aspects of security and privacy in IoT networks [232], no

work has examined dynamic optimizing control of antenna systems using ML. In the wake of 5G

communication systems, it is crucial to explore the power of ML techniques for embedded IoT devices

with smart antenna systems deployed in sophisticated indoor and outdoor channel environments.

7.2.4 Different fading environments

The proposed approaches in this dissertation consider Rayleigh fading environment where random

fading signals on each of the diversity branches of the tripolar antenna are independent, non-identical

and hence uncorrelated. However, many factors, such as the distribution of scattering, correlation

between fading channels may also cause signal degradation. Many theoretical analysis on the effect of

correlated fading on the performance of antenna diversity techniques can be found in the literature.

Al-Juboori et al. [233] and Yishvaksenan et al. [234] give the cumulative distribution function (CDF)
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for a dual diversity scheme with Maximal Ratio Combining (MRC), Equal Gain Combining (EGC)

over correlated Nakagami-m multipath fading and frequency-selective channels, respectively. Zhang

et al. [235] give a general expression for the bit error rate performance under correlated fading for

dual-polarized antennas. They introduces polarization dimension to transmit additional information

and offer extra transmit diversity and analyzed the performance through simulations. An analytical

expression for the outage probability expressions with dual diversity for MRC, EGC and SC and

correlated fading conditions is derived by Zhu et al. [236]. However, most of the aforementioned

work did not consider multi-branch antenna with three elements. In addition, the antenna selection

techniques used for deriving analytical expressions for BER or outage probability such as MRC,

EGC and selection diversity, may not be ideal for IoT devices due to requirement of extra hardware

and implementation complexity. Thus, analyzing the performance of the proposed tripolar antenna

selection techniques under correlated fading condition need to be studied further.

7.2.5 Hybrid approaches combining routing and antenna diversity

The idea of exploiting topology information and channel diversity for improving the performance

of IoT networks has been studied in the literature in recent years [237–239]. By jointly coordinat-

ing transmission power of each IoT device, wireless channel selection and route selection for data

packets based on network structure and exchange of information among multihop neighbor nodes

The throughput of an IoT network can be improved by jointly coordinating transmission power of

each IoT device, wireless channel assignment and route selection among multihop neighbor nodes

in a distributed manner [240,241]. In [240], the authors studied a hybrid ubiquitous sensor network

and proposed a cross layer topology information based diversity scheme that integrates cooperative

diversity between nodes and attributes of topology space. The authors in [238] studied an algorithm

that determines the shortest route from all nodes to the base station (sink node) using real-time

dynamic planning to mitigate the volatility of the network while striking a sound balance between

energy consumption and delay in forwarding data packets. Later, in [242] the authors focused on

maximizing the network lifetime and throughput simultaneously by grouping sensors into clusters

and selecting wireless channel links among clusters using a weighted link function in a cooperative

manner. Under the proposed strategy, nodes send broadcast message to their 1-hop neighbors along

with their residual energy and the cluster head uses inter-cluster and intra-cluster messages to reduce

collisions and interference between nodes. While hybrid approaches discussed above can improve

outage probability and ensure efficient utilization of available channels, these ideas can be extended

further given the wide range of IoT applications and their versatile requirements. The integration of
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information from medium access control layer (for wireless channel information) and network layer

(for routing information) by low-cost IoT devices can be challenging due to their low computational

capability, which can be potential future works in this field.

7.3 Final Comments

The work presented in this thesis serves as an example of the importance of multi-branch antenna

in compact embedded devices and seeks to bridge the gap between analytical and experimental

performance of diversity techniques. By utilizing the fabricated tripolar antenna and wireless nodes

for typical sensing application, the work demonstrated possible improvement in link performance

while improving energy efficiency. We hope that the work will motivate researchers to develop

communication protocols and routing schemes specifically targeted for IoT devices with multi-branch

antenna systems to exploit the advantage of the polarized radio wave in a rich multipath environment.

The advent of semiconductor technology has led to declining costs of embedded devices which

will enable deployment of new IoT applications that require not only high reliability, but also much

faster data rates. Many studies including the proposed work in this dissertation considers IoT devices

and protocols that are focused on low frequency around 2.4 GHz only. The extension of the current

multi-branch antenna designs and diversity techniques for compact sensor devices that supports

mmWave data transmission is crucial. Moreover, usage of software-defined radios, cognitive radios

along with IoT devices will led to a hybrid network and diversity techniques will have to adapt based

on the network architecture.
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[75] J. P. González and B. Rodŕıguez, “Improving the indoor WLAN service by using polarization
diversity and MRC,” Wireless Personal Communications, vol. 95, no. 4, pp. 4917–4929,
2017.

[76] H. Zhang and A. Abdi, “On the average crossing rates in selection diversity,” IEEE Transactions
on Wireless Communications, vol. 6, no. 2, pp. 448–451, 2007.

[77] J. K. Cavers and P. Ho, “Switching rate and dwell time in M-of-N selection diversity,” IEEE
Transactions on Wireless Communications, vol. 6, no. 4, pp. 1218–1223, 2007.

[78] S. Haghani and N. C. Beaulieu, “Performance of S + N selection diversity receivers in correlated
Rician and Rayleigh fading,” IEEE Transactions on Wireless Communications, vol. 7, no. 1,
pp. 146–154, 2008.

[79] G. Karagiannidis, D. Zogas, and S. Kotsopoulos, “Performance analysis of triple selection di-
versity over exponentially correlated Nakagami-m fading channels,” IEEE Transactions on
Communications, vol. 51, no. 8, pp. 1245–1248, 2003.

[80] D. Wang, Y. Cao, and J. Xing, “A note on “a hybrid selection/equal-gain combining over
correlated Nakagami-m fading channels”,” IEEE Communications Letters, vol. 15, no. 9,
pp. 925–925, 2011.

[81] C. Tellambura, A. Annamalai, and V. Bhargava, “Unified analysis of switched diversity systems
in independent and correlated fading channels,” IEEE Transactions on Communications,
vol. 49, no. 11, pp. 1955–1965, 2001.
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