
University of Vermont University of Vermont 

UVM ScholarWorks UVM ScholarWorks 

Graduate College Dissertations and Theses Dissertations and Theses 

2022 

pymooCFD - A Multi-Objective Optimization Framework for CFD pymooCFD - A Multi-Objective Optimization Framework for CFD 

George Martin Cunningham Love 
University of Vermont 

Follow this and additional works at: https://scholarworks.uvm.edu/graddis 

 Part of the Mechanical Engineering Commons, and the Physics Commons 

Recommended Citation Recommended Citation 
Love, George Martin Cunningham, "pymooCFD - A Multi-Objective Optimization Framework for CFD" 
(2022). Graduate College Dissertations and Theses. 1604. 
https://scholarworks.uvm.edu/graddis/1604 

This Thesis is brought to you for free and open access by the Dissertations and Theses at UVM ScholarWorks. It 
has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of 
UVM ScholarWorks. For more information, please contact schwrks@uvm.edu. 



tion on it's ANSYS Workbench platform. The release of this feature on a commercial

software is an indication of this trend. [7]

1.1.1 Pareto Optimum

Optimization algorithms work by mapping parameter, or search, space points to

function, or objective, space points. In Figure 1.1, the search space is region S and

the function space is region Z. This diagram represents a 3 parameter optimization

problem with 2 objectives.

Figure 1.1: Search/Design/Parameter space, S, maps to objective space, Z. [1]

The mapping is determined by evaluating points in the parameter space to deter-

mine how they map to the objective space. The optimization algorithm, guided by

the objectives, tries to find the most favorable regions of the parameter space with

as few evaluations as possible. The ultimate goal of an optimization algorithm is to

identify the most favorable points. The most favorable points can be connected to

form regions. These favorable regions can be represented as Pareto fronts and Pareto

sets. The Pareto sets and Pareto fronts exist in the parameter and objective spaces,

respectively.

It is along the highest ranked Pareto front where the best trade-offs between

5



objectives are found. In other words, this is the space where the optimal set of

solutions are found. Moving along the Pareto front allows the user to decide which

objective(s) they want to favor. The Pareto front has one fewer dimension than

the number of objectives. The easiest way to visualize this is with a two objective

optimization problem, for which the Pareto front is a one dimensional line. Pareto

front and Pareto set, unless otherwise specified, refers to the highest ranked Pareto

front and Pareto set.

The images in Figure 1.2 below help to convey the concept of Pareto fronts and

sets. Here there are two objective functions and the optimization algorithm’s goal is

to minimize both function. In Figure 1.2b the best trade-offs, or Pareto front, is the

line colored black and ranked 0.

(a) Pareto front dominance. (b) Two objective Pareto front visualization.

Figure 1.2: Pareto front visualizations. [1]

The Pareto fronts are ranked using a method called non-dominated sorting. The

highest ranked Pareto front contains only non-dominated solutions. Non-dominance

of an objective point can be determined by drawing lines intersecting that point and

parallel to the axes, as seen in Figure 1.9a. Now, regions of the objective space can

6



be defined using these lines as boundaries. One of these regions will be closer to

your optimization goal. In the case of minimizing two objectives, this will be a 2D

region to the lower left of the point in question. If any other points exist in this more

favorable region, then these points “dominate” the point in question. A point that is

not dominated by any other point is a non-dominated solution and is a part of the

Pareto front. Solutions can be ranked by their dominance. Figure 1.2b uses rank 0

for the non-dominated set of solutions and counts up front there, ending with rank

12.

If an optimization algorithm has three objectives, the Pareto front is represented

by a 2D surface. Though the 2D surface, also called a landscape, exists in a 3D

objective space, it can be reduced to 2D in the sense that it has 2 directions of

freedom to move along. This 2D surface provides a landscape of optimal solutions.

Moving along this surface changes the balance of which objectives are favored. The

Pareto front can have both local and global optimum. This is more likely to occur

in a three objective problem, where the Pareto front is more complicated. A local

optimum versus a global optimum along a 2D Pareto front is depicted in Figure 1.3

below.

7



Figure 1.3: Three objective optimization - Local vs. Global Optima. [2]

The Pareto front is the most intuitive method of visualization for the results of

an optimization algorithm, but there are many others. As one moves past three

objectives to what are sometimes called “many-objective optimization” algorithms,

visualization becomes more difficult and abstract.

1.1.2 Optimization Algorithm Types

Now that we have established the fundamentals of optimization algorithms, the dif-

ferent category of optimization algorithms can be discussed. Gradient descent opti-

mization algorithms is one major categorization. The name gradient descent is used

because it is common practice to manipulate your objective function(s) so that from

the algorithm's perspective the goal is to minimize each function. In other words, the

algorithm is searching for the global minimum. These algorithms operate by searching

regions of the parameter space, mapping them to the objective space, and then look

8



for a downward slope in the objective space. This gradient search method, as it is

sometimes called, has a notorious drawback; these algorithms can get stuck at a local

minimum in non-convex Pareto fronts and fail to find the global minimum. Almost

every gradient informed algorithm has a method to avoid this outcome. These meth-

ods involve evaluating more of the parameter space, which increases computational

demand. Unless the space is convex, there is no guarantee gradient descent search

algorithms won’t get stuck on a local minimum.

Figure 1.4: Convex (left) versus non-convex (right) objective space Pareto front. [3]

These algorithms are common place in most machine learning, and in particular

neural network optimization. Neural network problems typically contain tens, if not

hundreds, of parameters. Gradient descent algorithms are well suited for handling

these large parameter spaces because they are able to focus their search only on

regions of the parameter space that map to a downward slope in the objective space.

9



Figure 1.5: Gradient descent method with a single objective function, J(θ0, θ1), and 2
parameters, θ0 and θ1. Here, the objective and parameter space are visualized using a

single 3D graph. [4]

Figure 1.5 depicts an optimization problem with 1 objective, J(θ0, θ1), and 2

parameters, θ0 and θ1. This figure shows how starting from different points close

to each other would cause the algorithm to reach different optimum. However, the

algorithm only has to evaluate points along that path to reach an optimum. This

greatly reduces the number of evaluations needed to find the optimum, whether that

be the local optimum in the case of non-convex Pareto fronts, or the global optimum

in the case of a convex Pareto front.

Since CFD models are high-dimensional, complicated simulation predicting whether

the Pareto front will be convex or non-convex can be extremely convoluted. Addi-

tionally, these algorithms are typically single objective, or, if they are multi-objective,

they are not designed to converge around a well distributed Pareto front. For example,

the Multiple Gradient Descent (MGD) algorithm converges to a single Pareto point.

In recent years, gradient informed algorithms that identify well distributed Pareto

fronts have been developed. There are now algorithms such as Pareto Front Stochas-

tic Multiple Gradient (PF-SMG). This algorithm is designed to converge around a

10



well distributed Pareto front, but only for convex objective functions. [9]

Other algorithms, such as Pareto Multi-task Learning (PMTL) [10] and Exact

Pareto Optimization (EPO) [11], are not guaranteed to converge around a uniform

Pareto front additionally they require reference, or preference vectors. Gradient-

informed algorithms are powerful in their ability to rapidly explore large parameter

spaces. However, multi-objective gradient-informed algorithms that produce a well

distributed Pareto front are a new development in the field and are not well tested. [12]

Another major category of optimization algorithms are genetic algorithms (GAs).

This category of optimization algorithms can also be called evolutionary algorithms

(EAs) or population-based algorithms, though the latter is a more encompassing cat-

egory. Genetic algorithms are typically gradient-free and instead are designed using

a framework provided by biology, the natural evolution of organisms. [12] Generally,

GAs begin by generating a population of individuals with random genomes. An indi-

vidual is defined by its genome. The genome of an individual is the set of variables, or

parameters, that make the individual unique. These are the variables being adjusted

in an attempt to find an optimal solution. In graphical terms, every individual is a

point in the design space.

Every individual, or set of variables, is evaluated. For this study, each set of

parameters is evaluated by a CFD simulation. The objectives are then extracted in

CFD post-processing, which will be explained in detail in the sections below. Next,

the genetic algorithm creates a new population of individuals to be evaluated. Each

population of individuals created is called a generation. With each generation, the

algorithm seeks to evaluate a population with individuals that are non-dominated.

This allows the algorithm to converge around a well-defined Pareto front.

11



When working with high-cost evaluation problems, customizing the parallelization

of evaluations based on the computation resource available is a significant factor in

improving algorithm run time. Compared to gradient descent algorithms, genetic

algorithms offer greater parallelization flexibility. When using a genetic algorithm,

an entire population can be evaluated in parallel. The number of offspring, new

individuals created each generation, can be adjusted based on computational resource

available. Some gradient descent algorithm use batches of evaluations that could be

run in parallel. However, these algorithms are not necessarily multi-object and are

incapable of producing a well distributed non-convex Pareto front. Genetic algorithms

are well suited for CFD simulations and the focus of this paper.

There are some key operations within genetic algorithms that can be adjusted to

improve the algorithm’s performance in certain situations. Sampling is an example

of one of these processes, though it is not specific to genetic algorithms, as it is an

operation required at the beginning of every optimization algorithm. The initial pop-

ulation must be selected, typically in a random fashion. There are different method

of random sampling. The python multi-objective optimization package used in this

study, pymoo, provides the option of using a completely random sampling, the Latin

hypercube sampling or random permutation sampling. For more specifics on pymoo

visit www.pymoo.org or refer to [13]. Biased sampling can also be used to speed up

convergence if the user has a priori knowledge of the problem.

After the initial population is evaluated, by CFD simulations in our case, the

next population to be evaluated must be selected. With genetic algorithms, this

survival selection operation returns the individuals that will be the parents of the

next generation. These selected parents are mated using the crossover operation,

12



where the genomes of parents are combined to create new individuals. Finally, a

mutation operation is applied to genes in the new individuals’ genomes. Often a

Gaussian distribution around the gene's previous value is used to select the mutated

gene value.

There are many genetic algorithm schemes, but they all use the power of evolution

to seek an optimal solution. Implementing the age-old tools of sexual reproduction,

random mutation, and natural selection.

1.2 Computational Fluid Dynamics

Since the 1980s, computational fluid dynamics (CFD) has grown to become a preva-

lent tool in the engineering design process. The revolutionary computing power of

the 1980s brought about the first modern implementation and applications of CFD.

The democratization of CFD has been accelerated in recent years by (1) increased

accessibility to computing power through cloud computing in particular, (2) compu-

tational resources that enable the simulation of practical engineering problems and

(3) the pay-off from decades of investment in CFD modeling research. [14] In addi-

tion, the increased speed of more precise and accurate models has opened the door

for real-time control system applications. [15]

One possible application of CFD informed real-time control systems that has been

discussed among COVID researchers is essentially a Roomba® for air purification. This

robot moves around a room detecting contamination, predicting it’s spread through

the air and moving throughout the room filtering out the contaminants. [16] Another

similar application would be to use drones to back trace a gas contamination leak

13



to its source the same way male moths follow plumes of pheromones emitted by

females [17]. The theory of transport of scalar in turbulent flows does not contain

the type of spatio-temporal information to back-trace the origin of a leak based on

boundary conditions. Such a task can be achieved at the scale of a chemical plant,

for instance, using multiple CFD runs to explore the parameter space of leak location

and local climate in combination of with machine learning. The objective would be to

identify in real-time the most likely location of the leak, given the location where the

leak plume has been identified and the meteorological conditions prior to the time

of detection. Although this approach would require a supercomputer, it is within

reach using current resources with the help of low-order models informed by prior

high-fidelity simulations, for instance. [18]

It is reasonable to assume this trend towards CFD as an integral part of the

engineering design process will continue. Computer power and access to this power

has increased at an astonishing rate over the 50 years since the invention of the

integrated circuit in the late 1950s and early 1960s. This can be seen in recent

studies of Moore’s Law. [19] [20]

The bigger picture is important to keep in mind, but it is also important to

understand the current limitations of optimization algorithms applied to CFD. As

suggested above, the main limitation is in regard to computational power. Optimiza-

tion algorithms rely on running iterations of the simulation and learning from the

results. This means that it must be practical to run often hundreds of simulations

before meaningful results can be obtained.

Better modeling is one way to overcome these computational limitations. In mod-

eling the precision and accuracy of a simulation, its ability to reproduce the behavior

14



of the real world, is called the model’s fidelity. The higher the fidelity of a compu-

tational simulation, the more computational power is required. In fluid dynamics,

for example, Some of the most computationally expensive phenomena to simulate is

high-Reynolds number turbulence. The Reynolds number is a non-dimensional num-

ber that quantifies the energy of a flow. It is derived from a velocity scale of the flow

U , the largest length scale, L, and the fluid viscosity, here we will use the kinematic

viscosity, nu:

Re = UL

ν
(1.1)

Turbulence is driven by many coherent scales, with length and time scales spanning

a range that increased with the Reynolds number. The ratio of the smallest to the

largest scale is estimated as
η

L
∼ Re−3/4 (1.2)

. For the turbulent boundary layer over the wing of a commercial jet aircraft at cruise

speed, the largest scales are expected to be of the order of centimeters (boundary layer

thickness), whereas the smallest scales are of the order of microns.

The highest fidelity CFD models that exist are called Direct Numerical Simula-

tions (DNS). These models “directly” solve the Navier-Stokes equations, which are

the mathematical expression of the conservation of mass and the conservation of mo-

mentum of Newtonian fluids. In other words, all the scales are resolved in time and

space. This is a powerful too to study turbulence, albeit limited in Reynolds numbers

even with today’s supercomputers [21].

A closely related high fidelity model is called Large Eddy Simulation (LES). LES

simulations only solve the full Navier-Stokes equations up until a certain length scale

15



of “eddies” is reached. The energetic contribution of the scales below this cutoff

scale is modeled under the assumptions that such scales are universal enough that

the theory of turbulence can predict their energy content [22]. LES can provide of

around tenfold to hundredfold in certain cases and are particularly useful in appli-

cations where multiphase phenomena, mixing of chemical species or temperature, or

vibrations are important. A perfect example is combustion, which is the main focus

of the development of the high-fidelity code used in this work, YALES2 [23].

The lowest fidelity model is RANS, Reynolds average Navier Stokes, named after

the transport equations it solves. The flow, species, phase, energy transport equations

are averaged in time to derive a system of equations for the local averages, or resolved

variables, of velocity, concentration, phase and energy. RANS equations are derived

using the Reynolds decomposition, that states that any flow variable in a statistically

steady state flow is the sum of its local mean and fluctuation, e.g. for the velocity:

u(x, y, z, t) = ū(x, y, z) + u′(x, y, z, t) (1.3)

In the process of averaging, new terms arise in the equations which trigger a closure

problem: these terms, typically products of fluctuations can only be resolved through

a semi-empirical model based on the resolved flow variables, or new transport equa-

tions. The latter approach creates more new terms that must be closed. For the

RANS simulations of momentum only, the simplest models add one equation to the

momentum transport equation, whereas the most advanced may add 5 or more. [24]

Whereas RANS models can accurately predict lift and drag on a body in steady state

flow conditions, their ability to predict the turbulent dispersion of a contaminant or

the turbulent transport of heat remains poor in complex flows. [25]

16



Currently, the only practical applications of optimization algorithms to CFD is

through lower fidelity models. These models have a narrower range of applications

in which they perform adequately by producing physically reliable results. However,

these low fidelity models are the most persistent in industry because of their low

computational cost. In addition, the most popular of these models such as, Reynolds

average Navier-Stokes (RANS) and large eddy simulation (LES), have been around

since the 1970s and the applications in which they perform adequately are well doc-

umented. These applications tend to be high Reynolds number flows.

1.3 Optimization Applied to Modeling

As discussed so far, applying optimization algorithms to models that are verified and

validated to adjust sets of physical parameters is a powerful tool. However, with the

CFD models and computational resources currently available, there exists limitations

to this work. Only low fidelity models can be used in an optimization study. Luckily,

optimization algorithms provide a tool for developing new CFD models which can

achieve higher fidelity results with less computational power. This application of op-

timization algorithms is an example of the positive feedback loop between improving

the engineering design process and the emergence of new technology.

Optimization algorithms along with other machine learning, such as artificial neu-

ral networks (ANN), provide a method for improving and developing models. Op-

timization algorithms can be used to study the effects of different combinations of

modeling parameters in order to improve the model. This method of model develop-

ment falls into the category of data-driven modeling.

17



Data-driven modeling can be approached in many ways. In [26], one of the most

informative papers to this study, data-driven models are represented using the fol-

lowing equation.

M̃ = M(w; P (w); c(θ); δ(θ, η); ϵθ) (1.4)

where the variables are:

• M : model

• w: independent, averaged variables

• P : algebraic or differential operators

• c: set of target parameters

• θ: data

• δ: discrepancy

• η: features

• ϵθ: uncertainty

Data-driven modeling is driven by the discrepancy term, δ, which refers to the

quantification of the difference between the current model prediction, M̃ , and the

high fidelity data, θ. There are many approaches to formulating the δ function. Some

δ functions are in terms of specific features of the model, η. Specifying features can

be computationally beneficial when working with large sets of candidates.

The discrepancy term in the framework of a multi-objective optimization prob-

lem would be expressed as one or more "functional" objectives. Additional functional

18



objectives could include a quantification uncertainty, ϵθ, though including an uncer-

tainty evaluation for every optimization algorithm evaluation is typically impractical.

As discussed later in Section 1.4.1, Verification & Validation, there are less com-

putationally intensive approaches to ensure that acceptable levels of uncertainty are

maintained. Uncertainty is important to consider when creating your model function-

ality/fidelity objectives because there is an inherently competitive nature between a

model’s computational cost and its predictive uncertainty.

The "cost" objective of a model which competes with the model’s functionality/-

fidelity is minimizing computational power. If the same amount of computational

power is dedicated to each evaluation, this can be measured simply as the time it

takes to complete the simulation. If an adaptive distributed computing system is

used, a slightly more complicated metric would be used that factors in the changing

computational resources of each evaluation.

The results of the optimization study will map the relationship between the set

of target parameters, c, and the two or more competing objectives. The optimization

algorithm will search for the best trade-offs between cost and functionality, converging

around the Pareto Front.

19



1.4 Methodology

The computation time of an optimization study with a genetic algorithm can be

approximated using the following equation:

Topt study ≈ Tind sim
Npop

Nparallel sims

Ngen (1.5)

where, Topt study is the optimization study total time, Tind sim is the computational

time of individual simulation, Npop is the number of individuals in a population,

Nparallel sims is the number of parallel simulations, and Ngen is the number of genera-

tions.

Ideally, the entire generation can be run in parallel, Nparallel sims = Npop. This

means optimization study total time can be approximated as:

Topt study ≈ Tind simNgen (1.6)

1.4.1 Verification and Validation

The verification and validation (V&V) is an essential step in any CFD applications.

The interest to codify V&V grew in the 90s from researchers like Oberkampf [27] and

is regaining renewed interest with recent progress on uncertainty quantification [28].

The verification step ensures that the equations of the physics are solved adequately.

A specific goal is to demonstrate that the numerical methods used for time integra-

tion and computation of spatial derivatives or integrals have the expected theoretical

discretization errors. This step is mostly a debugging step.

20



The validation step should show that the choice of numerical methods, models (in-

cluding the form of governing equations – incompressible, low-Mach variable progress

variable, compressible, plasma, etc.) is adequate for the purpose of the study. The

validation of CFD typically consists of a comparison between the prediction of the

code and experimental data, or through a code-to-code comparison. There is a level

of subjectivity in the choice of flow for which the validation is carried out, as well as

in the analysis of the comparison. Flows, even in the same category, may be vastly

different with sometimes small changes of boundary conditions. A code may perform

well in flows where one physical phenomenon is not dominant, and therefore passes

validation against such flows, but fail in other flows that are dominated by that physi-

cal phenomenon. The choice of the validation is sometimes constrained by availability

of benchmark, which may be just the former flows. In that case, the code is validated

but fails in the latter flows and the user may not be able to identify/assess/measure

the failure. The other source of subjectivity is the acceptable percentage of error that

constitutes an acceptable error. When comparing with experiments, the CFD users

must account for measurements’ uncertainties, which are not always reported. There

is a wide range of possible approaches which are dependent on how the study will be

used to inform the product design. This section will address how the V&V of CFD

models can be applied in the context of an optimization study.

Several possible V&V procedures will be discussed here. The V&V of a CFD

optimization problem presents added challenges due to the variability of the models

being evaluated. The variability of the models create added degrees of uncertainty

that must be parsed out during the V&V procedure.

The first step is typically to create a test case as close to the center of the design

21



space as possible and decide on an appropriate V&V procedure for this case. If the

optimization study is being applied to a simulation that already exists, a base case,

then it is often already close to the center of the design space as users will likely be

optimizing a model who design limitations exist above and below the current model.

Figure 1.6: Search/Design/Parameter Space. The test case will be considered the case
closes to the center of the design space. [1]

The most rigorous approach would be to use the same test case model V&V

procedure on models with parameter sets across the entire design space. This is not a

practical approach in many optimization studies due to the size of some design spaces.

In addition, such a rigorous V&V procedure may not be necessary. As with any CFD

models, the rigor of the V&V procedure is dependent on how the simulations will

inform the product design process. In this section, I will present different possible

approaches to V&V of a CFD optimization study. A wide range of V&V procedures

and the code used to conduct them will be presented. The hope is that the user will

then be able to decide on an appropriate set of V&V procedures which will provide

the desired level of confident in their optimization study results.

22



Mesh Sensitivity Studies

Conducting a mesh sensitivity study, also called a computational grid convergence

study, is an important part of the CFD verification process. A mesh sensitivity study

involves shrinking, or refining, the mesh’s element sizes until the results produced

by the simulation converge. This indicates that the mesh is at a size that properly

captures the fluid flow. The coarsest mesh with the fewest number of elements that

still produces the converged results is chosen. This mesh is ideal because it produces

results unaffected by the mesh’s size, and it requires the least amount of computational

power.

In some CFD optimization studies, a single mesh sensitivity study of the test case

may be inadequate for verification of all possible CFD simulations within the design

space. Any combination of parameter values within the given limitations could be

evaluated using a CFD simulation. Therefore, it is important to consider which sets

of parameters will produce fluid flow at the smallest scale. Capturing these small

scale flow fields would require refining the mesh to give accurate results.

One solution to this problem is to use adaptive meshing, which is a mesh that

changes size throughout the simulation to properly capture the fluid flow. In most

adaptive mesh schemes a threshold metric is set and the mesh gets smaller when this

threshold crossed. Often, the threshold is a measure of a value’s gradient between

cells. When this gradient between cells crosses the set threshold, these "marked" cells

are divided or fused together, making the mesh coarser or more refined. However,

selecting a threshold that works across the design space without failing to capture

flow characteristics, or without producing a mesh size that is too computationally

demanding, may prove more trouble than it’s worth.

23



The first step is to see if the parameter space chosen for the optimization study

will present mesh sensitivity problems. NSGA-II, and most genetic algorithms, use

the first generation to evaluate sets of design parameters distributed across the entire

design space. This distributed sampling of the design space provides a set of simula-

tions with which to conduct a mesh sensitivity studies on. The results of these mesh

studies provides verification of mesh convergence across the entire design space.

In pymooCFD/core/cfdCase.py there is an attribute named mesh_study. This

method provides a framework for automating the procedure described above. The

code works by scaling the case’s mesh using an array of scale factors provided by the

user. The mesh_study object is run by calling it’s run method, cfdCase.mesh_study.run().

This run method finishes by calling its own plot method, cfdCase.mesh_study.plot()

which plots the values of the optimization study’s objectives as a function of the

number of elements in the mesh. These plots can then be evaluated by the user to

decide what level of mesh refinement will provide the appropriate convergence of the

objectives’ values. Then the coarsest mesh that provides convergence for any possible

set of parameters can be selected and used for all the simulations. This solution is

best suited for simulations that are fast and simple. A fast simulation is preferred be-

cause using a mesh more refined than necessary in some areas of the parameter space

will increase computation time. A simple model allows the user to better select what

set of parameters will require the smallest mesh without missing a set of parameters

that could create an unexpected small scale fluid phenomenon.

24


