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Abstract

Mathematical models of infectious disease are important tools for understanding
large-scale patterns of how a disease spreads through a population. Predictions of
trends from disease models help guide public health prevention and mitigation mea-
sures. Most simple disease models assume that the population is randomly mixed,
but real-world populations exhibit heterogeneous patterns in the way people interact.
These differences in population structure can be represented by networks. Networks
can then be incorporated into disease models by using various interdisciplinary con-
cepts and tools. Yet even network disease models often overlook that populations
change over time. In this thesis, two models of infectious disease are presented, for
the purpose of analyzing how the spread of the disease evolves over time, particularly
when the population is also changing.

To model a changing population, a sequence of different networks can each be
associated with a length of time each is active for. Although, how to construct these
networks from real contact data, from things like wearable sensors, is a nontrivial
problem. We present a method to ascertain if temporal data can be aggregated into a
single network, or not. This method underlies an algorithm for compressing real data
into a time-varying sequence of networks, creating a system still tractable enough to
use existing network analysis tools. We show how fine-grained temporal contact data
can be compressed into just a handful of ordered, static networks while preserving
the most significant temporal trends of the dynamic population.

Not only do populations change over time, but there is also inherent randomness
involved in the spread of disease between individuals. To account for this, the un-
derlying random process can be used as the basis for the disease model. Here, one
particular model is presented that uses a random, or stochastic, framework to predict
the temporal evolution of the spread of disease by tracking generations of infected
individuals over time. We show that often the distribution of cumulative infections
is heavy tailed, implying that deterministic models of spread, which present average
point estimates, do not account for underlying uncertainty.

The two models presented in this thesis address the heterogeneity of the tempo-
ral dynamics of infectious disease spread through a population. These models also
contribute to a body of work focused on designing models that can leverage real data
about population structure and contact patterns to produce more accurate predictions
and insights.
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There is nothing like looking, if you want to find something. You certainly usually
find something, if you look, but it is not always quite the something you were after.

-J.R.R. Tolkien, The Hobbit
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Chapter 1

Introduction

The role of mathematical modeling in the study of infectious diseases is to gain insight

about, and make quantifiable predictions for, the nature of the spread of a disease

through a population. Mathematical models can help predict if, when, and how fast

the disease will move through a population, which guides public health preparedness

and mitigation measures. A variety of modeling tools have been developed to assess

if an infectious disease will become an epidemic, and if so, how large the epidemic will

be, how quickly it will spread, and what the dynamics will look like as the disease

moves through a population. Modeling disease spread through a population is a

highly complex task, as there are a vast amount of possible models and parameters to

choose from. Often overlooked in simple models is the fact that populations change

over time, affecting the way a disease can spread. In addition, disease spread is a

process involving some inherent randomness. This thesis addresses two families of

models best suited for dealing with these themes, in the hope of contributing to the

development of mathematical disease models that can more accurately capture the

complex nature of disease spread.
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The challenge with any mathematical model of disease spread is to develop one

that is tractable and interpretable, while also capturing enough detail about the

structure and dynamics of the population and disease to obtain accurate estimates

that support the questions of interest. All models are built differently, with a broad

range of applications in mind: some were developed to primarily predict the end state

of an epidemic, while other models are best suited for studying the course that the

spread of a disease takes along the way. As the statistician George Box famously

said, “All models are wrong; some models are useful” [1]. To extend this, there is no

perfect model for all situations and problems.

Mathematical disease modeling goes back over three hundred years, experiencing

a resurgence in the twenty-first century under the umbrella of complex systems and

network science. Over the past two decades, the field of network science has been

thoroughly developed and applied to the study of infectious disease spread. As a

naturally interdisciplinary problem, disease modeling using network science has been

developed using tools from biology and mathematics, along with physics, statistics,

and engineering disciplines. Each of these individual disciplines has contributed a

set of tools to the field of network disease modeling to harness the complexity of the

problems of interest and work toward solutions. As a result, many of the concepts

in this thesis are drawn from statistical physics and stochastic process theory along

with general mathematical concepts.

This thesis focuses on two problems: (i) understanding the inherent randomness

of disease spread and (ii) handling the structural and temporal variations in the

population. We discuss two principled approaches for how to model the spread of

the disease through heterogeneously structured populations, balancing tractability,
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precision, and capturing uncertainty, to understand the temporal evolution of the

disease.

1.1 Mathematical Models of Disease

The earliest recognized account of mathematical disease modeling took place in the

18th century, with a model introduced by Daniel Bernoulli for smallpox, which de-

scribed the increase in average life expectancy as a consequence of widespread inocula-

tion against the disease [2]. Some two hundred years later, the foundations of modern

mathematical disease models were developed by Kermack and McKendrick from 1927

to 1933, in a series of publications which introduced the concept of compartmental

disease models [3, 4, 5]. In these models, the population of interest is divided into

categories pertaining to individuals’ disease status. In the simplest models, that is

S (susceptible), I (infectious), and R (recovered or “removed”). These models are

suitable for infectious disease in which the disease can be passed from one infected in-

dividual to another, and an infected individual is infectious for some period of time,

after which they either recover and remain immune, die or become removed from

the population – the SIR model, or become susceptible once more– the SIS model.

These classical compartmental models have been used as the basis for mathematical

epidemiological modeling work well into the next century [6, 7, 8, 9, 10].

The SIS and SIR models, and their variations, were built on the compartmental

framework to describe how the fraction of the total population in each compartment

evolves over time. The models are parameterized by rates pertaining to biological

characteristics of the disease, namely the infection rate (β) and recovery rate, (γ). In
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the simplest models, these two rates are incorporated into sets of ordinary differential

equations which govern the flow of the fraction of the total population in a given

epidemiological state at a given time. Under the SI and SIR models, all nodes that

eventually become infected subsequently recover (or are removed). In the SIS model,

after initial growth of the infected compartment, a steady or endemic state is reached,

where every new infection is matched on average by a recovered node so that a

constant fraction of the population is infectious at any given time.

1.2 Modeling Epidemics on Networks

The basic compartmental models make one main assumption, which allows for de-

riving tractable models but is largely unrealistic. The basic models assume that the

population is homogeneously mixed [7], meaning all individuals are equally likely to

interact with any other. Under this assumption, the disease spreads through the

population at a rate proportional to the fraction of infected individuals in the popu-

lation, which corresponds to the law of mass action for chemical systems [8], when the

population is large enough [11]. This representation allows for the formalization of

the disease spread as a system of differential equations. Homogeneous mixing, while

making for simpler models, is unrealistic, as not all members of a large population

are equally likely to interact with one another. In general, populations experience

some form of contact structure [12, 13, 14], and the crucial conclusions drawn from

epidemiological models will yield different results, depending on the contact structure

taken into account [15].

Network structures are a way to encode heterogeneity in contact patterns [16, 13,
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17]. Empirical studies have found that many real-world networks have heterogeneous

degree distributions, meaning that not all members of the population have the same

or close to the same number of contacts. Real networks in biology, sociology, and

technology exhibit heterogeneous structure [12, 18, 17, 19]. In another study, networks

were derived from population mobility and census data [20] and the resulting contact

network was found to exhibit properties of a small-world network [18], in which most

individuals interact with a small, local neighborhood, with few long-range connections

bridging the gaps between them. These results are precisely why using networks

for disease modeling is a solution to relax the homogeneous mixing assumption of

traditional compartmental disease models.

1.2.1 Network Definitions

Network science has its origins in the field of graph theory, dating back to the well-

known mathematician Leonhard Euler in the 1700s [21]. Random graph theory un-

derlies the fundamental concepts of the families of networks we consider [22]. Network

theory as an independent field is more recent, with the bulk of modern research in

the field emerging in the late 1990s and early 2000s, and is often concerned with the

network being the structure on which some other process plays out [23].

A network is defined by a collection of nodes that represent individuals, and

the edges between them, representing connections. A node can represent a person

or animal for physical contact networks, a web page or server for the Internet, for

some common examples. Edges between nodes represent a connection, contact, or

interaction between two nodes.

The adjacency matrix A of a network is the NXN matrix in which the entry Aij

5
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Figure 1.1: A sample network (left) and its degree distribution (right).

denotes the presence (and sometimes direction or weight) of the edge between node

i and node j. The degree of a node is the number of edges it has, equal to the sum

over Aij for a given node i. An example of an adjacency matrix for a network of 4

nodes would be

Aij =



0 1 0 1

1 0 1 1

0 1 0 0

1 1 0 0


The degree distribution of a network is the probability distribution over the degrees

of the nodes in the network, as shown in Fig. 1.1. When selecting a node i at random,

the probability that node i has degree k is proportional to the fraction of nodes in

the network that have degree k. The degree distribution is a summary statistic of a

network, and is a practical alternative network descriptor than the full exact adjacency

matrix.

A temporal network refers to a network in which the connections between nodes

change over time. There are many ways to represent temporal networks, but in this
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thesis, we define a temporal network as a sequence of snapshots, which are each a

static or fixed network that is active for some duration of time. A temporal network’s

snapshots can be easily defined as a sequence of adjacency matrices.

1.2.2 Modeling Epidemics on Networks

Incorporating a network to represent more detailed contact structure can help make a

disease model more accurate, albeit more complex. Modeling epidemics on networks

is a broad field with many branches and approaches [24]. Two key frameworks divide

the literature of epidemic modeling on networks into deterministic and stochastic

models, which are deeply related. Each have their advantages and disadvantages;

deterministic models capture the average behavior of the epidemic, while stochastic

models account for the randomness of spread.

In almost all models, the goal is to track the size of the S (susceptible), I (in-

fectious), and R (recovered) compartments. Deterministic models use differential

equations to track the time derivatives of the sizes of the compartments that change

given the flow between them, governed by infection and recovery rates β and γ that

come from the biological parameters. The differential equations can be solved for

the temporal evolution of the sizes of the compartments, as well as for threshold

conditions for the spread of the disease, namely the basic reproduction number, R0

[25, 26], which is the average number of infections caused by a single individual over

the course of the epidemic. A deterministic model is used to treat temporal networks

in Chapter 2.

Alternatively, the compartmental models can be generalized as stochastic pro-

cesses [27, 28], and analyzed by borrowing techniques from statistical physics. For
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the SIR model, the infection and recovery of individuals are governed by a Poisson

process that results in Markovian dynamics for each node’s trajectory through the S,

I, and R compartments. In the stochastic case, now the sizes of the compartments are

represented by discrete random variables, with P (I(t) = j) = pj(t), where I(t) is the

size of the infected compartment at time t. Infection is transmitted at a rate propor-

tional to β in the deterministic model, and recovery happens at rate γ for an individ-

ual. Therefore, the state of the whole system can be modeled as a Markov chain [28],

where the state is defined by the sizes of the three compartments, (S(t), I(t), R(t)) at

a given time t. The transition (S(t), I(t), R(t)) → (S(t) − 1, I(t) + 1, R(t)) happens

with some probability – derived from the corresponding rates and current state of all

the nodes in the system [29].

One can follow the time evolution of the entire system using master (or Kol-

mogorov) equations that describe the probabilities for every value the state of the

system can take. Alternatively, one can also treat the analysis of the stochastic

model using branching processes, which are informed by summary statistics of the

network like the degree distribution. This method is discussed in detail in Chapter 3.

Stochastic and deterministic models are fundamentally linked and one can be

derived from the other mathematically using the master equations and underlying

Markov process of the stochastic framework. At their core, both families of mod-

els describe the same system. The choice to use a stochastic framework versus a

deterministic one lies with the problem under study.

With larger quantities of data supporting a model, or if the research question

surrounds mainly tracking the time evolution of a spreading process, deterministic

tools can be readily applied. The temporal evolution of the spread of the disease
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can be easily modeled with a deterministic model. However, the results are given in

single point-estimates for each time point. Stochastic models address the fact that in

reality, an R0 > 1 does not necessarily mean an epidemic is for certain. Stochastic

models produce probability distributions for the size of the epidemic, instead of a

point estimate that represents the mean. Stochastic models may be preferable when

less is known about the disease, population structure, or other missing data, where it

may be helpful to have more than just a single prediction or point estimates explaining

the expected spreading process outcome.

With deterministic network epidemiological models, the underlying stochastic pro-

cesses are approximated to their average, or expected, collective behavior, resulting

in a consistent solution based on the model’s inputs. Within both sets of approaches

there are a myriad of model techniques that balance tractability with accuracy. In

this thesis, we look at a deterministic mean-field model to take advantage of the sim-

plicity of deterministic models while incorporating network structure. Then we use

stochastic model for understanding the uncertainty of spread during the early times

of a disease spread with little data available and a non-detailed contact structure.

1.3 Deterministic Mean-Field Models of

Disease Spread on Networks

The classic SIS and SIR models discussed in Sec. 1.1 are designed to approximate the

expected collective behavior of the stochastic events of individual nodes and contacts

by applying the law of mass action, and to deterministically model the evolution of

9



the population compartments. As noted, a deterministic model is one in which the

same inputs and initial conditions lead to the same outcome on every instance of the

model.

Deterministic disease models are usually set up with a set of differential equations

as a simple way to track the flow of the SIR/SIS compartments. Eq. (1.1) give the

three coupled nonlinear differential equations for a basic SIR model that describe the

rate of change of the sizes of the three compartments. The solution to Eq. (1.1) is

shown in Fig. 1.2.

dSt

dt
= −β(ItSt),

dIt

dt
= β(ItSt) − γIt,

dRt

dt
= γIt (1.1)

Nodes recover at rate γ, and infection transmits between infected and susceptible

individuals at rate β. It is easy to see from Eq. (1.1) how the fully-mixed assumption

works: the contact rate, β, is applied to the number of pairs of nodes where the disease

can be transmitted, one from the susceptible compartment and one from the infected

compartment. In this model, on average, every infected node has a disease-causing

contact with every susceptible node, resulting in ItSt pairs.

There are many ways to relax the fully-mixed assumption of the basic models and

incorporate network structure while still maintaining a relatively simple model. In

Chapter 2, we use the explicit adjacency matrix of the network in order to capture the

exact relationships between nodes, and use a deterministic framework to approximate

the collective stochastic behavior of individual nodes. This way, we utilize the power

of deterministic modeling without assuming a fully-mixed population.

This model, known as the quenched mean-field model, is described by a set non-

linear differential equations defined for each node. At time t, the rate of change of
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Figure 1.2: Solution of an SIR disease model.

the probability of node i being infected is

dpi

dt
= (1 − pi(t))β

∑
j

Aijpj(t) − γpi(t) (1.2)

where Aij = 1 if there is an edge between node i and j, and 0 otherwise. The solution

to the node-wise probability of being infectious over time is illustrated by the top

panel of Fig. 1.3. For the whole population, the set of equations can be defined as a

vector
dPt

dt
= (1 − Pt)βAPt − γPt (1.3)

where Pt = [p0(t), p1(t), ...pN(t)]. From there, the size of the infected compartment

at time t is

It =
∑
N

Pt, (1.4)

depicted in the bottom panel of Fig. 1.3.

This type of model falls into the category known as a mean-field deterministic
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Figure 1.3: Solution of a quenched mean-field model on a network. Top panel shows the
time evolution of the probabilities of each node being infectious at time t. The bottom
panel shows the time evolution of

∑
Pt, the total number of expected infectious nodes at

time t.

model. Mean-field models reduce the complexity of a system by making approxima-

tions over sub-systems or identifiable components. Mean-field theory, borrowed from

statistical physics and widely adapted for network science, is the theory of reducing a

high-dimensional complex system to a lower dimension for tractability, where the col-

lective behavior of a system or sub-systems is introduced in place of keeping track of a

high number of individual components. Tools from statistical physics have revamped

the ability to model contagion models [30, 31, 32], since the spread of a disease over

a network of contacts is similar to models of non-equilibrium problems in statistical

physics [33].

A quenched mean-field theory approach assumes that the network is static or fixed,

in contrast, an annealed approach assumes that while the degree distribution of the

network is fixed, specific contacts between nodes are not fixed and the identities

of contacts are arbitrary, which is the case in a fully-mixed scenario. Mean-field
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Figure 1.4: An SIR model vs. a quenched mean-field model on a network. Top panel:
For a fully connected network, in which every node is connected to every other node, the
two models result in the same solution. For a heterogeneous network, in which some nodes
have more contacts than others, using a QMF model accounts for these patterns in the
spread of the epidemic and yields a different result than that of the basic SIR model.

approaches for both regimes are widely studied [34]. Under a quenched mean-field

approach, also known as individual-based mean-field theory, systems of differential

equations are derived which govern the probabilities of each node in the network

of being infected, susceptible, or removed/recovered at time t. The equations are

derived from the underlying Markov chain, which would have qN states where q is the

number of compartments [33]. Averaging over all nodes yields mean-field equations

over the network to instead reduce the problem to deterministic approximations of the

trajectories of each compartment over time. The effect of using a quenched mean-

field model to account for heterogeneous patterns of connections using a network

is illustrated by Fig. 1.4, in which an SIR model is compared against the QMF

(quenched mean-field) model for two types of networks.

To solve for long-term properties of the disease on the network under a mean-field
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approach, properties of the adjacency matrix can be used to solve for the system to

find steady state dynamics and threshold conditions, specific to the exact contact

structure of the network [35, 36].

Instead of focusing on threshold conditions and long-term behavior, we utilize the

mean-field deterministic framework to approach a different kind of problem: tempo-

ral networks. In Chapter 2 we introduce an approximation of a quenched mean-field

model for a disease process over a network to help quantify the importance of chronol-

ogy in temporal networks. We consider a temporal network to be a sequence of static

networks valid for finite, consecutive periods of time. We apply quenched mean-

field theory to each of the static networks and use this approach to understand the

dynamics on and of the temporal structure.

1.4 Temporal Network Models

All the disease spreading models on network models described in the previous sections

have made one major assumption: all the edges between nodes exist uniformly in

time. In reality, contacts between individuals are often dynamic. Even with network

models where the edges are considered arbitrary, the degree distribution is assumed to

be static and so the structure of the network remains static. Relaxing this assumption

and accounting for the temporal dynamic changes of the network structure itself can

have significant effects on the study of disease spread [37, 38].

Not only are the contacts between individuals not constant in time, but the timings

between contacts are generally not uniformly or Poisson distributed. Instead, contacts

are known to display “bursty” dynamics, following power-law or other heavy-tailed,
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Figure 1.5: Visualization of four snapshots of a temporal network.

heterogeneous distributions [39]. High-resolution data from wearable sensors [40]

or email and call logs [41] have helped studies discover temporal contact patterns

between individuals and communities and discover such underlying heterogeneous

contact patterns.

One way to partially capture the time-varying properties of an empirical contact

network is to aggregate sequences of contacts for a short duration of time into a

series of static networks, which each comprise a snapshot of the temporal network

[42], visualized in Fig. 1.5. Often, segmenting the network into snapshots is used for

extracting temporal motifs [43], or sub-networks that appear more often than others

[44, 45] to find recurring contact patterns. Other research has been done on how the

rhythms of daily human life affect contact dynamics [46, 47, 48]. Research has also

been done to determine properties analogous to the static network counterparts, such

as the epidemic threshold for temporal networks [49].

In Chapter 2 we introduce a quenched mean-field approach for the analysis of

temporal networks. The goal of this method is to address the lack of treatments for

the regime in which assuming the limits of fully quenched or annealed systems would

discard critical information, or maintain a more complicated system at an avoidable

cost. One goal is to be able to simplify temporal network data, but only to the point

that crucial structural information about the chronology of the temporal contacts is
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maintained. Another goal is to also introduce a tool that can be used to ascertain

temporal patterns in the data, such as periodicity when contacts are more heteroge-

neous vs. maintain a homogeneous and low-density contact structure, by picking up

on these structures using network epidemic dynamics as the magnifying lens.

1.5 Stochastic Models of Disease Spread

on Networks

As noted, deterministic mean-field models approximate over the collective average

behavior of the system in order to provide solutions for the average temporal evolution

of spread. However, for some problems it might be useful and necessary to capture

the randomness of individual-level interactions. In Fig. 1.6, realizations of stochastic

simulations of disease spread demonstrate the variability of the time evolution of a

given disease spreading through a population with the same initial conditions.

Disease spread is inherently a random process. Not every interaction between

an infected individual and a susceptible one will result in the susceptible individual

becoming infected, for reasons ranging from variations in individual immunity, the

duration of the interaction, or many other biological or situational reasons. There

are other sources of noise beyond the individual level involved in modeling the course

of an epidemic, such as uncertainty in detection of infections. To model a spreading

process mechanistically, the spread should be modeled by the collective stochastic

processes driven by the interactions of each individual in the population [50]. Writing

down individual-level equations at the level of individual detail comes at the expense
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Figure 1.6: Deterministic model of disease spread versus stochastic simulations. The green
curve shows the solution to a quenched mean-field model (QMF) that is deterministic. The
grey dashed curves each show the result of a single, event-driven simulation on the same
underlying network of 100 nodes with the same β and γ values.

of model tractability. Thus, various approximations and simplifications have been

made over the course of the development of the network epidemiology literature to

build classical compartmental disease models that account for the stochastic nature

of disease spread.

Under a stochastic framework, individuals transmit the disease to one another

according to some probability distribution, where their transmission and recovery

rates from the classical disease models become analogous to “reaction rates” β and

γ [27]. The infection rate of an individual, with mean β, and time to recovery, with

mean γ−1, are governed by Poisson processes that result in Markovian dynamics for

each individual’s trajectory through the S, I, and R compartments [28].

The propagation of the disease in this way can be treated as a percolation problem,

utilizing concepts from statistical physics and graph theory. A percolation problem
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describes how some material flows through a substrate, following the connections

between individuals that make up said substrate. In this case, we can describe the

spread of an epidemic through a network of contacts as a percolation process. Several

works have shown how the long-term properties of an epidemic of SIR type can be

treated with branching process and bond percolation tools for epidemic spreading

[51, 52, 53], and the properties of branching processes on networks representing the

Internet have been studied [54, 55].

Epidemics have been studied as percolation problems on small-world networks by

Moore and Newman [56], and further studied on general networks [57, 58, 59]. The

class of SIR epidemic models can be solved exactly on networks defined by an arbitrary

degree distribution [60], by describing the epidemic process with a percolation model.

To formalize an epidemic process as a percolation problem, we derive a variable

known as the transmissibility T , the expected probability of infection across an edge

between two nodes. We derive T using β, the contact rate per time between two

connected nodes, and γ, the average rate of recovery. Letting τ be a random variable

representing the time a single node remains infectious, we compute the probability of

the node transmitting infection across an arbitrary edge by then as

T (τ) = 1 − lim
δt→0

(1 − βδt)τ/δt = 1 − exp−τβ . (1.5)

We evaluate the probability of a particular τ by looking at the cumulative distri-

bution over τ , given by

F (τ) = 1 − lim
δt→0

(1 − γδt)τ/δt = 1 − exp−γτ , (1.6)
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derived using γ, the average rate of recovery. Taking the derivative of Eq. (1.6) we

obtain the probability mass function over τ ,

f(τ) = γ exp−γτ . (1.7)

Finally, to find the probability of transmission T , we calculate the average probability

of a node transmitting before its recovery, given that the node recovers at time τ .

The average transmissibility T without loss of generality is

T =
∫ ∞

τ=0
T (τ)f(τ)dτ = β

β + γ
. (1.8)

The transmissibility T is therefore a probabilistic quantity capturing the random-

ness of infectious disease transmission, by representing the probability that transmis-

sion occurs between two nodes, given the known parameters β and γ that reflect the

average rates for the disease.

The solution of the percolation model can be solved using probability generating

functions [61]. Probability generating functions provide a way to encode the prob-

ability distributions of discrete random variables into a power series representation.

As a result, power series tools can then be used to derive important quantities and

transform the probability distribution in various ways. In the case of percolation on

networks, the random variable in question is generally the degree of a node (chosen

at random) and so the power series terms naturally represent the possible values for

a node’s degree from zero to infinity. Quantities pertaining to the network structure

can be easily derived from the first and second moments of the generating function,

and then can aid in the transformation of the generating function into a new function

19



pertaining to new random variables, such as the number of infections given a specific

transmission probability. The solutions provide analytical methods for computing the

probability of an epidemic occurring, the final size of such an epidemic as a fraction

of the network, and the epidemic threshold, the level for which any transmissiblity

above it may result in an epidemic.

The beauty of the percolation problem framework is that by using generating func-

tions, the static properties of the long-term spreading process can be solved explicitly

for any network with a given degree distribution. However, for emerging diseases and

applied problems, often the quantity of interest is the time evolution of the spreading

process, and there is less concern for the final size or long-term effects. Understand-

ing the evolution of the spread can help with decision making for mitigation and

preparedness measures. As discussed, traditional disease models for time-evolution

are formulated by using differential equations and a deterministic framework, where

the expected behavior of the spreading process leads to a single average trajectory for

the disease. By using generating functions broken down by epidemic generation, Nöel

et al. [62] showed that the precision of the percolation framework can be applied to de-

velop the temporal progression of a disease while still communicating the uncertainty

around the average behavior. In Chapter 3, we revisit the Nöel et al. framework to

address two themes. First, that continuous-time event-driven stochastic simulations

validate the results generated by the theoretical framework, and find that there is a

loose mapping of continuous time to epidemic generations, which can be applied to

real early data on emerging disease outbreaks to make predictions for the uncertainty

of continued spread. Second, we demonstrate that the probability distributions for

cumulative case counts during early generations of spread are surprisingly fat-tailed
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and flat, suggesting that there is not a well-defined expected number of cumulative

cases on heterogeneous networks, in contrast to traditional disease models with point

estimates for the average trajectory of case counts.

1.5.1 Stochastic Simulation

Simulating disease spread over a network stochastically is useful for a few key reasons.

First, it can be used as an exploratory tool to observe the behavior of a disease given

specific parameters and a specific network. Second, it can be used to validate newly

developed models to determine their accuracy. In general, mathematical models can

be solved faster than performing a robust amount of simulations, but simulations are

extremely useful for model validation.

In this body of work, we performed individual-based stochastic simulations for

the purpose of model validation. We use a Gillespie algorithm [63] with original code

available [64] also referenced in the main body of the text. In brief, the Gillespie algo-

rithm follows the underlying Markov process of the disease spread over the network,

and every step of the simulation involves two parts: Determining the continuous time

duration until the next event occurs, and which event (infection between two indi-

viduals, or recovery of one infected individual) will occur. The time until this next

event is chosen from an exponential distribution with mean equal to the combined

rate of all possible events. The specific next event is chosen proportionally to its

rate compared to the other possible events. Keeping track of every single possible

individual event and its rate and history is computationally expensive, which is why

the stochastic simulation is used primarily for model validation as opposed to full
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exploratory results.

1.6 Contributions of Thesis

In this thesis, we focus on introducing models that close the gap between existing

theoretical models and the random dynamics of real-time epidemics on networks.

While the following chapters are rooted in theoretical models, they can be applied to

and adapted easily to real data, without the need for unavailable future data that is

sometimes required to calibrate such models.

First, we present a novel framework for assessing the sensitivity of temporal con-

tact data to aggregation into static network representations in Chapter 2. We use a

deterministic disease-spreading framework as the basis of the assessment tool. This

choice makes the framework best-suited for analysis of disease-related contact data,

though the framework could be extended to other contexts.

Next, in Chapter 3 we analyze a stochastic disease model based on probability

generating functions that enables tractability of generations of infection [62]. The

formalism can be parameterized by real network data to be used for generating prob-

abilistic forecasts of the sizes of future epidemic generations, which could help with

epidemic mitigation measures.

Finally, in Chapter 4, we apply the stochastic branching process model to a time-

varying network, using methods from both Chapters 2 and 3. The application of

the stochastic analysis to temporal networks suggests the utility of combining deter-

ministic and stochastic approaches to support accurate, short-term disease models

that are able to capture the specifics of the population, while producing estimates of
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uncertainty of epidemic outcomes.

The work presented in this thesis addresses the challenges of short-term disease

modeling when little is known about the contact patterns underlying the spreading

process. Often times in disease modeling, the average descriptor of the system may not

capture the most important characteristics of the system. Chapter 3 addresses this by

providing temporal distributions of epidemic sizes of progressive generations, still with

regard to a static contact network. Meanwhile, Chapter 2 addresses how to reduce a

set of temporal contact data to a a new set of condensed networks corresponding to

its most salient temporal characteristics. Finally, Chapter 4 applies the generational

modeling framework to a temporal network, to show an idealized version of a disease

model that captures heterogeneity in both the population structure and variation in

time.

Together, the two stochastic and deterministic modeling approaches presented

build upon the mathematical modeling tools for making inferences about the course

of an epidemic, not just the final size or steady state. Models like these support

data-driven decision making for mitigation measures, and can aid in designing inter-

ventions that rely on knowing how – and how fast– the disease will spread. When vast

quantities of data are readily accessible, it is important to have the tools at hand to

make as many simplifications as possible without compromising the structures that

help us understand the dynamics of the system.
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Chapter 2

A network compression approach

for quantifying the importance of

temporal contact chronology

Abstract

Studies of dynamics on temporal networks often represent the network as a series

of “snapshots”, static networks active for short durations of time. We argue that

successive snapshots can be aggregated if doing so has little effect on the overlying

dynamics. We propose a method to compress network chronologies by progressively

combining pairs of snapshots whose matrix commutators have the smallest dynamical

effect. We apply this method to epidemic modeling on real contact tracing data and

find that it allows for significant compression while remaining faithful to the epidemic

dynamics. This chapter discusses the method and applications. Sec. 2.5 provides
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further detail into its development and validation.

2.1 Introduction

Modern data collection methods such as radio frequency identification [1] or Blue-

tooth signal [2] have made the collection of high resolution temporal interaction data

simple and widely available. Temporal interactions have rich dynamics in continuous

time, yet we often want to combine intervals of temporal data into simpler, static

structures—typically a series of “annealed” networks consisting of the aggregate in-

teractions over some time interval—in order to compress the data, reduce analytical

complexity, or even to streamline data collection efforts. For example, digital con-

tact tracing protocols ping devices at fixed intervals to save energy and lighten data

requirements. However, it is nontrivial to determine when and how to aggregate tem-

poral data without losing critical information about the dynamics of the interactions.

Many methods currently exist to represent and analyze temporal networks [3].

Much recent work focuses on simplifying temporal networks through patterns in the

network structure and dynamics; providing algorithms for detecting temporal system

states [4], dynamical approach for generating simplified models of temporal network

data [5], tools to identify community structure in time-varying networks [6], data-

driven approaches to model dynamics on temporal networks by determining change

points [7], and methods to represent key temporal features as static networks [8, 9].

Purely from a dynamical perspective, epidemic spread on temporal networks is well-

studied [10, 11, 12, 13], as are synchronization [14, 15, 16] and control dynamics

[17].
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Taken together, these previous studies outline the limits in which one can ignore

chronology in network structure. When the dynamics on the network are much faster

than the dynamics of the network, the static limit of the network is appropriate, in

which many dynamical steps of the network structure can be combined to yield the

same behavior of the dynamics on the network. When the dynamics on the network

are slower than the changes of the network, then it is safe to average over many

timesteps, referred to as the annealed limit. In both limits, the dynamical history

of the network can be compressed in a clear way. In between these limits, it is less

clear to what extent the temporal history of the network structure can be compressed

while remaining faithful to the dynamics on the network, which are explored in [18].

Here, we address the problem of quantifying if a sequence of networks lies in

between these two limits; thereby allowing us to ignore and compress unimportant

structural changes while preserving changes that affect the dynamical process. We

propose a method to do so by assessing the sensitivity of pairwise network snapshots

to aggregation. We consider an epidemic spreading process but abstract the dynam-

ics to a simple diffusion process which could represent other dynamical processes on

networks (e.g., synchronization of coupled oscillators or cascading failures in power

grids) and formulate a pair-wise error measure using the matrix commutator of the

network adjacency matrices that captures the effects on the diffusion process of ag-

gregating snapshots. We use the error measure to successively compress a sequence

of chronological snapshots by compressing the adjacent pair of snapshots with the

lowest relative error. Using synthetic networks and real data, we find that this ap-

proach is successful at producing a compressed snapshot sequence that still mimics

the dynamic behavior of the original sequence.
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Figure 2.1: Schema of our hierarchical aggregation.

2.2 Analytical Framework

We assume that we have some temporal network data consisting of a large number

of snapshots of the network structure. This comes without loss of generality as even

continuous time data could be represented as a large series of mostly empty graphs.

We seek to quantify the importance of temporal chronology by measuring the error we

would introduce by combining any two consecutive networks into a static snapshot.

Here, we identify error if the compression of networks over time introduces paths that

effectively allow the contagion to progress backwards in time, as depicted in Fig. 2.1.

From there, we can successively compress the pairs that minimize this error.

We use a spreading process over the temporal network as a way to observe the

significance of aggregating a pair of successive network snapshots. We assume the

contagion spreads at a rate β along edges connecting infectious nodes to their sus-

ceptible neighbors. We measure the effect of pairwise aggregation by computing a

measure of error that scales with the difference in sizes of the infected compartments

under the temporal and aggregate regimes over the duration of the snapshot pair.
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2.2.1 Snapshot Definitions

We introduce the following notation required for the derivation of our method. Let

X = [Xij] be the adjacency matrix for a static network. Assume X is valid for a

duration δtX = tX1 − tX0 , the tX1 and tX0 are the ending and starting times of X, and

transmission of a spreading process occurs between contacts with rate βX . We define

a snapshot (X, δtX , βX) by its static adjacency matrix, duration, and spreading rate.

Assuming (X, δtX , β) and (Y, δtY , β) are snapshots such that δtY = tY1 − tY0 and

tY0 = tX1 , with a uniform β, then we define X and Y as a pair of consecutive snapshots.

Given consecutive snapshots (X, δtX , β) and (Y, δtY , β), let the aggregate (X, Y ) with

respect to (δtX , δtY ) be

(X, Y ) = δtXX + δtY Y

δtX + δtY
. (2.1)

2.2.2 Solution of Diffusion on a Network

Let A be the adjacency matrix of a network with N nodes. Let P (t) be a vector

of length N encoding the probability that each of the nodes from node 0 to node

N − 1 is infected at time t. Then the rate of change of P (t) is given by the following

differential equation:
dP

dt
= {1 − P (t)} βAP (t) − αP (t) (2.2)

where from here forward we will drop the term αPi since we set α = 0 in this SI

model, either because there is no recovery in the system or because it happens on

a much slower timescale than contagion and/or network dynamics. This differential

equation can then be solved for to obtain an approximation of P (t), and the size of
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the infected compartment at time t would then be I(t) = |P (t)|.

2.2.3 Approximation of Diffusion

If we assume large N and early time t such that infections are rare enough to approx-

imate (1 −P (t)) ≈ 1, the solution for the entire system with all nodes can be written

by the following differential equation that utilizes the matrix exponential

P (t) ≈ exp βAt · P (0) (2.3)

where P (0) is vector of initial probabilities of infection for each node. Say we have

two consecutive snapshots, (A, δtA, β) and (B, δtB, β). We define the operator T (A)

as the transmission dynamics on the snapshot, written as

T (A) = βδtAA. (2.4)

We consider two regimes of dynamics on the pair of snapshots: temporal, where

we switch from A to B at the switch-point time tA1 = tB0 , and aggregate, where we

consider (A,B) for the full duration t : [tA0 , tB1 ].

Under the matrix approximation respecting the chronology of the two consecutive

snapshots, the solution at the end of the duration of the two snapshots is given by

P (tB1 ) ≈ exp {T (B)} · exp {T (A)} · P (0), (2.5)
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and in the case where we aggregate the pair of snapshots,

P (tB1 ) ≈ exp
{
T (A+B)

}
· P (0), (2.6)

where T (A+B) = β(A+B)(δtA +δtB) = β(δtAA+δtBB) = T (A)+T (B), following

from Eq. (2.1).

Notice that the product of the two exponential terms in Eq. (2.5) cannot be sim-

plified trivially, without fully detailing the product of their Taylor series expansions.

Consequentially, T (A) and T (B) cannot be summed in a single exponent, unless

they are commutative matrices. We will leverage this property to help assess if the

chronology of a snapshot pair is important to the epidemic diffusion dynamics over

the network.

2.2.4 Aggregation Error Approximation

In Fig. 2.2 we demonstrate the effect on the SI process of aggregating a consecutive

pair of snapshots compared to the temporal solution. Without computationally solv-

ing for the full dynamic solution, our aim is to capture this effect by approximating

the magnitude of the difference between the temporal and aggregate solutions for

a pair of snapshots. We measure and quantify this difference at two points in the

process; δtA
and δtA

+ δtB
, and ultimately multiply each quantity by δtA

+ δtB
to

culminate in an error measure that will correspond with the integrated area between

the temporal and aggregate solutions were we to solve for them computationally.

To do so, we first address the difference between the solutions after δtA
, the du-

ration of the first snapshot. We define a matrix DMID which captures the difference
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Figure 2.2: Top left: Degree distributions for two snapshots. Top right: Deterministic
solution for number of infected nodes, I(t), of an SI process with β = 0.12, δt = 5 on the
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βt by varying t = [0, 5]. Bottom right: Ranking of ξ1,2 for snapshots 1 and 2 for increasing
values of βδt compared against the integrated area between solutions.

between each matrix exponential in Eq. (2.5) and Eq. (2.6) to quantify the difference

in dynamics in the temporal vs. aggregate solutions. We set

DMID = T (A) − βδtA
A+B = βδtA

(A− A+B) (2.7)

keeping only the leading linear terms of the difference of the two matrix exponentials.

Next, we want to capture the terminal difference after the duration of the second

snapshot, δtA
+ δtB

. But the matrix exponential solution from Eq. (2.5) cannot be

solved in the same way. Recall that only when A and B are commutative matrices,

then their effect on the dynamics will be the same irrespective of their chronology,
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and can therefore be aggregated without any effect. Consequentially, we utilize the

extent to which A and B do not commute as the basis for quantifying the importance

of their chronology.

The Baker-Campbell-Hausdorff formula can express the product eT (B)eT (A) as a

single exponential where we define the matrix C as

C = log(expT (B) expT (A)) = T (B) + T (A) + 1
2 [T (B), T (A)]

+ 1
12 {[T (B), [T (B), T (A)]] + [T (A), [T (A), T (B)]]} + ... (2.8)

in which [T (B), T (A)] = T (B)T (A) − T (A)T (B), which is the commutator of T (B)

and T (A). The matrix product BA records paths of length two where the first

transition occurs in A and the second in B. The commutator captures paths that

follow the chronology (BA), and subtract from each entry the paths that violate the

chronology of the two snapshots (AB). For example, if a contact between nodes 1

and 2 occurs in snapshot A before a contact between nodes 2 and 3 in snapshot B,

then a disease could spread from node 1 to 3; if these contacts occur in the opposite

order, however, then this two-step transmission path cannot occur. Thus, we use the

commutator to capture the sensitivity of the temporal ordering of snapshot A and B.

Similarly to Eq. (2.7), we defineDEND as the difference matrix between the tempo-

ral matrix exponential solution using the BCH and the aggregate solution, evaluated

at the end of both snapshot durations, obtaining

DEND = exp(C) − exp(T (A+B)) = 1
2[T (B), T (A)] (2.9)

to first order. Finally, we want to utilize these matrices that capture the error be-
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tween the temporal and aggregate solutions, without having to define arbitrary initial

conditions like in the solutions defined in Eqs. (2.3), (2.5) and (2.6). We instead take

the largest singular value norms of DMID and DEND to capture the magnitude of

each matrix. We define

ϵMID = ∥βδtA
(A− A+B)∥LSV (2.10)

and

ϵEND = ∥1
2[T (B), T (A)]∥LSV (2.11)

where the LSV norm captures the peak response of the dynamics matrices to a unit

vector, representing the largest possible reaction to any set of initial conditions on

the network.

We then scale these values by the duration of time these particular snapshots will

cover in the overall spreading process, approximating the effect visualized in Fig. 2.2,

in our final error measure ξA,B, defined as

ξA,B = (ϵEND + ϵMID)(δtA + δtB). (2.12)

We want to highlight that ξA,B vanishes for the base case in which T (B) = T (A).

All terms in Eq. (2.9) and Eq. (2.7) cancel out, since for any step in one network exists

an equivalent step in the other network, and therefore the positive and negative terms

sum to zero. When T (B)T (A) = 0, all terms in Eq. (2.9) are directly zero since there

exist no path that can go from one network to the other, however the switchpoint

error Eq. (2.7) may be nonzero.

Eq. (2.12), while not estimating a particular mechanistically defined quantity,
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results in a scalar value that preserves the ranking of snapshot pairs from least to most

induced error when computed over all possible pairs A,B and solved computationally.

As such, ξA,B is useful as a tool for selecting the pair with the least induced error

from a sequence of pairs.

2.2.5 Compression Algorithm

Given a set of temporal data as a sequence of M snapshots, we can use the framework

to compress the snapshots into M − j snapshots via a greedy algorithm. First, the

number of desired iterations j is set. For steps from 1 to j,

1. The error ξA,B from Eq. (2.12) is computed for each pair A,B of ordered,

consecutive snapshots.

2. Identify the pair A∗, B∗ = argminA,B(ξA,B) to be compressed.

3. Replace snapshots (A, δtA, β) and (B, δtB, β) with their aggregate, (A+B, δtA+

δtB, β).

2.3 Results

The proposed aggregation algorithm produces a set of temporal snapshots that are

able to better support the spreading dynamics of the fully temporal network than

the set of evenly divided and compressed snapshots. To assess the performance of

the compression algorithm against an evenly distributed compression, we integrate

the dynamics of Eq. (2.2) over the full temporal set of snapshots, x(t)T EMP , as well

as over the system defined by the new sets of even snapshots, x(t)EV EN , and the
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snapshots produced by the algorithm, x(t)ALG. We define a validation error measure

dEV EN (and dALG, respectively) as

dEV EN =
∫ |x(t)EV EN − x(t)T EMP |

x(t)T EMP

dt (2.13)

with dALG defined analogously.

We apply the algorithm to synthetic networks in Fig. 2.3 and real data in Fig. 2.4.

The error metric defined in Eq. (2.12) picks up on the sensitivity of pairs of snapshots

to aggregation, and can be assessed at any level of snapshot resolution. We show in

the top panel of Fig. 2.4 how the sensitivity of certain temporal ranges is maintained

over a large range of resolution, which allows for pre-aggregation of data to improve

the speed of the algorithm. The error metric allows us to identify the daily patterns

of the contact data at a glance. Once integrated in the compression algorithm, the

middle panel shows how we can aggregate over nights and capture the daily activity

in one or two snapshots. As seen in the bottom panel, our algorithm compresses more

than twice as much than evenly distributed compression while retaining a given level

of error on the resulting dynamics.

2.4 Discussion

The error term ξ obtained in Eq. (2.12) provides a fast approach to estimating aggre-

gation error using the matrix exponential. There are four interesting applications for

the ξ error term. First, it can directly provide bounds of accuracy when studying dy-

namics on temporal networks with tools developed for epidemics on static networks.

Our analytical error estimate starts with a description of epidemic dynamics but was
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Figure 2.3: Compression algorithm run on a series of 50 synthetic network snapshots,
compressed into 6 aggregate snapshots, with a β = 0.0017 and intervals of t = 5 such that
βδt ∈ [0.0085, 0.42]. Blue dashed lines represent the boundaries for the resulting snapshots
from our algorithm, yellow represent the boundaries for the evenly distributed aggregated
snapshots. Middle panel shows the normalized distance from the temporal curve over time
for each solution. Bottom panel shows the shaded area from the middle panel as a function
of number of aggregated snapshots, as a fraction of the error induced by full aggregation.

boiled down to a simple diffusion rate. While other mechanisms (saturation and re-

covery) were ignored, Fig. 2.2 showed how our approximation preserved the ordering

of spreading process solutions relative to one another. Consequently, our tool could

very likely be used to estimate error around other type of diffusion dynamics.

Second, it can help compress large sequences of temporal networks by combining

any consecutive pair of network T (A) and T (B) into an aggregate if the expected

error on the aggregate is smaller than some threshold. We can apply this process
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Figure 2.4: Application to a hospital contact network [19]. Top panel: the error mea-
sure ξS(t),S(t+1) computed for consecutive snapshot (S) pairs at 3 different levels of pre-
aggregation. The hospital contact dataset contains contacts for approximately 9, 000 unique
timestamps. We pre-aggregate by evenly coarse-graining the data to 4,000, 1,000 and 200
snapshots. Mid panel: the compression algorithm run on a the 200 snapshots to generate
10 snapshots, compared to the fully temporal dynamics and the dynamics under even com-
pression. The pre-aggregated 200 snapshots each have duration 1737 seconds with mean
27.34 contacts per snapshot. We used a β = 0.000015 such that τ ∈ [0.025, 0.5]. Vertical
lines show boundaries for the resulting aggregated snapshots. Bottom panel shows the sum
of the shaded area in middle panel function of resulting number of aggregated snapshots,
relative to the error induced by the full aggregation. The inset shows by what factor our
algorithm can further compress the snapshot sequence while producing an error less than
the even aggregation at the number of snapshots shown.

recursively and hierarchically to compress the data to a much smaller sequence of

networks while keeping track of the duration of each network snapshot. As shown in

Fig. 2.4 using real temporal interaction data, this approach allowed us to consistently
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meet a certain level error while decreasing the number of required network snapshots

by a factor of almost 2.

Third, the error can be used to to estimate the accuracy of data collection in

the first place by testing how compressible it could be. This might help focus data

collection efforts by identifying places and times with fast temporal variations, as in

the top panel of Fig. 2.4. Fourth, the error can be used on non-temporal data to

compare the structure of any two networks T (A) and T (B) that share some of the

same nodes. At its core, our approach is a network comparison tool: How different

are networks when compared to their average?

Limitations of the method include its sensitivity to the spreading process parame-

ters, specifically keeping βδt within the appropriate range for the matrix exponential

approximation, which requires the dynamics to be slow compared to the timescale

of network snapshots. Another limitation is the greediness of the algorithm, which

means it can get stuck in sub-optimal compression sequence when compressing a long

sequence to a handful of snapshots. Future work might explore how to better predict

the optimal stopping point of temporal compression.

Altogether, we hope that our work will inspire more tools to compress temporal

network data which is an area rich in possible applications.

2.5 Supplemental Information

In this supplement, we describe the development of the error measure ξA,B and justify

its design against our other hypotheses for relevant error measures. We also provide

an analysis of the data used in the applications in the main text. This section provides

43



insight into why specific approximation choices were made for the error measure, how

the framework was applied to real and synthetic data, and justification of the choice

of parameters in the spreading process model.

2.5.1 Developing the Error Measure ξA,B

The theoretical model of a spreading process used in the main body the text relies on

an approximation of the matrix exponential and Baker-Campbell-Hausdorff formula.

Both formulas are defined by Taylor series expansions of their closed forms, requiring

a cutoff for computation as well as simplicity. In the paper, we used a first-order

approximation, showing that even that level of crude approximation captured the

appropriate quantities to power the network chronology assessment tool. However,

similar results are achievable using a higher order approximation, which also under-

lies the more mechanistic motivation for the model. The simpler approximation (first

order) produced comparable results to the higher-order approximations, validating

the choice of the simpler approximation. In this supplement, we show the third-order

approximations that we first tested for use in the error measure compared against

the approximation to first-order. We also justify the use of the largest singular value

(LSV) norm for quantifying the size of the matrix term computed in the error mea-

sure, by comparing the compression results against the use of a more mechanistically

motivated error measure.

Error Measure with Higher Order Approximation

The error measure ξA,B was at first devised from a desire to best approximate the

mechanistic model of the epidemic process over the network. This means that we first
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designed ξA,B to be the approximate difference in number of infected nodes between

the temporal and aggregate solutions of a spreading process, using the diffusion ap-

proximation and BCH formula as a proxy for the deterministic differential equation

solution. In this section, we provide the detailed derivation of the original error mea-

sure following this framework. Later, we show that the results obtained using this

more detailed, mechanistic framework were comparable to the simplified framework

presented in the main text. This supplement therefore is useful for justifying the

motivation of our framework, and validating the use of the first-order approximations

used in the main text.
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Figure 2.S1 : Matrix exponential approximations of epidemic spread on a network for
increasing values of βδt. A different network is shown in each panel, which vary in structure
and edge density. Each panel compares the full matrix exponential solution to third-order
approximation, compared against the true deterministic solution for a single static network.
We use this as the basis for seeing that approximating the solution works for early time t
but starts to falter once more than half the network has been infected.

Let (A, δtA, β) and (B, δtB, β) be consecutive snapshots with constant β. As dis-

cussed in the main text, when two matrices X and Y do not commute, then the

Baker-Campbell-Hausdorff formula can express exp(Y ) exp(X) in a single exponent,

where we define the matrix Z as

Z = log(expY expX) = Y +X + 1
2 [Y,X] + 1

12 ([Y, [Y,X]] + [X, [X, Y ]]) + ... (2.14)
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in which [Y,X] = Y X − XY , the commutator of X and Y . Letting the matrix

C = log(expT (B) expT (A)), and using the Baker-Campbell-Hausdorff equation, C

can be expressed as

C = T (B) + T (A) + 1
2(T (BA)) − T (AB))) + 1

12(T (BBA) + T (ABB)

+ T (AAB) + T (BAA)) − 1
6(T (BAB) + T (ABA)), (2.15)

where we approximate to third order matrix products, as the higher order terms scale

with τn|(A + B)n|, n > 4, which should fall to zero assuming βδt < 1. We solve for

exp(C) by using the Taylor series expansion definition, and again approximate by

truncating to powers less than 4. We want to then quantify the expected difference

between the sizes of infected compartments under the temporal versus aggregate

regimes. We follow Equation (2.15) for the temporal regime, and use a truncated

power series to third order for the aggregate regime to solve for

ϵEND =
N−1∑
i=0

[
exp(C) − exp(T (A+B))

]
P (0), (2.16)

where ϵEND here is meant to approximate the difference in number of nodes infected

after δt of temporal solution and the aggregate solution. Letting DEND be the dif-

ference matrix shorthand between the temporal and aggregate matrices above, we
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compute DEND = exp(C) − exp(T (A+B)) as

DEND ≈ 1
2(T (BA) − T (AB)) − 1

6(T (BAB) + T (ABA))

+ 1
12(T (BBA) + T (ABB) + T (AAB) + T (BAA))

+ 1
4(T (BBA) − T (AAB) + T (BAA) − T (ABB)) (2.17)

We can further simplify D above in Eq. (2.17) as

DEND ≈ 1
2(T (BA) − T (AB)) − 1

6(T (BAB) + T (ABA))

+ 1
12T (BBA) + 1

12T (ABB) + 1
12T (AAB) + 1

12T (BAA)

+ 1
4T (BBA) − 1

4T (AAB) + 1
4T (BAA) − 1

4T (ABB) (2.18)

Simplifying, we have

DEND ≈ 1
2(T (BA) − T (AB)) − 1

6(T (BAB) + T (ABA))

+ 1
3T (BBA) − 1

6T (ABB) − 1
6T (AAB) + 1

3T (BAA), (2.19)

and combining terms we obtain

DEND ≈ 1
2(T (BA) − T (AB)) − 1

6(T (BAB) + T (ABA)

+ T (ABB) + T (AAB)) + 1
3(T (BBA) + T (BAA)). (2.20)
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Now using Equation (2.17) to solve for Equation (2.16) we define

ϵEND =
N−1∑
i=0

[|Dij|] · P (0), (2.21)

an approximation for the total difference between the sizes of the infected compart-

ments after t time under the temporal and aggregate regimes, where we take the

element-wise absolute value of each entry to account for time-violating transmissions

that either under- or over-estimate the number of infections. We compute ϵMID the

same way, by finding the difference matrix of matrix exponential solutions for the

temporal and aggregate regimes after tA time.

DMID ≈
3∑

n=1

(βδtAA)n − (βδtAA+B)n

n! (2.22)

We solve for ϵMID the same way by taking ϵMID = ∑N−1
i=0 [|Dij|] · P (0), which esti-

mates the difference in infected nodes at time tA between the temporal and aggregate

regimes. Finally, we define the error ξA,B as the approximated contributed effect of

aggregating snapshots A and B on a spreading process with spreading rate β over

the durations 0 to δtA to δtB, defined as

ξA,B = (ϵEND + ϵMID)(δtA + δtB). (2.23)

The third-order approximation for ξA,B is shown compared to the full solution in

Fig. 2.S2 .
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Figure 2.S2 : Left: predicted terminal and midpoint error, ϵMID + ϵEND, over a range
of increasing βδt using 3rd order approximation. The ϵ values are compared with the
difference, from the deterministic solutions, between the temporal and aggregate networks
for two snapshots. Right: Predicted ξA,B values over a range of βδt values, compared against
the mechanistic analogue: the integral of the area between the temporal and aggregate
deterministic solutions. From the right hand set of panels it is clear that the error measure
ξA,B preserves monotonicity of rankings when using the integrated error.

Error Measure with First-Order Approximation and LSV Norm

To obtain the point estimates for the difference between number of nodes infected, we

solved for the estimate by essentially solving an initial value problem by taking the

dot product of the difference of the two matrix exponential solutions with the initial

vector of infection probabilities, and marginalizing over the resulting vector. In the
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main text we used a simpler first-order approximation, along with the largest singular

value (LSV) norm for the difference matrix that captured the difference between the

temporal and aggregate solutions. This solution is simpler, but less mechanistically

motivated, so in this chapter we validate that approach against the approach described

in the previous section. Namely, we check that using a first-order approximation and

matrix norm instead of third-order and initial-value problem (IVP) solution gives the

same results when used in the compression algorithm on the same data.

Once again, for this version of the model, we let D be the difference matrix

shorthand between the temporal and aggregate matrices for a pair of snapshots, and

want to compute D = exp(C) − exp(T (A+B)). We define DEND as the difference

matrix between the temporal matrix exponential solution using the BCH and the

aggregate solution, evaluated at the end of both snapshot durations, obtaining

DEND ≈ exp(C) − exp(T (A+B)) = 1
2[T (B), T (A)] (2.24)

where we kept only linear terms from the Taylor series expansion of the matrix ex-

ponential and the BCH solution for the temporal regime. Similarly, ϵMID becomes

DMID ≈ T (A) − βδtA
A+B = βδtA

(A− A+B) (2.25)

keeping only linear terms. Now we have defined the difference matrix D using a first-

order approximation, for DMID and DEND. Now we develop a way to quantify the

relative scale of each D. Instead of taking the sum of the result of the dot product

with P (0), an initial state vector, we instead take the largest singular value norms of
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DMID and DEND to capture the magnitude of each matrix. We define

ϵMID = ∥βδtA
(A− A+B)∥LSV (2.26)

ϵEND = ∥1
2[T (B), T (A)]∥LSV (2.27)

and then define the final error measure between snapshots A and B as

ξA,B = (∥DEND∥LSV + ∥DMID∥LSV )(δtA
+ δtB

) (2.28)

This way, we don’t have to define arbitrary initial conditions to solve for the effect

of the difference between solution regimes. Eq. (2.28) is the version used in the main

text.

Comparing Versions of the Error Measure

The approximation defined by Eq. (2.28) is different from the third-order approxima-

tion because it moves away from a mechanistic estimate. The following figures show

how the first-order approximation with the LSV norm still preserves the ranking of

error between snapshot pairs, and results in the same compression algorithm choices

as the third-order approximation. This analysis justifies why we chose to use the

simpler, first-order approximation in the main text.

Fig. 2.S3 shows the result of a comparison experiment for two separate networks.

The top panel of each experiment shows the true solution from the solution of the

differential equations of the sum of the difference in infected nodes at tA (switch

time) and tA + tB (end time) for increasing values of βδt in black. The red and purple

dashed lines compare the expressions ϵMID + ϵEND using the first-order and third-
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Figure 2.S3 : Comparison of first and third-order approximations of snapshot pair error:
Each pair of panels shows results on a different temporal network. The top panel shows the
true value of the difference in infected nodes at the mid- and end-point for the temporal and
aggregate solutions. Dotted lines show the respective approximations. The bottom panel of
each pair of figures shows the true solution integrated error compared to ξA,B using either
first or third-order approximation. As an approximation for the underlying system, the
first-order approximation is worse than third-order. However, as shown, as βδt increases,
the error measure ξA,B under the first-order approximation increases monotonically with
the true solution, validating its use as an appropriate approximation since the goal is to
rank relative error.

52



0 5 10 15 20 25 30 35 40
Rank of error (s, s + 1) using O(3)

0

10

20

30

40
Ra

nk
 u

sin
g 

O(
1)

Order 3 v Linear
max ranks for O(1): 5, O(3):5

0 5 10 15 20 25 30 35 40
Snapshot number s (time increments)

0

10

20

30

40

(s
,s

+
1)

order 3
order 1

0 2 4 6 8 10 12
Rank of error (s, s + 1) using O(3)

0

2

4

6

8

10

12

Ra
nk

 u
sin

g 
O(

1)

Order 3 v Linear
max ranks for O(1): 1, O(3):0

0 2 4 6 8 10 12
Snapshot number s (time increments)

0

50

100

150

200

250

(s
,s

+
1)

order 3
order 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Rank of error (s, s + 1) using O(3)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ra
nk

 u
sin

g 
O(

1)
 w

/ n
or

m

O(3) v O(1) w/ norm
max ranks for O(3): 0, O(1)+norm:0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Snapshot number s (time increments)

0

50

100

150

200

250

(s
,s

+
1)

order 3
O(1) w/ norm 2

Figure 2.S4 : Comparing the ranking of pairwise snapshot error using third-order and first-
order approximation, and using LSV norm vs. initial conditions solution for the synthetic
network data: Left panels show comparison of the ranking of pairwise snapshot error using
third-order and first-order approximation. The right panel shows the same comparison of
order approximation, using the LSV norm. Overall, the ranking of relative snapshot pair
error is preserved between the approximations, making either approximation a valid choice.
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Figure 2.S5 : Rankings of pairwise snapshot error using first vs. third order approxima-
tions with and without using the LSV norm for the empirical temporal network with 200
snapshots (left) and again after 25 compressions (right).

order approximations and LSV norm described in the preceding section. The figure

shows that, although the third-order approximation is a better literal approximation

for the number of infected nodes, the first-order approximation preserves the ranking

of snapshot pair error. Since collectively, these approximations are used to rank

the importance of snapshot pair chronology, the ranking is more important than the

approximation accuracy.
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Figure 2.S6 : Error from fully temporal solution compared between approximations for
the synthetic temporal network (left) and empirical temporal network (right): Each point
represents the integrated area between the curve of the compressed solution to the curve
of the original temporal solution, for the third-order, first-order, and first-order with LSV
norm approximation of ξA,B. All generally produce the same relative error.

This result is further substantiated by Fig. 2.S4 , which shows the ranking of snap-

shot pair error (ξA,B) using first-order vs. third-order approximations for progressive

sets of compressed snapshots from the synthetic data used in the main text. The

key takeaway here is that while the value of ξA,B changes slightly depending on the

approximation used, the general ranking of which pair induces the lowest error is the

same.

Lastly, Fig. 2.S5 shows the same ranking results for the empirical temporal data.

Starting with 200 snapshots, the left panel of Fig. 2.S5 shows the value and rank of

each ξA,B for the O(1) and O(3) approximations. After 25 compressions, the right

side panel of Fig. 2.S5 shows the value and rank of ξA,B for the resulting compressed

snapshots. It can be seen that again, the exact values of ξA,B depends on the approx-

imation, but the relative lowest ranked snapshot pair is generally consistent between

the two approximations.
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Finally, we test how the different approximations compare when ξA,B is used to

compress snapshots and the integrated error is measured from the new compressed

solution vs the temporal solution. Fig. 2.S6 shows that third-order, first-order, and

first-order with the LSV norm all produce comparable levels of integrated error when

used in the compression algorithm. Based on these results, we chose to select the

simpler, first-order and clean LSV norm to use in the computation of ξA,B presented

in the main text.

2.5.2 Data Analysis and Application Details

We used a data set of physical proximity contacts in a hospital [19] to apply our

compression approach. In this section we provide some further detail about the

data set. Also, we show the effect of pre-compressing the data on the results of the

compression algorithm. Pre-compression is defined by taking the raw temporal data

and aggregating time windows together to create the base layer of network data, since

many of the contacts are so fine-grained there is one contact per 20-second interval. In

the main text, we distributed the contacts evenly into 200 snapshots, each spanning

approximately 28 minutes. This choice was somewhat arbitrary, however, we found

that the level of pre-compression does not have a significant impact on the future use

of the algorithm as long as the pre-compression level is not too high (otherwise one

would forego the purpose of the compression algorithm). This section provides the

raw data analysis and the pre-compression analysis. Data analysis of the hospital

contact data used in the main text is shown in Table 2.S1 .
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Variable Result
0 num timestamps 9453
1 max timestamp 347640
2 min timestamp 140
3 mean number of contacts per timestep 3.43
4 variance of contacts per timestep 5.89
5 mean value of how often contacts repeat 28.467
6 variance of how often contacts repeat 4671.79
7 mean number of unique contacts 17.52
8 variance of number of unique contacts 238.40
9 mean duration between time steps 10.71

Table 2.S1 : Observational statistics for the hospital contact dataset

Pre-Compression Analysis

The hospital contact temporal data was pre-compressed into 200 snapshots before

applying the compression algorithm. We tested whether the results obtained by pre-

compressing the data was sensitive to the level of pre-compression. In this section,

we show that regardless of pre-compression level (up to a reasonable point), produces

the same motifs and generally the same temporal boundaries once the algorithm was

applied.

N Pre-compression level Average k Average q Average C
75.0 100 30.69 29.81 0.10
75.0 150 28.62 27.77 0.08
75.0 200 27.53 26.71 0.07
75.0 300 25.58 24.79 0.05
75.0 400 24.65 23.88 0.05
75.0 600 23.53 22.78 0.04
75.0 800 22.56 21.84 0.04
75.0 1000 21.51 20.80 0.03

Table 2.S2 : Network statistics for the pre-compressed snapshots at various levels
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Figure 2.S7 : Locations of resulting compressed snapshot boundaries using the algorithm
starting with different levels of pre-compression. Notice how more or less, the boundaries
positioning is maintained regardless of the pre-compression level.

1000
800

600
400

300
200

150
100

Pre-compression level

7500

10000

12500

15000

17500

20000

22500

25000

27500

In
te

gr
at

ed
 e

rro
r

Algorithm
Even splits

Figure 2.S8 : Integrated error (area between the solution curves for the compressed
network compared to the fully temporal solution) of the SI process on the compressed
snapshots using the algorithm using different levels of pre-compression. This error changes
as a function of pre-compression level. As shown, the algorithm still results in generating
a sequence of compressed temporal networks that perform better than even partitioning of
the snapshots.
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Table 2.S2 provides summary statistics about the pre-aggregated snapshots at

each pre-compression level analyzed. Fig. 2.S7 shows the temporal boundaries of

the resulting compressed snapshots when the algorithm is applied to compress the

pre-compressed snapshots into just 10 snapshots remaining. Fig. 2.S8 shows how the

overall integrated error (area between the solution curves for the compressed network

compared to the fully temporal solution) changes as a function of pre-compression

level.

Parameter Robustness Analysis
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Figure 2.S9 : Locations of resulting compressed snapshot boundaries using the algorithm
with different values of βδt for the empirical data set. Dashed lines show the resulting
SI process. Notice how the temporal boundaries of the compressed snapshots are similar
for similar values of β. We conclude that while β should be kept within a range that
corresponds with fast enough spread on the network to activate dynamics, but slow enough
to not saturate the network before the end of the epidemic process, but the precise value of
β is not important for the compression algorithm.
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Figure 2.S10 : Integrated error of the SI process (area between the solution curves for
the compressed network compared to the fully temporal solution) using different values of
βδt. We observe that regardless of the precise β value used for the compression algorithm,
the algorithm produces a series of compressed networks that respect the temporal dynamics
better than the sequence of evenly divided and compressed networks.

We also tested the sensitivity of the algorithm to variations in βδt values used

to parameterize the process underlying the compression algorithm. We performed

the same experiments as in the pre-compression sensitivity experiment, but as a

function of increasing βδt values. Fig. 2.S9 shows the temporal boundaries of the

resulting compressed snapshots when the algorithm is applied to compress 200 pre-

compressed snapshots into just 10 snapshots remaining, as a function of increasing

β. Along with the temporal boundaries, the temporal solution is shown, to illustrate

how an increase in β affects the solution and therefore the choices of the compression

algorithm. Fig. 2.S10 shows how the overall integrated error (area between the

solution curves for the compressed network compared to the fully temporal solution)

changes as a function of β. The algorithm still results in networks performing better

than even partitioning of the snapshots.
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Chapter 3

Predicting the diversity of early

epidemic spread on networks

Abstract

The interplay of biological, social, structural and random factors makes disease fore-

casting extraordinarily complex. The course of an epidemic exhibits average growth

dynamics determined by features of the pathogen and the population, yet also features

significant variability reflecting the stochastic nature of disease spread. In this work,

we reframe a stochastic branching process analysis in terms of probability generating

functions and compare it to continuous time epidemic simulations on networks. In

doing so, we predict the diversity of emerging epidemic courses on both homogeneous

and heterogeneous networks. We show how the challenge of inferring the early course

of an epidemic falls on the randomness of disease spread more so than on the het-

erogeneity of contact patterns. We provide an analysis which helps quantify, in real

time, the probability that an epidemic goes supercritical or conversely, dies stochas-
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tically. These probabilities are often assumed to be one and zero, respectively, if the

basic reproduction number, or R0, is greater than 1, ignoring the heterogeneity and

randomness inherent to disease spread. This framework can give more insight into

early epidemic spread by weighting standard deterministic models with likelihood to

inform pandemic preparedness with probabilistic forecasts.

3.1 Introduction

By the time of this writing, the COVID-19 pandemic had reached every corner of the

world. Public health efforts are now focused on identifying new clusters of outbreaks

and their risk of causing new epidemic waves, much like they did at the beginning of

the pandemic. As large outbreaks soared early on in a handful of countries, sporadic

clusters of confirmed cases dotted regions in the United States. Data surrounding new

clusters or waves tend to consist of low numbers of cases highly sensitive to noise,

sparking concern and uncertainty at the expected progression of the epidemic.

The first confirmed case of COVID-19 in the US was reported on January 21st,

2020 in the state of Washington [1]. Three subsequent cases were later identified in

Washington; two hospitalizations on February 19th [2], and two deaths on February

26th, one week later [3]. Then, on February 28th, a high school closed immediately

after one of its students tested positive for a strain that had been associated with the

January 21st case [4]. With limited knowledge of active cases, it was nearly impossible

to predict the current and future severity of the outbreak.

One critical question in Washington after over a month with only a handful of

detected cases, was whether this chain of events suggested a single tree of very few
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local transmissions, or multiple distinct introduction events from abroad. Despite

decades of disease modeling, the community was ill-equipped to answer this question.

The problem is challenging in part because of inadequate testing at the time, and also

because well-established disease models often operate on deterministic mechanisms

designed to describe the average behavior of large epidemics and not the random,

discrete nature of small transmission chains. The looming question of whether a local

COVID-19 outbreak would die off by itself or become a disaster, can only be modeled

using tools capturing the stochasticity, or randomness, of person-to-person contact.

To accurately model the potential outcomes of an epidemic based on limited case

data, tools that capture the random nature of disease spread along with the structure

of the population are required.

In this work, we analyze the diversity of early epidemic courses. In doing so, we

also hope to provide analytical tools to inform disease forecasts by accounting for the

heterogeneity and stochastic nature of disease transmission.

Since the introduction of mean-field epidemic models, deterministic models of

disease spread have continued to evolve in complexity and detail. Kermack and

McKendrick’s early work [5, 6, 7] gave rise to compartmental models, in which the

population under study is divided into two or more states. Perhaps the most widely

known of these models is the Susceptible-Infectious-Recovered (SIR) model, where the

population is divided into susceptible, infectious, and recovered states (or compart-

ments) and the trajectory of the sizes of each compartment can be tracked analytically

over time [8, 9]. The standard compartmental model assumes homogeneous mixing of

the population and is deterministic, meaning that a given set of initial conditions and

disease transmission rates always leads to the same expected outcome. A common ex-
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tension to compartmental models is to relax the assumption of homogeneous mixing.

One method for doing so is to derive mean-field equations for an epidemic process

over contact networks, thereby introducing heterogeneous structure into the popula-

tion [10]. Similarly, it is possible to partition the population based on traits such as

age, risk behaviors, or location and define how these partitions mix [11, 12, 13, 14].

While these approaches introduce more realistic contact behavior into a model, they

fail to account for the inherently stochastic nature of disease spread; something of

particular importance early in an outbreak.

Models based on stochastic processes address the shortcoming of deterministic

outcomes in the standard mean field compartment models. A commonly used ap-

proach is that of branching processes. Bienayme-Galton-Watson processes are one

widely used example, as they provide a good approximation of more general stochas-

tic epidemic models [15]. Beyond Bienayme-Galton-Watson processes, there exist a

number of extensions such as including population structure, multiple types of host-

s/pathogens, and considering time to be continuous rather than discrete [16, 17]. In

these branching process models the basic reproduction number, R0, the probability

of an outbreak, and the final proportion of population infected (in a “supercriticial”

model) are typically tractable to compute. While these are all important, a short-

coming of most branching models is the difficulty of tracking the trajectory of out-

breaks through time and knowing whether it matches the continuous time dynamics

of real epidemics. Stochastic differential equations are an alternative modeling ap-

proach that allow one to track outbreak trajectories, as well as often finding threshold

conditions for the occurrence of an outbreak or the existence of an endemic equilib-

rium [18, 19, 20]. Like all models, stochastic differential equations have drawbacks;
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the most relevant is standard formulations do not allow for stochastic extinction if

R0 > 1.

Another common approach in disease modeling is times series analysis, more sta-

tistical in nature than mechanistic models. This theory can be applied to assist

in estimating the parameters of compartmental models or to combine ensembles of

compartmental models to increase prediction accuracy [21, 22]. Independently of

compartmental models, time series analysis can be used to study covariates of disease

occurrence (e.g., weather), estimate the future variability in observed cases, or to

make epidemic forecasts [23, 24, 25]. A necessary requirement for the effective use of

many time series methods however is data. When facing sparse incidence numbers,

and in the absence of historical data, the methods become problematic and thus are

not suitable for emerging diseases.

Agent-based models are another family of models used for tracking epidemic pro-

gression, in which agents, or individuals in the population, are tracked throughout the

course of the epidemic. Agents are parameterized with individual attributes, captur-

ing the heterogeneity of the population and aspects from compartmental models are

used to categorize the state of each agent [26, 27]. While there is great power in ad-

justing various attributes for different epidemic conditions and environmental factors,

most of these models are computationally expensive and need a copious amount of

information to generate the entire collection of agents [28, 29, 26, 30, 27, 31], making

them ill-suited for modeling early epidemic spread with a handful of cumulative case

counts and sparsely available data.

Early in an outbreak, we often face the unique challenge of modeling disease spread

while taking into account the heterogeneity of the population and the stochastic
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nature of disease spread, including stochastic extinction, without substantial amounts

of data. The heterogeneous contact structure found in populations is accounted for

by network models, and a first approximation for a relevant contact structures in

a novel outbreak can be taken from past outbreaks of similar diseases. Including a

sufficient number of possible states will typically account for heterogeneity in host and

pathogen type. The randomness of transmission is modeled with stochastic processes,

many of which easily permit stochastic extinction.

The above considerations naturally lead to percolation theory, which can be used

to analyze stochastic compartmental disease models on networks. Percolation mod-

els unite contact heterogeneity and stochasticity under a single modeling framework

[32]. An underlying contact network acts as the substrate for disease to propagate

through, resulting in a directed network of transmission [33, 34, 35]. The result-

ing epidemic percolation networks can be analyzed using branching process theory

[36, 37] which model stochastic transmission between individuals using an underlying

offspring distribution. Branching processes are especially useful for early epidemic

modeling, as they allow for stochastic behavior of spread as well as stochastic ex-

tinction [38]. Specifically, the method of probability generating functions (PGFs)

can be used to analyze branching processes on percolation networks [37, 39, 38].

Consequently, there have been many recent applications of this framework designed

specifically for COVID-19 [40, 41, 42, 43, 44, 45].

The PGF formalism is traditionally used for estimating quantities that pertain to

the predicted end of an epidemic — such as the probability of infecting a macroscopic

fraction of the population and distribution of final outbreak sizes — but not how risk

and outbreak sizes change dynamically over time. Kenah and Robins show how mod-
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ified percolation models, epidemic percolation networks, has a final state isomorphic

to a network-based SIR models [33]. Most bond percolation frameworks differ from

SIR dynamics as SIR transmission events are correlated through the distribution of

the infectious period of each infected individual whereas percolation models assume

independent contacts and transmission events. More importantly, percolation models

integrate over time to map transmission dynamics (which occur in continuous time)

to discrete bond percolation (which occur in discrete time with a fixed probability of

transmission).

In 2009, Noël et al. [46] offered a novel method for tracking the stochasticity of

outbreak sizes by epidemic generations, allowing us to incorporate discrete time into

the percolation-framework model. In this paper, we show how the generation-based

PGF formalism also succeeds in tracking emerging epidemic size in continuous time,

by validating the PGF approach with event-driven simulations on networks. This

result allows us to use PGFs and early disease data to quantify epidemic risk and

survival probability.

3.2 Theoretical Analysis and Simulations

3.2.1 Probability Generating Functions

PGFs succinctly encode a probability distribution in a power series representation so

that the methods of power series analysis can be applied [47]. PGF theory naturally

extends to disease modeling, where the distribution under study encapsulates a dis-

ease transmission network, framed as a bond percolation problem where the bond
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occupation probability T is the probability of an infected individual infecting one of

their contacts over the course of the entire epidemic [37, 39]. Typically, this approach

is used to solve for the average behavior of the system; we can solve for quantities such

as the critical transmissiblity at which the entire connected population will become

infected, or the distribution of outbreak sizes. However, an increasing necessity of

disease modeling is to model early epidemic spread, analyzing early cases to predict

whether an outbreak will become large before it actually happens. In 2009, Noël et

al. [46] developed the epidemic PGF modeling theory further to model the sizes of

progressive epidemic generations, demonstrated in Fig. 3.1.

Figure 3.1: Schematic of generations of infection through a network. Each node’s
label corresponds to the epidemic generation in which it was infected. The initial infected
node is in generation 0, any nodes they infect constitute generation 1, and so on.

The foundations for both aforementioned generating function methodologies are

the same, beginning with the underlying contact network. In a contact network, we

represent a collection of individuals as nodes and their contacts between each other
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with edges. We say that two nodes are neighbors if they are in contact, i.e. connected

by an edge. A node’s degree is how many neighbors it has. The degree distribution

of a network is the probability distribution for the number of neighbors of one node.

Under an SIR disease modeling framework, nodes begin as susceptible, and become

infectious if it is infected by one of its neighbors, which occurs with probability T .

The framework introduced by Noël et al. uses PGFs to describe generations of

infection as piece-wise generating function, which can then be studied using branching

process techniques. First we introduce what an epidemic generation is. We say

a node belongs to generation g if it became infected via a neighbor belonging to

generation g − 1. Assuming an infinite-size network drawn from a specific degree

distribution (known as a configuration model), each chain of infections stemming

from an initial infected case, patient zero, can be considered essentially uncorrelated

with an approximately 0 probability of interacting. This allows every subsequent case

to treated as a node that was reached by following a random edge. This means each

node in each generation can be treated as independent from all other nodes in its

generation. Thus, for each node in generation g, the PGF describing the distribution

of cases that node will cause over the course of the epidemic is given by

Gg(x;T ) =


G0(x;T ) (g = 0)

G1(x;T ) (g > 0)
(3.1)

where Gg(x;T ) is the distribution, in PGF notation, of the secondary cases caused by

a single node in generation g. Now, we will provide the derivations used to obtain this

framework using the underlying network, generating function and branching process

theory.
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Using PGF notation, we will refer to the original underlying network degree dis-

tribution as G0(x), which we write as

G0(x) =
∞∑

k=0
pkx

k. (3.2)

The kth coefficient of Eq. (3.2), pk, is the probability of randomly choosing a node

with degree k from the network. The average degree of the network is denoted as ⟨k⟩,

derived by the first derivative of the generating function as

G′
0(1) = ⟨k⟩ =

∞∑
k=0

kpk. (3.3)

To study the progression of an epidemic, we are interested in the distribution of

infections from each subsequently infected node. Before introducing transmission

probability, we work first with the aforementioned degree distribution to understand

how many infections each node could cause through each generation. Assuming an

initial infectious node, patient zero, we know G0(x) is the distribution of contacts

for them, but that distribution is different for anyone patient zero infects. This

phenomenon is known as the friendship paradox; the degree of a node chosen by

following a random edge is on average, larger than the degree of the node selected at

random whose edge we followed. In this context, patient zero has a degree distribution

of G0(x), but the node who patient zero first infects has a degree distribution known

as the excess degree distribution, denoted as G1(x) in PGF notation. To obtain G1(x),

we are interested in the degree of nodes provided that we arrive there by following

the edge from one of its neighbors. So, this means the resulting distribution will

exclude that neighbor, reducing every node’s degree by 1, and multiplied by the
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number of ways they could have been reached, which is the original degree. This

algorithm surmounts to taking the derivative of G0(x), so that we have the excess

degree distribution

G1(x) =
∑

k(k + 1)pk+1x
k∑

k(k + 1)pk+1
=

∞∑
k=0

qkx
k (3.4)

and where the derivative is divided by the average degree of the network ⟨k⟩ in order

to normalize the distribution tuned to the original node. The coefficients qk represent

the probability of reaching a node with degree k from a randomly chosen edge.

Returning to the percolation problem, we incorporate disease transmissibility T

to transform the excess degree distribution into a secondary case distribution. The

probability that a single infectious node infects l neighbors given it has degree k, or

k neighbors, is given by

pl|k =
(
k

l

)
T l(1 − T )k−l (3.5)

From this we can derive the PGF for the number of infections caused by “patient

zero”, which we denote G0(x;T ) for short, given by

G0(x;T ) =
∞∑

l=0

∞∑
k=l

pkpl|kx
l

=
∞∑

k=0

k∑
l=0

pk

(
k

l

)
T l(1 − T )k−lxl

= G0(1 + (x− 1)T ). (3.6)

From G0(x;T ), G1(x;T ) can be calculated in a parallel fashion as G1(x) is from G0(x).

The PGF G1(x;T ) is now the probability distribution of the number of infections

caused by a single node, i.e., the secondary case distribution.

We now present how to study the evolution of the distribution of cumulative cases
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for the percolation model following Noël et al. Let s be the number of cumulative

cases at generation g and let m be the number of infectious nodes strictly belonging

to generation g. (Note that in this way, sg = ∑g
0 mg). We let the probability of having

s total infections by the end of the g-th generation with m becoming infected (and

thus being infectious) during that generation be denoted as ψg
sm [46]. This has an

associated probability generating function, given by

Ψg
0(x, y) =

∑
s,m

ψg
smx

sym (3.7)

over all s,m.

We know the distribution of infections following from a single infectious node in

generation g − 1 is generated by Gg−1(1 + (x − 1)T ) (from Eq. (3.6)). The PGF of

a finite sum of independent processes is the product of their PGFs, and as discussed

above, each node in generation g − 1 can be treated independently. Thus, if we

assume the state in generation g − 1 is given by the pair (s′,m′), then the probability

of spawning m new infectious nodes in generation g is generated by

∑
m

P (m|s′,m′)xm = [Gg−1(x;T )]m′ (3.8)

where the equality occurs as a result of the right side describing the probability of

m infectious nodes in generation g assuming m′ such nodes at g − 1 from branching

process theory.

For a given state (s′,m′) in generation g − 1, m new infections will result in

s′ +m cumulative infections in generation g. So, having m new infections occurs with

probability ψg−1
s′m′P (m|s′,m′), where the ψg−1

s′m′ term is the probability of being in the

73



state (s′,m′) at generation g − 1. Now, we can re-write the entire PGF for the state

space of (s,m) at generation g as

Ψg
0(x, y) =

∑
s,m

ψg
smx

sym =
∑
s′,m

ψg
smx

s′(xy)m (3.9)

=
∑
s′m′

xs′ ∑
m

ψg−1
s′m′P (m|s′,m′)(xy)m

=
∑

s′,m′
ψg−1

s′m′xs′ ∑
m

P (m|s′,m′)(xy)m

=
∑
s′m′

ψg−1
s′m′xs′ [Gg−1(xy;T )]m′

=Ψg−1
0 (x,Gg−1(xy;T )) (3.10)

This defines a recurrence relation when g ≥ 1 and we have Ψ0
0 = xy as the assumption

that there is only one initial infectious individual it must be that ψ0
sm = δs1δm1.

We also note that the probability of having s (cumulative) orm (current) infectious

nodes in generation g can be computed marginally from Ψg
sm(x, 1), given by

pg
s =

∑
m

ψg
sm and pg

m =
∑

s

ψg
sm (3.11)

respectively. The distribution of pg
s from Eq. (3.11) is our main quantity under study,

which is shown in Fig. 3.2, along with event-driven simulations to validate the theory.

3.2.2 Simulations of Continuous SIR Dynamics

For a realistic model of the spread of disease in a population, we simulate a stochastic

disease process of an SIR epidemic on synthetic contact networks in continuous time

[48]. We use an event-driven framework, which is advantageous for epidemic modeling,
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because it is much faster compared to a brute-force time-step simulation due to its

leveraging of the Markovian dynamics of infectious and recovery periods of individuals

[49, 50, 51]. Recall in the SIR model that nodes inhabit the susceptible, infectious,

and recovered states as the disease progresses, where nodes become infected if one of

their infectious neighbors transmits to them. The standard SIR model is governed

by two rate parameters; β, the rate per unit time of an infectious node transmitting

to other nodes, and γ, the rate per unit time of an infected node recovering. In a

continuous time event-driven simulation, infection and recovery are Poisson processes

occurring at rates β and γ respectively, and relate back to the percolation framework

by defining transmissibility T = β/(β + γ).

We draw a random network from a given degree distribution, and begin the sim-

ulation algorithm by assuming a random initial infectious node, patient zero, with

degree k0. Patient zero could either recover before transmitting to any of its neigh-

bors, or infect one or more of its neighbor nodes. The stochastic process governing the

behavior of a single infected node is the superposition of k̂+1 Poisson processes, where

k̂ is the number of susceptible neighbors, and with one extra process governing the

time until recovery. Say patient zero infects Neighbor 1, who has k1 neighbors. Then

with two infectious nodes, the stochastic process encompassing all possible events is

a Poisson process with rate (k̂0 − 1)β + k̂1β + 2γ, and so on as more nodes become

infected.

Each possible event given by the sub-processes is the first to occur with probability

i/(k̂β + γ) where i ∈ {β, γ}, with the Poisson process rate term from k̂ reducing if

an infection event occurs, and stopping entirely if the contagious node recovers. The

disease process for the whole population is a natural extension of that described
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above, with each node assumed identical apart from degree. The evolution of the

unmitigated disease process from here is intuitive, either eventually all the infectious

nodes recover or the whole connected population becomes infected.

Computationally, the above process is simulated by generating a random network

from a given degree distribution using a large enough number of nodes, N , that

k ≪ N . As we cannot simulate numerically on an infinite network, the best choice

for N is the largest value the numeric simulation can support. A node is randomly

selected to be patient zero, and the disease spread proceeds via stochastic event-

driven simulation, often known as the Gillespie algorithm [52]. Continuous time is

tracked using a random variable τ , known as the waiting time, which is exponentially

distributed with parameter the sum of the rates of all the potential infection and

recovery events. Each competing process is the first to occur with probability of its

own rate divided by the sum of all rates of that process type, as described by the

Poisson process above. The simulation is advanced via this algorithm until either

there are no more infectious nodes or until there are no more susceptible nodes, and

allows for obtaining the resulting evolution of the disease spread in terms of both

generations of infection and continuous time.

3.3 Results

We employ the generational size distribution theory to explore the evolution of epi-

demic size on a variety of network structures, and compare the generating func-

tion theory against continuous-time simulations. We use the event-driven simulation

framework so that we can track the progression of the epidemic in both continu-
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Figure 3.2: Time evolution of epidemics on homogeneous and heterogeneous
networks. We show the probability of having s cumulative cases by and including gen-
eration g for select generations. Panel (a) shows the results on a modified power-law
random networks with degree distribution given by pk = k−2e−k/10 with average de-
gree ⟨k⟩ = 1.79, average excess degree ⟨q⟩ = 3.04, β = 0.004 and γ = 0.001 such that
R0 = T ⟨k2⟩−⟨k⟩

⟨k⟩ = β
β+γ

⟨k2⟩−⟨k⟩
⟨k⟩ = 2.44. The smooth lines show the theoretical prediction

for the probability distribution of cumulative infections. The distributions are validated
by 75,000 simulations performed on 150 random network realizations with 10,000 nodes,
following the process outlined in Section 3.2.2. Panel (b) shows the results of equivalent
analysis and simulations on Erdős-Rényi random networks with ⟨k⟩ = 2.5, β = 0.004 and
γ = 0.001 such that R0 = 2.0.
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ous time as well as the generation sizes corresponding with the branching process,

which allows us to validate the theoretical distributions, as well as introduce a prelimi-

nary prediction for the expected continuous time emergence of successive generations.

Then, we use the PGF framework to measure the probability of an epidemic surviv-

ing, or continuing on, past an arbitrary generation, depending on the characteristics

of the network and disease.

3.3.1 Time Evolution on Homogeneous and

Heterogeneous Networks

In Fig. 3.2 we show the probability distributions of cumulative infections by the spe-

cific generation for two network models. It is noteworthy that this modeling method

holds for configuration model networks with varying types of degree distributions.

Here, we show the results on a modified power law network and an Erdős-Rényi (ER)

network both used in Ref. [46]. The ER network has mean degree and excess degree

⟨k⟩ = ⟨q⟩ = 2.5, while the modified power law has mean degree ⟨k⟩ = 1.79 and av-

erage excess degree ⟨q⟩ = 3.04, a more heterogeneous distribution. We demonstrate

that the distributions of outbreak size appear to be more a result of the stochastic

nature of the disease spread, rather than the structure of the network, though the

structure does play a role in the shape of the distribution.

Our results convey that there is not one clear trajectory of a typical large outbreak,

in contrast to traditional results with deterministic modeling. Instead, the stochastic

nature of epidemic size is captured by a long tail in the distribution of cumulative

cases over each epidemic generation. One unique aspect of our work is that we validate
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this result using continuous-time simulations showing the same shape and long tail in

outbreak size distributions as our analytical results. We do anticipate the simulated

distributions and analytical distributions to vary from each other due to a few factors

including the finite-size effects of simulated networks, and the fact that we compare

a discrete analysis with a continuous-time process, but the general behavior appears

consistent throughout the different generations.

We also find that on both the heterogeneous network and the homogeneous net-

work, there is a high probability of an outbreak going extinct before growing large,

however, if it does take off, the distribution levels off over the space of epidemic size.

That is to say, if indeed an epidemic takes off and has arrived at generation six,

via a transmission chain of length six, there is an almost equal probability of having

anywhere from 50 to 500 cumulative cases by the time generation six is reached. We

emphasize that these results display the unpredictability in early stages of epidemics,

even ignoring the difficulty of estimating model parameters, it is near impossible to

infer with much confidence how many infections there may actually be in the popu-

lation.

3.3.2 Generations of Infection in Continuous Time

While the behavior of the epidemic in our formalism is described by generations of

infection, most applications of disease models desire descriptions of the dynamics in

continuous time. We find early agreement from our model of generational infections

with a distribution in continuous time, described in terms of the expected time of

emergence of an arbitrary generation g. The agreement is surprising since one might

not expect a consistent relationship between a generation number and the expected

79



Figure 3.3: Time evolution of the active epidemic generations and emergence
times. Top panel (curves): average number of total and active generations at time t for
the modified power-law network with degree distribution pk = k−2e−k/10. Bottom panel
(curves): average number of active nodes belonging to each generation shown over time
to accompany the top panel. The tick marks in the top panel (and dotted vertical lines)
correspond to increments of g/⟨q⟩β, the predicted generational emergence times, and the
bottom tick marks (and solid vertical lines) correspond to the average empirical time at
which that generation g emerged, for an example network. If the average time of emergence
was greater than its respective g/⟨q⟩β value, that is, after the predicted time, the difference
is highlighted in green. If the average empirical time was less than that predicted, the
difference is highlighted in yellow.

time of its emergence given the observed heterogeneity of early spread in Fig 2. Yet,

by defining the emergence of generation g as the time its first member is infected,

we find a simple linear relationship that allows us to map the PGF framework to

continuous time.

We can show that the expected time of emergence of an arbitrary generation g is

given by

E[t(g)] = g

⟨q⟩β

where ⟨q⟩ = G′
1(1) is the average excess degree of the network. We arrive at this
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expression for E[t(g)] via a simple argument over the Poisson process governing how

nodes in generation g − 1 can lead to the first cases of generation g. Each node

of generation g − 1 can recover at rate γ but also has on average ⟨q⟩ neighbors

they can infect at rate β. Therefore, the first event around them will occur at a

combined rate α = ⟨q⟩β + γ and will lead to a case in generation g with probability

Tq = ⟨q⟩β/(⟨q⟩β + γ). The first infectious node in generation g − 1 can therefore

lead to the emergence of generation g after 1/α with probability Tq; if not, or the

second node in generation g − 1 could lead to the emergence of generation g with

probability Tq(1 − Tq) after 2/α (approximate delay between the first and second

node of generation g − 1 plus the expected time to generation g); and so on for

the third node and beyond. This sequence of possibilities can be summarized by an

arithmetico-geometric sum,

E[t(g) − t(g − 1)] = Tq

α

∞∑
k=1

(1 − Tq)k−1k

= Tq

α

1
T 2

q

= 1
⟨q⟩β

. (3.12)

In Fig. 3.3, we demonstrate in practice how the expected time of emergence of

consecutive generations falls in line with the predicted time measure. To show in-

tuitively why the we see this phenomenon, we show the time evolution of the active

epidemic generations. We track time in two ways; in continuous time following the

event-driven process discussed in Section 3.2.2, and also in terms of the expected time

of emergence of each generation g, in the form t = g/⟨q⟩β. We define a generation to

be active if it contains one or more nodes who are not recovered and have susceptible

neighbors at time t in the simulation. We illustrate the number of total and active
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generations over time, as well as the number of active nodes belonging to each gen-

eration, which helps clarify the roles each generation plays in causing the next wave

of infection over a given interval in continuous time.

Having an understanding of the time at which a generation will emerge acts as

a complement to the probabilities of extinction and cumulative cases discussed in

Sections 3.3.1 and 3.3.3. Equipped with the distributions describing the stochasticity

of outbreaks, the expected time mapping can be a tool for analysis of the dynamics

of the worst-case scenarios when an outbreak does occur.

3.3.3 Probability of Pandemics or Stochastic

Extinction

The PGF generational theory can also be used to measure the probability that an

emerging epidemic has a chance of dying off on its own, or “surviving”. Deterministic

models always predict that an epidemic will occur if R0 > 1, that is, if the average

number of secondary infections caused by an infectious individual is more than one.

In reality, there is a non-zero chance the outbreak will die off by chance, shown in

Fig. 3.4. Branching process models have been used in theoretical epidemiology for

estimating such probabilities [55, 56, 57]. However, simple branching process models

are Markovian in the number of active infections, m. This is problematic in an applied

setting as cumulative cases, s, is often the available data. Moreover, we show that

conditioning on “reaching” generation g, the probability of the outbreak going extinct

after generation g rather than becoming an epidemic is path dependent in the sense

that the value of s at g changes the extinction probability, shown in Fig. 3.5.
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Figure 3.4: Probability of epidemic survival as a function of contact structure.
The contour plot shows the initial probability of epidemic survival for negative binomial
distributions of infections over a range of possible R0 values (average transmissions per
case) and dispersion parameter k (inverse of heterogeneity). The box highlights estimates
for COVID-19 based on data from Wuhan, China [53]. We assume an epidemic generation
of g = 4 and s = 16 cases which corresponds to the epidemic growing from 1 case to 16
over 4 generations. Using a serial interval of 4 days, the average of the estimated range
for COVID-19 [54], this tracks to roughly over two weeks of spread. Similarly, in the state
of Washington, the first recorded case of COVID-19 occurred on January 21st, 2020 but
following cases were only identified on February 19th and increased to 18 by March 2nd.
This figure illustrates how these cumulative case data could have been used in real time
with our theoretical tools to estimate epidemic risk.

To utilize the extinction probabilities, we want to look specifically at the variable

ρg
s, the probability that given s cumulative cases at generation g that the epidemic

will go extinct, or die off, sometime afterwards. Given that the evolution of m occurs

as a branching process with the offspring PGF given by Eq. (3.6), one can easily

compute the probability of extinction of a single infection chain, pe, as the solution of

pe = G1(pe;T ) using branching process theory [38]. The distribution of probabilities
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of reaching (s,m) in the state space for each g is given by ψg
sm, as discussed in Section

3.2.1. We define a new distribution, that of the probability of the outbreak still being

in existence in generation g, by

ψ̃g
sm =



ψg
sm∑

s′,m′>0
ψg

s′m′
m > 0

0 otherwise

. (3.13)

Thus, ρg
s, the probability of the epidemic going extinct given it has arrived at s cases

by generation g is given by

ρg
s =

∑
m

ψ̃g
sm∑

m′ ψ̃g
sm′

pm
e . (3.14)

The probability of epidemic survival for an epidemic being active in generation g

with s cumulative infections is then given by 1 − ρg
s. We illustrate an example of how

the survival probabilities change depending on the underlying network and disease

parameters in Fig. 3.4.

3.3.4 Epidemic Probability and COVID-19 Data

We now apply the epidemic survival probability theory to early incidence of COVID-

19 cases in the US. This allows us to look at the evolution over time of public health

risk, while taking into account the stochastic elements of the early spread. We assume

a distribution of secondary infections parameterized as a negative binomial with R0,

the basic reproductive number, and k, the dispersion parameter of the contact network

[53]. Together, these parameters determine the average behavior of disease spread
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where k is responsible for the variation in secondary cases, in turn affecting the

likelihood of superspreading events [58, 59, 60]. A low dispersion parameter k (high

heterogeneity) means that a select few cases may cause the majority of secondary

infections [61], which in our framework here might correspond to a single case leading

to an extreme increase in cases in the next generation. For that reason, it is often

assumed that the early spread of an epidemic is highly sensitive to superspreading

events [62]. Yet, as shown in Fig. 3.2, heterogeneity in contact structure actually has

less of an impact on the distribution of outcomes than the inherent stochasticity of

transmission.

In Fig. 3.4 we show the probability of epidemic survival (that is, the probability of

an epidemic continuing to grow) with a fixed generation g = 4 and fixed cumulative

cases s = 16 over a range of R0 and k values, highlighting parameter estimates for

COVID-19 [61]. Despite the relatively low number of cases after several generations,

clearly affected by the lack of testing resources at the time, the chances of the epidemic

stochastically dying out were already close to a simple coin flip. In Fig. 3.5, we show

the inverse problems: fixing disease parameters and varying temporal variables. We

set R0 = 2.5 and k = 0.1, falling within the range of values for COVID-19, and track

seven US states over time to observe where their disease progression state falls in the

probability space of epidemic survival.

Guided by the results shown in Fig. 3.3, we proceed knowing that our model

predicts generations to emerge in linear increments of time. We use the serial interval

of 4 days, taken from the window for COVID-19 [54] to correspond with successive

generational emergence. We observe that several states hovered around a low prob-

ability of epidemic survival at low early cases, but very quickly crossed to a much

85



higher bracket where natural extinction of the disease spread is virtually impossible.

The states of Washington and Massachusetts each took only two generations to cross

from sub to supercritical epidemic survival probability, even derived from limited data

and poor testing at the time. The extraordinary leap in epidemic probability from

just one generation to the next explain, in part, why it was so hard for public health

systems to react and adapt to the spread of COVID-19.

3.4 Discussion

Temporal models of disease spread often fall in one of three categories. (i) Compart-

mental models that are deterministic in nature as they rely on ordinary differential

equations. Therein, uncertainty only stems from our imperfect knowledge of model

parameters, rather than from the inherent randomness of disease transmission. (ii)

Complicated agent-based models that lose the tractability of analytical models, re-

quire significant amount of data to parameterize and do not produce explicit likelihood

of outcomes. (iii) Time series analyses that can produce probabilistic forecasts. This

last approach can produce useful predictions by ignoring transmission mechanisms

or contact structure, but that perspective also precludes it from evaluating potential

interventions that affect individual parameters or contact structure.

In this paper, we have shown that analysis of branching processes often used to

only study the final state of epidemic models can actually combine the strengths of

these different approaches by including stochasticity, contact heterogeneity and even

individual characteristics [39, 33, 65]. The reason this framework is usually used to

solely predict the probability and final size of an epidemic is that the mathematical
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Figure 3.5: Probability of epidemic continuing on as a function of case counts
and time. As a simple comparison, we use early data from the COVID-19 pandemic
and show a selection of U.S. states following unique timelines from the first recorded case
onward. This simple visualization is not meant as a validation but only to explore how
quickly our predictions for the probability of the epidemic not dying off changes as an
epidemic grows. To calculate these probabilities, we use a negative binomial distribution
of secondary infections with k = 10−1, R0 = 2.5 along with data from the COVID-19
Repository by the CSSE at Johns Hopkins [63, 64]. The first data point for each state
shown correspond to the first date on which 1 or more cases were recorded. Raw data of
cumulative case counts are used, and plotted on the same range of epidemic generations for
purposes of comparison, despite an evident variability in the duration of generation length.
Using a serial interval of 4 days, progressive generations are shown along the horizontal axis
(generation two corresponds to 8 days, for example). On the vertical axis, the cumulative
case counts for each state are plotted. We see how a state’s proclivity to the epidemic taking
off changes over the course of successive generations. Several states such as California,
Massachusetts, and Washington had a lower probability of epidemic survival early on, then
crossed the band into a higher likelihood over a short time span. Although the data used
in this figure does not take into account factors such as missing count data, it serves as a
visualization of how sharply the interplay of generation of epidemic and cumulative cases
demarcate the probability of the epidemic continuing.

treatment involves integrating over contacts and therefore time [53]. However, we

provided a first demonstration that the predictions made over generations by the

branching process are actually very close approximation of continuous time epidemic
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dynamics on equivalent contact networks. This result alone justifies a large body of

work and creates a foundation for analytical, probabilistic, epidemic forecasts based

on PGFs.

Our probabilistic and temporal forecasts allowed us to uncover the diversity of

epidemic courses, in the form of an unusually broad distribution of potential trans-

mission trees over time. We have also shown that these flat distributions emerge

on both homogeneous (e.g. Erdős-Rényi graphs) and heterogeneous (e.g. scale-free)

contact networks. This phenomenon is therefore driven by the stochasticity of dis-

ease transmission rather than by the complexity of the contact structure. This broad

likelihood of early disease incidence justifies our use of a stochastic branching pro-

cess, whereas deterministic models would typically track only the average or expected

number of cases which is a poor description of flat distributions.

Our framework currently rests on a few assumptions, including that there are a

finite number of active generations at any given time and that the distribution of

contacts and transmission probability do not change over time. This first assumption

was tested in Fig. 3.3 where we show that a simple network-based serial interval

provides a great approximation for time of emergence of epidemic generations in the

continuous dynamics. Explaining both why and how we can align the generation-

based branching process with the underlying temporal dynamics.

Our assumption on the constant contact patterns and transmissibility provide a

great road map for future work. In Eq. (3.1), we formulate our PGFs on a per

generation basis, which would allow us to change these patterns over time to model

adaptive behavior or top-down interventions (e.g. lockdowns limiting contacts or

masks reducing transmissibility). Doing so would allow us to provide probabilistic
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forecasts not only of disease dynamics but also of the impact and timing of particular

interventions.

Importantly, our results on the diversity of epidemic courses highlight how little

information can actually be gathered from early incidence data. In Fig. 3.2, we see

that the same disease in the same population can be roughly as likely to produce 40

or 400 cases after 10 epidemic generations.

Finally, our results on epidemic survival show how quickly a situation can move

from an uncertain outbreak to supercritical exponential growth. Due to both the

randomness of disease spread and the imperfect COVID-19 testing protocols from

early 2020, most states in the US moved from below 20% survival probability of the

epidemic to above 80% in about two epidemic generations (2 weeks or less).

Altogether, our results stress the danger of justifying a lack of intervention with

slow trends in early disease spread data. Little can be learned about transmission

mechanisms and dynamics from the first few epidemic generations. The distribution

of epidemic courses is mostly driven by the inherent randomness of transmission,

and the window in which the dynamics settle into their subcritical or supercritical

behavior tends to be unfortunately narrow, which leaves little room for fast adaptive

responses.

Faced now with emergence of variants of COVID-19 around the world, the current

situation is often reminiscent of the scenario in the state of Washington during Jan-

uary of 2020 —sporadic clusters of cases with an unclear growth trajectory. We see

from the data in Washington, as well as many other states and countries, how quickly

cases explode and what that means for the likelihood of controlling the epidemic

without external intervention efforts. Slow initial disease growth does not preclude a
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rapid increase shortly thereafter.
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Chapter 4

Application of both models

Abstract

Stochastic models for disease spread on networks are useful because they quantify the

uncertainty associated with spread. One drawback is that branching process methods

which are powerful stochastic analysis tools for disease spread do not traditionally

provide solutions for the temporal dynamics of disease spread, and are more con-

cerned with quantities relating to the final state. In contrast, Chapter 2 introduced a

temporal network model for predicting how the disease spread process would change

depending on the temporal network. Here, we show a proof of concept for how tempo-

ral network theory could be used in conjunction with a stochastic branching process

to estimate probability distributions for the early generations of epidemic spread in

a network that is dynamic over continuous time.
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4.1 Probability Generating Functions on

Temporal Networks

The probability generating function framework for the generational evolution of dis-

ease spread on networks is useful for understanding the stochastic nature of the pro-

cess. It provides probability distributions for generations of infection to understand

the variability the course of the disease may take.

As useful as it is, the PGF framework requires a static network, in which the

generating functions are derived using power series representations of the degree dis-

tribution of the underlying contact network [1, 2]. As discussed in Chapter 2, net-

works often evolve over time as well, and these structural changes are important to

the overlying spreading process.

Interventions can be applied to the generational PGF framework by changing

something about the structure or dynamics at assigned generations. But to modify

the network at key continuous times would require a way to map from continuous

time to discrete generations, if possible. This is not a trivial task, as the relationship

between stochastic analysis models using branching process theory does not have a

well-defined relationship with continuous time.

Fortunately, we showed in Chapter 3 that we can define the expected continuous

time value of emergence of the first member of a generation roughly as E[tg] as a

function of the spreading rate β and ⟨q⟩, the average excess degree of the network.

This is different than the estimation for the size of the generation, just a continuous

time estimate of when the first member of generation g will be infected.

96



Therefore, we can use the continuous time partition of a given temporal network

to estimate for which generation g will be emerging at the start of that snapshot, and

then use the corresponding snapshot’s degree distribution to solve for the infection

distribution for the size of that generation.

The challenge that arises using given snapshot boundary times is that we end

up deriving generation values that are between integers. The problem here is that

the formalism is defined upon the generations having discrete values, otherwise the

branching process framework does not make sense. So, for the purpose of demonstrat-

ing how the framework could be applied in theory, we reverse-engineer an example to

reduce complications in this proof of concept.

Here we show a preliminary approach that seeks to bridge generational temporal

evolution with continuous time evolution, though it warrants much further research

as there are many parametric and structural considerations that are overlooked in

this simple application.

4.2 Direct Relationship between Gen-

erations and Continuous Time

We take a temporal network following the structure discussed in the results of Chapter

2 and derive the generational distributions to predict the early epidemic spread on

the temporal network by altering the network structure used in the model for deriving

each subsequent generation.

Some notation for this: Let gs be a continuous variable refer to the nearest gen-

eration at which snapshot s begins. gs might take on a value between generations,
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which can be corrected for later. Let ts be the starting time of snapshot s. Let ds be

defined by

ds = gs+1 − gs (4.1)

representing the number of generations spanned by snapshot s. We have

t1 = d0

q0β
(4.2)

t2 = d1

q1β
+ d0

q0β
(4.3)

tS =
S−1∑
s=0

ds

qsβ
(4.4)

Solving for dS, we have

dS =
(
tS+1 −

S−1∑
s=0

ds

qsβ

)
qSβ (4.5)

where gts=0 = 0, gts=1 = d0, gts=2 = d1 + d0, etc. Simply put,

gtS
=

S−1∑
s=0

ds. (4.6)

Also note that re-arranging Eq. (4.5) produces the simple relationship

tS+1 = dS

qSβ
+

S−1∑
s=0

ds

qsβ
=

S∑
s=0

ds

qsβ
(4.7)

where gtS
is essentially the generation emerging at the time of the beginning of Snap-

shot S.

The problem is, if given an arbitrary ⟨q⟩ and β, then some ds may be a non-integer,

making each gtS
also a non-integer value. Unfortunately, we can only build the gen-
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erating functions for consecutive integer values, or else cannot use the combinatorial

branching process approach.

For this example and proof of concept, we instead reverse engineer an example

where we set each desired duration dS, and each boundary time tS, and derive ⟨q⟩ from

the above equations. Then we create network snapshots with the derived q values.

Using this new temporal network with 5 snapshots, we show changing the degree

distribution to compute each new epidemic generation produces size distributions

that agree well with continuous time event-driven Gillespie simulations, in which the

network is switched at continuous time values tS the boundaries of each snapshot.

To generate 5 synthetic snapshots, we derive ⟨q⟩ for each one. Starting with

Eq. (4.5) again, we isolate qS, as

qS = dS(
tS+1 −∑S−1

s=0
ds

qsβ

)
β

= dS(
tS+1β −∑S−1

s=0
ds

qs

) (4.8)

which is noticeably a recursive equation.

For the proof of concept, we set all dS = 1 with the idea that each temporal

snapshot should span a single generation. The variable tS+1 represents the boundary

of each snapshot, beginning with Snapshot S = 0 with t0 = 0. Then we use Eq. (4.8)

to recursively define each excess degree for each snapshot qS. Beginning with S = 0,

we simply have

q0 = d0

t1β
(4.9)

with d0 = 1 (though it could be set to as many generations we expect to appear

in snapshot 0). which is simply the inverse of the standard equation introduced in
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Chapter 3 for E[tg=1] which was

E[tg=1] = 1
qβ

(4.10)

We then define an Erdős-Rényi network for each temporal snapshot with average

degree (which in the Erdős-Rényi case is the same as average excess degree) of qS, by

defining each snapshot network as

G(n, p) := G(n = 5000, p = qS/5000) (4.11)

since the average degree of an Erdős-Rényi graph is E[k] = N(p). A table of network

statistics for the five networks created in shown in Tab. 4.2 .

4.3 Numerical Approach for Solving the

Generating Functions

In the original method in Chapter 3, to solve for Eq. (4.12) we followed this math-

ematical framework to develop Ψg
0(x, y). To do so computationally, we used an ap-

proximation of the infinite network assumption and solved for the phase space Ψ

recursively.

In order to apply a new degree distribution at each generation g, we modify

the numerical computation process at each recursive step. Here we describe the

numerical approximation process for solving for the generating functions for both the

original problem and the temporal one where we intervene with new networks at each
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generation.

Recall that the generating function for each generation g is defined as follows:

Gg(x;Tg) =



G0(x;T ) g = 0

G1(x;T ) 0 < g < I

G1(x;TI) g ≥ I

(4.12)

and that ultimately, we solve for the phase space

Ψg
0(x, y) =

∑
s,m

ψg
smx

sym (4.13)

and marginalize over m to obtain distributions over cumulative number of infections

s for a given generation g.

As the distribution Ψs,m is a distribution across two variables, it can be viewed as a

matrix where each entry of the matrix as probability of having the ordered pair (s,m),

which represents that phase space state of having s current infections in generation

g, m of which belong to generation g. Note this implies the rows give total infections

while the columns account for active infections in the given generation. Using Ψg
sm

as a matrix representing the coefficients of Ψg
0, we have

Ψ0
sm =


0 0 .... 0

0 ψ0
s=1,m=1 = 1 ψ0

s=1,m=2 = 0 ....

0 ψ0
s=2,m=1 = 0 .... 0

 (4.14)

One can see that for generation g = 0, as the formalism is defined, the only non-zero

entry in Ψ0
sm is entry (s,m) = (1, 1). Then we need to find Ψ1

sm from this, beginning
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the recursion. We present only this one case as the algorithm applies for future g in

a similar fashion.

Recall that we can write

∑
s,m

ψg
smx

sym =
∑
s′m′

ψg−1
s′m′xs′ [Gg−1(1 + (xy − 1)Tg)]m′ (4.15)

where ∑
m

P (m|s′,m′)xm = [Gg−1(1 + (xy − 1)Tg)]m′
. (4.16)

In words, the left hand side of the equation describes the probability distribution

over m new infections in generation g given the prior state (s′,m′) in generation

g − 1. This is intuitively derived from the right hand side, in which we know that

Gg−1(1 + (xy − 1)Tg) describes the generating function for the number of infections

caused by a single node in generation g − 1. Since there are m′ infectious nodes in

generation g − 1, the convolution of m′ copies of the generating function generates a

PGF describing the probability of all infections caused in the next generation g by

all the infected nodes together.

Given

Gg−1(1 + (xy − 1)T ) = a1x
1 + a2x

2 + a3x
3 + ....+ alx

l

we let l index the number of infections caused by a single node, and let al is the

probability of that happening.

The outcome of the convolution

[Gg−1(1 + (xy − 1)T )]m′
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for a fixed m′ will be its own generating function, where we index the powers in

terms of m, the number of infections caused in generation g by m′ infected nodes of

generation g − 1. This new generating function looks like

∑
m

P (m|s′,m′)(xy)m = ρ1x
1 + ρ2x

2 + ...+ ρmx
m

where each ρm can be expressed as

ρm =
m′∏
i=1

ai

and the ai’s come from the equation above for Gg−1. Further, each index power m

will be the sum of exactly m′ l’s so that we have

∑
m

P (m|s′,m′)(xy)m = ρ1x
(l1+...+lm′ )=1 + ρ2x

(l1+...+lm′ )=2 + ...+ ρmx
(l1+...+lm′ )=m.

With s′ fixed, the equation above describes a probability generating function over

two variables, m, and m′, the number of new infected nodes in generation g and

g − 1 respectively. We store the generating function coefficients over m for each

value of m′ in a matrix, M , where the rows are in m′ and the columns in m. Thus,

each row represents the coefficients of the generating function for a given s′,m′ for
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∑
m P (m|s′,m′)(xy)m. M looks like

M =



1 0 0 . . . 0

ρ10 = a0 ρ11 = a1 ρ12 = a2 ... ρ14 = am

ρ20 ρ21 ρ22 ... ρ2m

...

ρm′0 ρm′1 ρm′2 ... ρm′m


(4.17)

In theory this matrix would be infinite, as our degree distributions are unbounded

and the formalism is for an infinite network. For computational purposes, we use an

appropriate truncation, to 400 coefficients.

Returning to solving for Ψg
sm, we have

Ψ1
sm =



0 0 ....

ψ1
s=1,m=0 ψ1

s=1,m=1 ....

ψ1
s=2,m=0 ψ1

s=2,m=1 ....

...


(4.18)

The problem reduces to finding ψ1
sm for each pair (s,m). We use the following algo-

rithm, which holds for all g ≥ 1.

The forward recurrence for Ψ is given by

Ψg(x, y) =
g−1∑
s′,m′

ψg−1
s′m′xs′ [Gg−1(1 + (xy − 1)T )]m′

To generate each (s,m) matrix entry of Ψg
sm, we

• Assign s and m of interest.
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• Derive s′ such that s = s′ +m

• The s′th row of Ψg−1
s,m (a whole generating function) corresponds to the contri-

butions ψg−1
s′m′ from (4.18)

• The mth column of M corresponds to all possible states of m′ in gen g − 1 for

which m became infected in gen g.

• Thus, the contribution for (xsym) term in Ψg
s,m is given uniquely by the fixed

s′ = s′
f and fixed mf over all possible m′’s from the previous state,

⟨ψg−1
s′

f
,1, ψ

g−1
s′

f
,2, ...ψ

g−1
s′

f
,m′⟩ · ⟨

M [1,mf ]

M [2,mf ]
...

M [m′,mf ]

⟩ =
max m′∑
m′=1

ψs′
f

,m′M [m′,mf ] (4.19)

This is the algorithm used to compute the PGF’s recursively for each generation.

In this case, where we are dealing with a temporal network that switches networks at

each generation, at each step we re-compute Gg−1(1+(xy−1)T ) using the new excess

degree distribution from the new snapshot. Then we re-compute M according to the

process outlined above, and from there can solve for Ψg
sm using Ψg−1

sm and the new M

defined by the new network snapshot. The idea here is that the m′ infectious nodes

exist, but switch who their contacts are at the emergence of the next generation,

causing the next m infections by using the links in the new network to infect the next

generation.
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4.4 Results on Erdős-Rényi Networks

We defined the following parameters for the disease model in Tab. 4.1 . Transmissi-

bility T is equal to β/(β+γ). Approximation length is the length of the vectors used

to hold the generating functions and derived matrices, which represent infinite-length

distributions but since the P (k → ∞) → 0, an approximation of 800 yields relatively

good approximations of the resulting distributions. High transmissibility was used

to consider recovery time much slower than the rate of contagion, and to match the

values used in Chapter 3.

Infection rate β Recovery rate γ Transmissibility T Approximation length
0.05 0.001 0.98 800

Table 4.1 : Model parameters for temporal PGF application

We set the temporal network to have five snapshots. For simplicity in this proof

of concept, we say that each snapshot will be the substrate for one generation of

infection. That is, dS = 1,∀S. Then we derived ⟨q⟩ for each snapshot using the set of

durations dS, tS, the start times for each snapshot, and β. After deriving each ⟨q⟩, a

random Erdős-Rényi network was generated using Python’s NetworkX package and

the five networks are summarized in Tab. 4.2 . Since the networks are all ER, they

have low clustering and low degree assortativity, because nodes are connected to one

another at random. While the ER networks are not very realistic of real populations

or contact patterns, we use them for this simple example.

We compare the resulting theoretical distributions of generations of infection to

simulated distributions of generational infection as in Chapter 3. In each simulation,

at each snapshot time tS from S = [0, 1, 2, 3, 4], the network used in the simulation
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Snapshot number N ⟨q⟩ Assortativity Clustering tS dS

0 5000 3.99 -0.023789 0.000631 0 1
1 5000 1.32 0.031216 0.000000 5 1
2 5000 4.03 -0.022286 0.000579 20 1
3 5000 1.35 -0.011554 0.000000 25 1
4 5000 2.01 0.016646 0.000120 40 1

Table 4.2 : Temporal network snapshot metadata

switches to the next snapshot. At each change, the status of any currently infected or

recovered node is preserved, but their contacts change according to the adjacency list

of the new snapshot network. The results comparing the theoretical and simulated

distributions are compared in Fig. 4.1. A depiction of the time series for the spreading

process is shown in Fig. 4.2. The standard deviation of the distribution of infected

nodes for each continuous time point (approximated into 1,000 time points within

t = 0 to t = 50) are shown as shaded regions around the mean. Also shown are the

time boundaries of each temporal network time boundary tS, and with them the red

vertical lines show the average time that the corresponding generation from g = 1

to 5 emerged. It can be seen that generations 1 through 3 emerge very close to the

switching of the first 3 snapshots, however, generation 4 and 5 emerge much earlier

than expected. This may be because the estimation of E[tg] may be more complex

than anticipated and warrants further work.

4.5 Challenges and Future Work

A number of challenges arose while attempting to apply the generating function

formalism to a temporal network with time boundaries defined in continuous time.

First, if the disease spreading rate parameters make it so the generations emerge over
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Figure 4.1: Temporal PGF validation against simulations: Top panel shows the genera-
tional probability distributions, bottom panel shows accompanying simulations. Networks
had 5000 nodes and 10,000 simulations were performed. See Chapter 3 for simulation de-
tails.

multiple snapshots, then without further aggregating snapshots together there is no

way to account for both (or several) snapshots in the computation of the generation

size distribution, which takes in only one static degree distribution. Therefore, β

needs to be high enough or the other parameters modified enough that generations

are either one-to-one with snapshots at minimum, or there are multiple generations

per snapshot.

The main difficulty with the approach overall is that we had to reverse engineer an

example in which discrete generation values corresponded with the snapshot times so

that exactly one generation was expected to emerge per snapshot, by designing specific

networks with ⟨q⟩ that were derived from the desired durations. With empirical

temporal networks, solving for the corresponding generation gS that emerges when
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Figure 4.2: Average time-series of 5000 simulations and average generation emergence
times. Green shading implies the simulated generation emerged after the prediction, yellow
shading implies the simulated generation emerged before the prediction.

the network switches to a new snapshot likely will be a non-integer value. This

presents an open question into how best to approximate which snapshots go with

which generation, when generation values are integers by the nature of the framework

itself.

The approach was also tested on other classes of networks with heterogeneous

distributions, like a Barabási-Albert model [3] which is generated using a preferential

attachment algorithm, which had similar results and also the same challenges of

needing to reverse engineer an example such that generations emerged alongside the

snapshot switch times.
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4.6 Discussion

As discussed, heterogeneities exist on both the population structural level as well as

the temporal level, with networks changing structures over time. Chapter 2 presented

a way to handle temporal changes in the network, but still yielded a deterministic

estimate for disease spread. Chapter 3 showed how it can be useful to use a stochastic

framework in order to obtain probability distributions for the early spread of disease,

instead of point estimates representing the expected state of the system over time. We

used a generational framework to discretize the evolution of the disease and present

distributions for the sizes of generations.

We have examined how to find distributions of generations of infection for a disease

spreading process on a temporal network. This concept is extremely useful because it

addresses uncertainty in the disease modeling process in two main ways: First, using

temporal networks as the substrate allows for more realistic dynamic analysis as

many real-world networks, particularly human and animal contact networks, display

temporal dynamics.

Second, in studying the evolution of spread over a network, it can be helpful to

know more than just the average trajectory of the number of infected individuals.

The average is not always the best description of the system, as shown in Chapter

3, because there can be a wide array of possible states at each generation and this is

helpful for epidemic preparedness and mitigation.

Third, it can be helpful to model population changes along with modeling the

temporal variations in spread. Combining these two modeling approaches outlined

in the prior chapters could lead to a powerful epidemic modeling tool that takes
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into account the temporal structure of both the underlying network and the disease

propagation process, capturing uncertainty, probability, and precision of the network

and disease dynamics.
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Chapter 5

Conclusion

The entirety of this body of work was conducted during the ongoing COVID-19 pan-

demic beginning in early 2020. While the nature of the models presented is primarily

theoretical, the need for infectious disease models that go beyond temporal averaging

and end-state summary statistics became clear as the pandemic unfolded. This thesis

presented two such models that go beyond some of the assumptions made in tradi-

tional disease models, highlighting the importance of heterogeneous contact patterns

both in terms of dynamic changes in contact patterns and structural differences.

All models of complex systems must make assumptions about some components

of the underlying system, or else they risk having any practical usability and inter-

pretability. That is why it is important to have a suite of disease models at hand,

as there is no perfect model to answer every question. In this thesis, two models

were introduced that break away from two common assumptions that are commonly

used in idealized disease models. While removing these assumptions make for more

complex models, they produce realistic results when applied to appropriate problems.

First, Chapter 2 presented a novel framework for analyzing temporal network
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data. This framework diverges from the common assumption of a static contact

network underlying a disease model. Specifically, most established network-based

disease models assume an annealed network with a fixed degree distribution, allowing

for interactions to be considered between random individuals who’s degrees are drawn

from a fixed degree distribution, but specific node identities are arbitrary. In contrast,

this model uses a quenched network, where the adjacency matrix of each network is

fixed. Using a deterministic framework for a spreading process, the model determines

the viability of compressing temporal network data into static, aggregate networks,

to reduce the dimension of a data set while maintaining the temporal dynamics that

are integral to the spreading process.

This work presented challenges that warrant further research. Namely, the com-

pression algorithm developed and presented in Chapter 2 is useful, but does not have

a clear way to determine when to stop compressing data. In that sense, an optimal

stopping point has not been determined.

In Chapter 3, we discuss results based on a relatively recent stochastic disease

model, which uses probability generating functions to derive probability distributions

for the sizes of epidemic generations as the disease progresses through the network.

This model relieves the assumption that the typical, or average, trajectory of a disease

is a good descriptor of the disease dynamics. Sometimes, as we showed, there is

actually a very broad distribution of possible trajectories, which is crucial knowledge

for preparing for the initial stages of disease spread.

One of the primary challenges that stands out in the probability generating func-

tion model is that it is difficult to develop a rigorous link between continuous time

evolution of disease spread under a stochastic framework. In Chapter 3, it was shown
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that roughly the expected time of emergence for an epidemic generation has a rela-

tionship to continuous time intervals defined by properties of the network and the

disease dynamics, but the relationship is not well defined. Chapter 4 provides a proof

of concept for how temporal networks may be incorporated into the stochastic frame-

work by deriving the relationship between epidemic generations and continuous time,

but this attempt involved challenges such as the inevitable difficulty of dealing with

discrete-time generations rooted in branching process theory and continuous time dy-

namics. There is much room for further investigation for how the parameters of a

network and disease parameters relate to the continuous time evolution of a stochastic

process.

Overall, this thesis introduced novel ways of looking at disease spread on net-

works with dynamic and structural heterogeneity. The temporal network compression

framework can be used to further the development of data compression efforts that

respect the network data itself by focusing on how heterogeneous contact patterns

affect an overlying process. The generating function model contributes to the field of

stochastic network models, focusing on the variability in the early temporal evolution

of disease spread instead of focusing on properties of the theoretical final state. Both

models offer tools to deal with modeling emerging disease spread when large amounts

of data are available but long-term trajectory is unknown, a situation that is all too

familiar now and necessitates the development of reliable modeling frameworks.
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