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ABSTRACT 

 

 

Digital medicine promises to improve healthcare and enable its delivery to rural 

and underserved communities. A key component of digital medicine is accurate and robust 

remote patient monitoring. For example, remote monitoring of biomechanical measures of 

limb impairment during daily life could allow near real-time tracking of rehabilitation 

progress and personalization of rehabilitation paradigms in those recovering from 

orthopedic surgery. Wearable sensors have long been suggested as a means for quantifying 

muscle and joint loading, which can provide a direct measure of limb impairment. 

However, current approaches either do not provide these measures or require unwieldy 

wearable sensor arrays and/or in-person calibration activities that limit their use. In this 

thesis, I advance the use of muscle synergy functions, which leverage the synergistic 

relationship within a group of muscles, to reduce the complexity of wearable sensor arrays 

and overcome the current need for an in-person visit to a human performance laboratory 

for calibration. Surface electromyography (EMG) and kinematic data were recorded from 

leg muscles and segments of nine healthy subjects during walking. Subject-general muscle 

synergy models were validated using the leave-one-subject-out method for 4 different pairs 

of input muscle model sets using filtered EMG data. The effect of adding kinematic data 

(angular velocity) from thigh and shank segment locations was investigated. The average 

correlation between true and estimated excitations was 96% higher when angular velocity 

data was included in the 4-muscle input model set. The estimated excitations informed 

muscle activations with 6.7% mean absolute error (MAE) and 43% variance accounted for 

(VAF) averaged across all muscles when kinematic data was included in the model, and 

7.3% MAE and 43% VAF without kinematic data. These results lay the groundwork for 

developing muscle synergy functions that no longer require in-person calibration, paving 

the way for completely remote studies of muscle and joint loading. 
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CHAPTER 1:  INTRODUCTION 

1.1. Wearable Sensors for Remote Gait Analysis 

 

The remote health monitoring revolution is driven by the ability to collect data in robust 

ways. Wearable sensors have long been suggested as a means for measuring human 

movement [1,2]. Consumer demand for lightweight, wearable devices such as 

smartwatches has reduced the cost and bulkiness of sensing and computational technology. 

This has greatly increased the broad span of possibilities for acquiring human movement 

data from many different populations (e.g. [3-6]). The applications of wearable sensors for 

remote gait analysis are exciting and innovative. Wearable sensors have the ability to 

collect data about patients’ muscle function and activity levels during walking without a 

visit to their clinician’s office nor self-reporting, as self-reported levels of activity often 

differ from actual levels of activity [7]. 

The use of surface electromyography (sEMG, EMG) signals is an emerging technique 

in gait analysis and wearable sensor based remote patient monitoring to measure the 

excitations of muscles [8]. sEMG has been used for decades to evaluate neuromuscular 

responses during a range of activities and develop rehabilitation protocols. Surface 

electromyography combined with kinematic and kinetic data is a useful tool for decision 

making of the appropriate methods needed to treat patients and is an important parameter 

for a dynamic assessment of muscle strength in gait analysis [9]. 

For example, Multiple Sclerosis is a chronic neurodegenerative disease. People with 

Multiple Sclerosis (PwMS) often experience ankle joint contractures which results in the 

inability to dorsiflex their feet. This can lead to a decline in performance of daily balance 
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challenge activities like gait and increases their risk of falls (e.g., [3,10-14]). Gait 

impairments are commonly assessed using functional tests such as the timed-up-and-go, 

but these tests lack the sensitivity to detect changes in gait quality [15]. Using sEMG to 

measure muscle activity of dorsiflexor muscles such as the tibialis anterior can reveal 

increased or delayed peaks in muscle activation patterns and be used to inform 

rehabilitation [16].  

Additionally, fear of reinjury is an important factor in determining who returns to sport 

following an anterior cruciate ligament reconstruction (ACLR). Fear of reinjury is a 

psychological response to injury that can negatively affect rehabilitation outcomes, 

including preventing a successful return to sport [17]. Athletes with fear of reinjury may 

reduce their participation in physical activities where they can potentially reinjure 

themselves. Due to the extended time of inactivity, cautious feelings and muscular atrophy 

caused by the injury, this often results in stiffened movement patterns and lowered strength 

and range of motion when returning to dynamic tasks. The combination of pain, reduced 

activity and muscle weakness is also directly associated with compensation patterns and 

favorable adaptations. EMG can be used to measure muscle activity in the quadriceps 

muscles to look for signs of weakened performance and monitor muscle and joint loading. 

Tracking muscle weakness alone via EMG can give insight into loading patterns and 

restore athlete’s confidence in their muscle function (e.g., [4,18,19]). Then, evaluations can 

be done to determine if athletes should be evaluated for psychological and emotional 

consequences of injury in addition to the physical compensations as they appear to be 

related [20]. Lastly, crouch gait is characterized as reduced strength which causes excessive 
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ankle dorsiflexion, knee and hip flexion and is common in patients with cerebral palsy 

(CP). As it worsens over time, sEMG can be used to measure muscle activity in the lower 

extremities and track progression of these symptoms [21]. 

EMG can be measured with low profile wearable sensors like Biostamps (Biostamp, 

MC10, Lexington, MA, USA) that adhere to the skin and do not require any additional 

wiring. There are many advantages of understanding muscle activation patterns in both 

healthy and impaired populations. However, traditional EMG approaches require 

instrumenting many muscles. This process often requires patients to come into a human 

performance laboratory, which isn’t always feasible. Other challenges include limited 

access to these laboratories, as there are relatively few in the U.S., and the cost of 

assessments in a performance lab.  

The most widely used wearable sensors are inertial measurement units (accelerometer 

and gyroscope packaged together). Inertial measurement units (IMUs) are small and 

lightweight, which make them a convenient and practical choice for mobile measurements 

outside the laboratory. Recent advancements have further facilitated new opportunities to 

utilize this technology for remote gait analysis [22]. Simple systems involving a single 

accelerometer have been used to detect various temporal parameters such as stride length, 

step count, cadence, and walking speed [23-27]. More complex systems have been created 

with arrays of electromyography sensors, accelerometers, gyroscopes, and goniometers to 

measure segment and joint kinematics and estimate muscle forces amongst other uses (e.g., 

[4,18,28-32]) 
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1.2. Motivation to Study Movement 

Walking is a basic human movement. For the general population, in order to get from 

one location to the next, there is going to be walking involved. Studying walking helps to 

understand Central Nervous System (CNS) communication, i.e. how the brain controls and 

coordinates these movements by sending neural signals to the body. When these neural 

pathways are disrupted, results can manifest in ways that negatively impact someone’s 

ability to control their own body. This information can be used to advance research in the 

biomedical field and current remote health monitoring techniques. 

It is important to study how people walk because gait adaptations can give us insight 

into the physiological, neural and psychological adaptations someone makes to adapt to 

their environment in both healthy and impaired populations [3,14]. This is done by 

observing spatio-temporal gait parameters such as muscle activation timing, walking 

speed, cadence, step duration and stride length [23-25]. All measurements which can be 

taken inside a motion capture lab when a person is outfitted with wearable sensors and 

reflective markers. Studying these parameters reveals patterns among populations with 

certain neuromusculoskeletal disorders such as Multiple Sclerosis (MS) or Parkinson’s 

Disease [33,34]. Four common clinical applications of wearable sensors are identifying 

movement disorders, assessing surgical outcomes, identifying reduced loading and 

walking instability [22].  

There is increasing potential for wearable sensors for remote gait assessment to enable 

interventions during the post-operative recovery period. Remote monitoring of 

biomechanical measures of limb impairment during daily life could allow near real-time 
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tracking of rehabilitation progress and personalization of rehabilitation paradigms in those 

recovering from orthopedic surgery. 

There is an increasing need for coordination of care via remote health in rural and 

underserved communities. Rural Vermont residents’ health is challenged by healthcare 

costs, chronic disease management and policy decisions differentially funding for health 

services in rural communities [35,36]. Wearable sensors and other digital medicine 

technology may be especially beneficial in providing rural health clinics with the 

technology to remotely monitor the health and environmental exposures of their patients. 

The deployment of such technologies require accurate and robust solutions. 

 

1.3. Executive Overview 

Wearable sensors have long been suggested as a means for quantifying muscle and 

joint loading, which can provide a direct measure of limb impairment. However, current 

approaches either do not provide these measures or require unwieldy wearable sensor 

arrays and/or in-person calibration activities that limit their use [37]. The remaining 

sections of the thesis illustrate the background information (Chapter 2), prior work 

(Chapter 3) and data collection methods (Chapter 4).  

In this thesis, I advance the use of muscle synergy functions [38-40], which leverage 

the synergistic relationship within a group of muscles, to reduce the complexity of wearable 

sensor arrays and overcome the current need for an in-person visit to a human performance 

laboratory for calibration. The goal of this work is to reduce the number of wearable sensors 

required for remote monitoring of joint and muscle loading. In the first Aim, subject-

general muscle synergy models were validated using the leave-one-subject-out method for 
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4 different pairs of input muscle model sets using filtered EMG data. In the second Aim, 

the effect of adding kinematic data (angular velocity) from thigh and shank segment 

locations was investigated. The focus of Chapters 5 and 6 are the results and discussions 

of Aims 1 and 2 respectively. Lastly, Chapter 7 includes the concluding remarks and next 

steps for this work and discusses the project in which this work is to be deployed for 

commercialization. This work lays the groundwork for developing muscle synergy 

functions that no longer require in-person calibration, paving the way for completely 

remote studies of muscle and joint loading. 
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CHAPTER 2: BIOMECHANICS AND MUSCLE FUNCTION 

2.1. Muscle Function and Activity 

Muscle function is defined as one’s ability to be able to contract their muscles at 

the time they intend to, to perform the movements they intend to. Muscle activity (or 

activation of muscles) is the contraction. It is measured by how much force one can exert. 

Clinicians and physical therapists use muscle function and activity to understand how joints 

and muscles are loaded during activities of daily living, especially while recovering from 

an injury or surgery such as an anterior-cruciate ligament (ACL) repair [4,18,29,41,42]. 

When the body performs a motor task, the CNS excites muscles to develop forces that are 

transmitted by tendons to the skeleton to direct the action. Muscle excitations alone provide 

clinical insight to motor control [2]. For example, muscle activation patterns are a result of 

the timing of different neurons firing to activate groups of muscles when completing a 

specific movement. Following pain or injury, neuromuscular inhibition of these neurons 

may develop. This results in changes to the control and function of the affected area [43]. 

The long-term effect of this can have a negative impact on a patient’s quality of life.  

Studying muscle function also helps to understand muscle growth and 

strengthening of muscles during exercise and rehabilitation [44]. Depending on the 

technology they have available, athletes and personal trainers use muscle strength tests as 

a way to gauge strength or endurance and identify gaps in training to inform training plans 

[42,45]. 
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2.2. Gait Adaptations 

Gait adaptations describe how a persons’ gait changes as people adapt to their 

physical limitations. Conditions such as aging, injury or neurodegenerative disorders 

reduce the capacity for generating muscle force. In turn, people compensate to 

accommodate their limitations to their lifestyle. Changes in gait such as reduced walking 

speed and step length and increased double support time are well documented in literature 

and by clinical observation but not well understood [10,27,46-48]. Gait adaptations can 

give insight into the physiological, neural and psychological adaptations someone makes 

to adapt to their physical capacity in both healthy and impaired populations because 

adaptations that can be measured may be markers of disease. Recent studies suggest that 

different NMS adaptations underlie the resulting kinematic and kinetic patterns of the 

lower extremities during gait. Impairments such as knee pain, stiffness, and quadriceps 

weakness as a result of knee osteoarthritis influence compensatory actions which cause 

functional limitations. Wearable sensors can track such kinematic changes in patients while 

they go about their daily life. 

 

2.3. Muscle Synergies 

The CNS recruits muscles to work together to generate the complex movements 

of the human body. To reduce the complexity of this recruitment process, synergistic 

muscle groups are often recruited together. Muscle synergies refer to a low-dimensional 

representation of multiple EMG time-series of this phenomena. A single muscle can be 

part of multiple synergistic muscle groups, and a single group can activate various muscles. 



9 

 

Muscle synergies describe the activation of a subset of muscles that contribute to a 

particular movement, thus reducing the dimensionality of muscle control. Muscle synergy 

functions describe the synergistic relationship between a subset of muscles [38]. Muscles 

in different synergistic groups work together at specific activation timing to be able to 

coordinate the movement observed when someone walks. For example, Figure 1 is the knee 

flexor and extensor synergistic muscle groups. They are the groups of muscles responsible 

for flexion and extension of the knee during walking. Studying muscle synergies can give 

insight to how the muscles are recruited by the CNS since this recruitment process is not 

well understood [49]. We can also learn how this recruitment might change when someone 

has a neurodegenerative disease like MS, or if someone is going through gait retraining 

after, for example, a knee replacement. 

Figure 1:  

Knee flexor (left) and extensor (right) synergistic muscle groups responsible for flexion 

and extension of the knee during walking. 
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2.4. Neuromusculoskeletal Modeling 

One aim of neuromusculoskeletal models is to estimate or predict muscle forces, 

joint moments, and/or joint kinetics from neural signals (EMG). Muscle activation 

dynamics govern the transformation from the neural signal to a measure of muscle 

activation. Muscle contraction dynamics characterize how the muscle activations are 

transformed into muscle forces. Given a model of the musculoskeletal geometry, joint 

moments can be estimated from aforementioned forces. Lastly, the equations of motion 

allow joint moments to be transformed into joint movements [50]. This process is described 

in Figure 2. Figure 3 is an example of a model depicting the musculoskeletal geometry of 

the lower extremities. When data is collected using motion capture technology in a human 

performance laboratory, the original model skeleton is scaled using the precise placement 

of the reflective markers so that the patient’s geometry can be captured accurately [51]. 

These models are used to create simulations of movement to allow the study of different 

neuromuscular conditions, analyze athletic performance, and estimate muscle and joint 

loading of the musculoskeletal system [52]. 
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Figure 2:  

Overview of the forward dynamics approach to neuromusculoskeletal modeling to 

estimate muscle forces and joint moments given the neural signal (EMG) [50]. 

 

 
 

 

Figure 3:  

Example of a NMS model of the lower extremities created in OpenSim [52]. 
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CHAPTER 3: PRIOR WORK 

3.1. Prior Work: Subject-Specific Muscle Synergy Model 

Advanced machine learning techniques such as regression have been utilized as a 

means to reduce the number of electromyography sensors necessary for estimating muscle 

activation time-series data  [37,38] . Regression models are developed from a large number 

of inputs and observations and can be viewed as a function approximation problem, such 

that a function among a well-defined class approximates a target function in a task-specific 

way [53]. Regression techniques have the ability to capture the relationship between 

wearable sensor inputs and biomechanical time-series outputs.  

Gaussian Process Regression (GPR) is the machine learning model that was 

chosen to model the muscle synergy functions. GPR is a nonparametric, Bayesian approach 

to regression that does well with small datasets. Covariance functions are used to define 

the similarity of two data points and describe how much two random variables change 

together (their covariance) with varying separation. Another advantage of GPR is that it 

models the variance of the estimate, which is suitable for wearable sensor frameworks [54]. 

The novel developments in [38] include the subject-specific Gaussian process 

model of muscle synergy functions to estimate unmeasured muscle excitations using only 

a subset of EMG data. Figure 4 is an overview of the muscle excitation estimation 

procedure. Excitations for six muscles were estimated from four muscles (called the input 

muscles) with a mean absolute error (MAE) less than 5% of the maximum voluntary 

contraction (MVC). These estimated excitations informed muscle activations with less than 

4% MAE and 89-93% variance accounted for (VAF). 
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Figure 4:  

Visual overview of muscle excitation estimation procedure from [38] where there are 

four measured excitations input into the synergy functions to estimate the six unmeasured 

output excitations. 

 

 
 

A detailed analysis of a number of different modeling choices was also examined 

by testing every possible combination of four-, three-, and two- muscle input sets. The best 

muscle input sets were determined by which combinations of muscles had the stronger 

correlations (r > 0.67) compared to the rest of the possible combinations. Other 

performance statistics (RMSE, VAF, etc.) were also considered [38] in ranking input 

muscle sets. The performance of the Gaussian process stationary covariance function 

(squared exponential) and non-stationary one were also compared - the stationary one 

performed better in almost all aspects so only that was included in the analysis. Lastly, the 

relationship between window size and performance was investigated. Window size is the 
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length of the sliding cutout of a time sequence of data. The best input window structure 

and muscle input sets were determined using a custom heuristic (z-score averaging method 

[38]) for ranking different models. 

 

 

3.2. Gap Analysis 

In this thesis, I advance the use of muscle synergy functions by creating subject-

general models, which leverage the synergistic relationship within a group of muscles, to 

reduce the complexity of wearable sensor arrays and overcome the current need for an in-

person visit to a human performance laboratory for calibration. This is a continuation of 

the current subject-specific [38] approach. In a recent systematic review, most studies 

present subject-specific models (80%) and 33% of studies explored task extrapolation [37]. 

Subject-general models have the potential to generalize performance across healthy and 

impaired populations. This thesis contributes to the research needed to better understand 

how these regression models generalize across individuals in a task-specific way (walking) 

[55].  

Subject-specific models require in-person calibration activities that limit their use. 

Additionally, compared to subject-specific models, subject-general models generalize 

better across populations. Many studies suggest that the eventual users of their remote 

monitoring systems are expected to be people with clinical impairment [37]. However, 

training a subject-specific model on a person who cannot properly activate their muscles 

may impact the training efficacy of the model. A subject-general model could then instead 

be trained on a spectrum of levels of impairment for any given clinical population. 
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Whenever data collection sessions occur in the lab, the instrumentation process 

can take up to an hour. However, it is known that when we are doing our own palpations 

and placement, and checking for good signal quality, we’re going to get good high quality 

data. Challenges we currently face collecting this data includes the need for lots of sensors. 

New approaches that can provide the same quality data but with less sensors to simplify 

the process and save time are necessary, as data collected in laboratory-controlled settings 

are often not a good representation of how someone truly moves during their daily life. 

Patients are more motivated to wear sensors when it doesn’t impact their daily life and is 

easy to manage/incorporate into their daily routine. The complete set of measured and 

estimated excitations could be used to drive EMG-driven forward dynamics to compute 

muscle and joint loading. Wearable sensors that someone can wear at home combined with 

subject-general models are part of the solution to this. 

3.3. Defined Aims 

The goal of this thesis is to reduce the number of wearable sensors required for 

remote monitoring of joint and muscle loading by creating subject-general muscle synergy 

models using Gaussian process regression to replicate the performance of the current 

subject-specific approach and fulfill the gaps stated above. 

 

This objective can be further specified by the following:  

1. Compare the performance of the subject-general models against the current subject-

specific approach. 

2. Explore the effect of adding kinematic data to the model.  
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These two aims will be discussed further in Chapters 5 and 6 and have the potential to 

advance wearable-sensor based remote gait analysis techniques and performance 

monitoring. Both utilize new approaches for estimating unmeasured muscle excitations 

using only a subset of EMG data.  

From prior work, it is known that a higher amplitude of a gyroscope signal (angular 

velocity magnitude) is associated with the swing phase of the gait cycle [56]. Providing the 

model with information about what phase of the gait cycle the subjects are in provides 

additional information to solve the function approximation problem. Different muscle 

synergies are activated at different phases of the gait cycle because someone has to recruit 

different muscles for each individual movement during walking. Providing the model with 

this information is another way for it to learn which synergies, and thus muscles, may or 

may not be activated at a given time. When the angular velocity magnitude is of interest, 

gyroscopes do not require precise placement on a patients’ part, so the combination of 

fewer EMG sensors combined with the addition of gyroscope sensors make for practical 

remote deployment. 
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CHAPTER 4: DATA METHODS 

4.1. Participants and Data Collection 

Data were collected from a total of sixteen healthy subjects (55% male, age: 21+/-

1 years) in the motion capture lab at the University of Vermont. The goal of the study was 

to build a dataset characterizing human movement of healthy persons performing various 

activities of daily life. The study was approved by the University of Vermont Institutional 

Review Board (#18-0518). Participants for this study were recruited from flyers posted 

around the community and at the University of Vermont. To be eligible for the study, 

participants had to be between the ages of 18 and 50 with no history of injury or 

neurological disorder affecting mobility or balance and had to be able to perform typical 

daily activities without assistance.  

Participants were brought into the motion capture laboratory and provided written 

consent to complete an array of tasks. Surface electromyography (sEMG) data (BioStamp 

nPoint, MC10, Inc., sampling frequency: 1000 Hz) were continuously recorded from 10 

muscles on the right leg: tibialis anterior (TA), peroneus longus (PL), lateral gastrocnemius 

(LG), medial gastrocnemius (MG), soleus (SOL), vastus medialis (VM), rectus femoris 

(RF), vastus lateralis (VL), biceps femoris (BF), and semitendinosus (ST). Electrode 

placement was according to SENIAM recommendations [57]. Inertial Measurement Units 

(BioStamp nPoint, MC10, Inc., sampling frequency: 1000 Hz) continuously recorded 

angular velocity from the thigh and shank. Sensor locations are illustrated in Figure 5.  

Participants performed several muscle-specific maximum voluntary contraction 

(MVC) trials and walked for one-minute at a self-selected walking speed on a level 
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treadmill. The average walking speed was 0.84+/-0.13 m/s and the average stride time was 

1.31+/-0.22s. Following a visual sEMG signal quality check, all data for seven subjects 

were removed as there was no clear signal during walking for at least one muscle and only 

the nine subjects remaining with the highest quality EMG data were used in the analysis. 

Figure 5:  

Anatomical diagram of EMG and IMU sensor placement locations on cartoon leg on the 

front (left) and back (right) view of the right leg. IMU sensors are illustrated in light grey 

and EMG sensors are illustrated in dark grey with corresponding labels of the sensor 

location names. 
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4.2. Signal Processing Techniques  

4.2.1. Electromyography Signals 

Muscle excitations were computed from raw sEMG data using methods common 

for estimating muscle force [29]. Data were digitally high-pass filtered at 30 Hz to remove 

low frequencies and any vertical shift in the data, rectified to produce a positive signal, 

low-pass filtered at 6 Hz to remove high frequency noise, and normalized by the maximum 

value across the walking trial and maximum voluntary contraction (MVC) trials, where it 

is represented as a percentage of the maximum effort contraction. All muscle excitation 

time-series were initially resampled to 250 Hz in Chapter 5 and further resampled to 100 

Hz to reduce the number of inputs to the machine learning model. 

Figure 6:  

Electromyography signal from a subject’s medial gastrocnemius during walking, before 

filtering.  
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Figure 7:  

Electromyography signal from a subject’s medial gastrocnemius during walking, after 

filtering. 

 

 

4.2.2. Gyroscope Signals  

The magnitude of the angular velocity signal was calculated, low-pass filtered at 6 

Hz, and normalized to compute the vectorwise z-score and rescaled to be between 0 and 1 

so it is scaled similarly to an EMG signal after it is filtered. All angular velocity signals 

were resampled to 100 Hz to reduce the size of the model input structure. 
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Figure 8:  

Gyroscope signal from a subject’s lower leg (shank) segment during walking, before 

filtering. 

Figure 9:  

Gyroscope signal from a subject’s lower leg (shank) segment during walking, after  

filtering. 
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CHAPTER 5: SUBJECT-GENERAL MUSCLE SYNERGY MODELS 

5.1. Problem Statement 

The objective of the first aim is to compare the performance of the subject-general 

models against the current subject-specific approach. Compared to subject-specific 

models, subject-general models generalize better across populations because they are not 

person-specific, such that all of the data used to train and test a given model are taken from 

the same subject. This initially requires full instrumentation and in-person calibration 

activities in order to deploy it remotely. For impaired populations such as people with MS, 

HD and PD who rely on a caregiver and those living in rural or underserved areas, this visit 

might not be feasible. With subject-general, the model would be able to be trained across 

a range of functional levels of impairment so it could capture a broader spectrum of any 

given disease population.  

Figure 10 is an overview of the leave-one-subject-out method for training and 

testing a subject-general model. The subject-general model has a similar framework to the 

subject-specific model in that it is trained on data from the beginning of the walking trial 

and tested on data from the end. The difference is that it is trained on data from every 

subject except one, and that is the one it is tested on. This is also known as “leave one 

subject out” and it will iterate as many times as there are subjects. This analysis is task 

specific and muscle specific and will focus solely on a walking task. 
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Figure 10:  

Visual overview of how the subject-general model works.  

 

 

 

5.2. Methods 

For the first aim, a direct comparison of the general model was to be made to the 

specific model, so it was important to keep as many other factors as possible the same as 

in [38]. Hyperparameters such as stopping criteria and downsampling frequency were kept 

fixed. The window size, input muscle sets and covariance function which were identified 

as optimal were used. 

The script used to train and evaluate the model was reconfigured so it would 

accept multiple inputs across a user-defined number of subjects instead of just one. It was 

validated to be working properly by including 2 copies of the same subject for the model 

to be trained and tested on. The model’s performance was close to perfect, which was to 

be expected. It is important to note that this analysis was solely for testing that the changes 

made were working properly and was not included in the final results. 
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The subject-general model was tested on nine subjects for the best 4-, 3-, and 2-

input muscle sets. For the four-muscle input set, which would be the BF, PL, SOL, and VL 

to estimate the MG, LG, TA, ST, VM and RF. The three-muscle input model used the BF, 

PL, and SOL to estimate the MG, LG, TA, ST, VM, RF and VL. Lastly, the two-muscle 

input model used the LG and SOL to estimate the MG, TA, ST, VM, RF, BF, PL and VL. 

Chapter 4 describes the data collection and signal processing methods. All EMG signals 

were downsampled to 250 Hz to reduce the sample size and explore the performance of the 

data for frequencies commonly used in remote monitoring. The input window size was set 

to 1500ms as specified, which represents the size of the sliding window. The number of 

functional iterations (i.e. stopping criteria) was set to 50 iterations [54]. In some cases, 

muscles being evaluated were able to reach true minima before 50 iterations were 

completed. Lastly, the model was trained on 25% (20-45%) of data from the first half of 

the walking trial and tested on 25% (55-80%) of data from the second half. 

The subject-general model was also tested on nine subjects for a 1-muscle input 

model. SOL was chosen as the single muscle input because it was the only muscle that had 

been included in every optimal muscle input set. 

 

5.3. Results 

The subject-general model was evaluated using four performance metrics 

common for evaluating biomechanical time series: Pearson’s correlation coefficient (r) 

percentage of variance accounted for (VAF), root mean square error (RMSE), and mean 

absolute error (MAE). RMSE and MAE are scaled to be in units of percentage of MVC. 
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Each metric was computed for each muscle-specific synergy function corresponding to 

each muscle in the estimated set by comparing the estimated excitations with the true 

excitations in the test set as done in [38]. Figure 11 is an example of the performance of 

the medial gastrocnemius (MG) muscle synergy function for subject 1 during a 14.5 second 

sample of the walking trial. This muscle synergy function was chosen for individual 

analysis because it had the highest correlation between the true and estimated signal. The 

black line is the true EMG signal, and the red line is the estimated one, in millivolts (mV). 

The data in Table 1 are the reported outcomes for the MG muscle. The correlation (r) is 

38% lower than the correlation reported for the subject-specific model.  

As the number of input muscles decreases, the MG performance metrics vary. For 

the 2-muscle input model, r increases so it is only 31% lower than the subject-specific 

model. The results of the 3-muscle model and there was a 35% difference. Lastly, for the 

1-muscle model (including the SOL only), r was reported to be 0.55, equivalent to the 4-

muscle model. 
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Figure 11:  

Results of the true vs. estimate signal of the MG muscle for the 4-muscle input model for 

Subject 1. 
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Table 1:  

Summary statistics for MG muscle for 4-, 3-, 2-, and 1- muscle input subject general models 

and the results of the subject-specific model in parentheses to compare, apart from the 

single muscle model. 

 

Muscle Model RMSE MAE r VAF 

4-Muscle Input 0.14 (0.07) 0.09 (0.05) 0.55 (0.89) 0.58 (0.88) 

3-Muscle Input 0.14 (0.07) 0.09 (0.05) 0.58 (0.89) 0.61 (0.87) 

2-Muscle Input 0.13 (0.06) 0.09 (0.04) 0.64 (0.91) 0.66 (0.9) 

1-Muscle Input 0.14 0.1 0.55 0.59 

 

Figure 12 is a summary of the statistical results for the 4-muscle input model 

across all subjects for each muscle excitation that was estimated and how they compare to 

the subject-specific results. These five muscles were commonly estimated across all muscle 

input sets, so they were chosen to be used to analyze results across different models. The 

reported VAF, RMSE, and MAE values are the average across all subjects for each muscle. 

The darker hue is the results averaged across all subjects for the subject-general model, and 

the lighter hue is the specific model with r on the right-hand side for context. 
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Figure 12:  

Visual summary of the statistical results for the 4-muscle input model across all subjects 

for each muscle excitation that was estimated and how they compare to the subject-

specific results (RMSE and MAE values are expressed in units percentage of MVC). 

 

 

 

5.4. Discussion  

With the need for a way to reduce the complexity of wearable sensor arrays and 

conduct muscle and joint loading studies remotely, the results presented above suggest that 

methods similar to these could fulfill that need. In Figure 11, it can be seen that the muscle 

activation peaks are lower for the estimated signal than the true signal, however this is 

useful for clinical purposes because the estimated signal could then be used to detect 

activation at specific timing because the peaks are clear and identifiable.  
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The MG muscle was chosen to compare across models in Table 1 because it is 

activated at every step in a healthy population. It can be seen that the MG has the strongest 

correlation between the true and estimated signal in the 2-muscle input set (r = 0.64). This 

was true for the specific model as well. Aside from the MG, most correlations decreased 

as we introduced a smaller number of muscles into the input muscle set. The SOL was 

chosen for the 1-muscle input set because it is the only muscle that was included in every 

other input muscle set. The statistical characteristics show promising results as the 

correlation between the true and estimated signal was equivalent to that of the 4-muscle 

model (r = 0.55) and it should be explored more using other muscles. In Figure 12, it was 

common for the VAF to have the greatest difference between the general and specific 

models. In literature, subject general models appear to frequently result in performance 

decreases [58,59]. This may indicate that the modeling or data sampling techniques may 

need to be investigated further.  

Different selection criteria for the input muscle sets may be considered for future 

work. The results for the MG muscle support that there is a way to systematically choose 

muscles that are close in proximity to the ones we are interested in estimating. I believe the 

MG muscle’s performance was better for the 2-muscle input set because it was the only 

model that included the LG muscle, which is close to the MG and contracts at similar 

timing. This could also be done by choosing muscles based on what we know about 

different muscle characteristics in humans such as PCSA and the pennation angle. The 

muscles chosen should also change depending on the activity. This information could be 
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used to inform the future work of exploring a single muscle model in combination with 

kinematic data. 

In conclusion, these results are promising for the deployment of  technologies 

used to estimate muscle forces and joint loading, such as the one discussed in Chapter 7, 

meeting rural healthcare needs and driving neuromusculoskeletal modeling. 
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CHAPTER 6: EFFECT OF KINEMATIC DATA 

6.1. Problem Statement 

The objective of the second aim is to explore the effect of adding kinematic data 

to the model in addition to the electromyography data. As discussed in Chapter 3.3, from 

prior work it is known that a higher amplitude of a gyroscope (angular velocity) signal is 

associated with the swing phase of the gait cycle. Figure 13 on the right is a concept plot 

of the shank segment angular velocity in deg/s with the stance and swing phase highlighted, 

and a visualization of the thigh, shank and foot segments to illustrate the direction the limb 

is moving on the left [60]. It is important to note that the angular velocity from the thigh 

segment and shank segment are going to differ. Angular velocity of the shank segment is 

the most positive mid-stance phase and the most negative mid-swing phase. Figure 13 also 

includes a depiction of what the vertical ground reaction force would look like in walking. 

The points at 0% and 60% gait cycle represent the heel-strike and toe-off events 

respectively. Acceleration happens just after the toe-off event when the foot starts to 

accelerate in the forward direction, and mid-swing occurs when the foot passes the 

contralateral foot. Deceleration happens just before the starting of the next cycle when 

muscles prepare to stabilize the foot on the ground [61]. Figure 14 is an example of 3 strides 

measured from the shank segment with the stance phase labeled in blue. 
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Figure 13:  

Conceptual plot of the lower limb segment angular velocity during stance and swing 

phase [60]. 

 

Figure 14:  

Angular velocity of the shank segment during three walking strides with the peak angular 

velocity between two blue lines which highlight swing phase. 
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In Chapter 5, the goal was to directly compare to results reported in [38] so no 

changes were made to the model hyperparameters. In this aim, parameters are tuned to 

achieve better performance than the subject-general models without kinematic data under 

the same conditions.  

 

6.2. Methods 

For the second aim, the goal was to observe the effect adding kinematic data to 

the subject-general model had on the results and use that information to tune the 

hyperparameters and increase the performance compared to the subject-general model 

without kinematic data in the training set. A new data importer and processor had to be 

created so raw data from the electromyography and gyroscope sensors could be loaded and 

processed separately. Data were processed as described in Chapter 4.2.  

For the initial analyses, a 5-subject subset of the full dataset was used so the model 

didn’t take as long to run. The subject-general model was tested using the leave-one-

subject-out method as described in Chapter 5 on five subjects, then nine subject, for the 4-

muscle input set (including kinematic data) only which includes the BF, PL, SOL, VL, 

shank and thigh gyroscope signals to estimate the MG, LG, TA, ST, VM and RF. It is 

important to note that the kinematic data was to never be included in the unmeasured 

muscle set because we are not interested in predicting gyroscope signals. The window size 

was kept constant throughout each analysis because 1500 ms allows the model to see an 

additional half stride at the beginning and end of the gait cycle for predicting the current 

excitation. Lastly, the model was trained on 50% (10-60%) of data from the first half of 
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the walking trial and tested on 25% (65-90%) of data from the second half to include more 

data in the training set.  

Dataset reduction techniques were explored to increase processing speed and 

overcome computer memory challenges. Until this point, all signals were being 

downsampled to 250 Hz. This was further reduced to 100 Hz as mentioned in Chapter 4. 

As discussed in Chapter 5, the number of functional iterations (i.e. stopping criteria) was 

set to 50 iterations and in some cases, muscles being evaluated were able to reach true 

minima before 50 iterations were completed. Given the changes described above, this was 

no longer the case and it had to be increased multiple times. The number of observations 

represents the maximum number of observations the dataset is reduced to in the training 

set. It was initially thought that reducing the number of gyroscope sensors to solely the 

shank and increasing the observations as much as possible would yield the best 

performance. This also indicated the original number of observations was now too small 

for the number of inputs the general model has now. Additionally, models including both 

gyroscope sensors performed better than only the shank, so both gyroscopes were used in 

the final analyses. Reducing the sampling frequency to 100 Hz allowed for the optimal 

number of observations for this dataset to be identified and number of iterations to be 

maximized without decreasing the processing speed.  

The performance of the subject-general model including kinematic data in the 

training set with the new parameter settings were compared against the performance of the 

subject-general model without kinematic data under identical conditions before moving to 

the full dataset. 
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6.3. Results 

The subject general models were evaluated using four performance metrics 

described in Chapter 5. As discussed in Chapter 6.2, dataset reduction techniques were 

explored to identify the optimal parameters for the 5-subject and 9-subject model, with and 

without kinematic data. Table 2 describes samples of the 5-subject trials taken to determine 

12000 observations was the optimal number of observations for this dataset. Each column 

is a trial and each row is a parameter where either the number of gyroscope sensors used, 

observations or iterations were varied. Trial 1 is equivalent to the settings in Chapter 5 and 

[38]. The downsampling frequency was decreased to 100 Hz as per the dataset reduction 

techniques so that the number of observations could be increased to 15000. Only the shank 

data was utilized while testing these parameters to further reduce the number of inputs into 

the model. After observing a decrease in performance between Trial 2 (15000 observations) 

and Trial 3 (18000 observations), 12000 observations were tested and proven to yield better 

results than Trial 1. Adding the Thigh gyroscope data and increasing the number of 

iterations also increased the performance in Trial 4. It was concluded that for the number 

of observations, increasing past 12000 observations reduced the performance and using 

data from both gyroscope sensors achieved the best results. 
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Table 2:  

Comparison of different parameter settings for 5-subject, 4-muscle input model after the 

addition of kinematic data. 

Parameters Trial 1 Trial 2 Trial 3 Trial 4 

Gyroscope Sensors Thigh & Shank Shank Only Shank Only Thigh & Shank 

Iterations 100 100 110 110 

Observations 7500 15000 18000 12000 

Downsampling Frequency 250 Hz 100 Hz 100 Hz 100 Hz 

Average Correlation 44.2% 37.6% 36.6% 47.2% 

 

For the 5-subject model, muscles being evaluated were able to reach true minima 

after increasing to 110 iterations in Table 3. However, this was not the case for the 9-subject 

model. Table 3 describes samples of the 9-subject trials taken to test how many iterations 

were necessary to reach true minima for this dataset. After testing 150 and 200 iterations 

in Trials 5 and 6 respectively, most muscles being evaluated were able to reach true 

minima. To increase the number of iterations even further, more computing power was 

required. For Trials 7 and 8, a workstation computer was used to run the program instead 

of a laptop. The highest average correlation reached for the 9-subject model before this 

point was 39.3%. After increasing the downsampling frequency to its original settings, the 

performance increased slightly to 40.2%. All muscles being evaluated were able to reach 

true minima in Trial 7, however this was not the case for Trial 8 which indicates the number 

of iterations should be further increased in future work. 
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Table 3:  

Comparison of different parameter settings for 9-subject, 4-muscle input model after the 

addition of kinematic data. 

Parameters Trial 5 Trial 6 Trial 7 Trial 8 

Gyroscope Sensors Thigh & 

Shank 

Thigh & 

Shank 

Thigh & 

Shank 

Thigh & 

Shank 

Iterations 150 200 500 500 

Observations 12000 12000 12000 12000 

Downsampling 

Frequency 

100 Hz 100 Hz 100 Hz 250 Hz 

Average Correlation 39.3% 39.3% 39.3% 40.2% 

 

The highest correlation among all the 4-muscle input subject general models was 

that of the 5-subject model with kinematic data in Trial 4. As more subjects were added, 

the performance decreased in Table 3. This was to be expected because more data requires 

more evaluations for the solution to be optimal. 

Figure 15 is a summary of how the different kinematic model parameter settings 

for the 4-muscle input model influenced the performance compared to an identical model 

without kinematic data. Each line represents a model tracing the number of iterations and 

observations from left to right, landing on the average correlation for across all muscles 

estimated. The downsampling frequency was set to 100 Hz for each model and everything 

was trained on 50% of the data from the first half of the walking trial. 
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Figure 15:  

Visual summary of the performance of the 4-muscle input model with varying parameters 

(number of iterations, observations, and subjects) to  describe how the affect performance 

(average correlation across all of the estimated muscles, expressed as a percentage). 

 

 

Table 4 describes the statistical performance of the kinematic model (left) against 

the model without kinematic data (right) across all muscles for the 9-subject, 4-muscle 

input model. For all six muscles, improvements can be seen when kinematic data is 

included. The highest improvement in correlation can be seen for the ST muscle with a 

50% improvement in correlation. Following that is the TA which saw a 42% improvement. 
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The RMSE and MAE metrics appear to be very similar between both models. It is 

important to note that the ST muscle consistently performed poorly, which may indicate 

the data collected was not good data and may be causing the program to run longer. The 

variance accounted for (VAF) represents how far each estimated excitation is from the 

mean of the true excitation. There does not appear to be a clear trend whether including 

kinematic data reduces the variance or not, however, it improves the performance for the 

ST model. 

Table 4:  

Comparison of the summary statistics between the kinematic (kin.), i.e. Trial 7 and no 

kinematic (no kin.) 9-subject, 4-muscle input subject general model. 

Muscle RMSE MAE r VAF 

Kin. No Kin. Kin. No Kin. Kin. No Kin. Kin. No Kin. 

MG 0.11 0.11 0.07 0.07 0.42 0.34 0.48 0.48 

TA 0.07 0.08 0.05 0.06 0.45 0.26 0.56 0.48 

ST 0.11 0.11 0.07 0.07 0.10 0.05 0.16 0.19 

VM 0.05 0.05 0.03 0.03 0.54 0.49 0.59 0.58 

RF 0.02 0.02 0.01 0.01 0.30 0.28 0.48 0.40 

LG 0.11 0.11 0.07 0.07 0.42 0.34 0.48 0.48 

 

 

The average correlation between true and estimated excitations was 96% higher 

when angular velocity data was included in the 5-subject, 4-muscle input model set as 
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illustrated in Figure 15. The estimated excitations informed muscle activations with 6.7% 

mean absolute error (MAE) and 43% variance accounted for (VAF) averaged across all 

muscles when kinematic data was included in the model, and 7.3% MAE and 43% VAF 

without kinematic data. These results lay the groundwork for developing muscle synergy 

functions that no longer require in-person calibration, paving the way for completely 

remote studies of muscle and joint loading. 

 

6.4. Discussion 

There are many advantages to exploring the use of kinematic data in remote gait 

analysis. When the angular velocity magnitude is of interest, gyroscope sensors do not 

require precise placement like EMG sensors because vector magnitudes are unchanged 

under pure conditions. In theory, the angular velocity of a rigid body such as the shank 

segment is the same about every point in that body. So, a gyroscope placed distally on the 

shank near the ankle and a gyroscope placed proximally on the shank near the knee should 

render the same measurement. Gyroscopes are often embedded in smartphones which 

would be ideal for some remote studies. Because of this, these sensors are more easily 

integrated into clothing. However, gyroscope sensors also have high power requirements 

that would limit long-term capturing.  

When tuning these parameters, it was interesting to see how much effect each of 

them had on the excitation estimates. As shown in Figure 15 when increasing from 5 to 9 

subjects, the more data that is included the more iterations are required and the longer it 

will take. This makes sense because the more data a model is given, whether it is from 

more subjects or additional sensors, the longer the synergy functions take to optimize. This 
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is not efficient for deployment purposes and revealed limitations. Downsampling 

techniques should be investigated further to be able to run the models more efficiently on 

a local machine and be able to compete with the performance of the subject-specific model. 

This could be done by exploring a new modeling approach or a new way of sampling data.  

In Figure 15, all muscle estimates reached true minima under those conditions so 

the different models could be compared to each other. However, this did not seem to change 

the average correlation found between 150, 200 and 500 iterations reported in Table 3. This 

is a known issue with GPR and large datasets and changing the model type may be a 

possible solution to this problem. Upon increasing the sampling frequency in Trial 8, it was 

found that the results improved slightly but would require even more than 500 iterations to 

reach true minima and achieve a comparable estimate. This would require more time or 

more processing power. I believe this should be explored in future work to ensure the 

evaluations reach true minima. Additionally, certain muscles that consistently perform 

poorly should be reevaluated for future work. It is possible that the ST muscle lacks 

sensitivity and causes the optimization to take longer.  

In conclusion, kinematic data improves the performance of the subject-general 

model, but not enough to conclude that it is the only change that should be made in future 

work. Single and double limb support looks different in impaired populations, so including 

this additional info may be necessary when deploying subject-general models in clinical 

populations with neuromusculoskeletal diseases.  
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CHAPTER 7: FUTURE WORK 

7.1. Future Work 

As discussed in Chapters 5 and 6, future work should focus on addressing the 

limitations of the subject-general model so its performance is on par with the subject-

specific model. It is known that for GPR models, more data will take longer to optimize 

[37]. More data and a larger population of data are required to increase the validity and 

further develop the use of these subject-general muscle synergy machine learning models. 

Thus, I believe future work should include exploring different modeling approaches, 

investigating how to learn muscle synergies, and performing hyperparameter optimization 

through machine learning [37,38,62,63].  

In a recent systematic review, most studies present subject-specific models (80%) 

and are not validated on impaired populations [37]. Future work should also focus on 

validating these algorithms in impaired populations such as PwMS. It cannot be assumed 

that a model trained and tested on impaired participants will have identical performance 

characteristics as the same model trained and tested on healthy participants. To make these 

algorithms more practical for deployment, it may also be suggested that a task general 

model be explored, as the models presented in Chapters 5 and 6 used walking trials only. 

For practical deployment, the SOL and PL muscles are not considered to be the best 

muscles to include in the input muscle set because they are difficult to palpate. I believe 

SOL was usually included because it was hardest to estimate. I also think a new way of 

sampling data that would allow for a higher downsampling rate should be explored. 
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The stance phase makes up approximately 60% of the gait cycle. The swing phase 

of gait begins when the foot first leaves the ground and ends when the same foot touches 

the ground again. The swing phase makes up the other 40% of the gait cycle [60,64]. 

Including percentage of gait cycle as an additional input into the model should be explored 

in future work because it can capture certain gait events like heel strike and toe-off. Lastly, 

subject-general models should be validated on groups of patients with very similar and 

dissimilar musculoskeletal physiology to explore how common physiology affects 

performance. The dataset used in these analyses, height and weight were known but were 

not used as a factor to determine which subjects were included. Certain characteristics 

among different groups of people with certain physiologies could be used to inform 

modeling choices. 

 

7.2. Joint and Muscle Monitoring System (JAMMS) 

7.2.1. Motivation 

Knee injuries are on the rise. The anterior cruciate ligament (ACL) together with 

the posterior cruciate ligament is the central stabilizer of the knee. It stabilizes the tibia 

against increased anterior translation and internal rotation [65]. The ACL is the most 

commonly injured ligament of the knee. The annual reported incidence in the United States 

alone is approximately 1 in 3500 people [20]. However, data may be underrepresented as 

there is no standard surveillance. The decision to undergo operative treatment is based on 

many factors such as the patient’s baseline level of activity, age, functional demands, and 

occupation. Athletes and younger individuals who are more active tend to opt for surgical 

repair and reconstruction. Typical ACL repairs and reconstructions include tissue grafts 
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[66]. A recent systematic review stated that 81% of those treated with ACL reconstruction 

returned to some athletic activity, 65% returned to the preinjury level of competition, and 

55% of high-level athletes returned to normal play and competition. Other factors that may 

contribute to a lower percentage of return to play may be secondary to external factors such 

as fear of reinjury [67]. 

Approximately 50% of patients who undergo ACLR go on to develop post-

traumatic knee osteoarthritis (OA) at some point in their lifetime [68]. Knee OA is 

characterized by the loss of joint space cartilage and increased bone on bone contact within 

the knee joint. Previous research suggests that altered gait biomechanics following ACL 

reconstruction not detected during the return to play period is responsible for this 

phenomenon [48,68,69]. 

 

7.2.2. Project Overview 

The aim of this project is to create the “Joint and Muscle Monitoring System 

(JAMMS)”: a knee sleeve instrumented with wearable sensors that will be worn by a 

patient during their recovery. The novelty of this project is that it will be able to record and 

store this data outside of the laboratory. The data will be a more accurate representation of 

how the patient walks during their daily life than if it was collected inside the lab. This will 

help the patient better understand their progress and clinicians can monitor them 

throughout their rehabilitation period. Interventions can be made to prevent post-ACLR 

knee OA if necessary, without having to come into the doctor’s office. The results from 

this project will also be used to contribute to research on post-ACLR knee OA and help 

researchers better understand how ACL reconstruction affects the gait cycle over time. 
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This project will ultimately be the deployment of this work. Not every muscle 

we’re interested in capturing data from will be instrumented on the sleeve, and this 

algorithm allows for the reduced sensor array and the ability to conduct the collection of 

the data remotely. The long-term goal of this project is to demonstrate how this may be 

applied to a specific clinical population and commercialize to athletes.   

 

7.2.3. Evolution of JAMMS 

Figure 16 is the most recent prototype of JAMMS. It is instrumented with 4 EMG 

sensors and two IMU sensors. In our initial customer discovery interviews, we explored 

two possible customer archetypes: athletes, and physical therapists. We discovered they 

both would benefit from having this data available and have shared frustrations when it 

comes to tracking rehabilitation and what to expect from the timeline when it comes to the  

return to sport process after injury.  

My team and I were recently accepted into the academic research 

commercialization program at the University of Vermont and are currently working toward 

commercializing this project and continuing our customer discovery process. There is 

future work to be done on the hardware regarding the integration of wireless sensors. 

 

 

 

 

 



46 

 

Figure 16:  

Latest prototype of JAMMS, a custom knee sleeve instrumented with two EMG and two 

IMU sensors, a PCB and battery. The IMU sensors and PCB are contained in 3D-printed 

casing. 
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CHAPTER 8: Concluding Remarks  

8.1. Conclusion  

In this thesis, I advance the use of muscle synergy functions to reduce the 

complexity of wearable sensor arrays and overcome the current need for an in-person visit 

to a human performance laboratory for calibration and reduce the number of wearable 

sensors required for remote monitoring of joint and muscle loading. The addition of 

kinematic data to the subject general model was shown to improve the correlation between 

the true and estimated excitations. These results motivate future research into the 

improvement of these models. Importantly, this work lays the groundwork necessary for 

further developing muscle synergy functions, paving the way for completely remote studies 

and the deployment of technologies like the Joint and Muscle Monitoring System. 
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APPENDIX 

BF = Biceps Femoris 

CNS = Central Nervous System 

CP = Cerebral Palsy 

EMG = Electromyography 

HD = Huntington’s Disease 

IMU = Inertial Measurement Unit 

LG = Lateral Gastrocnemius  

MG = Medial Gastrocnemius 

MS = Multiple Sclerosis 

NMS = Neuromusculoskeletal  

PCB = Printed Circuit Board  

PD = Parkinson’s Disease 

PL = Peroneus Longus 

PwMS = Persons with Multiple Sclerosis 

RF = Rectus Femoris 

SOL = Soleus 

ST = Semitendinosus  

TA = Tibialis Anterior 

VM = Vastus Medialis 

VL = Vastus Lateralis 
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