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ABSTRACT 

 

Bayesian hierarchical detection models are useful for addressing uncertainty in 

datasets in the form of detection error and can be adapted to a variety of research 

questions. This dissertation uses three case studies to highlight advantages of Bayesian 

hierarchical detection models: 1) using prior information to model undetected species, 2) 

efficiently modeling a naturally hierarchical system, and 3) correcting for observation 

bias in two interconnected ecological metrics for effective disease management. 

Detection error can bias ecological observations, especially when a species is 

never detected during sampling. In many communities, the probable identity of these 

species is known from previous research, but these data are rarely included in subsequent 

models. I present prior aggregation as a method to add information from external sources 

to Bayesian hierarchical detection models. Prior aggregation combines information from 

multiple prior distributions: in this case, an ecologically informative, species-level prior 

and an uninformative community-level prior. This approach adds external information 

into the model while retaining the advantage of modeling species in the context of the 

community. Using simulated data supplied to a multi-species occupancy model (MSOM), 

I demonstrated that prior aggregation improves estimates of metacommunity richness and 

environmental correlates of species occupancy. When applied to a dataset of Vermont 

small mammals, prior aggregation allowed the model to estimate occupancy correlates of 

the eastern cottontail, a species observed at several study sites but never captured.  

Ectoparasites are exposed to a ‘dual’ environment: the individual host and the 

external environment. However, variation in the portion of the life cycle spent on-host 

leads to differences in selective pressures exerted by each environment. Parasites that 

spend most of the life cycle on-host face increased pressure to specialize, leading to 

differences in host specificity and occupancy patterns compared to ephemeral parasites 

which only contact the host to feed. Using data from small mammals and ectoparasites in 

Vermont, I used a multi-scale MSOM to 1) calculate the Bayesian R2 at the site and host 

levels of the model to quantify explained variation in occupancy, and 2) compare number 

of host species and R2 values across life history categories. Life history was significantly 

associated with host specificity and host-level R2: parasites which spend more time on-

host infested fewer hosts and had more variation explained by host traits than ephemeral 

parasites. However, there were no differences in site-level R2 between categories, 

suggesting additional factors structure small mammal/ectoparasite communities. 

Disease management requires accurate measurements of metrics such as 

population size and immunity rates. Raccoon rabies virus is managed through use of oral 

rabies vaccine bait distribution, and the efficacy of the strategy is evaluated by measuring 

population-level seroprevalence of rabies antibodies. Using data from the Burlington, VT 

area from 2015–2017, I modified a multinomial N-mixture model to 1) estimate raccoon 

abundance and seroprevalence while correcting for sampling error, and 2) evaluate the 

effects of management strategies, raccoon population characteristics, and other carnivore 

species on seroprevalence. Rabies seroprevalence was associated with traits of raccoon 

populations, increasing with average age and decreasing with population size. 

Seroprevalence also decreased with opossum captures, suggesting competition for baits. 

Management strategies did not affect seroprevalence within sampling sites, but there is 

evidence that baiting strategy affects seroprevalence at the regional level.  
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 COMPREHENSIVE LITERATURE REVIEW 

 Statistical reasoning typically follows two lines of thinking: frequentist statistics 

and Bayesian statistics. The latter, first proposed by Thomas Bayes in the late 18th 

century, has recently increased in use as a viable alternative to frequentist methods 

(Ellison 2004, McCarthy 2007). Bayesian logic reflects the process of scientific thinking: 

prior knowledge and new data are evaluated using a statistical model to produce a 

posterior conclusion (Eq. 1).  

𝑝𝑟𝑖𝑜𝑟 + 𝑑𝑎𝑡𝑎 
𝑚𝑜𝑑𝑒𝑙
→     𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  (Eq. 1) 

In addition to the intuitive logic of Bayesian thinking, Bayesian methods have three 

major advantages over their frequentist counterparts. One, frequentist methods make 

predictions about hypothetical replicates of datasets, whereas Bayesian methods make 

predictions about hypotheses (Berger and Berry 1988, McCarthy 2007, McElreath 2015): 

again mirroring scientific thinking. Two, Bayesian methods naturally incorporate prior 

information into a model, whereas frequentist methods are constrained to the information 

in a particular dataset (Ellison 2004, McCarthy and Masters 2005, McCarthy 2007, Low 

Choy et al. 2009). Finally, Bayesian methods can formally incorporate uncertainty, either 

by the inclusion of unknown but important model parameters (Wade 2000) or using 

Bayesian model averaging (Wintle et al. 2003, Hooten and Hobbs 2015). 

 Another method for incorporating uncertainty in Bayesian models is by explicitly 

accounting for observational error. Occurring during the data collection process, 

observation error can bias the data, masking important ecological patterns (Iknayan et al. 

2014). A class of Bayesian models called hierarchical detection models account for 
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observational error by decoupling the ecological metric of interest and the detection 

process used to measure the metric (Iknayan et al. 2014, Kery and Royle 2015b, Kéry and 

Royle 2020). Using repeated data collection events, the model conceptualizes observation 

error as a probability that is conditional upon the underlying ecological state (Kery and 

Royle 2015b, Kéry and Royle 2020). Unlike other methods which correct for detection 

error, such as the Chao index (Chao 1984) or bootstrapping (Burnham and Overton 

1979), hierarchical detection models can explicitly differentiate between a true absence of 

a species from a site and a non-detection event (MacKenzie et al. 2002, Dorazio and 

Royle 2005, Iknayan et al. 2014). Hierarchical detection models can also incorporate 

environmental covariates into the model and estimate their effects on the ecological 

metric, observational accuracy, or both (MacKenzie et al. 2002, Dorazio and Royle 2005, 

Iknayan et al. 2014). For these reasons, hierarchical detection models tend to be less 

biased and more precise than other methods (New and Handel 2015).   

 Despite their utility and flexibility, hierarchical detection models can only be 

applied to datasets which meet three key assumptions (Devarajan et al. 2020): first, the 

populations or communities surveyed must be closed during the duration of the sampling 

period (Kery and Royle 2015b). In other words, there cannot be births, deaths, 

immigration, or emigration during the repeated surveys, meaning the surveys must be 

completed in a short time period relative to the demographics of the study taxon. When 

populations or communities are not closed, the model tends to overestimate occupancy 

(Kery and Royle 2015b). Variations on base hierarchical detection models, such as the 

dynamic or multi-season model originally developed by MacKenzie et al. (2003), and 
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later adapted by others (e.g. Royle and Kéry 2007, Broms et al. 2016), allow for 

demographic changes between sampling periods, but not within them.  

 Second, sites at which the ecological metric is observed must be statistically 

independent. Non-independence tends to occur due to spatial autocorrelation between 

sites (Devarajan et al. 2020), which in turn tends to over-estimate the precision of model 

estimates (New and Handel 2015). Adequate study design, specifically ensuring that sites 

are sufficiently distant from one another based on the focal taxon’s movement patterns, 

can help prevent violation of this assumption (Devarajan et al. 2020). The independence 

assumption can also be tested and corrected for statistically by modifying the detection 

portion of the model (Wright et al. 2016).  

 Third, hierarchical detection models assume accurate identification of species or 

individuals (Dorazio et al. 2011). Identification error can be due to a variety of factors, 

including improper marking methods for individuals (Link et al. 2010), similarity 

between different species (Simons et al. 2007, McClintock et al. 2010), or variation in the 

skill levels of observers (Genet and Sargent 2003, Iknayan et al. 2014). Violation of this 

assumption results in overestimation of species or individuals through overestimation of 

detection probability (Dorazio et al. 2011). Models which account for false positives as 

well as false negatives are useful for addressing this assumption in cases where 

misidentification is common (Royle and Link 2006).  

 A fourth assumption only applies to hierarchical detection models which estimate 

parameters for entire communities. Bayesian hierarchical detection models are able to 

jointly model all species in a community by assuming species can be described by a 
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common prior distribution (Link and Sauer 1996, Dorazio and Royle 2005, Iknayan et al. 

2014). In other words, species are assumed to vary, but they share some common 

ecological characteristics. If species vary to the extent that they can no longer be 

described by a common prior, prediction error occurs as a result (Kery and Royle 2015b). 

Advantages and disadvantages to the common prior distribution are discussed in more 

detail in Chapter 1.  

 Despite these assumptions, and despite valid criticisms of hierarchical detection 

models (e.g. Lele and Dennis 2009), these models are highly flexible and can be adapted 

to most ecological sampling methods. Hierarchical detection models are useful in a 

variety of scenarios, from estimating site-occupancy (Iknayan et al. 2014) to 

understanding hierarchical processes (Cressie et al. 2009; Ogle 2009) to conservation 

decision-making (Wade 2000), to disease management (Davis et al. 2019b, 2019a). The 

straightforward logic of these models makes them a valuable addition to an ecologist’s 

toolkit. 

In this dissertation, I highlight three advantages of Bayesian hierarchical 

detection models by applying them to various ecological contexts. In my first chapter, I 

highlight how informative priors can be used to more accurately model species that are 

undetected during sampling but are known to occupy a region based on previous studies, 

natural history collections, indigenous knowledge, or observations by the researcher. I 

introduce a method called prior aggregation that combines information from multiple 

sources to more readily model these undetected species. In my second chapter, I take 

advantage of the inherent structure of hierarchical detection models to account for scale 
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in a host/ectoparasite system. I use the model to investigate how life history 

characteristics of ectoparasites influence the relative importance of site-level and host-

level factors with regards to ectoparasite occupancy. Finally, hierarchical detection 

models are readily modifiable and can be easily applied to a wide variety of ecological 

questions. I take advantage of this flexibility in my third chapter, where I modify a type 

of hierarchical detection model to evaluate the efficacy of rabies management strategies 

in Burlington, Vermont.  
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Ecologically informed priors improve Bayesian model estimates of species richness 

and occupancy for undetected species 

Emily M. Beasley 

Department of Biology, University of Vermont, 109 Carrigan Dr., Burlington, VT 05405 

 

Abstract 

Detection error can bias observations of ecological processes, especially when 

some species are never detected during sampling. In many communities, the probable 

identity of these missing species is known from previous research and natural history 

collections, but this information is rarely incorporated into subsequent models. Here, I 

present prior aggregation as a method for including information from external sources in 

Bayesian hierarchical detection models. Prior aggregation combines information from 

multiple prior distributions— in this case, an ecologically informative, species-level prior 

and an uninformative community-level prior. This approach incorporates external 

information into the model without sacrificing the advantages of modeling species in the 

context of the community. Using simulated data supplied to a multi-species occupancy 

model, I demonstrated that prior aggregation improves estimates of 1) metacommunity 

richness and 2) environmental covariates correlated with species-specific occupancy 

probabilities. When applied to a dataset of small mammals in Vermont, prior aggregation 

allowed the model to estimate occupancy correlates of the eastern cottontail Sylvilagus 

floridanus, a species observed at several sites in the region but never captured. Prior 

aggregation can be used to improve the analysis of several important metrics in 

population and community ecology, including abundance, survivorship, and diversity.   
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Introduction 

 Estimates of biodiversity and other population and community metrics are 

often biased due to observer error. Biases or errors, especially detection error, can be 

introduced by characteristics of the target species, study design, or observer (Iknayan et 

al. 2014, Kellner and Swihart 2014). When species richness or species occupancy are of 

interest, detection error results in richness and occupancy estimates that are biased low 

(Iknayan et al. 2014, Benoit et al. 2018) and adds “noise” to the data in the form of false 

negatives, making it more difficult to evaluate the importance of environmental 

covariates (Gu and Swihart 2004). While good study design  can reduce survey bias 

(Banks‐Leite et al. 2014) and statistical methods such as the Chao index (Chao 1984) or 

bootstrapping (Burnham and Overton 1979) can correct species richness counts, optimal 

study design is not always feasible, and traditional statistical estimates are biased when 

detection rates vary spatially or when the community contains many rare species (New 

and Handel 2015).  

More recent approaches to account for detection error include hierarchical 

occupancy models (MacKenzie et al. 2002), specifically the multi-species occupancy 

model (MSOM). MSOMs yield less biased estimates than traditional methods by jointly 

analyzing an ecological model of occurrence and an observation model of detection. This 

strategy allows the model to explicitly differentiate between the true state of the 

ecological metric and detection error (Dorazio and Royle 2005, Iknayan et al. 2014, New 

and Handel 2015). In a Bayesian framework, MSOMs are also able to efficiently model 
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data-poor species, either by assuming all species are ecologically comparable (Link and 

Sauer 1996) or by using informative priors with information drawn from sources such as 

previous studies or natural history collections (McCarthy and Masters 2005). However, 

the structure of MSOMs often renders these two approaches incompatible. This paper 

presents a method that combines the above approaches to model rare or undetected 

species with little to no associated data. 

 Unlike single-species models, MSOMs assume that all species-level 

parameters are drawn from a common prior distribution (Fig. 1a). In other words, all 

species are analyzed in the context of the full community. A community-level approach 

means that rare or hard-to-detect species, which may not yield sufficient data to model 

individually, can be analyzed by “borrowing” information from common species (Link 

and Sauer 1996, Ferrier and Guisan 2006). Although “borrowing” information can lead to 

estimates of rare species that are biased towards the community mean (Kéry and Schaub 

2011, Iknayan et al. 2014), in general MSOMs yield more accurate and more precise 

estimates of rare species than single-species models.  

 The use of a community-level distributions in Bayesian MSOMs also 

implies that species that are known to occur in the study region, but were never detected 

during sampling, can be included in the model using a method called data augmentation 

(Royle et al. 2007, Royle and Dorazio 2012, Figure 1b), in which a series of zeroes are 

appended to the original data set to represent species in a community that may have been 

undetected (Royle et al. 2007). Data augmentation yields reliable community-level 

estimates when model assumptions are met and few species in the community were 
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missed (Guillera‐Arroita et al. 2019). However, the lack of data for augmented species 

means that estimates of occupancy or covariate responses for undetected species are 

inevitably “pulled” towards the center of the community distribution (Link and Sauer 

1996). In practice, this lack of data means the model doesn’t have enough information to 

accurately estimate specific occupancy or detection probabilities for particular undetected 

species, so these species can only be used to calculate an asymptotic species richness 

estimate for the study region (Guillera‐Arroita et al. 2019).  

 In a Bayesian framework, information needed to estimate specific 

parameters for particular undetected species can be readily incorporated by using an 

informative species-level prior. Using informative priors in ecological models tends to 

increase the confidence in conclusions (i.e., narrower credible intervals, McCarthy and 

Masters 2005). In the context of hierarchical detection models, other authors have 

demonstrated that “weakly informative” priors can be used to stabilize the model and 

prevent coefficients from taking extreme values (Northrup and Gerber 2018, Lemoine 

2019), but the use of ecologically informative priors is much rarer. Ecologically 

informative priors may be rare in part because replacing the uninformative species-level 

prior with an informative prior means the species is no longer described by the 

community-level distribution, and the advantages of modeling species in the context of 

the community are lost. 

 A potential solution to this problem is prior aggregation. Originally used 

to combine multiple expert opinions (Genest et al. 1984), prior aggregation can be 

applied to MSOMs to combine the community prior and an ecologically informative prior 
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into a single prior distribution (Figure 1c). With an aggregated prior distribution, the 

model analyzes undetected species in the context of the community while allowing 

researchers to retain the identity of each undetected species and reduce the pull of the 

community prior. However, to my knowledge prior aggregation has never been used in 

the context of hierarchical occupancy models, and its effects on model performance 

remains unknown. 

 Using simulated data with known parameter values, I tested whether 

ecologically informative, aggregated priors for undetected species improve estimates of 

MSOMs. I compared the posterior estimates of metacommunity richness, local species 

richness, and species-level covariate responses from MSOMs with 1) uninformative 

priors, 2) informative priors, and 3) mis-specified priors. I also varied the relative 

contribution of the informative or mis-specified priors to the aggregated prior to 

determine if prior strength influenced model estimates. Finally, I applied prior 

aggregation to an empirical dataset of small mammal communities in Vermont to model 

occupancy correlates of an undetected species known to occur in the study region.  

 

Methods 

 Data simulation. I simulated 50 metacommunities of i = 22 species which 

potentially occupy j = 1 to 30 sites. Species-level occupancy probabilities for the first 20 

species in each metacommunity Ψi were drawn from a beta distribution Ψi ~ Beta(α=2, 

β=4), resulting in variable occupancy probabilities (95% interval 0.053–0.716). The 

remaining two species, which would represent undetected species, had species-level 
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occupancy probabilities that were fixed at 0.1 and 0.4, respectively, to facilitate 

comparison across simulations. These probabilities represent relatively rare species, 

which are more likely to be undetected during sampling due to their low occurrence 

(MacKenzie et al. 2005).  

Site-level occupancy probability was a function of species-level occupancy 

probabilities and a continuous covariate (Eq. 2). Species in each metacommunity were 

assigned a coefficient of 0, 3, or -3, representing no response, a strong positive response, 

or a strong negative response to the environmental covariate. Coefficients were randomly 

assigned to the 20 detected species whereas responses for the undetected species were 

fixed at 0 and -3. For each metacommunity, the true occupancy state of each species Zij, 

denoted 1 if the species was present at the site and 0 if absent, was modeled as the 

outcome of a Bernoulli trial with the site-level occupancy probability as the probability of 

success (Eq. 3). Species that did not occupy any site in the initial simulation were 

assigned a value of 1 to the site with the highest occupancy probability to ensure there 

were 22 species in each metacommunity simulation. 

𝑙𝑜𝑔𝑖𝑡(𝛹𝑖𝑗) =  𝑎0𝑖 + 𝑎1𝑖𝑐𝑜𝑣𝑗   (Eq. 2) 

𝑍𝑖𝑗  ~ 𝐵𝑒𝑟𝑛(𝛹𝑖𝑗)  (Eq. 3) 

I simulated survey data by generating species-level detection probabilities pi using 

a beta distribution pi ~ Beta(α=2, β=8), resulting in low-to-moderate detection 

probabilities for the 20 detected species (95% interval 0.028–0.482). Undetected species 

were assigned a species-level probability of 0. Detection of a species during a survey was 

modeled as the outcome of a Bernoulli trial with the species-level detection probability as 
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the probability of success, conditional on the species being present at the site. If any of 

the 20 “detected” species were not detected during any survey, I assigned a value of 1 to 

the survey with the highest detection probability to ensure there were 20 detected and 2 

undetected species in each simulation. Values for the beta distributions were chosen to 

create a scenario in which data augmentation is effective: when some observed species in 

the community have low occupancy and/or low detection probabilities, it is more 

reasonable to expect that some species were absent from all sampled sites or missed 

during all surveys (Guillera‐Arroita et al. 2019).  

 Multi-species occupancy model. I analyzed the data using a single-season 

Bayesian MSOM (Dorazio and Royle 2005, Figure S1-1). This modeling framework 

consists of three levels; the first of which represents the true occupancy state wi of all 

observed and potentially unobserved species i in the metacommunity (Eq. 4). The dataset 

of observed species n can be augmented by m all-zero encounter histories representing 

species that may or may not be present in the metacommunity. Choice of m is somewhat 

arbitrary, but should be large enough that the posterior distribution for estimated 

metacommunity richness N is not truncated but not so large as to be computationally 

prohibitive (Guillera‐Arroita et al. 2019). The parameter wi is then modeled as a 

Bernoulli trial such that wi = 0 for species that were not present in the metacommunity 

and wi = 1 for species that were either directly observed or were not observed but were 

likely available for sampling in the metacommunity (Dorazio and Royle 2005, Royle et 

al. 2007), in which the parameter Ω represents the probability of success. I augmented the 
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simulated dataset with 5 undetected species, of which two were present in the 

metacommunity. 

 The second level of the model represents the ecological quantity of 

interest; in this case, site-level occupancy. Site-level occupancy Zij takes the value of 1 

when species i is present at site j, provided the species is available for sampling in the 

metacommunity. Occupancy is modeled as the outcome of a Bernoulli trial with the 

probability of success defined as the product of site-level occupancy probability Ψij and 

the metacommunity parameter wi (Eq. 5). Thus, a species cannot occupy a site if it is not 

available for sampling in the metacommunity. 

 In empirical datasets, site-level occupancy Zij is often imperfectly 

observed due to detection error associated with the sampling process. By sampling each 

site multiple times over a short period, the model can estimate the probability of detecting 

a species during a given survey and better estimate the true occupancy state (Dorazio and 

Royle 2005). Detection of a given species at a site during a given sampling period (xijk) is 

modeled as a Bernoulli process conditional on the species occupying the site (Eq. 6). 

Similar to the model for site occupancy, the probability of success is defined as the 

product of detection probability during a given sampling period pijk and the true 

occupancy state Zij— meaning a species cannot be detected at a site where it is not 

present.   

𝑤𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛺)  (Eq. 4) 

𝑍𝑖𝑗|𝑤𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛹𝑖𝑗 ∗ 𝑤𝑖) (Eq. 5) 

𝑥𝑖𝑗𝑘|𝑍𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖𝑗𝑘 ∗ 𝑍𝑖𝑗)  (Eq. 6) 
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 Environmental covariates can be used to accurately estimate occupancy 

and detection probabilities using a logit link function. I used the simulated covariate in 

Eq. 2 to estimate site-level occupancy probability Ψij. 

Species-level values for model intercepts (a0, b0) and covariate coefficients (a1) 

for all detected species were modeled using uninformative priors (e.g. Eq. 7). The 

parameters of the community-level distribution from which species were drawn, called 

hyperparameters, were in turn drawn from a hyperprior distribution (Eq. 8): 

𝑎0𝑖 ~ 𝑁(𝜇𝑎0, 𝜏𝑎0) (Eq. 7) 

𝜏𝑎0 ~ 𝐺𝑎𝑚𝑚𝑎(0.1, 0.1) (Eq. 8) 

The parameter tau (τ) in the equations above represents precision, and is used 

instead of standard deviation σ in the JAGS programming language (Plummer 2017).  

Although the use of a hyperprior allows species with little or no data to be 

modeled in the context of the full community, model estimates for these species are often 

“pulled” to the center of the hyperprior distribution due to a lack of data. However, solely 

modeling these species using highly informative priors results in a loss of the advantages 

gained by modeling rare species in the context of the community. Prior aggregation is a 

promising tool for resisting the “pull” of the hyperprior when modeling undetected 

species, while also retaining the advantages from modeling undetected species in the 

context of the community. In brief, prior aggregation involves combining two or more 

prior distributions using a defined pooling method (Genest et al. 1984), typically as a way 

to account for multiple differing expert opinions. In the context of modeling undetected 

species, one can aggregate 1) the hyperprior distribution, towards the center of which 
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undetected species are pulled, and 2) a prior distribution based on information about the 

undetected species that is not present in the dataset.  

 I calculated aggregated priors for the two undetected species for the 

parameters a0 and a1 using logarithmic pooling for Gaussian distributions (de Carvalho 

et al. 2015, Eq. 9–11): 

𝒘∗ = 
𝜶

𝝈𝟐
  (Eq. 9) 

𝜎𝑝𝑜𝑜𝑙𝑒𝑑
2 = 

1

∑𝒘∗
   (Eq. 10) 

𝜇𝑝𝑜𝑜𝑙𝑒𝑑 = 𝜎𝑝𝑜𝑜𝑙𝑒𝑑
2 ∗ ∑(𝒘∗ ∗ 𝝁)  (Eq. 11) 

In which σ2 is a vector of variances of the initial prior distributions, μ a vector of 

means, and α a vector of pooling weights (see below). The parameter a0 was an 

aggregate of the community prior N(μa0, τa0) and an ecological prior N(μTrue, τTrue). For 

models with informative priors, μTrue was the true, simulated occupancy probability that 

were logit-transformed and rounded to the nearest integer; models with mis-specified 

priors used the opposite sign as the true value. Similarly, the parameter a1 was an 

aggregate of the community prior and the ecological prior. Models with informative 

priors used the true value for the covariate response rounded to the nearest whole number 

as the mean of the distribution, whereas mis-specified models used a value with the 

opposite sign (or a value of -3 if the true covariate response was 0). The precision 

parameter τ was assigned a value of 0.5 for all ecological priors. 

 Pooling weights (Eq. 9) define the relative contribution of individual 

priors to the aggregated distribution. The weight assigned to each prior distribution 

represents the relative degree of confidence in the information it contains (Genest et al. 
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1984). Methods for systematically assigning prior weights have been developed (de 

Carvalho et al. 2015); however, these methods are typically used for aggregating multiple 

expert opinions, leaving weight assignment in other situations somewhat arbitrary 

(French 1983). I assigned the ecological priors for weakly informative models a weight of 

0.15 relative to the hyperprior; for moderately informative models, a weight of 0.5; and 

for strongly informative models, a weight of 0.85. The vector of weights for each 

aggregated prior must sum to 1. 

 I compared models with possible prior combinations (informative/mis-

specified x weakly/moderately/strongly) to one another and to a single model with 

uninformative priors, resulting in seven different models. I compared estimates of 1) 

regional species richness, 2) site-level species richness, and 3) species-level covariate 

responses across the seven models. I estimated all model parameters using a Bayesian 

analysis in the program JAGS (Plummer 2017) and the R package R2jags (Su and Yajima 

2015, R Core Team 2020). I ran the model using three Markov chains and assessed 

convergence using the R-hat statistic, which compares between-chain and within-chain 

parameter estimates for each of the Markov chains (Gelman and Rubin 1992). Values for 

the length of the Markov chains, burn-in period, and thinning were chosen on a trial-and-

error basis until model convergence was achieved. A tutorial of the prior aggregation 

method using R and JAGS can be found in Appendix S2; data and code associated with 

the analysis can be found at https://github.com/Beasley015/Beasley2021BayesianPriors.  

 Application to real data. In addition to the simulation analyses, I applied 

the prior aggregation method to an empirical dataset of small mammal trapping surveys 
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collected in Vermont from May–July 2019. Sampling occurred in 30 sites located in 

forests, uncultivated fields, and active farms (Figure S1-2). Trapping transects were 300 

m long, with trap stations 10 m apart, with two traps per station placed to maximize 

capture efficiency (e.g. along fallen logs or rock ledges). Traps were baited with 

sunflower seeds and supplemented with batting and mealworms to reduce cold-related 

mortality (Do et al. 2013). Traps were opened in the evening and checked the following 

morning for a period of 3 consecutive days. I marked captured mammals with an ear tag, 

identified them to species, and released them unharmed at the point of capture. 

 I collected vegetation data at every 3rd trap station along each transect for 

a total of 10 samples per site. Vegetation metrics included 1) composition, measured as 

the proportion of each cover type in a 0.5 x 0.5 m grid, 2) vertical structure, measured 

using the point-touch method described in Wiens (1969), and 3) canopy cover, measured 

using a spherical convex densiometer. I reduced the dimensionality of the data using a 

Principal Components Analysis (PCA). I incorporated the first principal component as a 

covariate in the MSOM. 

 I examined how the use of informative priors affects estimates of real 

datasets in a similar manner to the procedure described in the previous section. The 

dataset was augmented with two all-zero encounter histories; with one representing the 

Eastern cottontail Sylvilagus floridanus, a species common in the study region and 

visually observed at some sampling sites, but with low catchability (and therefore 

detectability) in Sherman live traps.  
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I applied aggregated priors to the occupancy intercept α0i and the covariate 

response α1i. Prior information was derived from the literature and field notes taken 

during sampling (Table 1). I ran one model with weakly informative priors and another 

with moderately informative priors using the relative weights defined in the previous 

section; these models were compared to a model with uninformative priors. I compared 

estimates of 1) regional species richness and 2) species-level covariate responses across 

these three models. Model specifications such as the number of Markov chains, model 

iterations, and evaluation of model convergence were determined in the manner described 

in the previous section. 

 

Results 

 Simulated data. Models with informative priors generally yielded more 

accurate estimates of metacommunity richness than models with uninformative or mis-

specified priors (Figure 2). Specifically, models with strongly informative priors (i.e. the 

contribution of the ecologically informative distribution to the aggregate prior was high 

compared to the community distribution) typically yielded estimates that were closest to 

the true metacommunity richness of 22 species, whereas models with weakly mis-

specified priors typically yielded estimates that were closest to the observed 

metacommunity richness of 20 species. Metacommunity estimates varied depending on 

the measure of centrality used to describe the posterior distribution from each model 

(Figure S1-3–S1-4).   
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 At the site level, models with moderately and strongly informative priors 

yielded richness estimates that were closer to true values than models with uninformative 

priors (Figure 3). Models with weakly and moderately mis-specified priors generally 

estimated site-level richness as accurately as models with uninformative priors. Models 

with weakly informative and strongly mis-specified priors yielded richness estimates that 

deviated the most from the true values.  

 The model with uninformative priors correctly estimated a non-significant 

covariate response for one undetected species but failed to detect a significant covariate 

response for the second undetected species (Figure 4). Models with informative and mis-

specified priors generally yielded more precise estimates of covariate responses for 

undetected species than models with uninformative priors (Figure 4). The models with 

weakly informative priors, weakly mis-specified priors, and moderately mis-specified 

priors yielded estimates qualitatively similar to the model with uninformed priors, and 

models with moderately and strongly informative priors correctly estimated covariate 

responses for both undetected species (Figure 4). The model with strongly mis-specified 

priors incorrectly estimated a positive covariate response for both undetected species 

(Figure 4). The improvement in covariate response estimates likely caused the 

improvement in site-level occupancy estimates for undetected species in models with 

informative priors (Fig. S1-5–S1-6). 

 Vermont small mammals. I captured 89 individuals representing 10 

species. The most common species were the white-footed mouse Peromyscus leucopus 

with 33 individuals, the meadow jumping mouse Zapus hudsonius with 17 individuals, 
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and the woodland jumping mouse Napaeozapus insignis with 16 individuals. All other 

species were represented by fewer than 10 individuals. 

 The first principal component from the PCA of the vegetation data 

explained 82.4% of the variation in the data. This principal component was included in 

the model as an environmental covariate, capturing a gradient from mostly grassy cover 

(low PCA scores) to cover that is predominately leaf litter and other dead vegetation 

(high PCA scores; Figure S1-7).  

 The model with uninformed priors yielded a metacommunity richness 

estimate of 10 species, while models with informed priors yielded estimates of 11 

species. At the species level, the augmented species S. floridanus was not predicted to 

have a covariate response significantly different from 0 in any model; however, the 

species-level estimate from models with informed priors were more precise than the 

model with uninformed priors (Figure 5).  

 

Discussion 

 These results suggest that using prior aggregation to model undetected 

species improve estimates of multiple model parameters, provided the information 

supplied to the model is correct (Figures 2, 4). These findings align with previous work 

suggesting that informative priors in Bayesian models tends to improve model estimates 

(McCarthy and Masters 2005, Northrup and Gerber 2018, Lemoine 2019). In addition, 

prior aggregation tends to result in more ecologically meaningful conclusions for 

undetected species by reducing the pull of the community prior and retaining information 
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about species with particular characteristics rather than hypothetical species of unknown 

identity.  

 Species are more likely to be undetected when they are rare (McCarthy et 

al. 2013). Rare species are often of conservation concern (Fagan et al. 2002, Cunningham 

and Lindenmayer 2005, MacKenzie et al. 2005) and can drive site-level variation in 

metrics such as species richness, beta diversity, and functional diversity (Routledge 1977, 

Mao and Colwell 2005, Leitão et al. 2016, but see Lennon et al. 2004). A common 

strategy for addressing this problem is to use common, closely-related species as a proxy 

for rare relatives (Gaston and Kunin 1997). Modeling undetected species using 

uninformative priors is conceptually similar to using data from related species as a proxy, 

as estimates for undetected species are pulled towards the center of the community prior. 

However, rare and common species are often ecologically different (Kunin and Gaston 

1993, Leitão et al. 2016), and accounting for these differences with ecologically 

informative priors can lead to more accurate estimates on which to base management 

decisions. 

 From a management perspective, estimates for specific sites may be just as 

important as regional or species-level estimates, especially for targeted management 

actions such as habitat restoration efforts or reserve design (Cabeza et al. 2004). My 

results suggest that prior aggregation does not improve site-level model estimates (Figure 

3), and therefore prior aggregation may not be appropriate when characteristics of the site 

are of primary interest. However, the lack of improvement of site-level estimates may be 

due to characteristics of the simulated data and model structure rather than characteristics 
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of the priors. The simulated dataset included species with positive and negative covariate 

responses, which could be affecting the accuracy of site-level richness estimates 

compared to a covariate with more uniform effects, such as patch area. Models for the 

simulated and empirical datasets also assumed stochastic detection error. Detectability in 

real communities is often influenced by site-level or species-level characteristics 

(Iknayan et al. 2014), and accounting for site-level variation in detectability using model 

covariates tends to improve estimates (New and Handel 2015). In systems where 

detectability varies by site and is modeled using a covariate, the use of prior aggregation 

may improve site-level richness estimates compared to models with uninformative priors.  

 A key component of prior aggregation is assigning weights to each of the 

contributing priors. Weight choice determines how much of the ecologically informed 

prior contributes to the final aggregate and should reflect the reliability of the source of 

information (Genest et al. 1984). Defining the reliability of a source is difficult, and in 

practice the choice of prior weight is somewhat arbitrary (French 1983). That said, 

methods for choosing weights in a more meaningful way have been developed (Myung et 

al. 1996, Abbas 2009, Rufo et al. 2012a, 2012b) and a few of these also account for 

uncertainty about the weights (Poole and Raftery 2000, de Carvalho et al. 2015). A 

possible avenue for future research would include adapting these methods for use in 

MSOMs.  

 The concept of “borrowing” data from multiple sources is not new in 

ecology (MacKenzie et al. 2005), and pooling information across species within a dataset 

is a common practice in hierarchical detection models (Link and Sauer 1996, Iknayan et 
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al. 2014). Using prior aggregation to incorporate data from external sources such as 

previous studies or natural history collections to improve model accuracy is an extension 

of this concept. Although this work has focused on prior aggregation in the context of 

MSOMs, the flexibility of hierarchical detection models means that prior aggregation is 

not limited to questions of species richness or occupancy. Prior aggregation can 

potentially be used to add information about missing individuals in a population (Royle 

and Dorazio 2012) leading to more accurate estimates of abundance, survival rates, or 

diversity estimates. Despite the continuing challenges of choosing meaningful prior 

weights (Genest et al. 1984, de Carvalho et al. 2015) and prior selection in Bayesian 

ecological models in general (Northrup and Gerber 2018, Lemoine 2019, Banner et al. 

2020), prior aggregation is a promising tool for using external data to generate more 

reasonable estimates in systems where non-detection is of ecological concern. 
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Tables 

Table 1. Sources of ecologically informative priors for S. floridanus. 

Parameter Source Description 

α0 Field notes  

 

S. floridanus was visually observed at 20% of 

sites; the mean of the prior distribution was set at 

this value 

 

α1 Chapman et al. 

1980, DeGraaf 

and Yamasaki 

2001 

 

 

Field notes  

Old fields and grasslands are preferred habitat in 

the northeastern United States, interpreted as a 

negative response to PC1. The mean of the prior 

distribution was set at -2.  

 

All visual observations of this species occurred in 

old fields or active farms. 
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Figures 

 

Figure 1. a) Community-based detection models account for rare or undetected species by 

assuming all species-level parameters, such as occupancy probability Ψ, are drawn from 

a common probability distribution called a hyperprior. b) Species that were never 

detected during sampling (red) can be analyzed by adding a set of zeroes to the data. 

However, a lack of data means the estimated parameters (dashed red line) are “pulled” to 

the center of the distribution and away from the true value (solid red line). c) When the 

identities of undetected species are known, the hyperprior (black line) can be combined 

with species-level information (solid red line) to form an aggregated prior (dashed red 

line) to reduce the “pull” of the hyperprior and more accurately model these species. 
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Figure 2. Distribution of estimated mean regional species richness (N) of the simulated 

datasets. Solid lines denote the true regional richness of 22 species. Models with 

uninformative priors (a) tended to yield an expected richness of 21 species. Models with 

weakly and moderately informative priors (b-c) yielded qualitatively similar estimates, as 

did models with moderately and strongly mis-specified priors (f-g). Models with weakly 

mis-specified priors tended to yield an expected richness of 20.5 species (e). Models with 

strongly informative priors yielded an expected richness of 22 species, the true regional 

richness of the simulated datasets. 
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Figure 3. Median differences between true and estimated site-level richness of the 

simulated datasets. Models with moderately and strongly informative priors outperformed 

models with uninformative priors and strongly mis-specified priors. Models with weakly 

informative priors and strongly mis-specified priors performed less well than models with 

uninformative priors.  
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Figure 4. Estimated responses of two undetected species to simulated covariates. Error 

bars represent the 95% CI; error bars that did not overlap 0 (dashed line) were considered 

significant. Red dots represent the true value of the simulated coefficient. Increasing the 

relative weight of the species-level prior increased the precision of model estimates, 

regardless of the accuracy of the prior. The model correctly estimated a non-response to 

the covariate in all models except models with strongly mis-specified priors for the first 

undetected species (a). Models with moderately and strongly informative priors correctly 

estimated a significant, negative response to the covariate for the second undetected 

species (b).  
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Figure 5. Species-specific responses to the vegetation covariate for the augmented species 

Sylvilagus floridanus. Error bars represent the 95% credible interval; bars that do not 

overlap 0 (dashed line) were considered significant and are marked with an asterisk (*). 
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Abstract 

Ectoparasites are exposed to a ‘dual’ environment: the stable conditions on an individual 

host and a variable external environment. However, variation in ectoparasite life history 

traits, such as the portion of the life cycle spent on-host, leads to differences in selective 

pressure exerted by each environment. Parasites that spend most of the life cycle on-host 

are pressured to undergo increased host specialization, leading to differences in host 

specificity and occupancy patterns compared to ephemeral parasites which only contact 

the host to feed. Using data from small mammals and ectoparasites in Vermont, I used a 

multi-scale MSOM to 1) estimate ectoparasite occupancy on individual hosts nested 

within geographic sites, 2) calculate the Bayesian R2 at the site and host levels of the 

model to determine the variation in occupancy explained by each level, and 3) compared 

number of host species and the R2 values across different life history categories. Life 

history category was significantly associated with host specificity and host-level 

Bayesian R2: parasites which spend their full life cycle on the host parasitized fewer host 

species and had significantly more variation in occupancy explained by host-level 

covariates than ephemeral parasites. However, there were no significant differences in 

site-level R2 between life history categories, and no significant associations between site-
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level R2 and host specificity, suggesting that additional factors may play a role in 

structuring small mammal/ectoparasite communities. 

 

Introduction 

Ecology is highly scale-dependent (Wiens 1989, Levin 1992, Schneider 2001, 

McGill 2010). The relative importance of ecological processes tends to vary across 

spatial, temporal, and organizational scales (Ellison and Gotelli 2021). For example, short 

term weather events and microclimates may influence local occupancy patterns of a 

species, but climate may be more important in limiting the extent of a species’ range 

(Zuckerberg et al. 2011). Additionally, patterns at a coarser scale such as the landscape 

may emerge from processes occurring at a finer scale such as local sites (Ovadia and 

Schmitz 2002). The scale of observation can also influence which patterns can be 

detected in a system (Wiens 1989, McMahon and Diez 2007, Weiher et al. 2011). 

Observing and analyzing variables on multiple hierarchical levels is essential for 

understanding how ecological processes operate across scales.  

 Small mammals and their arthropod ectoparasites are useful for investigating the 

effects of scale because the organizational scales in the system are often clearly defined 

(Cardon et al. 2011). For example, host/parasite dynamics can be observed at the level of 

the individual host (i.e. host infra-community), across host individuals in a local 

population or community, or across a host species’ geographic range (Krasnov et al. 

2011b, 2015). Ectoparasites, unlike endoparasites such as helminths, are simultaneously 

exposed to multiple scales: specifically, the more localized environment of the host 
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individual and the broader environment of the host community or geographic locality 

(Cardon et al. 2011). Occupancy patterns of ectoparasites at various scales are determined 

by characteristics of this ‘dual’ environment of the host assemblage and external 

environment (Berkhout et al. 2020, Bolnick et al. 2020). 

Although all ectoparasites are characterized by a dual environment, variation in 

ectoparasite life history and feeding mode leads to variation in the degree of exposure to 

the host environment relative to the external environment (Morand et al. 2007, van der 

Mescht et al. 2016). Ephemeral parasites such as ticks (order Ixodidae) are only in 

contact with the host during feeding and spend more time in the external environment 

(Kocan et al. 2015). By contrast, parasitic lice (order Psocodea) complete the full life 

cycle on the host (Kim 2006). Nest parasites such as certain mite (order Mesostigmata, 

Dowling 2006) or flea (Medvedev and Krasnov 2006) species, as well as species which 

associate with a host for a particular life stage (e.g. bot flies, order Diptera, Catts 1982, or 

fur fleas, (Medvedev and Krasnov 2006)), fall somewhere in between.  

In addition to host contact, host specificity varies between ectoparasite species 

(Poulin and Mouillot 2003, Poulin 2007, Brown et al. 2022) and may influence the range 

of exposure to environmental pressures within an organizational scale: parasites 

specializing on one host species are exposed to less host-level variation than generalist 

parasites which may infest multiple host species. Differences in host contact and host 

specificity result in variation in the strength exerted by environmental pressures at each 

scale (Bolnick et al. 2020). 
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Differences in the relative strength of environmental pressures at different scales 

should result in observable differences in ectoparasite occupancy patterns. Specifically, I 

hypothesize that 1) the amount of host contact influences the relative strength of selective 

pressures at each environmental scale: parasite occupancy should be primarily driven by 

factors at the scale where the parasite spends most of its life cycle (Marshall 1981, 

Lareschi and Krasnov 2010, Sponchiado et al. 2017). Additionally, 2) host contact should 

also influence the selective pressure to specialize: parasites which spend a greater 

proportion of the life cycle on-host should parasitize fewer host species than parasites 

which spend less time on-host. Although associations between host contact and 

specialization have not been formally tested, host specificity has be found to be 

associated with other life history traits such as transmission mode (Pedersen et al. 2005, 

Poulin et al. 2006). 

To test these hypotheses, I will use a multi-scale, multi-species occupancy 

model (multi-scale MSOM) to 1) estimate ectoparasite occupancy in geographic sites and 

individual hosts within each site while correcting for detection error, 2) evaluate effects 

of site-level and host-level covariates on ectoparasite occupancy, and 3) calculate 

Bayesian R2 to quantify the explanatory power of each level of the model. If host contact 

influences host specificity and occupancy patterns at each organizational scale, 

ectoparasite species that spend the majority of their life cycle on-host (e.g. lice, fur fleas) 

should parasitize fewer host species and have a larger host-level Bayesian R2 than 

ectoparasites in other life history categories (Lareschi and Krasnov 2010). Ephemeral 

parasites which only contact the host during feeding (e.g. ticks) should display the 
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opposite trend, parasitizing many host species with a larger site-level Bayesian R2 than 

other ectoparasites. Nest parasites (e.g. nest fleas, mesostigmatid mites) will likely fall 

somewhere in between. 

 

Methods 

Site-level environmental measurements. I sampled 10 sites located throughout 

Chittenden County, Vermont from May–August 2020. Four sites were located on active 

farms, three in old fields, and three in forested habitats. I sampled each site three times 

over the course of the study: the first sampling period was from May 26–June 14, the 

second from June 19–July 9, and the third from July 15–August 3. I set a 300 m linear 

sampling transect at each site. When possible, the transect began at the edge of the habitat 

patch and extended towards the center. Transects were sampled for a total of 3 

consecutive trap days per sampling period for a total of 9 days per transect.  

 I measured site-level environmental variables on the first day of each trapping 

session at 30 m intervals along the sampling transect. I quantified site-level 

environmental variation by sampling vegetation cover, vertical structure, and canopy 

cover within a 0.5 m2 quadrat. I quantified vegetation cover by recording the relative 

proportion of each cover type (e.g. grass, leaf litter) within the quadrat. Vertical structure 

was quantified using the point-touch method described in Wiens (1969). I measured 

canopy cover using a spherical convex densiometer. I repeated vegetation data collection 

once per sampling period and reduced the dimensionality of the data using a PCA. I ran 
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separate PCAs for vegetation composition variables, vertical structure variables, and all 

vegetation variables. 

Small mammal trapping. To capture small mammal hosts, I placed trap stations 

every 10 m along the 300 m sampling transect. Each trap station consisted of two traps 

baited with sunflower seeds and 5 g dried mealworms and placed to maximize trapping 

efficiency (e.g. along fallen logs). I placed batting in each trap when night temperatures 

fell below 50℉ (10℃) to reduce cold-related mortality (Do et al. 2013). Traps were set 

each evening and checked just after dawn the following morning for three consecutive 

trap days per sampling period.  

Upon checking traps, captured mammals (excluding by-catch species) were 

transferred to a cloth handling bag. Rodents were marked with a unique ear tag and 

shrews were marked by clipping a patch of fur near the rump or shoulders, the location of 

which was used to identify individuals. Species, sex, mass, and standard external 

measurements (Hall 1962) were recorded for each mammalian host. I then searched for 

ectoparasites for a period of at least two minutes. Collected ectoparasites were stored in 

70% ethanol. After handling, mammals were released at the point of capture. By-catch 

species (e.g. Mustela sp., Glaucomys sp.) were released at the point of capture without 

handling. Mammals found dead in the trap or euthanized due to poor body condition were 

prepared as museum specimens and deposited in the Zadock Thompson Natural History 

Collections at the University of Vermont. All handling procedures followed guidelines 

from the American Society of Mammalogists (Sikes and the Animal Care and Use 
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Committee of the American Society of Mammalogists 2016) and were approved by the 

University of Vermont IACUC (Protocol #PROTO202000114).  

Parasite sampling. After collection, all ectoparasites were prepared for 

identification and permanent storage. Fleas and ticks were cleared of host blood and other 

soft tissues by making a small incision in the exoskeleton and suspending the parasite in 

10% KOH for 12–24 hours. After clearing, fleas and ticks were returned to a 70% ethanol 

solution for 24 hours. All parasites were dehydrated by soaking for at least 24 hours in 

increasing concentrations of ethanol: 70%, 85%, and 95%. After dehydration, parasites 

were identified to the lowest possible taxonomic level and preserved in either 95% 

ethanol or slide mounted using synthetic Canada balsam medium. Fleas were identified to 

species using Benton (1983) and Lewis (2000, 2009); adult and nymph ticks were 

identified to species using Keirans & Litwak (1989), whereas larval ticks were identified 

to species using Coley (2015); mites were identified to order, and when possible family 

and genus, using Krantz & Walter (2009) and Allred & Beck (1966). All parasites were 

deposited in the Zadock Thompson Natural History Collections at the University of 

Vermont. 

Analytical Methods. All analyses were completed in R 4.1.2 (R Core Team 

2021) unless otherwise specified. Data and code are available at 

https://github.com/Beasley015/EctoLifeHistory. 

I estimated ectoparasite occupancy at the site and host level using a multi-scale 

MSOM (Nichols et al. 2008, Szewczyk and McCain 2019). Like other hierarchical 

detection models, multi-scale MSOMs differentiate between an ecological metric of 

https://github.com/Beasley015/EctoLifeHistory
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interest (e.g. occupancy) and the survey process used to observe the ecological metric 

(e.g. small mammal trapping). Using data from repeated sampling events, hierarchical 

detection models can estimate the detection error in the sampling method and use it to 

generate more accurate estimates of the ecological metric (MacKenzie et al. 2002, 

Dorazio and Royle 2005, Iknayan et al. 2014). Multi-scale MSOMs differ from other 

hierarchical detection models by introducing multiple scales at which the ecological 

metric can be measured (Nichols et al. 2008). In the context of this study, ectoparasite 

species can occur at a geographic site and on small mammal hosts nested within the 

geographic site (Figure 6). Using repeated captures of each individual host, multi-scale 

MSOMs can more accurately estimate ectoparasite occupancy at each of these 

organizational scales.  

Environmental covariates can be included at each level of the multi-scale 

MSOM to improve occupancy estimates and evaluate the effects of the covariates on 

occupancy. For the site-level model, I included vegetation covariates based on the results 

of the PCA. Covariates in the host-level model included host species, adjusted body 

mass, and host sex, each of which may affect ectoparasite occupancy patterns (Poulin and 

Mouillot 2003, Krasnov et al. 2012, Kamiya et al. 2014b). Host mass was scaled within 

each host species to better reflect body size variation of individuals within a species 

rather than across species. All other covariates were scaled to have a mean of 0 and a 

standard deviation of 1. 

I analyzed the model using a Bayesian framework using JAGS 4.3.0 (Plummer 

2017) with the R package R2jags (Su and Yajima 2015). I used uninformative priors for 
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all model parameters. Markov chain Monte Carlo sampling was completed using 3 chains 

of length 12,000 including a burn-in period of 5,000; thinned by 12 to reduce 

autocorrelation. Model convergence was assessed by visually examining the trace plots of 

the Markov chains and using the R-hat statistic (Gelman and Rubin 1992); an R-hat less 

than 1.1 was considered converged. Full model specifications are available in Appendix 

S2. Because larvae and nymphs of Ixodes scapularis vary in their ecology, particularly in 

phenology and host preferences (Levi et al. 2015, Kocan et al. 2015), I ran the model 

with I. scapularis individuals aggregated and with the life stages treated as separate 

species. 

I calculated the variance explained by each level of the model using the 

Bayesian R2 value proposed by Gelman et al. (2019). In the context of hierarchical 

models, Bayesian R2 differs from classical R2 definitions in two important ways: first, 

other measures of explained variance for hierarchical models are in comparison to a null 

model (Gelman and Pardoe 2006), whereas Gelman et al.’s (2019) definition of Bayesian 

R2 summarizes the fit of each level within a single model. Second, there are certain 

instances in a Bayesian framework where the formula for classical R2 (essentially, 

explained variance/total variance) can yield a result greater than 1 (Tjur 2009). Bayesian 

R2 always yields a value between 0 and 1 (Eq. 12). 

𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛 𝑅2 = 
𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒+𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 (Eq. 12) 

I calculated Bayesian R2 for the site and host levels of the model based on Gelman et al. 

(2019). Further details of the analysis are available in Appendix S4. 
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 I performed model selection using the Watanabe-Akaike Information Criterion 

(WAIC), an information criterion that performs better for hierarchical Bayesian models 

than traditional methods such as AIC (Hooten and Hobbs 2015). I performed model 

selection separately for the site and host levels of the model. In other words, when 

calculating the WAIC for each combination of model covariates for the site-level model, 

the host level model remained fixed with all covariates, and vice versa. Models with the 

lowest WAIC value were considered the best; models within two WAIC values of each 

other were considered equivalent.    

To test the hypothesis that the amount of host contact influences ectoparasite 

occupancy patterns and host specificity, I assigned life history categories to each 

ectoparasite species based on the literature (Table S3-1). I compared site-level Bayesian 

R2, host-level Bayesian R2, and number of parasitized host species between categories 

using a Kruskal-Wallis test (Kruskal and Wallis 1952). Pair-wise comparisons were 

completed using a Dunn test (Dunn 1961). Life history categories with less than two 

species were not included in the analysis. 

Because hosts and their parasites retain tight co-evolutionary links (Hafner and 

Nadler 1988, Poulin 2007), ectoparasite covariate responses are likely to mirror those of 

their hosts. To test this idea, I performed a MSOM on the host species using the same 

site-level covariates as the ectoparasite model. The structure of the host MSOM is similar 

to the ectoparasite MSOM, but the host MSOM only contains site occupancy as the 

ecological metric of interest. I analyzed the host MSOM using a Bayesian framework in 

JAGS 4.3.0 (Plummer 2017) and used uninformative priors for all model parameters. 
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Markov chain Monte Carlo sampling was completed using 3 chains of length 5,000 

including a burn-in period of 1,000; thinned by 5 to reduce autocorrelation. Full 

specifications for the host MSOM can be found in Appendix S4. 

To compare host and parasite covariate responses, I began by identifying the 

primary host species for each ectoparasite species. I used a method presented by Benton 

and Cerwonka (1960) to classify fleas based on host relationships and adapted it to 

identify the primary host for each ectoparasite species. For all ectoparasite species for 

which at least 5 individuals were collected, I visually inspected the distribution of 

abundances upon each host species (e.g. Figure S3-1). Because relative host abundance is 

likely to influence this distribution, I repeated the analysis using ectoparasite abundances 

that were adjusted for the relative abundance of each host. In cases where there was no 

clear preference between two or more host species (Benton and Cerwonka 1960), I 

included all potential primary host species in the analysis. Where possible, I verified the 

primary host species from previous studies (Table S3-2); in cases of conflict between the 

data and the literature, the primary host identified using the data was used because 

primary host identity may vary geographically (Benton and Cerwonka 1960, Krasnov et 

al. 2011a). Parasites for which fewer than 5 individuals were collected were also included 

in the analysis if there was a clear primary host based on the literature (Table S3-2). 

After identifying primary hosts, I compared primary host and ectoparasite 

responses using a linear regression with the posterior mean of the host coefficient as the 

predictor variable and the posterior mean of the ectoparasite coefficient as the response 

variable. I repeated the regression for each vegetation covariate in the models.  
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Results 

Data summary. The raw data consisted of 753 small mammal captures 

representing 11 species. Of these, two non-target species (Tamiasciurus hudsonicus and 

Mustela sp.) were removed from the dataset, along with 12 individuals that were found 

dead in the trap before the final day of sampling (2 Microtus pennsylvanicus, 1 Sorex 

cinereus, 9 Blarina brevicauda). The final dataset consisted of 417 individuals 

representing 8 species. The most common species was the white-fooded mouse 

Peromyscus leucopus with 222 individuals, followed by the meadow jumping mouse 

Zapus hudsonius with 78 individuals. The least abundant species was Napaeozapus 

insignis with 4 captured individuals (Figure S3-2).  

I collected 410 ectoparasites representing 4 orders and 17 species from the 

captured small mammals. Prevalence averaged 0.465 across all host species and ranged 

from 0.105–0.788 among host species (Figure S3-3). Of hosts infested by at least one 

parasite, parasite load per capture event was typically 1 ectoparasite, with a range of 1–10 

parasites (Figure S3-4).   

Vegetation composition and vegetation height were highly correlated (r = 0.844) 

and the PCA with all vegetation data indicated that most of the variation in the data was 

explained by composition variables. Thus, results of the composition-only PCA were 

included in the model. The PCA yielded a first principal component that explained 92.5% 

of variation in the vegetation data and ranged from primarily grass and forb cover to 

primarily dead vegetation, specifically leaf litter (Figure S3-5). The second principal 
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component explained 7.2% of the variation in the data and ranged from primarily grass 

cover to primarily forb cover. The remaining principal components explained less than 

5% of the variation in the data and were not included in the model. 

Model Results. Model results with I. scapularis aggregated and disaggregated by 

life stage were qualitatively similar. The results below are from the model with 

disaggregated life stages. 

Life history category was significantly associated with host specificity (χ2 = 

10.388, P = 0.006, η2 = 0.645): fur parasites had fewer host species than ephemeral or 

nest parasites (zephemeral,fur = -2.70, P = 0.007; zfur,nest = 2.65, P = 0.008, Figure 7). 

Associations between life history traits and site-level and host-level Bayesian R2 values 

were generally non-significant (Site-level χ2 = 4.601, P = 0.067, η2 = 0.262; host-level χ2 

= 5.404, P = 0.100, η2 = 0.200, Figure 7). However, there is some evidence for weak 

associations between the explanatory power of each level of the model and life history 

category. Despite being non-significant, the large effect size of the Kruskel-Wallace test 

indicates that site-level covariates may explain less variation in occupancy of nest 

parasites than fur or ephemeral parasites (Figure 8a). Additionally, a Dunn test yielded 

significant pair-wise differences in host-level Bayesian R2 between fur and ephemeral 

parasites (zfur,ephemeral = 2.02, P = 0.044, Figure 8b). Host specificity is significantly 

associated with Bayesian R2 values at the host level (F1,15 = 16.59, P = 0.001, R2 = 0.494, 

Figure 9b) but not the site level (F1,15 = 1.924, P = 0.186, R2 = 0.055 Figure 9a).  

Model selection at the site level yielded a model with the Grass/Forb covariate as 

the best model; however, the full model containing both site-level covariates performed 
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equally well (Table 2). The best model at the host level was the model with all covariates. 

Models with the covariate for host species and either the covariate for mass or sex 

performed as well as the best model, indicating host species is likely the most important 

covariate for host-level occupancy (Table 2). 

Primary host results were identical for raw counts and adjusted counts for all but 

two parasite species; therefore, the results using raw counts are discussed here. Results 

from the host MSOM indicated that hosts vary in their responses to PC1 (dead vegetation 

vs. grass/forb, Figure S3-6a) but not PC2 (grass vs. forb, Figure S3-6b). Thus, host and 

parasite covariate responses were only compared for PC1. Because host responses to PC1 

behaved categorically (Figure S3-7), hosts were pooled based on habitat preference 

before comparing them to the parasite responses. Parasite covariate responses were not 

significantly associated with host habitat preferences; however, this may be an artifact of 

sample size (t = 2.322, df = 1.84, P = 0.157, d = 1.52, Figure 10) 

 

 

 

Discussion 

These results suggest that ectoparasite life history, specifically time spent in 

contact with the host, is associated with occupancy patterns and host specificity. 

Consistent with my predictions, fur fleas, which spend the greatest proportion of the life 

cycle on the host, parasitized fewer host species and had higher Bayesian R2 values in the 

host-level model than ephemeral parasites which only contact the host to feed (Figures 7, 

8b). Host-level Bayesian R2 was negatively associated with host specificity (Figure 9b), 
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indicating that host traits explain less variation in occupancy for more generalist 

ectoparasite species. However, ephemeral and fur parasites did not differ in site-level 

Bayesian R2 (Figure 8a), indicating that associations between life history, host specificity, 

and occupancy patterns may be more complex than my predictions would suggest. 

Despite clear differences between life history categories at the host level, the 

explanatory power of the host model was very low (Figures 8b, 9b). Although this may 

seem counterintuitive given many ectoparasites retain strong phylogenetic associations 

with their host species (Brooks 1979, Hafner and Nadler 1988, Klassen 1992, Poulin 

2007), the finding makes sense given the structure of the multi-scale MSOM. Because 

there is more variability in occupancy between host individuals than between host 

populations (i.e. more variability at the host than site levels), it is more difficult to predict 

ectoparasite occupancy on an individual host. Previous work has shown similar findings, 

in which parasite infra-communities (i.e. communities on an individual host) appear to be 

stochastically structured despite parasite communities displaying nonrandom structure at 

the host population level (Rynkiewicz et al. 2019). A null model analysis would be useful 

in determining whether infra-communities are structured stochastically (Gotelli 2001, 

Ulrich and Gotelli 2013), but such an analysis is beyond the scope of this paper.  

The lack of differences in Bayesian R2 at the site level may be due to the 

confounding effect of host habitat preferences: ectoparasites may be responding to host 

availability rather than characteristics of the geographic site. There is some support in the 

data for this conclusion: host species identity was in the best host models based on 

WAIC, and parasite site-level coefficients were weakly associated with host habitat 
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preferences. Anecdotally, host switches, in which ectoparasites not primarily associated 

with P. leucopus were collected from that species, tended to occur at sites where the 

primary host was present (Table S3-3). Host availability has been previously 

demonstrated to be a key driver of ectoparasite occupancy (Kamiya et al. 2014a, Johnson 

et al. 2016); and although there is some evidence that host availability is important in the 

context of these data, there is not enough support for a definitive conclusion. 

Given the evidence above, it is possible that life history traits are not a primary 

driver of ectoparasite occupancy patterns. Rather, availability of the primary host species 

may be the main driver of ectoparasite occupancy, and life history traits influence a 

parasite’s ability to switch to a non-preferred host. Parasite host switching is a common 

occurrence (Brooks and Hoberg 2007, Agosta et al. 2010), and parasite persistence on 

sub-optimal hosts is thought to be a stepping-stone for colonizing unrelated hosts (Araujo 

et al. 2015). Host availability as the primary variable influencing parasite occupancy has 

support in this dataset in that 1) host species identity was in the best models as selected 

by WAIC, and 2) generalist ectoparasites typically occurred on 1–2 preferred host species 

(Figure S3-8) and occupied secondary hosts at much lower rates. More work is needed to 

address whether life history traits influence host switches, as few studies have explored 

associations between host contact and host switching ability (but see Toit et al. 2013, 

Engelbrecht et al. 2016), and the dataset discussed here lacks control sites that P. 

leucopus did not occupy.  

Alternatively, the lack of differences in site-level Bayesian R2 between life 

history categories could be a result of different ecological processes affecting different 
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life history categories. As mentioned previously, ephemeral parasites such as ticks only 

contact the host to feed, and spend most of their life cycle in the external environment. As 

a result, it is likely that ticks truly respond to characteristics of the external environment, 

as demonstrated by previous studies (Ginsberg et al. 2017, Linske et al. 2019, Gallagher 

et al. 2022). By contrast, fur parasites such as fur fleas may be primarily influenced by 

host availability (Krasnov et al. 2002, 2019, Kamiya et al. 2014a, 2014b), and the high 

site-level R2 may reflect host habitat preferences. Further work is needed to disentangle 

the effects of these two potential drivers of ectoparasite occupancy.  

Multi-scale MSOMs are a useful framework for investigating host-ectoparasite 

communities, as the structure of the model reflects the hierarchical organization present 

in these systems (Nichols et al. 2008, Szewczyk and McCain 2019). MSOMs are also 

useful for reducing detection error, which may obscure patterns due to biased sampling 

methods or stochastic non-detection (Dorazio and Royle 2005, Iknayan et al. 2014). 

However, despite the modeling framework’s utility for detecting patterns, MSOMs are 

limited in their ability to infer the mechanisms underlying said patterns. The associations 

between life history traits and occupancy patterns discussed in this paper could be a result 

of multiple different process which are not necessarily mutually exclusive, and further 

research is needed to differentiate between them.  

In conclusion, this study demonstrates that host contact is associated with host 

specificity and the explanatory power of host-level variables on ectoparasite occupancy. 

However, host contact does not appear to be associated with the explanatory power of 

site-level variables. It is possible that host contact influences occupancy patterns 
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indirectly, such as by influencing a parasite species’ ability to infest a non-primary host. 

More work is needed to disentangle the mechanisms by which ectoparasite life history 

traits such as host contact influence occupancy patterns across organizational scales. 
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Tables 

Table 2. Results of model selection using WAIC. The best model for each hierarchical 

level is indicated by a ΔWAIC of 0.00; models with a ΔWAIC less than 2 are considered 

equivalent to the best model. 

Level Model WAIC ΔWAIC 

Site Grass/Forb 79.43 0.00 

 Grass/Forb + Dead Veg 79.64 0.21 

 Intercept 81.95 2.52 

 Dead Veg 83.56 4.13 

    

Host Species + Mass + Sex 83.86 0.00 

 Species + Mass 84.40 0.54 

 Species + Sex 85.82 1.96 

 Species 89.28 5.42 

 Intercept 91.64 7.78 

 Sex 92.33 8.47 

 Mass 93.88 10.02 

 Sex + Mass 94.31 10.45 
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Figures 

 

Figure 6. Conceptual diagram of the hierarchical system modeled using the multi-scale 

MSOM. Ectoparasite species may occupy a series of geographic sites (a), each with a 

suite of habitat characteristics. Each site contains small mammal hosts (b) that vary in 

characteristics such as species and body size. Each individual host is a sampling unit on 

which an ectoparasite may occur. By repeatedly sampling from each host over multiple 

captures (c), the MSOM can estimate the probability of detecting an ectoparasite species 

on a host given it is present.  

 

 

Figure 7. Number of host species parasitized by each ectoparasite species, separated by 

life history classification. Colors denote parasite order; letters indicate group assignments 

based on a Dunn test. Points are jittered for clarity. Fur parasites parasitized significantly 

fewer host species than nest parasites or ephemeral parasites (χ2 = 10.388, P = 0.006, η2 

= 0.645). Bot flies (Diptera) are shown but were not included in the analysis due to small 

sample size.  
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Figure 8. Bayesian R2 values from the site model (a) and host model (b) for each 

ectoparasite species. Colors denote order; points are jittered for clarity. There were no 

significant differences in site-level R2 between life history groups; however, the effect 

size (η2) indicates nest parasites may have slightly less variation explained by site-level 

covariates than other groups (χ2 = 4.601, P = 0.067, η2 = 0.262). There were also no 

significant differences in host-level R2 between groups (χ2 = 5.404, P = 0.100, η2 = 

0.200), but pair-wise comparisons using a Dunn test yielded significant differences 

between ephemeral and fur parasites (P = 0.044). Bot flies (Diptera) are shown but were 

not included in the analysis due to small sample size.  

 

 

 

Figure 9. Associations between Bayesian R2 from the site level (a) and host level (b) of 

the model and the number of host species parasitized by each ectoparasite species. Colors 

denote order. There was a significant, negative relationship between host-level R2 and the 

number of hosts (b), indicating that host-level covariates tended to explain more variation 

in occupancy for more specialized parasites (F1,15 = 16.59, P = 0.001, R2 = 0.494, Figure 

4b). There were no significant associations between site-level R2 and number of 

parasitized host species (F1,15 = 1.924, P = 0.186, R2 = 0.055) 
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Figure 10. Coefficient values for the first covariate from the site-level model by host 

habitat preference. Negative coefficient values indicate habitats with more grass and forb 

ground cover; positive values indicate habitats with more leaf litter. Parasite habitat 

preferences were not significantly associated with ectoparasite habitat coefficients; 

however, the high Cohen’s d value suggests that this may be an artifact of sample size. (t 

= 2.322, df = 1.84, P = 0.157, d = 1.52).  
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Abstract 

Management of the raccoon variant of rabies virus in the United States is 

primarily conducted using oral rabies vaccination (ORV). When a sufficient proportion of 

the population is vaccinated (~60%), the spread of rabies can be controlled and even 

eliminated. ORV has been successful at controlling and eliminating raccoon rabies in 

rural areas but there has been less success in urban areas. We studied the proportion of 

the raccoon population with rabies virus neutralizing antibodies (RVNA) during a 3-year 
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ONRAB ORV trial in urban areas of Burlington, Vermont. We used a modified N-

mixture model to jointly estimate raccoon abundance, RVNA seroprevalence, and capture 

rates to examine factors that relate to ORV success to better inform management. We 

found that abundance was lower in less developed areas compared to more urban centers. 

Raccoon RVNA seroprevalence tended to decrease as population abundance increased 

yet increased with the average age of the population. Opossum captures correlated with a 

decrease in raccoon RVNA seroprevalence in low development areas, suggesting they 

may be competing for baits. The target bait density across the entire study area was 150 

baits/km2, but the hand baiting strategy was heavily concentrated on roads and resulted in 

uneven bait densities within sampling sites (ranging from 0 to 484 baits/km2). Uneven 

bait distribution across the study area may explain low RVNA seroprevalence in some 

locations. Our results suggest that more even bait distribution across the study area may 

improve RVNA seroprevalence and support annual ORV to account for raccoon 

population turnover.  

 

Introduction 

Rabies virus remains a significant wildlife management and public health 

challenge in the United States (USDA 2017, Pieracci et al. 2020). Among meso-

carnivores, a stable focus persists among populations of raccoons (Procyon lotor) in the 

eastern US (Gilbert 2018). The US Department of Agriculture (USDA), Wildlife 

Services, National Rabies Management Program (hereafter, NRMP) coordinates oral 

rabies vaccination (ORV) targeting meso-carnivore wildlife and annually distributes >9 
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million vaccine laden baits across diverse landscapes, with greatest emphasis in the 

region where raccoon rabies virus (RRV) is enzootic (Elmore et al. 2017).  

Experimental ORV field trials to test the Ontario Rabies Vaccine Bait (ONRAB; 

Artemis Technologies Inc., an indirect, wholly-owned subsidiary of Ceva Sante Animale, 

S.A., Guelph, Ontario, Canada) targeting raccoons began during 2011 in West Virginia 

(Slate et al. 2014) and has since shown promise at achieving raccoon seroprevalence 

close to target levels needed for RRV elimination (60-80%; Rees et al. 2013, Reynolds et 

al. 2015).  Average post-ORV seroprevalence using 75 baits/km2 during three 3-year 

ONRAB trials was 52% in West Virginia (Slate et al. 2014, Johnson et al. 2021), 69% in 

the northeastern US (Gilbert et al. 2018b), and 58% in the St. Lawrence River region of 

New York (Pedersen et al. 2019a).  

These trials and similar studies investigated how landscape composition impacts 

raccoon vaccine bait encounters, uptake, and rabies virus neutralizing antibody (RVNA) 

response in rural areas following ORV (e.g. Berentsen et al. 2013, Pedersen et al. 2019b). 

Fewer studies have focused on the success of ORV in urban/suburban raccoon 

populations. Recent studies in Long Island, New York reported lower raccoon RVNA 

seroconversion in medium and high intensity development areas and greater success with 

increasing distances from roads (Bigler et al. 2021a, 2021b). One study reported that the 

likelihood of RVNA seroconversion in raccoons following ORV with ONRAB was 

negatively impacted by the proportion of residential areas near the capture site (Mainguy 

et al. 2012). From 2012-2014, the NRMP conducted an ONRAB trial in urban/suburban 

areas near Cleveland, Ohio using 150 baits/km2 in a ground bait area. The 3-year post-
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ORV mean RVNA in raccoons was only 34% (n=1,464), suggesting challenges 

vaccinating populations in developed areas compared to rural areas (USDA 2017). 

Urban challenges for ORV such as higher raccoon densities, smaller home ranges, 

and fragmented habitats are well documented and influenced by anthropogenic resources 

(Prange et al. 2003, 2004, Randa and Yunger 2006, Bozek et al. 2007, Rosatte et al. 2010, 

Berentsen et al. 2013, Slate et al. 2020). There also may be a greater abundance of 

nontarget bait competitors in urban areas (e.g., cats [Felis catus], dogs [Canis lupus 

familiaris], opossums [Didelphis virginiana]), which may impact ORV success targeting 

meso-carnivore populations. One NRMP goal is to eliminate RRV locally and nationally 

by moving ORV zones eastward over the next 30 years (Elmore et al. 2017). As ORV 

zones move east, more urban/suburban habitats will be encountered requiring a better 

understanding of effective strategies targeting raccoon populations in developed 

environments. 

In this study, we estimate raccoon RVNA seroprevalence and determine the 

relative impacts of baiting strategies, raccoon population characteristics, and the 

landscape (e.g., development intensity and competitor abundance) on seroprevalence to 

inform rabies management. 

 

Methods 

Study area and habitat. The study area in Chittenden County, Vermont is within 

the urban/suburban ORV ground bait zone and encompasses portions of six townships: 

Burlington, Colchester, Essex, South Burlington, Williston, and Winooski. The hand 
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baiting zone was overlaid with 1-km2 cells and the percent of habitat types was 

determined for each cell using the 2011 National Land Cover Database (NLCD; Homer 

et al. 2015). Using NLCD values 21 (Developed, Open Space), 22 (Developed, Low 

Intensity), 23 (Developed, Medium Intensity), and 24 (Developed, High Intensity), study 

area cells were classified into low, medium, or high intensity human development. Four 

non-adjacent sampling cells were randomly selected for each of the three development 

intensities, separated by at least 1 km (Figure 11A). Sampling cells had minimum spatial 

buffers of 1.2 km to the edge of the ground bait zone to limit raccoon movement in and 

out of the ORV zone. Mean percent development across cells in each of the three 

intensity classes was 45% for low (range 28-58%), 67% for medium (range 54-86%), and 

92% for high (range 87-96%).   

Oral rabies vaccine bait and distribution strategies. During August 2015-2017, 

approximately 25,000 ONRAB vaccine baits (Rosatte et al. 2009b) were distributed by 

hand throughout the study area at a target density of 150 baits/km2. In urban/suburban 

areas, baits are hand distributed either by slow speed vehicles targeting hedgerows 

between properties, culverts under streets, dumpsters behind businesses or by walking 

sidewalks, railroad tracks, bike paths and placing baits in areas likely used by raccoons 

that are less likely to be encountered by people or pets. This is commonly referred to as 

“hand” or “ground” baiting (Gilbert and Chipman 2020). Baits were distributed annually 

in the hand bait zone across six grids that averaged 37 km2 in size (Figure 11A). Field 

staff were assigned a number of baits per grid and recorded the location of baits 

distributed using push-button, screenless point of interest (POI) units (G-Log 760, 
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Transystem Inc., Miaoli, Taiwan). We mapped POI coordinates (dots) within sampling 

cells and used ArcMap 10.8 (ESRI 2011) to count the number of POI dots as a proxy for 

number of ONRAB baits distributed per cell. 

Trapping, animal handling, and sampling. Sampling cells were trapped for 10 

consecutive days in July (pre-ORV) and again in October (post-ORV) during 2015-2017. 

Each cell contained 25 live traps (model 608, Tomahawk Live Trap, LLC, Hazelhurst, 

Wisconsin, USA) baited with marshmallows and anise oil. Efforts were made to 

distribute traps evenly across cells given development and property access constraints. 

Traps were checked daily and moved within a cell every 2-3 days if no unique target 

animals had been captured.  

 Target animals (raccoons, striped skunks [Mephitis mephitis], gray and red foxes 

[Urocyon cinereoargenteus and Vulpes vulpes], and fishers [Pekania pennanti]) were 

anesthetized using a 5:1 ketamine:xylazine mixture via intramuscular injection (Kreeger 

1999).  Under anesthesia, animals were ear tagged with a unique identifier and the sex, 

reproductive status, relative age, weight, and general condition were recorded. A 5-7 ml 

blood sample was collected from the jugular vein and a first premolar tooth was extracted 

(when available). Target animals were released at the capture site after full recovery from 

anesthesia. All nontarget, as well as target animals recaptured within the same 10-day 

trapping session, were released immediately at the point of capture without sampling. 

Animals exhibiting abnormal behavior or with severe lesions were euthanized under 

heavy anesthesia with potassium chloride and a brainstem sample was collected 

postmortem. 
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RVNA determination and antigen testing. Serum samples were separated from 

whole blood and shipped frozen to the New York State Department of Health 

(NYSDOH) Rabies Laboratory where they determined RVNA titers by using a modified 

neutralization test (Trimarchi et al. 1996). Results were provided in IU/ml and samples 

≥0.125 were considered RVNA positive. Brainstems were tested for rabies antigen by the 

Vermont Department of Health (VDH) Laboratory in Burlington, Vermont using the 

direct fluorescent antibody test (Center for Disease Control and Prevention and 

Prevention 2018).  

Age determination. Teeth were shipped to Matson’s Laboratory (Manhattan, 

Montana, USA) to determine age from cementum as described in Johnston et al. (1987); 

results were returned to the nearest year: 0 for young of the year juveniles and ≥1 for 

adults. 

Population level analysis. We estimated raccoon abundance (N) and RVNA 

seroprevalence (S) post-ORV in 2015-2017 by modifying a multinomial N-mixture model 

with removal sampling (Kery and Royle 2015a, 2015b).  This type of model estimates 

abundance by using daily counts of unmarked (unique) individuals to estimate the 

probability of detecting (or in our case capturing) an unmarked individual during a daily 

count. Capture probability is then used to generate abundance estimates. The model 

accounts for the decreasing probability of capturing a unique animal as individuals in the 

population are captured and marked (Kery and Royle 2015a). We modified the base 

model to include estimates of RVNA seroprevalence in each cell, i.e., to compare daily 
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counts of unmarked seropositive individuals to daily counts of all unmarked individuals 

to estimate cell-level seroprevalence (see Appendix S5 for more details).  

We allowed abundance to vary with development intensity and capture rate to 

vary with trap availability (if traps were triggered by other species, they were not 

available to capture raccoons). We examined effects of habitat (human development 

level), population composition (raccoon abundance and average age), competition 

(numbers of other species caught), and management (ORV bait density and coverage). 

Bait coverage was calculated by drawing a 30m buffer (McClure et al. 2022) around each 

POI dot to represent the area of effect for each bait. We merged all buffers into a single 

polygon, then calculated coverage as the proportion of the study cell that intersected the 

buffer polygon. Model parameters were estimated using a Bayesian hierarchical model 

with uninformed priors in the programs JAGS (Plummer 2017) and R (R Core Team 

2021). We evaluated covariate effects using the 75% credible interval (CI) as an 

exploratory metric and followed up with the appropriate frequentist analysis (e.g., linear 

regression, ANOVA, etc.) We used the Watanabe-Akaike Information Criterion (WAIC) 

to perform model selection (Watanabe 2010, Hooten and Hobbs 2015).  We used 

posterior predictive checks to ensure the model was internally consistent (i.e. that model 

results made sense; Gelman et al. 1996, 2013) and post-hoc frequentist tests to 

complement the Bayesian analyses.  

 

Results 
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 Data summary. The number of ONRAB baits distributed within the greater 

Burlington area and the number of POI coordinates recorded as baits had minimal annual 

variation: 24,496 baits/24,111 POI dots in 2015 (-385 POI error), 24,298 baits/24,495 

POI dots in 2016 (+197 POI error), and 24,459 baits/24,289 POI dots in 2017 (-170 POI 

error). The POI dots (proxy for number of baits distributed) in each sampling cell varied 

considerably by cell, development intensity, and year (Table 3). 

During the 3-year field trial, 2,274 animals were trapped across 18,000 trap 

nights: 1,082 (48%) were target animals sampled for RVNA (902 raccoons, 164 skunks, 

11 fishers, 4 gray fox, 1 red fox); 818 (36%) were nontargets released without sampling; 

and 374 (16%) were target animals recaptured during the same trapping session. 

Opossums totaled 275 among 818 (34%) nontarget captures during the trial (19% in low 

development, 31% in medium development, and 50% in high development). 

Among 902 raccoons, 482 (53%) were sampled once and 174 individuals were 

sampled at least two times. Three target animals were found dead in a trap and nine were 

euthanized due to abnormal behavior or severe lesions. All were tested for rabies and one 

raccoon tested RRV positive, which was an adult lactating female found dead in a trap 

with a large open abdominal wound during the 2015 pre-ORV session. Most of the 902 

raccoons sampled were captured in the medium development area (375) and the least 

were captured in the low development area (226), with 301 captured in the high 

development area. Of the 902 raccoons, an actual age was reported for 758 and sex was 

recorded for 900.  Raccoons in the low development habitat had the highest proportion of 
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males (60%). In the medium development habitat, the proportion was slightly lower 

(58%) and the high development habitat had the lowest proportion of males (52%).   

The RVNA seroprevalence rates and sample sizes for raccoons and skunks varied 

by year, sampling period, and development (Table 4). Regardless of development type, 

the 3-year mean RVNA among raccoons pre-ORV was 36.4% (n = 523, range: 16.8-

46.5%) and 39.1% (n = 379, range: 28.8-44.4%) post-ORV. 

Population level results. There was model uncertainty in the population level 

results (Table S6-1), suggesting that no single model was strongly supported over the set 

examined. There were no significant interaction terms based on the 75% CI and post-hoc 

analyses; therefore, we selected a model with all additive covariates.  

The model corrected for the probability of capturing a unique raccoon decreasing 

when fewer traps were available to capture raccoons. Estimated raccoon abundance per 

cell by year ranged from 2-31, with a median of 10. Medium and high development cells 

had higher estimated raccoon abundance than low development cells (Figure S6-1). 

However, an ANOVA did not reveal differences between development categories (P = 

0.257), likely due to high variability in raccoon abundance within medium development 

cells. 

 Estimated post-bait raccoon RVNA seroprevalence per cell ranged from 11.6-

96.8% (median = 39.7%) and varied by year and development class (Figure 12). Medium 

development cells tended to have lower RVNA seroprevalence compared to low 

development (P = 0.077, η2 = 0.144), possibly due to high variability observed in 

medium or high development cells. 
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 Raccoon abundance did not affect seroprevalence based on the 75% CI; however, 

a linear model with estimated abundance as the predictor variable and estimated 

seroprevalence as the response demonstrated a negative relationship (P = 0.020, R2 = 

0.124, Figure 13A). Estimated raccoon seroprevalence increased as skunk captures 

increased (P < 0.001, R2=0.439, Figure 13B), whereas opossum captures were not 

associated with seroprevalence based on the 75% CI or the results of a linear model 

(P=0.385, R2=-0.007, Figure 13C). However, opossum captures explained 31% of the 

variation in seroprevalence in low development cells (P = 0.036, R2 = 0.305).  

 Although the average age of captured raccoons did not impact raccoon RVNA 

seroprevalence based on the 75% CI, the results could be due to an influential outlier 

from a cell with a small sample size (Figure S6-2). Upon removing the outlier, results 

from a linear regression suggest that raccoon populations with a lower average age tend 

to have lower estimated RVNA seroprevalence (P = 0.003, R2 = 0.213, Fig. 4).  

The actual bait density and bait coverage within a cell did not impact RVNA 

seroprevalence based on the 75% CI or the results of linear models (P = 0.054, R2 = 

0.078; P = 0.709, R2 = -0.025, Figure S6-3). There tended to be a weak positive 

relationship between the bait density and the seroprevalence, while the relationship 

between bait coverage within cells and seroprevalence was ambiguous.  

Posterior predictive checks yielded no systemic discrepancies between the 

observed data and data generated by the model (Figure S6-4), but the distributions for the 

simulated data had slightly longer tails.   
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Discussion 

The post-ORV raccoon RVNA seroprevalence was well below the target levels 

recommended for RRV elimination (60–80%; Rees et al. 2013, Reynolds et al. 2015) 

except for four cells that reached 60% estimated seroprevalence at least once during the 

study. Multiple environmental factors may contribute to raccoon RVNA seroprevalence 

in the greater Burlington area, where medium development sites had lower 

seroprevalence compared to low development sites, with no clear differences between 

sites comparing high development to low or medium development (Figure 12).  

Characteristics of raccoon populations explain some of the variation in RVNA 

seroprevalence, as areas of greater raccoon abundance exhibited lower seroprevalence 

(Figure 13A). Furthermore, estimated raccoon abundance was lower across low 

development compared to medium or high development sites. Raccoons may thrive in 

moderate levels of human development, with residential areas and nearby forested areas 

(e.g., cemeteries and parks) close to the urban core where they can forage for 

anthropogenic food sources such as garbage, bird feeders, pet food, and vegetable 

gardens (McKinney 2002, Randa and Yunger 2006). Our classifications of low, medium, 

or high human development are all within the Burlington metropolitan area and even the 

low cells averaged 45% developed and should not be considered rural. Many studies have 

documented greater raccoon densities in urban/suburban compared to rural habitats 

(Schinner and Cauley 1974, Riley et al. 1998, Prange et al. 2003, Slate et al. 2020).  

Greater raccoon densities in urban areas may contribute to the lower RVNA 
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seroprevalence observed in the Burlington study area when compared to similar studies 

from rural areas.  

Older raccoons had a higher probability of being RVNA seropositive than 

younger raccoons.  This was expected as juvenile raccoons typically travel in family 

groups and may be inexperienced in foraging and encountering baits. During our post-

bait sessions, juveniles had encountered only one baiting event, while adults had 

encountered at least two baiting events.  Several studies have reported greater RVNA 

seroprevalence among adult compared to juvenile raccoons (Boulanger et al. 2008, 

Rosatte et al. 2009a, Horman et al. 2012, Mainguy et al. 2012, Slate et al. 2014, Pedersen 

et al. 2019a), where RVNA seroprevalence increases with animal age (Figure S6-1; 

Gilbert et al. 2018a, Johnson et al. 2021) and exposure to annual ORV baiting efforts. 

Overall, 45% of raccoons in our study were juveniles, similar to Mainguy et al. (2012) 

and Bigler et al. (2021a), but varied by development type (37% in low, 46% in medium, 

and 49% in high), which may relate to seroprevalence differences by development class. 

We concur with prior work suggesting that a pulse of susceptible juveniles entering the 

population each year underscores the need for annual ORV to maintain levels of 

population RVNA seroprevalence. 

Skunks and opossums were more important factors affecting raccoon RVNA 

seroprevalence than expected. In low development areas, where the most opossums were 

captured, raccoon RVNA seroprevalence was lowest during the ORV trial. While this 

pattern only occurred in low development, it suggests potential bait competition between 

opossums and raccoons. Opossums made up one third of all nontargets captured during 
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our study and have been recognized as bait competitors with raccoons in previous studies 

(Olson and Werner 1999, Olson et al. 2000, Smyser et al. 2010).   

Sites with greater skunk captures demonstrated higher raccoon RVNA 

seroprevalence. Except for one high development cell in 2015 with an unusually high 

number of unique skunks (25/km2 during pre-bait and 19/km2 during post-bait), skunk 

captures tended to be greatest in the low development cells, followed by medium 

development cells and least frequent in high development cells. Although skunks 

consume ORV baits, it’s possible that their dependence on urban green spaces 

(Greenspan et al. 2018) reduces the likelihood of encountering baits distributed along 

roads. Additional research is needed to explain how interspecific encounters of target 

meso-carnivores may affect bait uptake and RVNA seroconversion in raccoons.  

The target bait density for the Burlington ground zone was 150 baits/km2, which 

is commonly used within urban areas with higher raccoon densities (Slate et al. 2020). 

Our baiting grids averaged 37 km2 and 4,070 baits distributed per grid. Within sampling 

cells, the actual bait densities varied from 0-484 baits/km2. There is a known number of 

baits per grid but, depending on habitats encountered while driving, distribution may be 

uneven or patchy within grids (Figure 11B-D). Additionally, concentrating delivery along 

roads may lead to bait distribution in suboptimal raccoon habitat (e.g., roadside ditches, 

under shrubs on front lawns), potentially reducing raccoon bait encounters (Bigler et al. 

2021b). There was a slight positive association between actual bait density and raccoon 

RVNA seroprevalence, however, this was not a strong influence compared to other 

factors measured during the study. Within-cell bait coverage did not strongly influence 
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raccoon RVNA seroprevalence, perhaps because raccoon movements in developed areas 

may exceed the cell size (1 km2). Prange et al. (2004) documented raccoon movements 

and home ranges in urban and suburban areas during the summer that exceeded the width 

and area of our cells.  

There was some evidence that bait coverage at a scale larger than the 1 km2 

sampling cells was important, as a portion of the greater Burlington area was not baited 

during 2016 (Figure 11C) and raccoon RVNA seroprevalence rates were unusually low 

during 2017 (Figure S6-5B). There may be a cumulative effect of baiting (Sattler et al. 

2009) for maintaining raccoon RVNA seroprevalence rates, considering the pulse of 

naive juveniles entering the population annually. A cumulative effect could explain the 

lower seroprevalence rates in medium development sites, as many of these sites were in 

or adjacent to the areas without baits. Future research should consider the potential 

benefit of reducing the size of baiting grids, which may result in fewer baiting gaps and 

increased raccoon RVNA seroprevalence. 

There was considerable variability of raccoon RVNA seroprevalence estimates 

among cells. However, we observed a high probability of raccoon detection (capture) in 

our model, suggesting that this variability is not due to observation error. Detection-based 

models are useful in situations where bias or error in capture rates may introduce error in 

the observed data (Iknayan et al. 2014, Kellner and Swihart 2014).  Our detection-model 

estimated relatively high capture rates, increasing our confidence that the seroprevalence 

estimates accurately represent the raccoon population in this area. The model also 

corrected for a decrease in raccoon captures as more traps are occupied, which is 
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important at sites with high numbers of recaptures or nontargets. The addition of 

seroprevalence to the base N-mixture model with removal sampling was also important 

for accurately modeling seroprevalence, as the model was able to jointly estimate 

abundance and seroprevalence, the former of which often affects the latter in wild 

populations (Mainguy et al. 2012). 

The use of multiple analytical methods to support and expand upon the results of 

the N-mixture model shed additional light on the factors that may influence raccoon 

population RVNA seroprevalence associated with ORV. Evaluation of the 75% CI 

missed many important variables because of outliers (Figure S6-2) or because the pattern 

only held in one development class (Figure 13C). An individual-level analysis also 

supported the finding that seroprevalence was influenced by the average age of the 

population by providing an explanation for the pattern (i.e., that older raccoons are more 

likely to be seropositive; Figure S6-5A). Our consideration of multiple analytical 

approaches was useful for teasing apart complex relationships between biological and 

landscape factors in this urban environment. 

During 2014 (prior to our study), there were 30 confirmed cases of RRV within 

our study area, declining to 7 and 1 case detected during 2015 and 2016, respectively. 

During 2017-2021, there were no cases of RRV in this area based upon consistent levels 

of surveillance each year. Despite the relatively low RVNA response in this study when 

compared to rural ONRAB studies, ORV led to case reduction and elimination during the 

study. For improved urban management of RRV using ORV, future research should focus 
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on a more comprehensive understanding of the interplay between RVNA seroprevalence 

for local and regional case reduction and elimination of RRV.  

We identified several patterns impacting raccoon RVNA seroprevalence within 

the greater Burlington ORV area, but many questions remain. Future studies in developed 

areas should investigate potential factors among the ecological community of meso-

carnivores and nontarget animals that may impact ORV effectiveness for raccoons (e.g., 

population densities, movements, home ranges, habitat use and selection, bait 

consumption). A comprehensive ecological understanding can inform refinement of 

baiting strategies for raccoons in urban/suburban environments. Bait stations require 

additional study such as incorporating them with hand baiting, locating them farther from 

roads to potentially bolster bait encounters as suggested by (Bigler et al. 2021b), and 

expand on work by Bjorklund et al. (Bjorklund et al. 2017) to improve specificity of 

access by raccoons. As the NRMP continues to work toward RRV elimination over the 

next 30 years and pushing the ORV zone eastward, an increasing number of urbanized 

areas will be encountered, and the challenges associated with ORV in urban areas will 

become more prominent. Continued investigation and research of ORV targeting 

raccoons in urban/suburban habitats is critical to successful elimination of RRV from the 

US and North America.  
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Tables 

Table 3. Mean ONRAB (Artemis Technologies Inc., an indirect, wholly-owned 

subsidiary of Ceva Sante Animale, S.A., Guelph, Ontario, Canada) bait density (per km2) 

in cells of varying development intensities (low, medium, high) in the Burlington, 

Vermont, USA area, 2015-2107. Minimum and maximum bait densities are in 

parentheses. Each development intensity had four cells and target bait density was 150 

baits/km2. 
Year Low Medium High 

2015 163 (18-394) 109 (45-260) 188 (73-386) 

2016 268 (147-431) 142 (0-317) 175 (86-318) 

2017 129 (85-205) 115 (49-184) 287 (164-484) 

 

Table 4. Total percentage of rabies virus neutralizing antibodies for raccoons (Procyon 

lotor) and striped skunks (Mephitis mephitis) sampled in cells with varying levels of 

human development before (pre) and after (post) oral rabies vaccination using ONRAB 

(Artemis Technologies, Inc., an indirect, wholly-owned subsidiary of Ceva Sante 

Animale, S.A., Guelph, Ontario, Canada) in the Burlington, Vermont, USA area, 2015-

2017. Total sample sizes across four sampling cells for each development class and 

cumulatively (in total columns and rows) are in parentheses. 

Species Development 2015 Pre 
2015 

Post 
2016 Pre 

2016 

Post 
2017 Pre 

2017 

Post 
Total Pre 

Total 

Post 

Raccoons Low 48.4 (31) 46.4 (28) 52.5 (40) 55.6 (27) 17.9 (56) 38.6 (44) 
36.2 

(127) 
45.5 (99) 

 Medium 50.0 (64) 36.0 (50) 41.2 (51) 46.3 (41) 
19.3 

(109) 
20.0 (60) 

33.0 

(224) 

32.5 

(151) 

 High 40.0 (55) 52.2 (46) 47.4 (38) 34.1 (41) 12.7 (79) 31.0 (42) 
29.1 

(172) 

39.5 

(129) 

 Total 
46.0 

(150) 

44.4 

(124) 

46.5 

(129) 

44.0 

(109) 

16.8 

(244) 

28.8 

(146) 

32.5 

(523) 

38.3 

(379) 

Skunks Low 0.0 (1) 38.9 (18) 20.0 (10) 41.7 (12) 8.3 (12) 0.0 (11) 13.0 (23) 29.3 (41) 

 Medium 10.0 (10) 28.6 (7) 0.0 (4) 0.0 (2) 0.0 (3) 11.1 (9) 5.9 (17) 16.7 (18) 

 High 14.8 (27) 30.8 (26) 0.0 (5) n/a (0) 0.0 (3) 0.0 (4) 11.4 (35) 26.7 (30) 

 Total 13.2 (38) 33.3 (51) 10.5 (19) 35.7 (14) 5.6 (18) 4.2 (24) 10.7 (75) 25.8 (89) 
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Figures 

 

Figure 11. Study area where oral rabies vaccination using ONRAB (Artemis 

Technologies Inc., an indirect, wholly-owned subsidiary of Ceva Sante Animale, S.A., 

Guelph, Ontario, Canada) at 150 baits/km2 was evaluated in the greater Burlington, 

Vermont, USA area (black star on state map). A) ONRAB hand bait zone grids (double 

black lines) with National Land Cover Database habitat; darker shades of gray indicate 

higher development intensities, while lighter shades include water, wetlands, forest, and 

agriculture. Sampling cells were 1 km2: low (thicker black squares), medium (dashed 
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squares), and high development intensity (thinner black squares) in panel A.  Panels B-D 

show the same hand bait grids and sampling cells (see legend) with ONRAB bait 

locations (black dots) for 2015 (B), 2016 (C), and 2017 (D). 

 

 

Figure 12. Estimated raccoon rabies virus neutralizing antibody seroprevalence across 

human development classifications, based on National Land Cover Database habitats, 

associated with a 3-year oral rabies vaccination trial with ONRAB (Artemis 

Technologies Inc., an indirect, wholly-owned subsidiary of Ceva Sante Animale, S.A., 

Guelph, Ontario, Canada) at 150 baits/km2 in the greater Burlington, Vermont, USA area. 

Boxes represent quartiles, whiskers represent the 95% confidence interval, and dots 

represent outliers. Numbers denote sample sizes. 
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Figure 13. Estimated raccoon rabies virus neutralizing antibody (RVNA) seroprevalence 

tends to decrease with estimated raccoon abundance in the greater Burlington, Vermont, 

USA area (2015-2017) based on the results of a linear model (A; F1,34 = 5.941, P = 0.020, 

R2 = 0.124), yet increase with skunk captures based on the results of a linear model (B; 

F1,34 = 28.4, P < 0.001, R2 = 0.439). Estimated raccoon RVNA seroprevalence in cells 

classified as low development tended to decrease with increasing opossum captures (C; 

F1,10 = 5.828, P = 0.036, R2 = 0.305). This association was not present in cells classified 

as medium and high development.  
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Figure 14. Study cells with a higher proportion of juvenile raccoons tended to have lower 

estimated rabies virus neutralizing antibody seroprevalence than cells with a higher 

proportion of adults for an oral rabies vaccination trial with ONRAB (Artemis 

Technologies Inc., an indirect, wholly-owned subsidiary of Ceva Sante Animale, S.A., 

Guelph, Ontario, Canada) at 150 baits/km2 in the Burlington, Vermont, USA area, 2015-

2017. Results are based on a linear regression after an influential outlier was removed 

(F1,33 = 10.22, P = 0.003, R2 = 0.213). 
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Appendix S1: Supplemental Figures for Chapter 1 

 

 
 

Figure S1-1. a) Multi-species occupancy models (MSOMs) have a hierarchical structure 

in which species-level parameters (such as occupancy probability Ψi) are drawn from a 

community-level probability distribution, allowing the model to evaluate all species in 

the context of the group. b) Site-level occupancy probability Ψij is a function of species 

occupancy probability Ψi and site-level covariates such as patch area. c) Repeated 

sampling at each site yields estimates of detection probability pijk from encounter 

histories. 

 

 

 
Figure S1-2. Map of trapping locations in Vermont. Points have been jittered for clarity. 

Colors denote habitat type. 
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Figure S1-3. Distribution of estimated median regional species richness (N) of the 

simulated datasets. Solid lines denote the true regional richness of 22 species. Models 

with uninformative priors (a) tended to yield an expected richness of 21 species. Models 

with informative priors (b-d) yielded qualitatively similar estimates, as did models with 

strongly mis-specified priors (g). Models with weakly and moderately mis-specified 

priors tended to yield an expected richness of 20 species (e-f).  
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Figure S1-4. Distribution of estimated modal regional species richness (N) of the 

simulated datasets. Solid lines denote the true regional richness of 22 species. Models 

with uninformative priors (a) tended to yield an expected richness of 20 species. Models 

with strongly informative priors tended to yield an expected richness of 21 species (d). 

All other models were qualitatively similar to the model with uninformative priors. 
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Figure S1-5. Comparison of true site-level occupancy and estimated occupancy 

probability for simulated species 21, which was undetected during sampling. Models with 

mis-specified priors (e–g) tended to over-estimate site occupancy, as shown by the 

increase in y-values closer to -1.  
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Figure S1-6. Comparison of true site-level occupancy and estimated occupancy 

probability for simulated species 22, which was undetected during sampling. Models with 

strongly mis-specified priors (e–g) tended to over-estimate site occupancy, as shown by 

the increase in y-values closer to -1.  
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Figure S1-7. Results of the principal component analysis (PCA) on vegetation data. PC1 

captured 82.4% of the variation in the data and captured a gradient from mostly grassy 

cover to mostly leaf litter. PC2 explained 10.5% of the variation in the data and captured 

a gradient from mostly grassy cover to a mix of forbs and bare ground. 
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Appendix S2: Tutorial for creating aggregated priors using R and JAGS 

 

This appendix is a tutorial for using prior aggregation to include external sources 

of information in multi- species occupancy models (MSOMs). Running the code included 

in this tutorial requires the software JAGS, which can be downloaded here. 

This tutorial does not include general information on Bayesian MSOMs or the 

use and selection of ecologically informed priors. For an introduction to Bayesian 

MSOMs, see Chapter 11 of Applied Hierarchical Modeling in Ecology: Analysis of 

Distribution, Abundance and Species Richness in R and BUGS by Royle and Kéry 

(2015). For a guide to Bayesian model selection, see Hooten and Hobbs (2015). For a 

guide to Bayesian model checking, see Conn et al. (2018). For more information on 

developing ecologically informed priors, see Low Choy et al. (2009), Banner et al. 

(2020), and citations therein. 

This tutorial requires the following packages: 

 

 

Simulate the community 

We will begin by simulating a community consisting of 10 species. We will assume 

that we surveyed this community by sampling 20 sites over a period of 4 surveys each. We 

will also simulate a covariate that  is correlated with the occupancy rates of some species: 

library(R2jags)  

library(boot)  

library(abind)  

library(tidyverse)  

library(ggnewscale) 

# Set seed for reproducibility: 

set.seed(23) 

https://sourceforge.net/projects/mcmc-jags/files/
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half of the species in the community will respond negatively to the covariate, while the 

other half are not affected. 

To simulate site-level occupancy, we will first draw species-level occupancy 

probabilities from a beta distribution: ψi ∼ Beta(α = 2, β = 3). This distribution generates 

a wide range of occupancy probabilities (95% interval 0.067586 – 0.8058796), a situation 

in which data augmentation is known to work well. We will use a logit link function to 

account for covariate effects on site-level occupancy probability of each species. Finally, 

the true occupancy state for each species at each site will be the result of a Bernoulli trial 

with the site-level probability as the probability of success. 

 

Similarly to species-level occupancy probabilities, species-level detection 

probabilities will be drawn from a beta distribution pi Beta(α = 2, β = 8). This will 

generate low-to-mid detection probabilities (95% interval 0.028145 – 0.4824965), 

another situation in which data augmentation performs well. Environmental or survey 

covariates that may influence detectability can be added using the logit link function; 

# Global variables 
nspec <-10 # number of species  

nsite <-20 # number of sites  

nsurvey <-4  # surveys per site 

Ks <- rep(nsurvey, nsite) # vector of surveys at each site 

# Vector of covariate responses: half of species respond negatively 

resp2cov <- c(rnorm(n =5,sd =0.25), 

rnorm(n =5,mean =-3,sd =0.25)) 

resp2cov <- sample(resp2cov) 

# Covariate values for sites 

cov <- sort(rnorm(n =nsite)) 
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however, for this example we will assume detectability does not vary across sites and 

surveys. 

 

 

# Get probs from a beta distribution 

sim.occ <- rbeta(n =nspec,shape1 =2,shape2 =3) 

# Write function to simulate true occupancy state 

tru.mats <- function(spec=nspec,site=nsite, 

alpha1=resp2cov){ 

#Get site-level psi to account for covariates 

alpha0 <- logit(sim.occ) 

#Create empty matrix to store occupancy probs 

logit.psi <- matrix(NA,nrow =spec,ncol =site) 

# Generate occupancy probs 

for(i in 1:spec){ 

logit.psi[i,] <-alpha0[i] + alpha1[i]*cov 

} 

# Transform 

psi <- plogis(logit.psi) 

# Generate true occupancy state 

nlist<-list() 

for(a in 1:spec){ 

nlist[[a]] <- rbinom(n =site,size =1,prob =psi[a,]) 

} 

#Turn abundance vectors into abundance matrix 

ns<-do.call(rbind, nlist) 

return(ns) 

} 

# Get true occupancy states 

tru <- tru.mats() 
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∼ 

Simulated survey data will be the result of a Bernoulli trial with the species-level 

detection probability as the probability of encountering that species at a given site during 

a given survey. 

 
 

#Detection intercept and cov responses 

beta0<-logit(mean.p) #put it on logit scale 

#Logit link function 

logit.p <- array(NA,dim = c(nsite, nsurvey, specs)) 

for(i in 1:specs){ 

for(j in 1:nsite){ 

for(k in 1:nsurvey){ 

logit.p[j,,i] <-beta0[i] # Add covariates here 

 

 

 

p <- plogis(logit.p) 

#Simulate observation data 

L<-list() 

for(b in 1:specs){ 

y<-matrix(NA,ncol =nsite,nrow =nsurvey) 

for(a in 1:nsurvey){ 

y[a,]<-rbinom(n =nsite,size =1,prob =p[,,b]*mat[,b]  

L[[b]]<-t(y) 

 

#Smash it into array 

obs<-array(as.numeric(unlist(L)), 

dim=c(nsite, nsurvey, specs)) 

return(obs) 

 

obs.data <- get.obs(mat =tru,specs =nspec) 

# Look at observed occurrence 

maxobs <- apply(obs.data, c(1,3), max) 

 

 

# Generate mean detection probabilities from beta dist 

mean.p <- rbeta(n =nspec,shape1 =2,shape2 =8)  

mean.p <- sort(mean.p,decreasing =T) 

# Generate detection histories 

get.obs <- function(mat, specs){ 
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By calculating the column sums, we can see that one species went undetected in 

the simulated survey: 

colSums(maxobs) # One species was not observed  

## [1] 4 4 1 5 2 7 2 0 1 1 

 

To make the JAGS script easier to write and the figures more readable, the undetected 

species was moved to the last column in the observed data.  

 

Define the informed prior 

Next, we will define the informed species-level prior distribution for the 

undetected species. Although the priors can be defined in the main model text, writing 

them separately allows you to more easily to adjust the variance, relative weights, etc. of 

different prior combinations. Running models with different priors is recommended as a 

test for prior sensitivity. 

Most Bayesian MSOMs use normally-distributed priors, but other distributions 

can be used. Code for aggregating non-normal distributions can be found in de Carvalho 

et al. (2015). We will define the mean ofinformed species-level prior using the true value 

of the simulated covariate. We know the true value of the covariate is: 

 

We will round this value to -3 as the mean of the informed prior distribution. We 

will also assign a variance of 0.5 (standard deviation of approximately 0.7). This value is 

# Get true covariate value 

resp2cov[10] 

 

## [1] -2.745199 
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somewhat arbitrary, but in general large standard deviations (> 2) are not recommended, 

as they can yield bimodal posterior distributions (Northrup and Gerber 2018). 

We will use the Markov chain Monte Carlo (MCMC) sampler JAGS to analyze the 

model. JAGS is compatible with most operating systems and the language is similar to R. 

The package R2jags will allow us to call JAGS directly from R. 

In order for JAGS to analyze the model, we have to write a text file to send to 

JAGS. Begin by writing a character object that defines the mean and variance of the 

informed prior distribution: 

Next, define the relative weights of the community-level hyperprior and the 

informed species-level prior. The weight is a value between 0 and 1 that determines the 

relative contribution of each prior to the aggregated prior (weights of each prior must sum 

to 1). To assign weights, create a vector with the weight of the community-level prior as 

the first element and the species-level prior as the second: 

 
Next, pool the distributions. For normal distributions, the pooled mean µpooled is: 

𝜇𝑝𝑜𝑜𝑙𝑒𝑑 = ∑(𝒘𝜇) ∗ 𝑣𝑝𝑜𝑜𝑙𝑒𝑑 

where µ is a vector of raw means and vpooled the pooled variance. The pooled variance 

vpooled is: 

priors <- paste(priors, 

"#Define prior weights: how much each distribution 

#contributes to the final aggregate 

#Hyperprior first, then informed 

weights <- c(0.5, 0.5) #these are equal weights") 

# Write script for priors in JAGS language 

priors <-"#Info for species-level prior distribution  

inf.mean <- -3 #mean of distribution  

inf.var <- 0.5 #variance of distribution" 
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𝑣𝑝𝑜𝑜𝑙𝑒𝑑 =
1

∑𝒘
 

The term w is defined as w = α/v, where α is the vector of weights and v is a vector of 

raw variances. 

Because w typically represents the regional occupancy of a species in MSOM 

notation, we will use the term ‘lb’ to calculate the pooled mean and variance. The terms 

‘a1.mean’ and ‘1/tau.a1’ are the mean and variance, respectively, of the community-level 

hyperprior, which we will define later. 

Finally, we will use the pooled mean and variance of the aggregated prior above 

when we define species-level priors: 

 

priors <- paste(priors, 

"#Pool the distributions 

lb[1] <- weights[1]/(1/tau.a1) 

#1/tau.a0 is the variation of 

hyperprior lb[2] <- 

weights[2]/inf.var 

pooled.var <- 1/sum(lb) 

pooled.mean <- sum(lb*c(a1.mean,inf.mean)) 

*pooled.var") 

priors <- paste(priors, 

"for(i in 1:spec){ 

#Create priors from hyperpriors/aggregated prior  

w[i] ~ dbern(omega) 

#w=1 means species was available for sampling 

a0[i] ~ dnorm(a0.mean, tau.a0) #a0 is the occupancy 

intercept 

 

a1[i] ~ dnorm(ifelse(i==10,pooled.mean,a1.mean), 

ifelse(i==10,(1/pooled.var),tau.a1)) 

#Use ifelse() here because detected species #are still 

drawn from hyperprior 

 

b0[i] ~ dnorm(b0.mean, tau.b0) #b0 is detection 

intercept") 
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Write the JAGS script 

Next, we write the full model script in the JAGS language: 

 

# Function to create text file 
write.model <- function(priors){  
mod <- paste(" 

model{ 

# Define hyperprior distributions: intercepts  

omega ~ dunif(0,1) 

mean.a0 ~ dunif(0,1) 

a0.mean <- log(mean.a0)-log(1-mean.a0) tau.a0 ~ dgamma(0.1, 0.1) 

mean.a1 ~ dunif(0,1) 

a1.mean <- log(mean.a0)-log(1-mean.a0) tau.a1 ~ dgamma(0.1, 0.1) 

mean.b0 ~ dunif(0,1) 

b0.mean <- log(mean.b0)-log(1-mean.b0) tau.b0 ~ dgamma(0.1, 0.1) 

",priors," 

#Estimate occupancy of species i at point j for (j in 1:J){ 

logit(psi[j,i]) <- a0[i] + a1[i]*cov[j] 

Z[j,i] ~ dbern(psi[j,i]*w[i]) 

#Estimate detection of i at point j during survey k for(k 

in 1:K[j]){ 

logit(p[j,k,i]) <-  

b0[i] obs[j,k,i] ~ dbern(p[j,k,i]*Z[j,i]) 

} 

} 

} 

#Estimate total richness by adding observed and 

unobserved species  

n0<-sum(w[spec]) 

N<-(spec-1)+n0 

} 

"

) 

writeLines(mod,"samplemod.txt") 

} 
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Run model 

Before running the model, we need to send some information to JAGS, including our 

data, the parameters we want JAGS to return, and the initial values for the Markov 

chains. 

 

Finally, run the model in JAGS: 

 
 

Creating Figures 

We can check if prior aggregation worked by comparing the posterior distribution 

(i.e. the model result) to the aggregated prior, and the aggregated prior to its parent 

distributions. If prior aggregation was successful, the aggregated prior should be 

somewhere in between the informed species-level prior and the community-level 

# Send model to JAGS 
model <- jags(model.file = 'samplemod.txt', data =datalist,  

n.chains =3,parameters.to.save =parms, 

inits =init.values,n.burnin =1000, n.iter =5000, 

n.thin =3) 

# List of data to send to model 

datalist <- list(J =nsite,K =Ks,obs =obs.aug, spec =nspec,cov =cov) 

# Parameters to save after model is analyzed 

parms <- c('N', 'a0', 'b0', 'a1', 'Z', 'a1.mean','tau.a1', 
'pooled.mean', 'pooled.var') 

# Initial values for the Markov chains 

init.values<-function(){ 
maxobs <- apply(obs.aug, c(1,3), max)  

inits <- list(w = rep(1,nspec),  

a0 = rnorm(n =nspec),  

a1 = rnorm(n =nspec),  

b0 = rnorm(n =nspec),  

Z =maxobs) 

} 
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hyperprior. The posterior distribution should resemble the aggregated prior more than the 

two parent distributions. 

We will start by extracting the mean and standard deviation of each prior from the 

model. Note that model parameters are either variance or precision (tau); these need to be 

converted to standard deviation. 

 

# Get values from aggregated prior 
pooled.mean <- median(model$BUGSoutput$sims.list$pooled.mean)  
pooled.sd <- median(sqrt(model$BUGSoutput$sims.list$pooled.var))  
# Medians used because posterior is asymmetrical 

# Create objects from informed values used in priors 

inf.mean <--3 

inf.sd <- sqrt(1/0.5) 

# Pull community distribution priors from model 

comm.mean <- median(model$BUGSoutput$sims.list$a1.mean)  
comm.sd <- median(sqrt(1/model$BUGSoutput$sims.list$tau.a1))  
# These are symmetrical but using median for consistency 

# Pull posteriors from model 

post.mean <- mean(model$BUGSoutput$sims.list$a1[,10]) 

post.sd <- sd(model$BUGSoutput$sims.list$a1[,10]) 
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We will compare the distributions using ggplot:

 
Based on this figure (Figure S2-1), prior aggregation was successful. The 

posterior distribution (red) is most similar to the aggregated prior (solid black line). Note 

that the posterior has been pulled slightly towards the center of the community-level prior 

(dashed black line): this is normal, and occurs as a result of modeling all species in the 

context of the community. 

# Plot the distributions 

ggplot()+ 

stat_function(fun =dnorm,n =1000, 

args = list(mean =pooled.mean,sd =pooled.sd), 

size =1, aes(linetype ="Aggregated",color ="Prior"))+ 

stat_function(fun =dnorm,n =1000, 

args = list(mean =inf.mean,sd =inf.sd), 

size =1, aes(linetype ="Informed",color ="Prior"))+ 

stat_function(fun =dnorm,n =1000, 

args = list(mean =comm.mean,sd =comm.sd), 

size =1, aes(linetype ="Community",color ="Prior"))+ 

stat_function(fun =dnorm,n =1000, 

args = list(mean =post.mean,sd =post.sd), 
size =1,  

aes(linetype ="Aggregated",color ="Posterior"))+ 
xlim(c(-6,5))+ 

scale_linetype_manual(breaks = c("Aggregated","Informed","Community"), 
values = c(1,3,5),name ="Prior")+ 

scale_color_manual(breaks = c("Prior","Posterior"), 
values = c("black","red"),name ="")+ 

labs(y ="Density") + 
theme_bw(base_size =16) + 
theme(panel.grid = element_blank(), axis.title.x = element_blank()) 
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Figure S2-1: Comparison of the posterior distribution of the undetected species (red line) 

and the priors (black lines). The aggregated prior (solid black line) should fall somewhere 

in between the informed species-level prior (dotted black line) and uninformed 

community-level prior (dashed black line). 

 

Next, we will evaluate whether the model successfully accounted for the 

regional occurrence of the undetected species. First we will extract the posterior 

distribution of the parameter N, or regional species richness, from the model. To 

determine whether the model accounted for the missing species, you can use a measure of 

centrality such as the median: 

## [1] 10 

 

Or, more commonly, the expected value for the parameter (i.e. the peak of the 

posterior probability distribution, Figure 2). For our simulated data, the expected value 

and median estimates agree on a regional richness estimate of 10 species. 

 

# Extract regional species richness N from model 

Ns <- as.vector(model$BUGSoutput$sims.list$N) 

# Create table of counts for each estimate 

Ns %>% 

 table() %>% 

data.frame() %>% 

{. ->>ns.frame} 

colnames(ns.frame) <- c("N_Species","Freq") 

# Look at mean and median estimates 

median(Ns) 

 

# Check it graphically 

Ns.median <- median(Ns) 
ggplot(data =ns.frame, aes(x = as.integer(as.character(N_Species)),  

y =Freq)) + 
geom_col(width =0.95,color ='lightgray')+  
scale_x_discrete(limits = c(9,10))+ 
labs(x ="Estimated Richness (N)",y ="Frequency") + 
scale_y_continuous(expand = c(0,0))+  
theme_classic(base_size =14) + 
theme(axis.text.y = element_blank(), axis.title.y = element_blank(), 

legend.key.height = unit(40,units = 'pt'), aspect.ratio 

=1/1)) 
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Figure 2: Posterior distribution of estimated regional species richness. The expected 

regional richness value, or the peak of the distribution, is 10 species, meaning the model 

successfully accounted for the undetected species. 

 

To examine individual species’ responses to the environmental covariate, we 

begin by extracting the parameter from the JAGS object and adding labels denoting 

species IDs: 

 

Next, pivot the data from wide to long format for easier plotting, and calculate 

summary statistics. Usually, the best method for evaluating species’ responses is by 

viewing the 95% credible interval (CI) and using the mean as the measure of centrality: 

# Extract covariate estimates from jags object 

a1s <-model $BUGSoutput$sims.list$a1 

a1s <- as.data.frame(a1s) 

# Create a vector of species names 

specnames <- logical()  
for(i in 1:nspec){ 

specnames[i] <- paste("Spec", i,sep ="") 

} 

colnames(a1s) <-specnames 
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Create the plot using ggplot: 

 

 
Figure 3: Estimated species-level responses to the simulated covariate. Mean estimates 

are denoted by black dots, whereas the true, simulated values are denoted with red dots. 

Error bars represent the 95% credible interval (CI); a CI which does not overlap 0 is 

usually considered significant. 

 

# Make interval plot 

ggplot(data =a1.stat, aes(x =Spec,y =mean)) +  
geom_point(size =1.5) + 
geom_errorbar(ymin =a1.stat $lo,ymax =a1.stat$hi, size =1, 

width =0.2) + 
geom_point(aes(y =tru.resp),color ="red",size =1.5) +  
geom_hline(yintercept =0,linetype ="dashed",size =1) + 
scale_y_continuous(limits = c(-25,20)) + 
labs(x ="Species",y ="Coefficient") +  
theme_bw(base_size =14) + theme(panel.grid = element_blank()) 

# Pivot data frame for plotting 

a1.long <-a1s %>% 
pivot_longer(cols = 

everything(),names_to 
="Spec", values_to ="a1") 

a1.long$Spec <- factor(a1.long$Spec,levels =specnames) 

# Get summary stats 

a1.stat <-a1.long %>% 

group_by(Spec) %>% 
summarise(mean = mean(a1),lo = quantile(a1,0.025), hi = 

quantile(a1,0.975)) %>% 

mutate(tru.resp =resp2cov) 
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The model correctly estimated significant negative covariate responses for 

detected species 1–4 and the undetected species 10 (Figure 3). Based on the position of 

the mean (black dots) relative to the 95% CI, we can also deduce that the posterior 

distributions for the detected species are highly skewed, with long tails extending away 

from zero. By contrast, the “stabilizing” effect of informed priors is clear in the model 

estimate for species 10, which has a more symmetrical and precise posterior distribution. 
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Appendix 3: Supplemental Tables and Figures for Chapter 2 

Table S3-1. Life history classifications of sampled ectoparasite species with associated 

literature. The bot fly Cuterebra fontinella was not included in comparisons of life 

history categories because it was the only species in its category. Asterisks indicate 

opposing views in the literature. 

Ectoparasite Order Classification Literature 

Orchopeas leucopus Siphonaptera Nest Traub 1972, Jackson and 

DeFoliart 1976; Haas et al. 

1973* 

Ixodes scapularis 

(larva) 

Ixodida Ephemeral Kocan et al. 2015 

Megabothris quirini Siphonaptera Nest Benton and Cerwonka 

1960 

Hyperlaelaps sp. Mesostigmata Nest Dowling 2006 

I. scapularis (nymph) Ixodida Ephemeral Kocan et al. 2015 

Ctenophthalmus 

pseudagyrtes 

Siphonaptera Nest Benton and Kelly 1969 

M. acerbus Siphonaptera Fur Amin and Sewell 1977; 

Lewis 2009* 

Cuterebra fontinella Diptera Diptera Catts 1982 

M. asio Siphonaptera Nest Benton and Cerwonka 

1960, Quackenbush 1971 

Unknown 

Mesostigmata 

Mesostigmata Nest Dowling 2006 

Peromyscopsylla 

hesperomys 

Siphonaptera Fur Traub 1972 

Epitedia wenmanni Siphonaptera Nest Benton 1955, Traub 1972 

Androlaelaps sp. Mesostigmata Nest Dowling 2006 

Doratopsylla blarinae Siphonaptera Fur Traub 1972 

Monopsyllus vison Siphonaptera Fur Haas et al. 1973 

O. howardi Siphonaptera Fur Traub 1972, Amin and 

Sewell 1977 

P. scotti Siphonaptera Fur Traub 1972 
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Table S3-3. Parasite occurrences on the small mammal Peromyscus leucopus for which 

the primary host is a different species. These ectoparasites tended to occur on P. leucopus 

at sites where the primary host had also been captured.  

Parasite Species Primary Host Geographic 

Site 

Primary host 

present? 

Megabothris 

quirini 

Zapus hudsonius Audubon 2 No 

  
Intervale 1 Yes 

  
Intervale 2 Yes 

  
St. Mike’s 1 Yes 

  
St. Mike’s 2 Yes 

Hyperlaelaps sp. Microtus 

pennsylvanicus 

Jericho 1 No 

M. asio M. pennsylvanicus St. Mike’s 1 Yes 

Orchopeas 

howardi 

Tamiasciurus 

hudsonicus 

Jericho 1 Yes 

 

 
Figure S3-1. Abundances of a) Megabothris quirini and b) M. acerbus on host species 

upon which they were collected. The flea M. quirini represents a Class 4 parasite based 

on Benton and Cerwonka (1960), which is able to infest several host species but shows a 

clear preference. The flea M. acerbus is a Class 1 parasite due to the clear primary host 

and no to incidental infestation of other species. Host abbreviations are as follows: 

ZAHU = Zapus hudsonius, MIPE = Microtus pennsylvanicus, PELE = Peromyscus 

leucopus, NAIN = Napaeozapus insignis, MYGA = Myodes gapperi, PEMA = 

Peromyscus maniculatus, TAST = Tamias striatus.  
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Figure S3-2. Abundances of small mammal hosts captured in Chittenden County, VT in 

summer 2020. The most common species was the white-fooded mouse Peromyscus 

leucopus with 222 individuals, followed by the meadow jumping mouse Zapus hudsonius 

with 78 individuals. The least abundant species was Napaeozapus insignis with 4 

captured individuals. 

 

 

 
Figure S3-3. Ectoparasite prevalence, or the proportion of hosts infected by at least one 

ectoparasite, per mammalian host species. Prevalence averaged 0.465 across all host 

species and ranged from 0.105–0.788 among host species. 
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Figure S3-4. Parasite load (i.e. abundance per host) per capture event in which at least 1 

ectoparasite was collected. Small mammal hosts, if infested, were typically only infested 

with 1 ectoparasite, with a range of 1–10 ectoparasites per sample. 

 

 

 
Figure S3-5. Results of the principal component analysis on vegetation composition data. 

PC1 explained 92.5% of the variation in the data and ranged from mostly grass/forb 

cover to mostly leaf litter. PC2 explained 7.2% of the variation in the data and ranged 

from grass cover to forb cover. Colors denote habitat designation of each site.  
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Figure S3-6. Responses of small mammal hosts to model coefficients for a) leaf litter 

cover and b) grass and forb cover. Points denote the mean of the posterior distribution. 

Error bars denote the 95% credible interval of the posterior; bars which do not overlap 0 

(dashed line) are considered significant. A positive response to leaf litter cover (a) 

corresponds to a preference for forested habitats, whereas a negative response 

corresponds to a preference for open habitats. Positive responses to the grass/forb 

coefficient (b) correspond to a preference for habitats with more forb cover. Species 

abbreviations are as follows: BLBR = Blarina brevicauda, MIPE = Microtus 

pennsylvanicus, MYGA = Myodes gapperi, NAIN = Napaeozapus insignis, PELE = 

Peromyscus leucopus, PEMA = Peromyscus maniculatus, TAST = Tamias striatus, 

ZAHU = Zapus hudsonius. 
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Figure S3-7. Small mammal host and ectoparasite coefficients for the PC1 (dead 

vegetation) covariate in the multi-scale model. Negative values indicate a preference for 

open habitat, values near 0 indicate no habitat preference, and positive values indicate a 

preference for forested habitats. Host coefficient values tend to behave categorically 

rather than linearly. 
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Figure S3-8. Abundance distributions on small mammal hosts of parasites infesting at 

least four host species: a) Ctenophthalmus pseudagyrtes, b) Ixodes scapularis (larvae), c) 

I. scapularis (nymph), d) Megabothris quirini, and e) Orchopeas leucopus. Most species 

demonstrated a clear preference for 1–2 host species.  
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Appendix S4: Expanded Analytical Methods for Chapter 2 

Multi-scale MSOM. Multi-scale, multi-species occupancy models (multi-scale 

MSOMs) are an extension of the MSOM developed by Dorazio and Royle (2005). 

MSOMs yield less biased estimates of occupancy than traditional methods by decoupling 

an ecological metric (e.g. occupancy) from the observation process that can introduce 

bias or error into the data (e.g. small mammal trapping, avian point counts, Iknayan et al. 

2014). The ecological metric and observation process are then jointly modeled, with the 

observation process conditional on the true state of the ecological metric. The multi-scale 

MSOM is an extension of this framework, in which additional levels can be added to the 

model to account for multiple observation methods (Nichols et al. 2008) or multiple 

scales at which the ecological metric can be observed (Szewczyk and McCain 2019).  

 I used a multi-scale MSOM to estimate occupancy of ectoparasite species on 1) 

geographic sites and 2) individual small mammal hosts inhabiting each geographic site 

while accounting for detection error. Occupancy at geographic sites Zij takes the value of 

1 when the ectoparasite species i is present at site j on at least one host individual k. 

Occupancy is modeled as the outcome of a Bernoulli trial in which the probability of 

success defined as Ψij (Eq. S4-1). Occupancy of an ectoparasite species on a small 

mammal host within a geographic site zijk is the product of a Bernoulli trial in which the 

probability of success θijk is conditional on the ectoparasite’s presence at the geographic 

site (Eq. S4-2). 

Occupancy in empirical datasets is often imperfectly observed. However, by 

capturing hosts multiple times over a short period, the model can estimate the probability 
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of detecting an ectoparasite species during a host capture event (MacKenzie et al. 2002, 

Iknayan et al. 2014). The estimated detection probability is used to generate more 

accurate estimates of the true occupancy states. Detection of an ectoparasite species 

during capture event l (xijkl) is modeled as a Bernoulli trial with a probability of success 

pijkl (Eq. S4-3). Detection probability is conditional on the ectoparasite species occupancy 

the individual host: an ectoparasite species cannot be detected on a host individual if it is 

not present.  

𝑍𝑖𝑗  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛹𝑖𝑗)  (Eq. S4-1) 

𝑧𝑖𝑗𝑘|𝑍𝑖𝑗  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃𝑖𝑗𝑘 ∗ 𝑍𝑖𝑗) (Eq. S4-2) 

𝑥𝑖𝑗𝑘𝑙|𝑧𝑖𝑗𝑘 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖𝑗𝑘𝑙 ∗ 𝑧𝑖𝑗𝑘)  (Eq. S4-3) 

 Environmental covariates can be included in the models to increase the accuracy 

of occupancy and detection probability estimates (Dorazio and Royle 2005, Iknayan et al. 

2014). I included covariates in all levels of the model using the logit link function (Eq. 

S4-4-6). Covariates PC1 and PC2 in the site model represent the first and second 

principal components of the vegetation data, respectively (Eq. S4-4). The host model 

contained covariates for host species identity, mass standardized by host species, and sex 

(Eq. S4-5); the detection model contained covariates for Julian date and capture number 

of the host (Eq. S4-6). 

𝑙𝑜𝑔𝑖𝑡(𝛹𝑖𝑗) =  𝑎0𝑖 + 𝑎1𝑖𝑃𝐶1𝑗 + 𝑎2𝑖𝑃𝐶2𝑗 (Eq. S4-4) 

𝑙𝑜𝑔𝑖𝑡(𝜃𝑖𝑗𝑘) =  𝛽0𝑖 + 𝛽1𝑖𝑆𝑝𝑒𝑐𝑖𝑒𝑠𝑗 + 𝛽2𝑖𝑀𝑎𝑠𝑠𝑗 + 𝛽3𝑖𝑆𝑒𝑥𝑗 (Eq. S4-5) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑘𝑙) =  𝛾0𝑖 + 𝛾1𝑖𝐷𝑎𝑡𝑒𝑗 + 𝛾2𝑖𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑗 (Eq. S4-6) 
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 Priors for model intercepts and covariate coefficients for each ectoparasite species 

were drawn from a common distribution, the hyperparameters of which were in turn 

drawn from a hyperprior distribution (example in Eq. S4-7–8). By assuming each 

ectoparasite is drawn from a common distribution, the model can “borrow” information 

from common species to supplement estimates for species with limited data (Link and 

Sauer 1996). This allows rare or poorly detected species to be modeled in the context of 

the ectoparasite community, rather than attempting to model each species individually.  

𝛼0𝑖  ~ 𝑁(𝜇𝑎0, 𝜏𝑎0) (Eq. S4-7) 

𝜏𝑎0 ~ 𝐺𝑎𝑚𝑚𝑎(0.1, 0.1) (Eq. S4-8) 

 The hyperparameter tau (τ) in the equations above represents precision and is used 

in lieu of standard deviation (σ) in the JAGS programming language (Plummer 2017). 

 I analyzed the model using a Bayesian framework using JAGS 4.3.0 (Plummer 

2017) with the R package R2jags (Su and Yajima 2015). Markov chain Monte Carlo 

sampling was completed using 3 chains of length 12,000 including a burn-in period of 

5,000; thinned by 12 to reduce autocorrelation. Model convergence was assessed by 

visually examining the trace plots of the Markov chains and using the R-hat statistic 

(Gelman and Rubin 1992); an R-hat less than 1.1 was considered converged. 

 

Bayesian R2 

 Bayesian R2 as proposed by Gelman et al. (2019) is defined as (Eq. S4-9): 

𝑅2 = 
𝑉𝑎𝑟𝜇

𝑉𝑎𝑟𝜇+𝑉𝑎𝑟𝑟𝑒𝑠
 (Eq. S9) 
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In which Varμ represents modelled predicted means and Varres modelled residual 

variance. Both of these values are calculated from the posterior distributions of the 

model.  

 The modelled predicted means are essentially the estimated occupancy probability 

for each ectoparasite species at the site and host levels of the model (Ψij and θijk, 

respectively); thus Varμ is the calculated variance of the posterior distributions. For 

logistic regression, Varres is defined following Tjur (2009, Eq. S4-10): 

𝑉𝑎𝑟𝑟𝑒𝑠 = 
1

𝑁
∑ [𝜋𝑛(1 − 𝜋𝑛)]
𝑁
𝑛=1  (Eq. S4-10) 

In which πn are predicted probabilities.  

 

Small Mammal MSOM 

 The structure of the MSOM estimating occupancy for small mammal hosts is 

similar to the multi-scale MSOM for parasites, with the exception that occupancy is only 

observed at the level of the geographic site. Thus, the probability of detecting a small 

mammal during a given survey is conditional on the small mammal species occupying 

the geographic site (Eq. S4-11). 

𝑥𝑖𝑗𝑘|𝑍𝑖𝑗  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖𝑗𝑘 ∗ 𝑍𝑖𝑗) (Eq. S4-11) 

I used the same site-level covariates in the host model as in the parasite model to 

facilitate comparisons between coefficients (Eq. S4-4). The detection model for small 

mammal hosts was similar to the detection model for ectoparasites (Eq. S4-6) but did not 

include a covariate for capture number.  
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 I analyzed the host MSOM using a Bayesian framework in JAGS 4.3.0 (Plummer 

2017) and specified priors using the same methods as the ectoparasite model (Eq. S7–S8. 

Markov chain Monte Carlo sampling was completed using 3 chains of length 5,000 

including a burn-in period of 1,000; thinned by 5 to reduce autocorrelation. 
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Appendix S5: Expanded Methods for Chapter 3 

Tetracycline Analysis. To determine evidence of ONRAB bait consumption by 

raccoons, we shipped premolar teeth to Matson’s Laboratory (Manhattan, Montana, 

USA) to determine the presence of tetracycline (TTCC) biomarker. Using the same cross 

section cut for age determination, teeth were microscopically examined for the presence 

of TTCC, seen as yellow fluorescence using an ultraviolet filter (Johnston et al. 1987). 

When possible, the lab provided biomarker presence results indicated by one or more 

tetracycline depositions, potentially indicating one or more ONRAB baits consumed, but 

biomarker in our database was simply recorded as binary presence or absence. We used a 

one-tailed z-score test with significance set at p<0.05 for calculating TTCC presence 

between pre- and post-oral rabies vaccination (ORV).   

Of the 902 raccoons sampled for rabies virus neutralizing antibody (RVNA), 773 

had a result for TTCC biomarker (presence or absence). Raccoons were significantly 

more likely to have biomarker present post-ONRAB than pre- (pre- 17.0% [n=454], post- 

32.0% [n=319], p<0.00001). That trend was true in all three development types as well: 

low pre- 19.8% [n=111], post- 42.7% [n=82], p=0.00029; medium pre- 14.6% [n=192], 

post- 23.8% [n=122], p=0.0197; high pre- 17.9% [n=151], post- 33.0% [n=115], 

p=0.00219). 

 

Population-level analysis. We estimated raccoon abundance (Nit) in each cell 

during each year as a random draw from the expected abundance λit; which, based on the 

literature, we expected to vary with the intensity of human development (Eq. S5-1; Šálek 
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et al. 2015). We assume the true abundance to be close to the expected abundance, but 

stochastic variation might result in a true abundance value that is different than the 

expected value (Eq. S5-2). 

𝑙𝑜𝑔(𝜆𝑖𝑡) =  𝛽0𝑖𝑡 + 𝛽1 ∗ 𝐷𝑒𝑣𝑖 (Eq. S5-1) 

𝑁𝑖𝑡~𝑃𝑜𝑖𝑠(𝜆𝑖𝑡) (Eq. S5-2) 

In addition to the abundance model, we estimated raccoon RVNA seroprevalence 

Sit in cell I in year t in a model similar to the abundance model. However, we used a logit 

link function instead of a log link function, which is more appropriate for estimating 

values that are bound between 0 and 1 (Eq. S5-3). We were particularly interested in 

determining if the density of baits or the geographic coverage of baits impacted the 

raccoon RVNA seroprevalence estimates, as this would help inform management 

strategies (these were termed “Density” and “Cover”, respectively). We were also 

interested in whether characteristics of raccoon populations were associated with RVNA 

seroprevalence, specifically estimated raccoon abundance and the relative proportion of 

juveniles to adults in the population (“Abund” and “Age”, respectively). We also 

examined the impact of other environmental factors, such as urban development intensity 

in the sampling cells (low, medium, and high; termed “Dev”), and the abundance of 

potential competitors such as skunks and opossums, as these factors may affect raccoon 

behavior and influence ORV bait uptake (Prange and Gehrt 2004, Stark et al. 2020). To 

estimate the proportion of the population that is RVNA seropositive we modeled the 

number of seropositive raccoons captured per day (positj) as a proportion of the total daily 

captures (nitj, Eq. S5-4). 
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𝑙𝑜𝑔𝑖𝑡(𝑆𝑖𝑡) =  𝛼0𝑖𝑡 + 𝛼1 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡 + 𝛼2 ∗ 𝐶𝑜𝑣𝑒𝑟𝑖𝑡 + 𝛼3 ∗ 𝐷𝑒𝑣𝑖 + 𝛼4 ∗

𝐴𝑏𝑢𝑛𝑑𝑖𝑡 + 𝑎5 ∗ 𝐴𝑔𝑒𝑖𝑡 + 𝑎6 ∗ 𝑂𝑝𝑜𝑠𝑠𝑢𝑚𝑠𝑖𝑡 + 𝑎7 ∗ 𝑆𝑘𝑢𝑛𝑘𝑠𝑖𝑡 (Eq. S5-3) 

𝑝𝑜𝑠𝑖𝑡𝑗~𝐵𝑖𝑛(𝑆𝑖𝑡, 𝑛𝑖𝑡𝑗) (Eq. S5-4) 

The detection model for abundance is a multinomial mixture model with removal 

sampling. In this model, multinomial categories correspond to unique encounter histories, 

and multinomial cell probabilities are functions of the probability p of those encounter 

histories occurring within the sampled nit individuals (Kéry and Royle 2016). For 

example, consider a population of animals captured and removed over three consecutive 

sampling periods. Individuals captured on the first day will have an encounter history 1 -- 

--, individuals on the second day 0 1 --, and so on. By assigning probabilities to unique 

encounter histories, the model is able to account for the decreasing probability of 

encountering a unique individual as the proportion of tagged individuals in the population 

increases. 

 Environmental and survey factors that may affect detection (capture) probability 

can be incorporated as covariates using a logit link function, which converts linear 

relationships to a probability scale that is bound between zero and one. Our detection 

model included a covariate for the number of closed traps (due to recaptures, captures of 

nontarget species, or triggered traps with no capture) on trap day j, as decreasing the 

number of available traps may reduce the likelihood of capturing an unmarked individual 

(Eq. S5-5). We did not include an explicit detection model for seroprevalence as we 

assumed RVNA testing error was negligible compared to error in capture rates. 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑡𝑗) = 𝑤0𝑖𝑡 + 𝑤1𝑖𝑡 ∗ 𝐶𝑙𝑜𝑠𝑒𝑑𝑇𝑟𝑎𝑝𝑗 (Eq. S5-5) 
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 To aid in estimation and comparison, all continuous covariates were scaled to 

have a mean of 0 and a standard deviation of 1. Model parameters were estimated using a 

Bayesian hierarchical model with uninformative priors in the programs JAGS (Plummer 

2017) and R (R Core Team 2021). We chose a Bayesian approach because it is a flexible 

tool to jointly estimate multiple variables of interest, in this case abundance, 

seroprevalence, and detection (capture). We fit the model using three Markov chains for 

7500 iterations with a burn-in period of 1000; posterior chains were thinned by 5 to 

reduce autocorrelation. We assessed model convergence visually and using the 𝑅̂ statistic 

(Gelman and Rubin 1992); values less than 1.1 were considered converged.   

 Covariate significance was evaluated using the 95% and 75% credible interval 

(CI). Credible intervals that did not overlap 0 indicated a significant covariate. After 

evaluating a model with all independent covariates, we analyzed additional models that 

each included one interaction term. For all independent covariates and significant 

interaction terms (based on the 75% CI), we followed up with an appropriate frequentist 

test (usually an ANOVA or linear regression) to supplement the conclusions made based 

on the CI’s.  

 After evaluating covariate significance, we used model selection to determine 

which covariates had the most explanatory power. We used the Watanabe-Akaike 

Information Criterion (WAIC) to perform model selection because it tends to perform 

better than methods such as the Akaike Information Criterion or Bayesian Information 

Criterion when applied to hierarchical models (Hooten and Hobbs 2015). If WAIC results 
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were inconclusive, we presented the results from the model that included all independent 

covariates and any significant interaction terms. 

 To ensure the model is internally consistent (i.e., the model makes sense given the 

observed data) we assessed model fit using posterior predictive checks, which involves 

comparing simulated data generated from the fitted model to the observed data (Gelman 

et al. 1996, Gelman and Hill 2006, Gelman et al. 2013). We evaluated model fit by 

graphically comparing the distributions of simulated abundance and seroprevalence to the 

corresponding distributions of the observed data; systematic differences in the shapes of 

the distributions are typically an indicator of poor model fit. Although posterior 

predictive checks are more conservative methods such as cross-validation (Sinharay and 

Stern 2003, Conn et al. 2018), posterior predictive checks are sufficient for detecting 

large deficiencies in model fit. 

 

Individual level analysis 

We studied the probability an individual would seroconvert by conducting a 

logistic regression where the response was the RVNA status of the individual. We 

examined individual effects (age and sex), development class (high, medium, or low), 

sampling period (pre- or post-baiting), and year. We also examined the interactions 

between year and sampling period and year and development type. Models were 

compared using the second order Akaike Information Criterion (AICc; Burnham and 

Anderson 2004). To compare the relative strength of different factors we examined the 

cumulative covariate weights associated with each covariate corrected by the number of 



145  

models each covariate was in within the model set (Doherty et al. 2012). Higher 

cumulative covariate weights show more support and values above 0.5 are considered 

important. Model averaging was used to estimate parameters when model uncertainty 

existed. 

 We were interested in which factors were most influential in determining an 

individual raccoon’s RVNA seroprevalence status. We found that age of the raccoon was 

most strongly associated with an individual’s probability of being RVNA seropositive 

(cumulative covariate weight = 1.00), followed by an interaction between sampling 

period and year (cumulative covariate weight = 1.00). Development type and sex were 

not strongly related to the probability an individual would be seropositive (cumulative 

covariate weights of 0.17 and 0.33 respectively).  

Age was the most important factor, with the probability of being RVNA 

seropositive increasing with age (βage = 0.2, SE= 0.05). The probability of being RVNA 

seropositive was 26% for a juvenile, 52% for a 5-year old, and 76% for a 10-year old 

raccoon (Fig. S6-5A; these estimates are based on an individual in the low development 

area, pre-bait, in 2015).  

There was a significant interaction between sampling period and year. An 

individual raccoon who was caught during 2015 or 2016 had a higher probability of being 

RVNA seropositive than an individual caught during 2017 (Fig. S6-5B). There was not a 

difference in the pre-bait vs. post-bait probability of being seropositive during 2015 or 

2016. In contrast, during 2017 the probability an individual would be RVNA seropositive 

increased post-baiting compared to pre-baiting (Fig. S6-5B). 
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Appendix S6: Supplemental Tables and Figures for Chapter 3 

Table S6-1. Results of model selection with WAIC. The best model is shown at the top. 

A ΔWAIC value less than 2 indicates the model explains the data as well as the best 

model. With the exception of the full model (all covariates), models with 3 or more 

covariates are not shown. 

Model WAIC ΔWAIC 

Intercept 45.25 0.00 

Density 45.30 0.05 

Skunks 45.38 0.12 

Density + Skunks 45.40 0.15 

Opossums 45.47 0.22 

Opossums + Skunks 45.65 0.40 

Coverage + Skunks 45.68 0.43 

Development 45.71 0.46 

Coverage 45.83 0.58 

Age + Skunks 45.84 0.59 

Raccoons + Skunks 45.97 0.72 

Age + Opossums 46.02 0.77 

Raccoons 46.05 0.80 

Opossums + Raccoons 46.05 0.80 

Coverage + Age 46.06 0.81 

Coverage + Opossums 46.06 0.81 

Skunks + Development 46.06 0.81 

Age 46.09 0.84 

Opossums + Development 46.13 0.88 

Density + Coverage 46.16 0.91 

Density + Opossums 46.17 0.92 

Density + Development 46.23 0.98 

Density + Raccoons 46.23 0.98 

Density + Age 46.28 1.03 

Coverage + Development 46.28 1.03 

Raccoons + Development 46.30 1.04 

Coverage + Raccoons 46.31 1.06 

Age + Raccoons 46.39 1.14 

Age + Development 46.44 1.19 

Full 47.95 2.69 
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Figure S6-1. Estimated raccoon abundance (N) across urban development classes in the 

greater Burlington, Vermont, USA area, 2015–2017. Boxes represent quartiles, lines the 

95% confidence interval, and dots are outliers. The model estimated that raccoon 

abundance was higher in sites classified as medium and high development than sites 

classified as low development based on the 75% credible interval; however, an ANOVA 

did not support this finding (F2,33 = 1.415, P = 0.257).  

 

 

 
Figure S6-2. Relationship between average raccoon age (in years) and estimated rabies 

virus neutralizing antibody seroprevalence when an influential outlier is included. The 

outlier was excluded from the analysis due to an unusually small sample size at the site. 

There is no significant association between average age and estimated seroprevalence 

when this outlier is present (F1,34 = 2.477, P = 0.125, R2 = 0.041). 
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Figure S6-3. Relationships between estimated raccoon rabies virus neutralizing antibody 

seroprevalence and A) bait density (i.e., baits per km2) and B) bait coverage (a measure 

of spatial evenness) across urban development classes. There were no significant 

associations between bait density (F1,34 = 3.974, P = 0.054, R2 = 0.078) or bait coverage 

(F1,34 = 0.141, P = 0.709, R2 = -0.025) and seroprevalence. 
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Figure S6-4. Comparison of the distributions of empirical data and simulated data 

predicted by the model for A) the number of rabies virus neutralizing antibody 

seropositive raccoons per site and B) total raccoon abundance at each site. Large 

differences in the shape of the empirical and simulated distributions would indicate the 

model is not internally consistent. 
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Figure S6-5. The probability an individual raccoon will be rabies virus 

neutralizing antibody seropositive based on the age (A) and the year and 

sampling period (B). Uncertainties are 95% confidence intervals shown either as 

a shaded region (A) or vertical line (B).  
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