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Abstract

This dissertation consists of two studies. The first develops theory for a new method
for estimating regression parameters using generalized estimating equations (GEE)
with panel data prone to covariate measurement error. The focus is on logistic re-
gression, though the method is applicable to other models. The method requires
availability of instrumental variables (IV) to identify model parameters. Simulations
are performed to assess the performance of the proposed estimator. The method, ab-
breviated GEEIV, is able to accurately estimate logistic regression parameters masked
by measurement error in a variety of population configurations.

In the second study, an algorithm is proposed to estimate the number of latent de-
fective edges in large hypergraphs. The new statistical method combines the strength
of sampling strategies and an existing algorithmic method known for efficient latent
edge identification for small graphs. Our statistical approach strikes a balance be-
tween computational time consumption and estimation power, with the flexibility to
adapt to several assumption violations. Simulations are performed on both synthetic
data and a simulator loaded with US western grid structures. The new algorithm
was able give unbiased estimates using relatively little computational time for the
synthetic data for a wide range of combinations of graph sizes, defective graph edges
and defective edge distributions. Simulation results from US western grid data agreed
with a previous study on relatively small latent edge sets. On a large edge set, previ-
ous studies were not able to provide a reasonable estimate. The new algorithm was
able to give estimates and confidence intervals for the larger problem.
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Overview

Estimation of parameters for probability models is a central focus of the field of

Statistics. Estimation methodologies have been widely adopted in various fields such

as medical science, sociology, manufacturing, electrical engineering, etc. for purposes

including but not limited to prediction, assessment and decision making.

This dissertation develops estimation methods for two distinct application areas.

The first study examines correcting for covariate measurement error in Generalized

Linear Models (GEEs). GEE’s were designed for analyzing clustered data. The focus

herein is primarily on binary outcomes, though the results extend to other outcome

models. Clustered binary outcomes are common in medical studies where patient

status is considered binary (dead/alive, healthy/ill), and patients are grouped by

hospital/region or physician (for example). GEE gives biased estimation of the odds

ratio if the input covariates are measured with error. The bias typically attenuates

the estimate toward zero, thereby masking or diminishing the potential impact of

the covariate on the outcome. We describe two sources of bias in the estimating

equations, namely the dependency between mis-measured covariates and the residual,

and the non-linearity of link function. The first source is addressed by introducing

instrumental variables, whose independence with most model components can be
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used to eliminate the aforementioned dependency. The second issue is addressed by

standardizing the estimating equation component that contains the link function.

A new issue arises with the standardizing process: the working correlation matrix,

which is a component in GEE to incorporate cluster correlation, needs to be adjusted

according to the standardized component. We prove that, for the logistic regression

model, the new working correlation matrix preserves the correlation structure in the

original error-free model. Our new method, called GEEIV, is able to provide unbiased

and efficient estimation.

The second topic addresses estimating the number of latent edges in a graph. At

least two approaches to the problem have been studied in the past. One approach

is purely algorithmic, and the other uses extrapolation [23][34] when the number of

latent edges is very large. The algorithmic approach can find all latent edges, but it is

applicable only for graphs with relatively small numbers of latent edges, as otherwise

the computational time is prohibitive. The extrapolation approach is able to estimate

the number of latent edges when there are too many to find all of them algorithmically,

but the method becomes unworkable when the latent edges are very large in number.

Our study is motivated by finding nodes in a national power grid that would cause

catastrophic failure if the nodes themselves failed. The power grid contains hundreds

of millions of such latent edges representing potential risk. Previous methods are too

slow or inaccurate to analyze graphs of this magnitude. Using sampling theory, we

develop a statistical algorithm whose run-time does not increase with the number of

latent edges. The key idea is to extract information from small subgraphs to make

inference on the full graph. A method of moments estimator is used to obtain an

unbiased estimator of the latent edge number. To ensure statistical efficiency, we

2



developed a procedure to determine an optimum order for the subgraphs. Optimum

subgraphs have maximum information “density”. Users can then sample as many

optimum subgraphs as needed to reach their desired precision.
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Chapter 1

Generalized Estimating Equations

with Instrumental Variables

1.1 Introduction

This chapter explores using instrumental variables to correct for bias induced through

covariate measurement error in regression models fit using generalized estimating

equations(GEE).

The term measurement error refers to the discrepancy between a quantity’s mea-

surement and its true value. It is well known that covariate measurement error in a

parametric regression model causes bias in coefficient estimation, and the behavior of

this bias varies with the nature of the model and the nature of the measurement error

itself [21]. In this section of the dissertation, we describe and analyze generalized

estimating equations when classic additive measurement error is present.

Briefly, GEE’s were proposed as an extension to the generalized linear model(GLM)

[6]. GEE’s are intended for clustered data, where observations within clusters can be
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correlated. GEE’s relax GLM’s independence assumption by incorporating a working

correlation matrix to model intra-cluster correlation. The increased complexity of

GEE’s require development of extensions to established covariate measurement error

correction methods for GLM.

Methods that effectively correct for covariate measurement error require additional

information that allow estimation of the magnitude of the measurement error. Addi-

tional information can come in many forms, and be internal or external to the study

data, see [22], Chapter 3-6. Instrumental variables (IVs) are additional measurements

internal to the study that are correlated with the true, mis-measured covariate. [16]

studied an approach to IV estimation for GLM models. The instrumental variable

correction method in that paper can be adapted to GEEs.

This chapter is organized as follows. Section 1.1 introduces the models and param-

eter estimation techniques for clustered binary data in the absence of measurement

error. Section 1.2 discusses the effects of covariate measurement error for linear mod-

els, and describes a consistent estimator using an instrumental variable. In Section

1.3, we combine the knowledge of the previous two sections and define a generalized

estimating equation utilizing instrumental variables, abbreviated GEEIV. GEEIV

consistently or nearly consistently estimates regression parameters for clustered data

in the presence of covariate measurement error. Section 1.4 contains a simulation

study for the logistic regression model.
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1.1.1 From linear models to generalized linear

models

Linear regression models are the bread and butter of statistical analysis and have

been studied and employed extensively over the last 100+ years. Examples of linear

models include analysis of variance models and polynomial regression, see [17]. The

General Linear Model (distinct from generalized linear models) is of the form

Y = Xβ + ϵ (1.1)

where Y is a n×1 response vector, X is a n×k explanatory random variable matrix,

β is a k × 1 regression parameter vector and ϵ is a n × 1 error vector. The model

posits a linear relation between the expectation of a response variable Y and one or

more explanatory variables X such that the expectation is the aggregated effect of

a linear combination of X and regression parameters β. The random component ϵ

represents all latent factors that are not taken into consideration in the model.

An important reason for fitting linear regression models is to estimate regression

coefficients β. Coefficients carry information about the direction and strength of the

correlation and impact between covariates and response. Estimation and inference on

β is a common way of drawing correlation-related conclusions. By far the most pop-

ular choice for coefficient estimation is least squares. Under a normality assumption

on ϵ, least squares is equivalent to the method of maximum likelihood. Maximum

likelihood estimators(MLE) are obtained by maximizing a likelihood function so that

the observed data is most probable under the model inferred by the likelihood, a sta-
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tistical analogy to “seeing is believing”. Besides its intuition, least squares estimation

results in the “best linear unbiased estimator”(BLUE) for linear models, in a sense

that it has the least variance among all unbiased estimators.

J.A.Nelder and R.W.M. Wedderburn extended the linear models in (1.1) to data

drawn from distributions in the exponential family, see [4]. Their extended models

are called Generalized Linear Models (GLMs). The extension naturally incorporates

(1.1) when ϵ is normally distributed, as the normal distribution is in the exponen-

tial family. Other common exponential family distributions include the exponential,

Bernoulli(binary data), Poisson(count data), and gamma. Diverse fields including

epidemiology, economics, medicine, and geostatistics often result in data that is well-

modeled by a distribution in the exponential family.

GLM models the expectation of a response Y as a function of η = Xβ. Specifi-

cally,

E[Y |X] = µ(η) (1.2)

where µ(·) is termed an inverse link function. In the general linear model (1.1), µ

is the identity function. The inverse link function µ can be specified independently

of the distribution for Y . However, there exists a natural choice called the canonical

link that greatly simplifies likelihood calculation. To see this, we first define the

exponential family of distributions.

Let θ and Φ denote scalar valued location and scale parameters, and b(·), C(·, ·),

and α(·) functions. The exponential family of densities f(y | θ,Φ) (or probability

mass functions) is defined via

f(y|θ,Φ) = exp
(
yθ − b(θ)
α(Φ) + c(y,Φ)

)
. (1.3)
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It is not difficult to show that

E[Y ] = b
′(θ),

V ar(Y ) = α(Φ)b′′(θ).
(1.4)

As noted above, in a regression setting the conditional mean of the response is

modeled as E[Y |X] = µ(η) where µ(·) is the inverse link function. The canonical

(inverse) link is defined as µ = b′. The canonical link equates θ to η = Xβ:

θ = b′−1(µ(η)) = η.

Example (Logistic model): A popular choice for analyzing binary responses

is the logistic regression model. A Bernoulli random variable y, given expectation p,

has the following probability mass function:

fy|p(y) = py(1 − p)1−y y ∈ {0, 1}

which can also be written in the form of (1.3):

py(1 − p)1−y = exp
[
y log p+ (1 − y) log(1 − p)

]

= exp
[
y log p

1 − p
+ log(1 − p)

]

= exp
[
yθ − log(eθ + 1)

] (1.5)

where θ = log p
1−p

.

Equation (1.5) is a special case of (1.3) with b(θ) = log(eθ + 1), c(y,Φ) = 0 and

8



α(Φ) = 1. The canonical link for binary regression yields

E[Y | X] = b′(η) = 1
1 + e−η

= F (η) (1.6)

where F is the well-known logistic distribution function. Therefore, the canonical

link for a binary outcome model results in the logistic regression.

Example (Poisson regression): The probability mass function for a Poisson

random variable with scalar valued parameter λ is

P (Y |λ) = λye−λ

y!

which can also be written as:

λye−λ

y! = exp
(
yθ − eθ − log(y!)

)

where θ = log(λ). It is a special case of (1.3) where b(θ) = eθ, c(y,Φ) = log(y!) and

α(Φ) = 1. The canonical link for Poisson regression yields

E[Y |X] = b′(η) = exp(η).

Suppose the data consist of independent pairs of observations

{(Y1,X1), (Y2,X2), . . . , (Yn,Xn)}, and a GLM is postulated. Under regularity re-

strictions, the MLE, denoted θ̂, is a solution to ∂
∂β
l(θ|Y ) = 0, where l(θ|Y ) =∑n

i=1 li(θ|Yi) is the log-likelihood function. The derivative can be further expanded
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with the chain rule:
n∑

i=1

∂li
∂β

=
n∑

i=1

∂li
∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂β
= 0. (1.7)

By (1.3) and (1.4), three of the four components can be simplified:

∂li
∂θ

∝ (yi − µi)
∂θ

∂µ
∝ δ−1

i

∂η

∂β
= Xi

where δi = Var(Yi|Xi). The MLE estimating equations simplify to

n∑
i=1

∂li
∂β

=
n∑

i=1
(Yi − µi)δ−1

i

∂

∂β
µi =

n∑
i=1

(Yi − µi)
∂

∂β
µi

Var(Yi|Xi)
= 0. (1.8)

If the link is canonical, i.e., θi = ηi, the estimating equations further simplify to

n∑
i=1

∂li
∂θi

∂ηi

∂β
=

n∑
i=1

(Yi − µi)Xi = 0.

Note that (1.8) is a non-linear system of equations whenever µ is nonlinear. In gen-

eral, a closed form solution for (1.8) cannot be obtained, and therefore the estimating

equations are solved numerically.

1.1.2 Robust statistics and M-estimators

In GLMs, maximum likelihood estimators are not generally unbiased, and therefore

they are not BLUE. However, they are consistent and efficient, as they asymptotically

achieve the Cramer-Rao lower bound. A consistent estimator converges in probability
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to the true parameter value. In other words, a consistent estimator’s bias and vari-

ability goes to 0 as sample size increases, as long as the model is correctly specified.

Unfortunately, model mis-specification is difficult to avoid in applied data anal-

ysis, and MLEs can be sensitive to model violations. In the following chapters we

discuss the effect of two sources of model mis-specification, ignored correlation and

measurement error, which would undermine the MLE’s efficiency and/or consistency.

But we first introduce a general class of estimators called M-estimators. M-estimation

is a generalization of maximum likelihood estimation.

Definition 1.1.1. Suppose Y ∼ P (θ) where θ is a vector of unknown parameters.

For observations Y1, . . . , Yn, an M-estimator for θ is defined as the solution(s) of the

vector valued estimating equations

n∑
i=1
ψ(θ;Yi) = 0. (1.9)

ψ is called the estimating function.

M-estimation allows flexibility in modeling, to potentially achieve robustness against

model mis-specification. Consistency of M-estimators is considered in the following

lemma.

Lemma 1.1.1. If the estimating function ψ satisfies

E[ψ(θ0, Y )] = 0

for some θ0 ∈ Rk, then the solution to ∑n
i=1 ψ(θ, Yi) = 0, denoted θ̂, converges to θ0,

under regularity conditions.
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Example (normal mean and variance): Suppose Y1, ..., Yn are i.i.d. N(µ, σ2)

where θ = (µ, σ2) is unknown. The maximum likelihood estimating equations for θ

are

ψ(θ;Y ) =
n∑

i=1
ψi(θ)

where

ψi(θ) =

 Yi − µ

(Yi − µ)2 − σ2

 .
The solution θ̂ is consistently estimating θ because

E[ψi(θ, Y )] =

 E[Yi] − µ

E[(Yi − µ)2] − σ2

 =

0

0



Example (logistic regression): Suppose the binary variable y ∈ {0, 1} has mean

E[Y | X] = F (XTβ) where F (·) is the logistic distribution function. The maximum

likelihood estimating equations for logistic regression are:

ψ(β;Y ,X) =
n∑

i=1
ψi(β) = 0

where

ψi(β) = ∂

∂β

[
yiηi − log(eηi + 1)

]
=
[
yi − F (XT

i β)
]
Xi.

The estimating function is unbiased:

E[ψi(β) | Xi] =
[
E(yi | Xi) − F (XT

i β)
]
Xi = 0

12



where the last equality follows from (1.6).

M-estimators are (generally) implicitly defined, rendering impossible the deter-

mination of exact sampling distribution results in finite samples. The asymptotic

distribution of M-estimator’s can be derived by expanding the estimating equation

in a Taylor series around θ0 and applying the Central Limit Theorem and Slutsky’s

Theorem. The following lemma results.

Lemma 1.1.2. Suppose X1, . . . ,Xn are independent observations with Xi ∼ P (θ).

Let θ̂ solve
n∑

i=1
ψ(Xi,θ) = 0. (1.10)

Then

θ̂ is AN
(
θ0,

V (θ0)
n

)
,

where

V (θ0) = A(θ0)−1B(θ0)A(θ0)−T ,

A(θ0) = E [ψ′(θ0)] ,

B(θ0) = E
[
ψ(θ0)ψT (θ0)

]
,

and ψ′ = ∂
∂θ
ψ.

The dependence of ψ on X has been suppressed. The proofs for Lemmas 1.1.1

and 1.1.2 can be found in Boos and Stefanski [27]. In practice, A(θ0), B(θ0) must
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be estimated. Empirical estimators are given by

An(θ̂) = 1
n

n∑
i=1
ψ

′

i(θ̂)

Bn(θ̂) = 1
n

n∑
i=1
ψi(θ̂)ψT

i (θ̂).

1.1.3 Panel data and Generalized estimating equa-

tions

The use of GLMs requires independent observations, in which case the likelihood is

comprised of a product of density functions evaluated at each observation. When the

data are correlated, the likelihood in general does not have a closed form. Assuming

independence when data are correlated does not typically affect consistency of the

MLE. In the case of GLMs, this is easily seen by inspecting (1.8) and noting the MLE

estimating equation remains unbiased regardless of the correlation structure among

observations.

The penalty of mis-specifying the correlation is instead on efficiency. Ignoring the

correlation structure results in an estimator with larger variance than would occur if

the correlation is correctly modelled [19].

Liang and Zeger proposed Generalized estimating equations(GEE) [6] to address

the efficiency loss caused by correlation in panel data. Panel data has a correlation

structure where observations are grouped into clusters. Cluster members are corre-

lated with each other while being independent from those in a different cluster. A

double subscript will be used for clustered data. For example, Yi = [Yi1, . . . , Yini
]T

denotes the ni outcomes in the ith cluster.
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GEE extends GLMs by adding a so-called “working correlation matrix” to the

estimating equations. This is done as follows. First write (1.7) in an equivalent

matrix form:

0 =
n∑

i=1

∂li
∂β

=
n∑

i=1

∂li
∂θ

∂θ

∂µ

∂µ

∂η

∂η

∂β
= DTB∆−1S (1.11)

where

D =



1 x11 · · · xk1

1 x12 · · · xk2

...

1 x1n · · · xkn


, ∆ =



δ1

δ2

. . .

δn


,

B =



∂µ1
∂η1

∂µ2
∂η2

. . .
∂µn

∂ηn


, S =



y1 − µ1

y2 − µ2

...

yn − µn


.

(1.12)

With independent data, ∆ coincides with the variance-covariance matrix of Y |X,

denoted V . Note that V can be partitioned as V = ∆ 1
2I∆ 1

2 where I is an n × n

identity matrix representing the correlation matrix for independent outcomes. Liang

and Zeger consider replacing I with a working correlation matrixR(α) that represents

the correlation structure of Y |X. Using V = ∆ 1
2R(α)∆ 1

2 results in the estimating

equations

DTBV −1S = 0. (1.13)

With clustered observations, R(α) is a diagonal block matrix with each block
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being the assumed cluster correlation:

R(α) =



R1(α)

R2(α)
. . .

Rn(α)


.

Then (1.13) results in summing over clusters:

∑
i

DT
i BiV

−1
i Si = 0 (1.14)

where Di, Bi, Si and Vi are submatrices of D, B, S and V , respectively for the ith

cluster.

Note that (1.14) matches the form given by (1.10) and hence its solution β̂ is a

M-estimator. The estimating function is unbiased:

E[DT
i BiV

−1
i Si(β0)|X] = DT

i BiV
−1

i E[Si(β0)|X] = 0.

By Lemma 1.1.1, β̂ converges in probability to the true parameter β0:

The nuisance parameter vector α in the working correlation matrix R requires its

own vector of estimating equations. Since the dimension of α and its interpretation

vary according to the correlation structure, its estimating equation has no general

form. A commonly used working correlation structure is the exchangeable structure.
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The exchangeable correlation matrix for a cluster is given by

Ri(α) =



1 α . . . α

α 1 . . . α

... . . . ...

α 1


.

For this model, α is a scaler representing the correlation between any two observations

within a cluster. A common way to consistently estimate α is via the estimating

equation ∑
i

∑
j<k

Yij − µij√
δij

Yik − µik√
δik

− α

 = 0. (1.15)

The estimating equation is easily seen to be unbiased. The complete GEEs for this

case is then 
∑

iD
T
i BiV

−1
i Si∑

i

∑
j<k

(
Yij−µij√

δij

Yik−µik√
δik

− α
)
 = 0. (1.16)

When the working correlation matrix closely models the true correlation struc-

ture in the data, GEE estimators have smaller variance than estimators that ignore

the correlation structure. The gain in efficiency increases with the strength of the

correlation among observations within a cluster [6].

1.2 Measurement error

Measurement error is the error induced in the process measuring a quantity, and is

another common sources of model mis-specification. Measurement error does not nec-

essarily involve human mistakes, and is in general considered impossible to eliminate.
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For example, when measuring some chemical quantity with an instrument, the read-

ing is often a sum of a random component and the true value. Another example is

measuring of blood pressure. In this case, the true value is considered as the average

value of the quantity over many readings, which does not coincide with any single

reading.

Measurement error can arise on either the explanatory variable or response vari-

able in a regression analysis. The effect of measurement errors behaves distinctively

when attached to different components of a model. This dissertation only consid-

ers measurement error on the explanatory variable X in a regression model. See

[13][26][9] for studies and applications of other types of measurement error. It is

worth noting that measurement error on X is considered a source of endogeneity.

Endogeneity refers to the situation where the explanatory variable is correlated with

the systematic error, with other common sources being a simultaneous system and

missing variables. It is known to bias parameter estimation and reduce efficiency.

Measurement error on explanatory variables can be further classified by whether

it is additive and/or homoscedastic. This dissertation focus on the classical measure-

ment error model, that is measurement error that is additive, unbiased, and non-

differential. A classical measurement error model assumes a additive relationship

W = X + U (1.17)

where X and W denote the unobserved true explanatory variable and the mis-

measured one. U represents stochastic measurement error that is independent of X

and the outcome variable. It is the most natural way of modeling measurement error

in the sense that it captures the action of measuring a quantity with an instrument-the
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error is related to the precision of the instrument, not the quantity being measured.

Another type of measurement error is Berkson measurement error. The Berkson

model is

X = W + U (1.18)

where the measurement error U is independent from W . In this case, W is the fixed

target quantity and the true quantity X varies around W . Classical measurement

error is known to bias regression parameter estimators. Berkson measurement error

does not introduce bias in linear models. Rather, the penalty is increased variance

and loss of power.

Unbiased measurement error simply means E[U ] = 0, implying that E[W | X] =

X. Intuitively, it is assuming properly functioning instrument and no human error.

Non-differential measurement error assumes that W contains no additional informa-

tion about Y when X is known. Formally, measurement error is non-differential when

the distribution of Y | X,W is equivalent to the distribution of Y | X. In this case

W is called a surrogate. An example of differential measurement error is given in [22]

in the context of study on the relationship between diet and breast cancer where a

woman’s diet after cancer diagnosis is taken as a measurement of her long-term dietary

intake, which is believed to be related to the development of breast cancer. However

the diet afterward(W ) can very possibly be altered by the diagnosis result(Y ).

1.2.1 Notation

Classical measurement error (unbiased, additive and non-differential) is defined as

follows.

19



1. W = X + U . U ⊥⊥ X.

2. E[U |X] = 0.

3. fY |XW = fY |X (non-differential)

where f denotes either a density or probability mass function.

A note on notation. A subscript W will be added to matrices (and partial deriva-

tives) to indicate contamination. For example,

DW =



1 w11 · · · wk1

1 w12 · · · wk2

...

1 w1n · · · wkn



is the error-contaminated matrix of covariates.

1.2.2 Attenuation effect of measurement error

in the linear model

Assume a simple linear model with classical measurement error:

Yi = β0 + βXi + ϵi

Wi = Xi + Ui

where i = 1, ..., n, ϵi is independent of Xi and is normally distributed with mean 0

and variance σ2. The naive estimator, defined as the least squares estimator of β
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ignoring measurement error, is

β̂ = (DT
WDW )−1DT

WY .

The slope parameter consistently estimates

β∗ = Cov(W,Y )
Var(W )

= Cov(X, Y )
Var(X + U)

= σ2
X

σ2
U + σ2

X

β.

(1.19)

Note that |β∗| < |β|, in other words, the naive estimator is always biased toward 0 by

a ratio of λ = σ2
X

σ2
U +σ2

X
. This ratio is called the attenuation factor. For fixed σ2

X , larger

amounts of measurement error, quantified through σ2
U , result in stronger attenuation.

Figure 1.1 is a visualization of the attenuation effect. We regressed sepal length(Y)

on petal length(X) from Fisher’s Iris flower setosa species data [2] with three levels

of normal measurement error(U) added to petal length. The sample variance of X

is σ2
X = 0.03. The three levels of measurement errors are σ2

U ∈ {0, 0.03, 0.3}. Simple

linear regressions are performed 1000 times, each time with a different random set of

measurement error. The mean slope coefficients are 0.54,0.27 and 0.05, respectively.

The slope in average is attenuated by roughly 50% and 11%, which agree with (1.19).
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Figure 1.1: Measurement error bending regression lines toward 0 slope.

1.2.3 Attenuation effect of measurement error

in GLMs

It is difficult to make general statements on the effect of measurement error on param-

eter estimation in non-linear regression models. Overall, for differential measurement

error, there is a smoothing effect in that E[Y | W ] = E[E[Y | X] | W ], understand-

ing that expectation is a smoothing operation. Then measurement error smooths the

regression between the true predictor X and the outcome Y . To gain additional in-

sight into the effect of measurement error in non-linear regression models, this section

contains a simulation study looking at measurement error in the logistic model.

Consider a logistic regression model with one predictor, where Y is a binary out-

come with expectation E[Y | X] = F (β0+βX), F is the logistic distribution function,

that is, F (η) = (1 + e−η)−1. X is normally distributed with mean µx and variance
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σ2
X . The measurement error U is additive, non-differential and normally distributed

with mean 0 and variance σ2
U . Let Φ and ϕ denote the standard normal c.d.f. and

p.d.f.

Lemma 1.2.1. For normally distributed measurement error, it was shown in [5] that:

E[Y | W ] ≈ F

β0 + βE[X | W ]√
1 +

σ2
X|W
1.72 β2

 . (1.20)

Then naive estimator of the simple logistic regression model with classical measure-

ment error is biased toward 0, approximately by a factor of
(

1 + σ2
X(1−λ)

1.72 β2
)− 1

2
, where

λ = σ2
X

σ2
U +σ2

X
.

We finish this subchapter with a simulation study verifying (1.20). Figure 1.2

shows the distribution of regression coefficient estimators calculated with and with-

out measurement error over 1000 datasets, each with 1000 observations. Data were

generated with the following parameters.

1. β0 = 0.00596.

2. β = log 2.

3. X ∼ N(0, 1).

4. Measurement error variance σ2
U = 0.5.

The parameter configuration is such that there is a modest odds ratio (given by

eβ = 2), and the choice of β0 results in E[Y ] = 0.5.

Two estimators of β were computed in the simulations. β̂X denotes the estimator

computed when there is no measurement error, i.e. using the true covariate values X.
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β̂W uses the mis-measured covariate values W . As can be seen in Figure 1.2, ignoring

measurement error causes severe bias. The red vertical dashed line in Figure 1.2 marks

the true coefficient β = log 2 = 0.693. The sample means of β̂X and β̂W are 0.692 and

0.443, respectively. Plugging in σ2
x = 1 and σ2

U = 0.5 yields λ = 2
3 and σ2

X|W = 1
3 . The

(logistic) attenuation factor in Equation (1.20) is approximately 0.649. The expected

value of the naive estimator would then be approximately log 2∗0.649 = 0.450, which

is close the observed mean value 0.443. The difference is a result of the approximation

F (1.7x) ≈ Φ(x) (see [11] and Figure 1.3), sampling error, and the finite sample size.

Note that β̂W has smaller variance than β̂X (0.003 v.s. 0.005).

Figure 1.2: The attenuation effect on the slope estimators for logistic regression.
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Figure 1.3: The similarity between F(1.7x) and standard normal c.d.f Φ(x).

1.2.4 Correcting measurement error induced bias

using instrumental variables

The are many approaches to correcting for bias in regression parameter estimators

induced by measurement error. The choice of method used is often dictated by

the type of additional information that is available. As seen above, for the linear

regression model, knowledge of measurement error variance, or have the ability to

consistently estimate it, will yield a consistent estimator for the slope coefficient. In

this case the correction is done by dividing the naive estimator by the attenuation

factor.

Instrumental variables are additional data that correlate with the true value of

the mis-measured explanatory variable, and are independent of both the measurement

error and the random error of the model. The correlation structure makes it possible

to obtain consistent estimators without direct knowledge on the measurement error

variance. The method of instrumental variables has been used in econometrics to

address endogeneity, which includes measurement error, simultaneity and omitted
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variables as its major sources. As mentioned in the previous chapter, endogeneity

refers to the situation when the explanatory variable is correlated with the error

term. It is known to bias parameter estimation if left untended.

The basic method of correcting with IV is called two-stage least squares (2SLS).

This method was published along with the discovery of IV [1] and later became a

standard practice in econometrics [25]. The following provides a brief synopsis of the

method of 2SLS for a linear regression model. We’ll then explain why it can not be

applied to non-linear regression models to obtain consistent parameter estimates, and

one possible modification to remedy the deficiency.

Definition 1.2.1. A measurement T is an instrument if

1. T is correlated with X.

2. T is independent of measurement error U .

3. T is independent of error Y − E[Y |X].

Chap 6.2 of Carroll, el at. [22] provide intuition on how IV estimation works in a

measurement error model of the form

Y = f(X) + ϵ

W = X + U.

T being independent of both measurement and systematic error implies

∂W

∂T
= ∂X

∂T
∂Y

∂T
= ∂f(X)

∂T
.
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Using the chain rule, we have

∂f(X)
∂X

= ∂f(X)
∂T

∂T

∂X

= ∂Y

∂T

/
∂W

∂T
.

(1.21)

Equation (1.21) implies that we can understand how f(X) changes with respect

to X if we know how Y and W change with T . In the context of a simple linear

regression, f(X) = β0 + βX, and (1.21) implies that β can be estimated with two

linear regressions: Y on T and W on T . To see this, let β̂Y |T and β̂W |T be the

slope estimators from the two regressions, respectively. Then β̂Y |T/β̂W |T consistently

estimates β.

1.2.5 Instrumental variable method for GLM cor-

rection

Unfortunately the 2SLS method does not immediately extend to GLMs. To see this,

we first make a comparison between the expectation of GLM estimating equations

with and without measurement error. In what follows we assume there are not addi-

tional covariates measured without error. It is straightforward to extend the results

to the case where additional covariates are present. In absence of measurement error,

E

[
∂l

∂θ

∂θ

∂µ

∂µ

∂η

∂η

∂β

∣∣∣∣∣X
]

= E

[
∂l

∂θ

∣∣∣∣∣X
]
∂θ

∂µ

∂µ

∂η

∂η

∂β

∝ E[Y − µ|X]

= 0.

(1.22)
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In the presence of measurement error,

E

[(
∂l

∂θ

∂θ

∂µ

∂µ

∂η

∂η

∂β

)
W

∣∣∣∣∣X
]

= E

{
[Y − µW ]

(
∂θ

∂µ

∂µ

∂η

∂η

∂β

)
W

∣∣∣∣∣X
}
. (1.23)

Unfortunately, the expectation on the RHS of (1.23) is not zero, that is E[Y −

µW |X] ̸= 0 because E[µW |X] = E[F (ηW )|X] ̸= µ(ηX) for non-linear F . Furthermore,

W is correlated with Y through X. Hence the last three components in (1.23) can’t

be factored out of the expectation.

A general method for correcting for covariate measurement error in non-linear

regression models was proposed in [16]. The method was developed for uncorrelated

outcomes, and therefore does not apply to data modelled through generalized esti-

mating equations. The approach is described here, and modifications of the method

for application in the GEE setting are developed in the next section.

Suppose that in the absence of measurement error, E[Y | X] = µ(XTβ) ≡ µX

and β is estimated via the estimating function

ψ(Y,W,β) = (Y − µX)g(X,β).

Often

g(X,β) = ∂

∂β
µX/V (X;β) = [µ′

X/V (X;β)]X

where V (X;β) models the variance of Y conditional on X and µ′
X = d

dx
µ(x). Let

µW ≡ µ(W Tβ), µT ≡ µ(E[X | T ]Tβ) and define µ′
W and µ′

T similarly. Define

A = Y − µW√
µ′
W

.
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In [16], it was shown that

E[A | X,T ] = o(σ2
U)

where recall σ2
U is the measurement error variance. The implication is that A can be

used to define an instrumental variable estimating function that will reduce measure-

ment error induced bias. Define an IV estimating function as

ψIV (Y,W ,T | β) =
√
µ′

T

µ′
W

(Y − µW ) µ′
T

V (E[X | T ];β)E[X | T ]. (1.24)

Then

E[ψIV (Y,W ,T | β) | X,T ] = E

(Y − µW )√
µ′

W

| X,T

 µ′
T

V (E[X | T ];β)E[X | T ]µ′
T

= E [A | X,T ] µ′
T

V (E[X | T ];β)E[X | T ]µ′
T

= o(σ2
U).

The approach works because the IV estimating function factors as a product of A (

a function of Y and W only), and a function of T . The conditional expectation then

also factors, allowing us to leverage the fact that E [A | X,T ] = o(σ2
U).

It was also shown in [16] that exactly consistent estimators result for a large class

of mean models. The form of these models is defined in the following lemma.

Lemma 1.2.2. Suppose that the distribution of U is symmetric around zero, the

moment generating function for U exists, and

µX = E[Y | X] = a1 + a2e
a5ηX

a3 + a4ea5ηX
(1.25)
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for scalar constants a1, . . . , a5 and ηX = XTβ. Then

E

Y − µW√
µ

′
W

| X,W

 = 0.

The logistic regression model is of the form (1.25), as explicated in the following

example.

Example (Logistic regression): For the logistic regression model, µX = E[Y |

X] = F (XTβ) = 1/(1 + exp{−XTβ}). This is of the form (1.25) where a1 = a2 =

a4 = 1, a5 = −1 and a2 = 0. It is easy to show that

µ′
X = F (XTβ)(1 − F (XTβ)).

The instrumental variable estimating function is then

ψIV (Y,W ,T | β) =
√
µ′
T

µ′
W

(Y − F (W Tβ))
(
E[X | T ].

)

For the logistic model, E[ψIV (Y,W ,T | β) | X,T ] = 0, and fully consistent estima-

tors result.

1.2.6 Standardized residual preserves covariance

structure

We seek to extend the above approach to IV estimation in GLIMs to GEEs.
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Let

Ai =


Ai1

...

Aini

 , Ci =



√
µ′
Ti1
Ai1

...√
µ′
Tn1Aini


represent standardized difference vectors for the ith cluster and where µ′

Ti1
= µ′(E[X |

Ti1]Tβ). For GLIMs, only the mean of the standardized difference Aij was important.

For data modelled with GEEs, the variance and covariance of Ai are required to

properly model the correlation structure.

A naive proposal for an IV estimating function would be to use

ψi,IV,naive = DT
i,TCi (1.26)

as the estimating function for the ith cluster where

DT
i,T =


E[XT

1 | T1]
...

E[XT
ni

| Tni
]

 .

It is straightforward to show that for mean models of the form given in (1.25),

E[ψi,IV,naive | Xi,Ti] = 0, implying that consistent estimators of the regression pa-

rameters are obtained. However, the proposal is naive because the variance covariance

matrix of Ci is not modelled, and therefore inefficient estimators result.

Ideally, the variance matrix for Ci would be of a similar form to that of the

difference vector Si used in the absence of measurement error. Unfortunately, the

reality is more complex for most models. As detailed in the following two lemmas,
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the covariance structure is preserved, but the variance of Cij is not unless special

conditions are met. Fortunately, the conditions are met for a very important model.

First some preliminaries. Suppose that µX = E[Y |X] is of the form given by

(1.25). Let k = 1/
√
a5(a2a3 − a1a4). Note that

µ′
W = ea5ηW

k2(a3 + a4ea5ηW )2 ,

µW√
µ′
W

= k(a1 + a2e
a5ηW )e−a5ηW /2

where recall ηW = W Tβ. If the moment generating function for U , denoted mU(t),

exists and is an even function (implying U has a symmetric distribution), then it is

not difficult to show that

E

 µW√
µ′
W

| X,T

 = mU(a5β1/2)k(a1 + a2e
a5ηX )e−a5ηX/2

= mU(a5β1/2) µX√
µ′
X

(1.27)

and

E

 1√
µ′
W

| X,T

 = mU(a5β1/2)k(a3 + a4e
a5ηX )e−a5ηX/2

= mU(a5β1/2) 1√
µ′
X

.

(1.28)

The following lemma says that the covariance structure of the standardized dif-

ferences Aij is the same as the covariance structure in the absence of measurement

error. This result is key for developing an IV approach to GEE.

Lemma 1.2.3. Suppose that E[Y |X] is of the form given by (1.25). Assume classical
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measurement error where the moment generating function for U exists and is an even

function. Then,

Cov(A1, A2 | X1,X2,T1,T2) = Cov
Y1 − µW1√

µ′
W1

,
Y2 − µW2√

µ′
W2

| X1,X2,T1,T2


= m2

U(a5β1/2)Cov
Y1 − µX1√

µ′
X1

,
Y2 − µX2√

µ′
X2

| X1,X2,T1,T2

 .
(1.29)

Proof.

Cov(A1, A2 | X1,X2,T1,T2) = E

Y1 − µW1√
µ′
W1

Y2 − µW2√
µ′
W2

 | X1,X2,T1,T2


= E

 Y1√
µ′
W1

Y2 − µW2√
µ′
W2

 | X1,X2,T1,T2


= E

 Y1Y2√
µ′
W1

√
µ′
W2

−

 Y1µW2√
µ′
W1

√
µ′
W2

 | X1,X2,T1,T2


= m2

U(a5β1/2)E
 Y1Y2√

µ′
X1

√
µ′
X2

−

 Y1µX2√
µ′
X1

√
µ′
X2

 | X1,X2,T1,T2


= m2

U(a5β1/2)Cov
Y1 − µX1√

µ′
X1

,
Y2 − µX2√

µ′
X2

| X1,X2,T1,T2

 .
(1.30)

The second equality follows because E[A2 | X,T ] = 0. The penultimate equality

follows from (1.27) and (1.28), and because of the mutual independence of Y1, Y2, U1

and U2.

The following lemma derives an expression for the variance of the standardized

differences. Unlike the prior lemma, the variance structure of the Aij does not match

that of standardized differences in the absence of measurement error unless a specific

condition is met.
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Lemma 1.2.4. Suppose that E[Y |X] is of the form given by (1.25). Assume classical

measurement error where the moment generating function for U exists and is an even

function. Then,

Var(A | X,T ) = mU(a5β1)Var
Y − µX√

µ′
X

| X,T

− ξ

where

ξ = 2mU(a5β1)k2
(
a3a4E[Y 2 | X,T ] − (a1a4 + a2a3)E[Y | X,T ] + a1a2

)
.

Proof.

Var
Y − µW√

µ′
W

| X,T

 = E


Y − µW√

µ′
W

2

| X,T


= E

[
Y 2

µ′
W

− 2Y µW
µ′
W

+ µ2
W

µ′
W

| X,T

]
.

We consider each term in turn. For the first term,

E

[
Y 2

µ′
W

| X,T

]
= k2E

[
Y 2(a2

3e
−a5ηW + 2a3a4 + a2

4e
a5ηW ) | X,T

]
= mU(a5β1)E

[
Y 2

µ′
X

| X,T

]
− 2mU(a5β1)k2a3a4E

[
Y 2 | X,T

]
.

Next,

E

[
2Y µW
µ′
W

| X,T

]
= 2k2E

[
Y (a1a3e

−a5ηW + a1a4 + a2a3 + a2a4e
a5ηW ) | X,T

]
= mU(a5β1)E

[
2Y µX
µ′
X

| X,T

]
− 2mU(a5β1)k2(a2a4 + a2a3)E [Y | X,T ] .
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Finally,

E

[
µ2
W

µ′
W

| X,T

]
= k2E

[
(a2

1e
−a5ηW + 2a1a2 + a2

2e
a5ηW ) | X,T

]
= mU(a5β1)E

[
µ2
X

µ′
X

| X,T

]
− 2mU(a5β1)k2a1a2.

Combining, we have

Var
Y − µW√

µ′
W

| X,T

 = mU(a5β1)Var
Y − µX√

µ′
X

| X,T


− 2mU(a5β1)k2

a3a4E
[
Y 2 | X,T

]

− (a1a4 + a2a3)E [Y | X,T ] + a1a2

.

We are particularly interested in models where ξ = 0, as in that case the variance

structure in the absence of measurement carries over to Aij. Unfortunately, ξ = 0

is not likely satisfied by many models. However, it is satisfied by a very important

model, namely the logistic regression model.

Example (Logistic model): As noted above, the logistic model for a binary

outcome Y postulates that µX = E[Y |X] = (1 + e−ηX )−1, which is of the form (1.25)

where a1 = a3 = a4 = 1, a2 = 0, a5 = −1. Plugging these values into the expression

for ξ and noting that for a binary outcome E[Y 2 | X] = E[Y | X], it follows that

ξ = 0 and therefore for the logistic model Lemma 1.2.4 implies

Var(A | X,T ) = mU(β1)Var
Y − µX√

µ′
X

| X,T

 = mU(β1).
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The last equality follows because the logistic model is in the exponential family with

canonical link and therefore Var
(

Y −µX√
µ′

X

| X
)

= 1.

Next, consider the Poisson model with canonical link. The hope would be that

models with canonical link would preserve the variance structure, because in this

case, the variance of the standardized difference in the absence of measurement error

is unity. Unfortunately, that is not the case.

Example (Poisson model): Poisson regression with canonical link is such that

E[Y |X] = eηX , which is of the form (1.25) where a1 = a4 = 0, a2 = a3 = 1, a5 = 1.

Then k = 1 and from Lemma 1.2.4 we conclude

Var(A | X,T ) = mU(β1)Var
Y − µX√

µ′
X

| X,T

+ 2mU(β1)eηX

= mU(β1)(1 + 2eηX ).

The last equality follows because the Poisson model with canonical link is such that

Var
(

Y −µX√
µ′

X

| X
)

= 1.

1.3 Instrumental variables approach to

GEE with measurement error–Logistic

Regression

In this section we leverage the results of the previous section to define an IV estimating

function for clustered binary outcomes modelled with the logistic regression mean

function.
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1.3.1 Model statement and notation

Let Yij represent the jth binary outcome in cluster i where i = 1, ..., n and j = 1, ..., ni.

The logistic model stipulates that µXij
= E[Yij | Xij] = F (ηXij

) where ηXij
= XT

ijβ,

and recall that Xij = (1, Xij1, Xij2, . . . , Xijp)T .

An exchangeable correlation structure with constant correlation is assumed: Corr(Yi1, Yi2) =

α. That is,

Corr(Yij, Yik) =


1 if j = k

α else.

In the absence of measurement error the GEE estimating function for β for cluster i

is given by

ψβ(Yi,Xi) = Dt
i∆iV

−1
i Si (1.31)

where

Si =


Yi1 − µXi1

...

Yini
− µXini

 , Di =


XT

i1
...

XT
ini

 ,

∆i = diag{µ′
Xi1, . . . , µ

′
Xini

},

Vi = ∆1/2
i Ri(α)∆1/2

i ,
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and

Ri(α) =



1 α · · · α

α 1
... . . . ...

α · · · 1


.

We assume, without loss of generality, that the first covariate in X is measured

with additive, non-differential measurement error. All other covariates are measured

without error. To that end, define W = (1,W,X2, . . . , Xp) where

W = X1 + U,

E[U |X] = 0,

E[Y |X] = E[Y | X,W ].

The subscripts for cluster and observation within cluster have been suppressed for

clarity. It is also assumed the moment generating function of the measurement error

exists and is an even function. For each observation in each cluster, there exists an

instrumental variable Tij for the mis-measured Xij1. The dimension of the instru-

mental variable may be greater than one, i.e. there may several instruments for the
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covariate that is measured with error. Define

Wij = (1,Wij, Xij2, . . . , Xijp)T

µWij
= F (W T

ijβ),

µ′
Wij

= F (W T
ijβ)(1 − F (W T

ijβ))

E[Xij | Tij ] = (1, E[Xij1 | Tij ], Xij2, . . . , Xijp)T ,

µTij
= F (E[Xij | Tij ]Tβ),

µ′
Tij

= F (E[Xij | Tij ]Tβ)(1 − F (E[Xij | Tij ]Tβ)),

Ai =


Ai1

...

Aini

 =



Yi1−µW i1√
µ′

W i1
...
Yi1−µW ini√

µ′
W ini

 , Ci =



√
µ′
Ti1
Ai1

...√
µ′
Tin1

Aini



DT i =


E[XT

i1 | Ti1]
...

E[XT
ini

| Tini
]

 , ∆T i = diag(µ′
Ti1
, . . . , µ′

Tini
).

The following corollary to Lemmas 1.2.3 and 1.2.4 is key to constructing an IV

GEE estimating function for logistic regression. The corollary gives the form of the

variance/covariance matrix for Ci.

Corollary 1.3.0.1. For the logistic regression measurement error model described

above,

Var(Ci) = mU(β1)∆1/2
T i Ri(αC)∆1/2

T i

where

αC = m2
U(β1/2)
mU(β1)

α.
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Proof. It follows directly from Lemmas 1.2.3 and 1.2.4 that

Corr(Cij, Cik) = m2
U(β1/2)
mU(β1)

α,

and

Var(Cij) = mU(β1)µ′
Tij
.

The corollary follows immediately.

We are now in a position to define an IV estimating function for the logistic

regression measurement error model with clustered data. The estimating function is

analogous to (1.31), where Ci replaces Si. Define

VCi = ∆1/2
T i Ri(αC)∆1/2

T i .

Note that it is not necessary to include the mU(β1) term in the definition of VCi as

it will factor out of the estimating equation.

The IV estimating function for β for cluster i is

ψβ,IV (Yi,Wi,Ti) = DT
T i∆T iV

−1
Ci Ci.

The estimating function for αC for cluster i is

ψαC
(Yi,Wi,Ti) =

∑
j<k

(AijAik − γαC),
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where γ = mU(β1). The estimating function for γ is

ψγ(Yi,Wi,Ti) =
ni∑

j=1
(A2

ij − γ).

The combined estimating function is then

ψIV (Yi,Wi,Ti) =


ψβ,IV (Yi,Wi,Ti)

ψαC
(Yi,Wi,Ti)

ψγ(Yi,Wi,Ti)

 . (1.32)

The IV estimator φ̂ = (β̂T , α̂C , γ̂)T solves

n∑
i=1
ψIV (Yi,Wi,Ti) = 0. (1.33)

Note that α̂C and γ̂ can be solved for explicitly as a function of β̂. From the definitions

of the estimating equations, it follows that

γ̂ = 1∑n
i=1 ni

n∑
i=1

ni∑
j=1

A2
ij,

α̂C = 1
γ̂
∑n

i=1

(
ni

2

) n∑
i=1

∑
j<k

AijAik.

The following proposition states the the GEEIV estimating function is unbiased,

implying that the estimating function will yield consistent estimators of the regression

coefficients.
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Proposition. Under the assumed measurement error model,

E [ψIV (Yi,Wi,Ti)] = 0.

Proof. Note that DT
T i, ∆T i and VCi depend on the data only through (Xi,Ti). We

show that the expectation conditional on (Xi,Ti) is zero, from which it follows that

the unconditional expectation is zero. First consider the estimating function for β:

E [ψβ,IV (Yi,Wi,Ti) | Xi,Ti] = DT
T i∆T iV

−1
Ci E [Ci | Xi,Ti] = 0

where the last equality follows from Lemma 1.2.2.

Next, note that Lemma 1.2.3 gives E[AijAik | Xi] = Cov[AijAik | Xi] = mU(β1/2)2α,

and from Lemma 1.2.4 it follows that E[A2
ij | X,T ] = mU(β1). Then it easily follows

that

E [ψγ(Yi,Wi,Ti) | Xi,Ti] = 0,

and from the definition of αC , it follows readily that

E [ψαC
(Yi,Wi,Ti) | Xi,Ti] = 0.

1.3.2 Variance estimation

The IV estimator defined in (1.33) is an M-estimator, and therefore is asymptoti-

cally normal with variance matrix of the form given in Lemma 1.1.2. Details of the
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construction of the variance matrix are given here.

An estimator of the variance of φ̂ = (β̂T , α̂C , γ̂)T is constructed as follows. Let

A = E

[
∂

∂φ
ψIV (Yi,Wi,Ti)

]
.

and

B = E
[
ψIV (Yi,Wi,Ti)ψTIV (Yi,Wi,Ti)

]
.

The sandwich estimator for the variance of the asymptotic distribution of φ̂ has

the form

V = 1
n

A−1BA−T .

In practice, empirical versions of A and B are used, as detailed in the discussion

following Lemma 1.1.2.

In the absence of measurement error, the GEE estimating function for the logistic

model satisfies Eψψt = −Eψ′, and the variance estimator can then be simplified. It

can be shown that

E
[
ψIVψ

T
IV

]
̸= −E

[
∂

∂φ
ψIV

]
,

and therefore the full sandwich estimate must be used for the IV estimation procedure.

In practice, E[Xij1 | Tij ] must be estimated. Note that E[Xij1 | Tij ] = E[Wij1 |

Tij ]. Therefore, we can regress W on T to estimate E[Xij1 | Tij ]. Typically W

and T are strongly correlated and a linear regression will suffice. Estimation of the

regression parameters in E[Xij1 | Tij ] will not affect the asymptotic variance of β̂.
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1.4 Simulation study

Here we describe the results of a large simulation study designed to assess the per-

formance of the logistic regression IV estimator in finite samples. The GEE logistic

model and IV estimator are defined in Section 1.3.

Questions addressed in the simulations are as follows:

1. How well does GEEIV perform compared to naive estimator in terms of bias

and variance?

2. How accurate is the asymptotic variance estimator?

3. What is the coverage rate for confidence intervals?

4. How robust is the GEEIV estimator to the assumption of symmetric measure-

ment error?

5. How does sample size (number of clusters and cluster size), magnitude of the

odds ratio, and amount of measurement error effect the above?

This section is organized as follows:

• Section 1.4.1 includes the details of data generation, including choice of param-

eter values, and generating algorithm, and restrictions on generating correlated

binary data.

• Section 1.4.2 describes the simulation results. A comparison of effectiveness be-

tween GEEIV and naive estimators in terms of bias and variability is provided.

The performance of the GEEIV asymptotic variance and confidence interval

coverage are also included.
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1.4.1 Data generation

There are a number of parameter choices required for the generation of correlated

binary data. Parameter choices dictate the overall rate of outcome in the population

(marginal positive rate), the odds ratio for a one standard deviation increase in the

predictor measured with error, the amount of measurement error, and the strength of

correlation between outcomes within a cluster (intra-cluster correlation). Addition-

ally, the number of clusters and the number of observations within a cluster must

be chosen. If only two values are considered for each condition, there are 26 = 64

conditions. As detailed below, more than two values were examined for important

parameters (odds ratio, cluster size,....). For each combination of conditions, 1000

datasets were generated and analyzed.

1.4.1.1 Marginal positive rate, odds ratio and intra-cluster correlation

The intra-cluster correlation coefficient (α), marginal positive rate (EY ) and odds

ratio (OR) are meaningful parameters, and together dictate the difficulty of data

generation. Detailed discussion will be given later in this section.

The marginal positive rate varied between 0.5 and 0.1, representing both common

and somewhat rare outcomes.

The odds ratio for a one standard deviation increase in the predictor varied be-

tween 2, 3 and 4, representing moderate to strong association between the outcome

and predictor.

Two values for the within cluster correlation coefficient were considered: α = 0.25

and α = 0.60. Larger α implies a stronger correlation between cluster members,
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and fewer effective observations as a consequence. A dataset would have an effective

number of observations equal to the number of clusters if α = 1, and an effective

number of observations equal to the total number of observations if α = 0.

Datasets with fewer effective observations yield parameter estimators with larger

variability. A higher correlation coefficient also increases the penalty of an incor-

rect independence assumption. Liang and Zeger [6] considered α = 0.25 too weak

for GEE to yield significant improvement over GLM. Fitzmaurice [12] demonstrated

that the efficiency, defined as the ratio of GEE v.s. GLM estimators asymptotic vari-

ance, declines with increasing correlation, and the decline is most notable when the

correlation is greater than 0.4. We’ll show that intra-cluster correlation has a larger

impact on the efficiency loss when measurement error is present and that a correlation

coefficient of 0.25 is no longer insignificant. We also pick a second α = 0.6 that was

considered significant in the original GEE paper. It is worth noting that a larger α

greatly increases the difficulty of data generation and decreases the variability of the

independent variable. This effect will be discussed in detail later in the section.

1.4.1.2 Cluster size and number

Large values for α significantly impact the ability to generate correlated binary out-

comes, and generating correlated binary outcomes for large clusters becomes prac-

tically impossible (details are given in the appendix). For α = 0.25, datasets were

generated with 160 clusters of size 25, and 100 clusters of size 16 were generated for

α = 0.6.

We also considered the impact of cluster size and number of clusters by varying

these quantities. We sampled generated datasets of the sizes indicated above to

46



construct datasets with a smaller number of clusters and/or cluster size. This was

accomplished by considered the following fractions of the cluster size: 1
2 and 1

4 , and

the fractions of size 1
2 , 1

4 and 1
8 for the number of clusters. Including the full number

of clusters and sizes, there are 3 × 4 = 12 combinations of cluster size and number of

clusters in total.

1.4.1.3 Generating correlated binary clusters

Clustered binary data were generated through a modification of the algorithm given

in Emrich and Piedemonte [10]. The algorithm was adapted to the regression context,

and modifications were developed to increase the data generation speed.

A brief description of the algorithm is given here. For simplicity, we drop the

subscript for cluster, that is, we consider generating observations within a cluster,

denoted (Xi, Yi), for i = 1, ..., n where Yi is binary random variable with individual

expectation of pi. Define qi = 1 − pi. Parentheses in subscripts are used to represent

order. For example, p(1) = min{pi} and p(n) = max{pi}.

1. Set values for EY , α, and the odds ratio. Note that β0 = F−1(EY ) and

β1 = log(OR).

2. Generate pi ∼ N(EY, σ2
Y ) for i = 1, ..., n. Discard pi’s and repeat Step 1 if

√
p(1)q(n)/p(n)q(1) < α.

3. Generate [Y1, ..., Yn] with p1, ..., pn, α using Emrich & Piedemonte’s algorithm

[10].

4. Define Xi = (F−1(Yi) − β0)/β1.

47



A detailed description about this procedure, including the choice of σ2
Y and the

reason for discarding generated expectations, is contained in Appendix 1.6.2.

1.4.1.4 Generating measurement error and instrumental variables

Measurement error was added after successful generation of X and Y . The process is

much simpler as measurement error are independent within a cluster. We varied both

the distribution and the variance of measurement error to assess GEEIV performance.

Two types of measurement error distribution were considered: normal and stan-

dardized chi-squared. The normal measurement errors are symmetric about 0 in

distribution. The standardized chi-squared is a chi-squared random variable with

three degrees of freedom, shifted to have mean 0 and scaled to have the specified

measurement error variance. The Chi-square measurement errors were included to

assess the robustness of the method to the assumption of symmetric measurement

errors. A chi-squared random variable on three degrees of freedom is quite skewed.

The data simulation algorithm is such that the variance of X is not fixed. There-

fore, rather than fixing the measurement error variance, we specified two levels of

attenuation factor: 0.33, 0.8. Larger attenuation corresponds to larger measurement

error.

The instrumental variable T was defined as T = X + Ũ where Ũ has the same

distribution as the measurement error, but with a fixed attenuation factor of 0.3. In

this way, the correlation between T and X is around 0.8(0.5) for measurement error

attenuation factor=0.8(0.3) across all (EY,OR, α) combination.
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1.4.2 Simulation results

1.4.2.1 Rate of successful convergence

For each dataset, the naive and IV estimator were calculated by solving the nonlinear

equations (1.14) and (1.32) with the Newton Raphson method. Newton Raphson is

a gradient descent method for finding an approximation to the root f(x) = 0, where

x can be either a scalar or vector. The starting value was set to be naive GLM

estimator. The algorithm stops at x0 when each component of f(x0) is less than a

critical value, which in our case is 10−8, or when the default maximum number of

loops (= 20) is reached. If the estimating function was not less than the critical value

before the maximum number of loops was reached, the resulting x is in general not

close enough to the root and we say the algorithm did not converge.

In Appendix 1.6.3 we provide a few tables on Newton Raphson convergence rates

with some parameter settings. In general a “balanced” dataset, that is, with a 0.5

marginal positive rate is more likely to result in convergence than those with 0.1

marginal positive rate. High Odds ratios and/or measurement error variance also

negatively impact the convergence rate (this is common in measurement error simu-

lation studies). Smaller cluster size and fewer clusters also negatively affect conver-

gence rates. Perhaps this is somewhat counter intuitive, as larger cluster sizes and

number of clusters might seem to make the estimating equations more complicated.

However, having more and larger clusters results in less variation in the estimating

function itself, rendering it more likely to have a solution.

The tables in Appendix 1.6.3 also include a comparison of success rate of the IV

estimator and estimator with true covariate, that is, estimated without measurement
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error. It seems that the two columns are quite similar, suggesting that measurement

error is not the primary culprit for failed convergence. Running Newton’s method

with a different starting value on a failed dataset rarely results in a convergence.

Increasing the maximum number of iteration also did not help.

When analyzing the performance of GEEIV, datasets where the algorithm did not

converge are excluded.

1.4.2.2 Summary of bias elimination

Figure 1.4 shows the bias of the naive and IV estimators over a multitude of parameter

configurations. A summary of the findings is as follows.

The GEEIV estimator effectively reduced measurement error induced bias across

all parameter settings studied with perhaps the exception of when simultaneously the

overall response rate was low, the OR is large, and the cluster size is small. None

of the parameters alone seems to have a significant impact on the unbiasedness of

GEEIV.

• E[Y ]: The marginal positive rate alone has a relatively minor effect on both

naive and GEEIV estimator in terms of bias, with E[Y ] = 0.1 having slightly

larger bias compared to E[Y ] = 0.5.

• OR: the naive estimator is heavily affected by the odds ratio. The attenuation

ratio, defined as 1-β̂1/β1, is approximately 40%, 60%, 70% for OR 2, 3 and 4,

respectively.

GEEIV estimators performs well across all OR’s, with a few exceptions.

• σ2
U : Measurement error has a significant attenuation effect on the naive estima-
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tor which gets stronger with lower attenuation factor.

On GEEIV the attenuation effect is almost negligible.

• Measurement error type: asymmetric measurement error has little effect on the

bias of the GEEIV estimator for most settings.

For small datasets with E[Y ] = 0.1 and large OR, GEEIV shows exception to the

above summary which is worth their own discussion. GEEIV estimates noticeably

strayed away from the true values when sample size drops below a certain point.

Low attenuation factors and high correlation exacerbate the bias. Both upward and

downward biases were observed. This can be a sign of the mean not being stable due

to insufficient number of datasets.
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Figure 1.4: A comparison of estimator sample means. Normal Measurement error. Plotted
values are multiplied by 1000.
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1.4.2.3 Variability of β̂1

Here the variability of GEEIV is evaluated. Figure 1.5 illustrates that GEEIV has

larger variance compared to the naive estimator. Increased variability is the price

one pays for reduced bias–this bias/variance trade-off has been observed in essentially

all other estimators proposed for reducing measurement error induced attenuation.

An explanation of this phenomenon is that measurement error smooths the relation

between Y and X, thereby induces bias but decreasing variability. It is also evident

from the figure that the standard deviation of GEEIV increases with the OR and as

the sample size decreases. Smaller population response rates (EY ) result in increased

variation.

A summary of the effects of parameter choices on estimator variability are as

follows.

• E[Y ]: Fixing all other factors, “unbalanced” datasets(E[Y ] = 0.1]) have ap-

proximately double standard deviation than “balanced” datasets.

• OR: Fixing all other factors, datasets with higher odds ratio have larger stan-

dard deviation. GEEIV is affected in a larger scale compared to the naive

estimator. OR 2:3:4 has an approximate standard deviation ratio of 1 : 2 : 3

for GEEIV and 8 : 9 : 10 for naive estimator.

• σ2
U : Increasing the measurement error variance had opposite effects on the vari-

ability of the GEEIV and naive estimators. Larger measurement error variance

reduced the standard deviation for the naive estimator, while it is increased the

standard deviation for GEEIV. This effect is expected. As mentioned above,

measurement error smooths the relation between Y and X, and more measure-
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ment error imparts more smoothing resulting in less variability. More mea-

surement error also means more bias, and correcting for additional bias adds

complexity, thereby increasing variability.

• Cluster number and size: The standard deviation of the estimator varied de-

pending on the total number of observations, regardless of the cluster size/num-

ber combination. Figure 1.6 is a re-ordered version of Figure 1.5, with standard

deviations sorted by total number of observations. It can be seen that standard

deviations are similar when the total number of observations are the same.

When the total number of observations is fixed, datasets with a small number

of clusters seem to have a slight decrease in the standard deviation.

• Measurement error distribution: The effect of non-symmetric measurement er-

ror was minor, and appears to have an opposite effect on the GEEIV and naive

estimator standard deviation. The difference is not significant expect for the

most “extreme” settings (E[Y ] = 0.1, OR = 3, 4).

It is counter-intuitive to see that cluster size has little effect on the standard

deviation. In most cases, one would usually expect a negative correlation between

standard deviation and number of independent observations. For example, it is well

known that the variance of the sample mean in a dataset with k clusters of size n and

correlation ρ is given by
σ2

nk
[1 + (n− 1)ρ]

where σ2 is the variance of a single observation [31]. The idea is that as cluster

members are correlated, the number of effective independent observations in a cluster

must be less than its size. Imagine in an extreme situation where ρ is 1, a dataset
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with 1 cluster of size n would have a much larger standard deviation compared to

a dataset with n clusters of size 1, as the former has only 1 effective independent

observation and the latter has n.

However this rule does not seem to apply in our simulation, and not only for

GEEIV. The naive estimator standard deviation, and even the estimator obtained

from error-free regression(data not shown in Appendix) are also not affected. We do

not know the nature of this phenomenon. It might be a feature of our correlated

binary data generation method.
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Figure 1.5: A comparison of estimator sample standard deviations ordered by cluster size.
Normal Measurement error. Values are multiplied by 1000. Note the scale of the vertical
axes differ.
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Figure 1.6: A comparison of estimator sample standard deviations ordered by total number
of observations. Normal Measurement error. Values are multiplied by 1000.
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Figure 1.7: A comparison of estimator mean absolute error ordered by cluster size. Normal
Measurement error. Values are multiplied by 1000.
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1.4.2.4 Bias and variability of β̂0

The intercept parameter β0 is of secondary interest, and typically intercept parameters

are not greatly affected by covariate measurement error. This was the case in our

simulations. Both naive and GEEIV estimators are nearly unbiased for all settings.

GEEIV estimators have slightly larger standard deviation. Results are not shown for

the intercept parameter.

1.5 Conclusions

In this chapter we developed unbiased estimating equations for clustered data with

covariate measurement error contamination. The naive estimating equations contain

two sources of bias: dependency between the residual and the covariates, and non-

linearity of the link function. The first source of bias was eliminated by the introduc-

tion of instrumental variables, which by definition, are independent of measurement

and systematic error. The second source of bias is removed by an appropriate stan-

dardization of the residuals. A new issue arises as the standardized residuals require

a matching working correlation structure. For binary regression models, We proved

that the standardized residuals preserve the original correlation structure, with cor-

relation coefficients scaled by a constant factor. As a result, an additional estimating

equation to estimate the scaled correlation coefficient is sufficient–no new modelling

of the correlation structure is required.

A large simulation study was conducted to examine the effectiveness of the ap-

proach in the setting of correlated binary outcomes modelled with the logistic link.

The simulations show GEE instrumental variable appraoch (GEEIV) yields an unbi-
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ased estimator. Under somewhat extreme conditions, defined as a small population

prevalence of outcome, a high odds ratio, and small sample size, the GEEIV estima-

tor retains some bias, but nonetheless suffers much less bias compared to ignoring

measurement error.

For future work, it is possible to extend the application to other members of

the exponential family, Poisson and beta distribution, for example. The working

correlation matrices will not be the same as in the absence of measurement error, and

this will require additional modeling. Most importantly, the GEEIV method would

still yield an asymptotically unbiased estimator as long as the standardization process

is modified appropriately.

1.6 Appendix

1.6.1 Derivation of A

The asymptotic covariance matrix V in Section 1.3.2 can be estimated computation-

ally. In case readers are interested in analytical estimation, we provide some insight

here.

The calculation of B is a straightforward matrix multiplication and thus is omitted.

We mainly discuss the upper left four components of A, which involves complex

partial derivatives. The remaining components are related to the nuisance parameter

γ. Their derivation may be considered in the future.

Recall the four components are:
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= E
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 .

The expectation of two derivatives on the right side ∂
∂αC
ψβ,i and ∂

∂αC
ψαC ,i can be

easily calculated and thus no estimation is needed:
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[
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)
γ.

Expectation of the first component is 0 because both E[Ai|X] and ∂
∂αC
Ai are 0

vectors.

The two components on the left can not be reduced to simple terms and need to

be estimated with sample mean. Still, ∂
∂β
ψβ,i can be simplified:
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(1.34)
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while ∂
∂β
ψαC ,i remains nearly unchanged:

E

[
∂

∂β
ψαC ,i|X

]
= E

 ∂

∂β

∑
j<k

(AijAik − γαC)
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
=
∑
j ̸=k

E
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Aij

∂

∂β
Aik

∣∣∣∣∣X
]
.

(1.35)

It remains to derive ∂
∂β
Ai:

∂

∂β
Ai = ∂Ai

∂ηW,i

∂ηW,i

∂β

= ∂Ai

∂ηW,i

DT
W,i.

∂
∂ηW,i

Ai is a ni × 1 vector with the jth element being ∂
∂ηW,i

Aij. For logistic regression:

∂

∂ηW,i

Aij = 1
2Yij[e

1
2 ηW,ij − e− 1

2 ηW,ij ] − 1
2e

1
2 ηW,ij .

1.6.2 Generating correlated binary clusters

1.6.2.1 Problem statement and existing methods

This section of the appendix serves as a description of technical details for generat-

ing correlated clusters. For simplicity the cluster subscript is omitted. Observations

within a cluster are denoted as (Xi, Yi) for i = 1, ..., n. Yi is binary random vari-

able with a randomly generated marginal expectation of pi, such that E[Pi] = EY .

Corr(Yi, Yj) = α, 1 ≤ i < j ≤ n. The marginal expectation pi is connected to the

independent variable through inverse link function pi = F (ηi) = F (β0 + β1Xi). In

our simulation, F is the logistic function and therefore β1 = log(OR).
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There have been several proposed methods for generating correlated binary clus-

ters. However, as far as we know, there has been no published work on generating

correlated binary clusters in a regression setting. More specifically, existing methods

do not satisfy our needs in that:

1. The focus of prior methods was on generating Y1, .., Yn unconditionally on the

Xi. The generation of X1, ..., Xn was not considered.

2. With one exception, all methods we encountered require the specification of

p1, ..., pn, which are supposed to be randomly generated in our regression simu-

lation. The exception allows random pi but not a specified correlation matrix.

An exchangeable correlation structure is used in our simulation setting. Therefore,

we choose to generate pi’s first, then generate Yi with one of the existing methods.

1.6.2.2 Prentice’s constraint and validity of expectations

In a correlated cluster, the correlation coefficient between Yi and Yj, denoted ρij, does

not range freely from -1 to 1. As shown in [8] ρij is bounded by

[max{−(pipj/qiqj)
1
2 ,−(qiqj/pipj)

1
2 },min{(piqj/pjqi)

1
2 , (pjqi/piqj)

1
2 }]. (1.36)

We adopt the author’s name and call this Prentice’s constraint. Violating it will

result in negative probabilities in the joint probability mass function [8]. Prentice’s

constraint is why existing methods try to avoid joint specification of random pi’s and a

correlation structure: it’s likely to result in some improper probability mass functions.

We call an expectation set [p1, ..., pn] a “valid” set if each pair from [p1, ..., pn] satisfies

(1.36). In Section 1.6.2.4, we introduce an additional minor constraint.
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For an exchangeable correlation matrix with a positive coefficient α, an expecta-

tion set {pi} is valid if and only if the lowest upper bound posed by all pairs (pi, pj)

is greater than ρij = α, that is:

min
i,j

{min{(piqj/pjqi)
1
2 , (pjqi/piqj)

1
2 }} > α. (1.37)

The lower bound in (1.36) plays no part in (1.37), as it is always negative and thus

is automatically satisfied. (1.37) can be further simplified, as the lowest upper bound

is posed by (p(1), p(n)).

Lemma 1.6.1. mini,j{min{(piqj/pjqi)
1
2 , (pjqi/piqj)

1
2 }} = (p(1)q(n)/p(n)q(1))

1
2 .

Proof. Without loss of generality, we assume the expectation set is sorted: p1 ≤ ... ≤

pn.

For any pair (pi, pj) such that 0 < pi < pj < 1,

min{(piqj/pjqi)
1
2 , (pjqi/piqj)

1
2 } = (piqj/pjqi)

1
2 (1.38)

Now consider 0 < pi < pj < pk < 1. Note that

min{min{(piqj/pjqi)
1
2 , (pjqi/piqj)

1
2 },min{(piqk/pkqi)

1
2 , (pkqi/piqk) 1

2 }}

= min{(piqj/pjqi)
1
2 , (piqk/pkqi)

1
2 }

= (piqk/pkqi)
1
2

(1.39)

Verification of the two identities above is achieved by simply calculating the ratio
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of the two items. (1.38) and (1.39) together imply that for a fixed pi ∈ {p1, ..., pn−1},

min
j∈{i+1,...,n}

{min{(piqj/pjqi)
1
2 , (pjqi/piqj)

1
2 }} = (piqn/pnqi)

1
2

.

In the same way we can show that for a fixed pj ∈ {p2, ..., pn}

min
i∈{1,j−1}

{min{(piqj/pjqi)
1
2 , (pjqi/piqj)

1
2 }} = (p1qj/pjq1)

1
2

.

Therefore, for any 1 ≤ i < j ≤ n, we have:

min{(piqj/pjqi)
1
2 , (pjqi/piqj)

1
2 } = (piqj/pjqi)

1
2 ≥ (piqn/pnqi)

1
2 ≥ (p1qn/pnq1)

1
2 .

Equivalently,

min
1≤i≤j≤n

{min{(piqj/pjqi)
1
2 , (pjqi/piqj)

1
2 }}

= (p1qn/pnq1)
1
2

= min{(p1qn/pnqi)
1
2 , (pnq1/p1qn) 1

2 }.

Figure 1.8 serves as a visual explanation to Lemma 1.6.1. The curves show how

the upper bound min{(piqj/pjqi)
1
2 , (pjqi/piqj)

1
2 } changes with respect to pi and pj.

Note that for any pj > max pi, the upper bound is lower for a smaller pi.
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Figure 1.8: Correlation upper bound by marginal probabilities.

The sufficient condition for validity can now be simplified as follows.

Corollary 1.6.1.1. Given a correlation coefficient α, an expectation set p1, ..., pn

satisfies Prentice’s constraint for all pairs {pi, pj} if and only if (p(1)q(n)/p(n)q(1))
1
2 >

α.

1.6.2.3 Generating valid expectation sets

There are two obvious approaches for generating a valid expectation set [p1, ..., pn]:

1. Generate [p1, ..., pn] and then validate. Discard and repeat the process if the set

is not valid.

2. Generate p1, calculate range for p2 that preserves validity, then generate p2

within the range. Repeat for p2, ..., pn.

We implemented the first method, as the second one introduces unwanted depen-

dency between cluster members (pi depends on p1, ..., pi−1). However, unlike in the
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second method, the distribution of pi’s needs to be predetermined.

In logistic regression, pi = F (β0+β1Xi). The distribution of the pi can be obtained

in two ways:

1. Specify values for the Xi, then calculate the pi.

2. Specify values for the pi, then calculate the Xi.

In a regression scenario, it is more natural to consider generating random Xi. One

possible procedure would be:

1. Generate X1, ..., Xn i.i.d. standard normal.

2. Specify a value for β1 = log(OR). Specify a value for EY and calculate β0 as

the solution to the equation
∫
F (β0 + β1x)fX(x)dx = EY .

3. Calculate pi = F (β0 + β1Xi) for i = 1, ..., n.

It is ideal that the Xi’s are i.i.d. across all parameter combinations so the results

are comparable. However a test run revealed a significant problem with this pro-

cedure: Valid [pi] sets has a smaller Xi variance than initially assigned (larger and

smaller values of Xi had to be discarded). After the validity check, for EY = 0.5, the

variance of Xi reduces from 1 to 0.8 for OR = 2, 0.4 for OR = 3 and 0.3 for OR = 4.

A related problem is computational time: a smaller variance after validation implies

that more invalid [pi] sets were generated, thus more computational time is required.

The middle column of Table 1.1 lists the number of invalid generations in our test

run. One can see that the rarity of successful generation grows exponentially with

larger values of EY and OR. For EY = 0.1, OR = 4, it took more than 7 million
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E[Y ] OR Prentice Failed Prentice Passed, PD Failed
0.5 2 9 34
0.1 2 32 91
0.5 3 9633 1098
0.1 3 74496 3636
0.5 4 546458 4173
0.1 4 7096969 14901

Table 1.1: Average failed attempts to generate 40 clusters of size 25, α = 0.25.

iterations and about 10 hours to generate 40 valid expectation sets. This was much

too slow for generating all the datasets for the GEEIV simulation study.

To reduce computational time and control the variance of Xi, we modified the

process to achieve a success rate near one.

A direct result from Equation (1.36) is that a cluster member with expectation pi

poses a range restriction on all other members:

pj ∈
[

αpi

qi + αpi

,
pi

qiα + pi

]
.

We’ll call this the valid range posed by pi. For an expectation set p1, ..., pn to be

valid, all members needs to be in the valid range posed by all other members. In

other word, all pi’s need to be in the intersection of all valid ranges. Combined with

Lemma 1.6.1.1, it follows that the intersection depends only on p(1) and p(n).

Lemma 1.6.2. The intersection of all valid ranges posed by all pair (p1, ..., pn) equals

the valid range posed by p(1) and p(n).

The proof is similar to that of Lemma 1.6.1 and is omitted. Figure 1.9 serves as

a visual explanation.
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Figure 1.9: For a given α, pj valid range is determined by maximum and minimum pi.
Intermediate p (Purple) plays no role.

An implication of Lemma 1.6.1 is that the valid range posed by p(1) and p(n) gets

narrower as the difference p(n) − p(1) increases, that is, a larger range for the pi’s

decreases the probability of generating a valid expectation set.

The disadvantage of generating Xi normally distributed with a predetermined

variance is now clear:

1. By the nature of logistic function, a symmetric Xi distribution will result in a

skewed pi distribution, which achieves larger p(n) − p(i) with less pi variance.

2. The skewness of the pi distribution increases as EY deviates from 0.5.

3. The standard deviation of pi is positively related to β1SD(Xi), which increases

with OR. For a fixed variance of X, a higher OR increases pi variance, and in

turn increases the probability of generation failure. To achieve a success rate
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of 1 across all parameter combinations, it is necessary to choose the smallest

variance allowed by all parameter combinations.

Figure 1.10: Fixing the variance of X causes the pi to have varied variance and skewness
with respect to OR.
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Figure 1.11: pi generated with standard normal X is likely to have wider range than that
from a normal distribution with identical mean and variance.

We reasoned that it is not optimal to begin with i.i.d. Xi’s. A second procedure

was then designed to begin with random pi instead since pi’s are directly related to

Prentice’s constraint. It is a easier way to grasp control over the rate of generating a

valid pi set. By Lemma 1.6.2, the success rate is negatively related to p(n) − p(1). In

other word, to achieve a high success rate, we need to restrict the standard deviation

of pi. For a given pair of values for (EY, α), we let the pi to have a normal distribution

with mean EY and standard deviation σp such that 6σp = p1
q1α+p1

− p1 where p1 =

EY − 3σp. Solving for σp yields:

σp =
1+σ0
1−α

+
√(

1+σ0
1−α

)2
− 4(EY − [EY ]2)
6 (1.40)
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Figure 1.12: For a given (α, EY ), σp is chosen such that all p’s would very likely to fall
into the valid region posed by p(1) = EY − 3σp and p(n) = EY + 3σp.

The procedure is as follows:

1. Generate i.i.d. normal pi with mean EY and standard deviation σp as in (1.40).

2. Let β1 = log(OR) and β0 be such that F (β0) = EY .

3. Calculate Xi from pi, β0 and β1.

The advantages of the second procedure compared to the first are:

1. About (0.99)n ∗ 100% of the attempts will be successful. Recall n is the cluster

size. The actual variance of pi are close to the initially assigned value. Compu-

tation time is less than 1/100 of the prior method.

2. It allows a larger variance for X while satisfying Prentice’s constraint.
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1.6.2.4 Choice of algorithm

Once a valid set for p1, ..., pn are generated, the next step is to generate binary vari-

ables Y1, . . . , Yn with expectations p1, ..., pn and correlation α. The choice of algorithm

for doing so is not nearly as important as the method for generating the expectations

p1, ..., pn. We chose the algorithm proposed by Emrich & Piedmonte [10], which is

one of the earliest. Several later algorithms claim to be faster than Emrich & Pied-

monte’s but for our simulation study, the improvement was not significant. Given a

valid expectation set [p1, ..., pn], Emrich & Piedmonte’s algorithm is as follows:

1. Calculate the latent correlation matrix ΣL = [ρij], where ρij is the solution of

the following equation:

Φ[ϕ(pi), ϕ(pj), ρij] = δij(pipjqiqj)0.5 + pipj (1.41)

where Φ is the bivariate normal C.D.F and ϕ is the normal quantile function.

2. Generate multivariate normal r.v.’s L = [L1, ..., Ln]T with mean 0 and latent

correlation matrix ΣL.

3. Yi = 1 if Li < ϕ(pi). Yi = 0 otherwise.

It is worth noting that an expectation set [pi, ..., pn] that satisfies Prentice’s con-

straint does not guarantee a semi positive-definite latent correlation matrix ΣL, which

is required for generating the correlated normal latent variable L’s in Step 2. As

mentioned in the last section, the criterion for validity must be expanded to two

conditions:

1. The expectation set satisfies Prentice’s constraint.
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2. The expectation set produces a semi positive-definite latent correlation matrix.

For simplicity, we’ll call the second condition the “PD constraint”. The PD constraint

is a necessary condition posed by our choice of algorithm, which denies some expec-

tation sets that might result in successful generation. As in the last section, a cluster

failing the PD constraint will be discarded and re-generated, which can affect the

variance of X.

We consider the two issues above minor, as the PD condition is rarely unsatisfied

for expectation sets that pass Prentice’s constraint. A comparison of the frequency

of failing either constraint is given in the last column of Table 1.1.

1.6.3 Tables on Newton-Raphson convergence

rate

The following tables show the number of times the Newton-Raphson algorithm, used

to compute the IV estimates, converged.

EY OR IV No M.Error Both
0.50 2 1000 1000 1000
0.50 3 1000 1000 1000
0.50 4 1000 1000 1000
0.10 2 1000 1000 1000
0.10 3 999 1000 999
0.10 4 983 985 982

Table 1.2: Cluster Size=25; Number of Cluster=160; Normal Measurement error with at-
tenuation factor 0.8. Reporting number of converged estimation via Newton Rapson method.
Total number of cases is 1000 for all rows.
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EY OR IV No M.Error Both
0.50 2 1000 1000 1000
0.50 3 1000 1000 1000
0.50 4 996 996 996
0.10 2 994 994 992
0.10 3 950 950 941
0.10 4 881 880 869

Table 1.3: Cluster Size=25; Number of Cluster=40; Normal Measurement error with atten-
uation factor 0.8. Reporting number of converged estimation via Newton Rapson method.
Total number of cases is 1000 for all rows.

EY OR IV No M.Error Both
0.50 2 984 985 984
0.50 3 904 922 904
0.50 4 810 839 810
0.10 2 829 840 828
0.10 3 670 702 669
0.10 4 544 597 544

Table 1.4: Cluster Size=6; Number of Cluster=20; Normal Measurement error with atten-
uation factor 0.8. Reporting number of converged estimation via Newton Rapson method.
Total number of cases is 1000 for all rows.
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Chapter 2

Estimating the Cardinality of La-

tent Defective Sets

2.1 Introduction

In an edge search problem, the goal is to identify within a graph a hidden edge set

whose members are considered “defective”. A graph G = {V,E} is a combination

of a set of vertices V and edge set E where each edge e ∈ E links a set of vertices.

Our exploration on defective edge search problem was inspired by cascading failure

in power system where the defective edges represent transmission line combinations

where failure of all its members can result in a chain reaction through the power

network and cause major blackout. Knowledge on these combinations are required to

assess the risk and potential loss from cascading failure.

The defective combinations are considered latent and can not be observed without

an actual cascading failure. With a power grid simulator called DCSIMSEP[29], one

can perform a failure test by manually shutting down any vertex subset. If a cascad-
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ing failure was observed afterward, one knows that at least one defective edge was

contained in the selected vertex subset. Several algorithms have been proposed to

utilize such tests to either identify the defective edge set or to estimates its size. How-

ever, these algorithms are impractical for graphs with many defective edges and/or

defective edges that link many vertices. We introduce an efficient sampling approach

to estimate the total number of defective edges for large graphs. The method provides

an unbiased estimator of the number of defective edges regardless of their distribution,

and a method for assessing the precision to which the number of defective edges has

been estimated. The estimator’s variance can be well estimated under the assumption

that edges are equally likely to be defective.

These defective combinations, called “d-edges”, are determined by the network

structure and can be identified with a group testing method. Traditional group

testing methods aimed at identifying the latent defective set have a time cost growing

exponentially with the cardinality of the defective set, rendering them impractical for

large networks, including power grids. We leverage statistical sampling ideas and

theory to greatly reduce the required number of group tests.

2.2 Background

2.2.1 Power grid and cascading failure

A power grid is an interconnected network of power plants, substations, and trans-

mission lines. The U.S. grid is divided into three major regions - the Western, Eastern

and Texas Interconnection [36]. Cascading failure refers to major blackouts started
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with the failure of a small number of components in the grid. One may consider

electricity as water that flows from high ground (power plants) to low ground (end

users). If some pipes (transmission lines) are blocked, the water (load) automatically

goes through other passages and potentially overload them. This can cause a chain

reaction and take down a large proportion of the grid in a short time. Cascading

failures are rare in number, but the losses can be extensive. The largest blackout in

the history of North America was due to cascading failure. In the afternoon of August

14, 2003, Maryland, Michigan, Ohio, Ontario, New York, New Jersey, Vermont and

Connecticut lost power in an hour after three overheated transmission lines in Ohio

sagged into trees and short circuited. The root cause was later identified as a series of

events including high ambient temperature, a consequent power consumption surge,

untrimmed trees and an unnoticed failure of the Electricity company’s alarm system.

The blackout lasted for up to 2 days in some areas and caused an estimated total

economic loss of $6.4 billion [37].

2.2.2 Group testing and edge search problem

The method of group testing was proposed by Robert Dorfman during the second

World War to efficiently screen recruits for syphilitic antigen [3]. Compared to running

tests on individual blood samples, the total number of tests could be significantly

reduced by testing mixed blood samples from a group of men, as one negative test

would indicate that the whole group is not infected. Since then group testing has

found application in various area other than blood testing, such as multiple access

communication, and coding theory [18]. Recently, the FDA made an announcement

on July 16, 2020, allowing testing facilities to pool COVID-19 samples in order to
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preserve testing resources [35].

The edge search problem is an extension of group testing, where a positive test

indicates the presence of certain combination of elements. Early studies [7] focused

on identifying one combination of two elements (an edge). The method was later

generalized to finding one combination of any size (a hyperedge) [14]. The problem

of identifying all present combinations of any size was addressed by Chen and Hwang

[23], which unsurprisingly required a significantly more complicated algorithm. The

main challenge was to separate already identified sets so they are not present in later

tests.

2.3 Terminology and notation

Here we define key terms and notation used in this chapter.

A few keywords are explained at first:

• Graph/hypergraph: The term “graph” is used as an abbreviation of “hyper-

graph”. A graph is a pair G = (V,E) with vertices V and edges E.

• n: The order of the full graph. n = ||V ||.

• Vertices: A set of elements.

• Edge/hyperedge: The term “edge” is used as an abbreviation of hyperedge. An

edge e ∈ E is a subset of V of size greater than 1.

• Defective set/d-set: The defective set, or d-set, is defined to be a latent subset

of E. The goal of this study is to estimate its cardinality.
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• Defective edge/d-edge: The elements of a d-set. A d-edge is minimal, that is,

it cannot be a superset of any other d-edge.

• Test: A test can be performed on any vertex subset V1 ⊂ V . It returns positive

if and only if the subgraph induced by V1, that is, G1 = (V1, E1) such that

E1 = {e ∈ E : e ⊂ V1}, has at least one common edge with the d-set.

• m-graphs: Random subgraphs being tested.

• d: The cardinality of the d-sets.

• r: The cardinality of a d-edge, must be greater than 1 for meaningful discussion.

2.4 Sampling algorithm for estimating

d

The algorithm proposed by Chen and Hwang works well in graphs with only a few

d-edges but quickly becomes impractical as d grows. To demonstrate this, we applied

Chen and Hwang’s algorithm on random graphs with n = 100, r = 3 and d ranging

from 0 to 1,000. In Figure 2.1, each point is the algorithm cost for one random

graph, measured in number of tests. The cost grows to the same magnitude as using

brute force through all possible trios (100k v.s.
(

100
3

)
≈ 161k). A previous study

[34] examined the US western grid which has 10,000 vertices. The d-set cardinality

for r = 3 was estimated to be between 2.0 ∗ 105 and 2.9 ∗ 105. The simulation

was performed on DCSIMSEP [29], a load flow simulator that can perform tests

by simulating the load redistribution after tripping any combination of transmission
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lines (vertices). Each test takes between less than 1 second to a few seconds to

finish, depending on whether a cascading failure occurs. Applying Chen and Hwang’s

algorithm directly is not practically possible because the necessary calculations cannot

be completed within a reasonable time frame. In this chapter we study the scenario

where the number of d-edges are too numerous to be exhaustively identified, but an

estimate of d is still valuable.

Figure 2.1: A comparison of efficiency of Chen and Hwang’s algorithm to edge testing all
edges. Uniformly distributed d-edges of size 3 were generated in 750 graphs of order 100.
The number of d-edges in each graph is shown on the x-axis.

We develop an algorithm which can be considered a generalized Monte Carlo ap-

proach to estimate d for graphs with d ≫ n. Our algorithm determines an optimum

size m such that a uniformly chosen subgraph of size m contains very few d-edges

on average. Random subgraphs of size m are then chosen and all d-edges in each

subgraph are identified. Using methods from sampling theory, a method of moments

estimator for d is defined that is unbiased for d regardless of the distribution of defec-

tive edges. We provide a method for constructing confidence intervals and evaluate
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their performance through simulation studies.

First, some additional notation and terminology required for the sampling algo-

rithm.

• m: the order of an m-graph. m ≥ r.

• L: the number of m-graphs sampled.

• x: The d-set cardinality of an m-graph.

• M : M =
(

m
r

)
.

• N : N =
(

n
r

)
.

• Examine(verb): the action of applying an algorithm to identify the d-set in a

m-graph. Examining a m-graph in general takes multiple tests.

• Cost: Number of test taken to examine a m-graph.

In the applications we are considering, it is impractical, if not impossible, to

determine d exactly as the computation time is prohibitive. Estimation of d proceeds

by sampling subgraphs of a fixed size m, determining all the d-edges in m-graph, and

using the resulting data to construct an estimator for d. A straightforward algorithm

is as follows.

1. For a fixed value of m, randomly choose L m-graphs for some integer L ≥ 1.

2. Examine the L m-graphs to obtain X1, ..., XL.

3. Estimate d with d̂ = g(X1,...,XL) where g is an estimating function. The

function g(·) may be defined implicitly.
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The quality of estimation depends on the choice of m, L and the function g. We’ll

take a closer look at these factors in the next three subsections.

2.4.1 Choice of the estimation function g

Maximum likelihood is an efficient approach to estimating d from (X1, X2, . . . , XL).

However, it requires knowledge of the distribution of the Xi. The distribution of

Xi depends on the distribution of the d-edges, which is typically unknown. In the

appendix we derive the likelihood function under the assumption that the d-edges

follow a uniform distribution, i.e., all edges of size r are equally likely to be defective.

As noted, maximum likelihood is not applicable if the distribution of d-edges

is unknown. Therefore, the primary approach we focus on is a method of moments

estimator for d. To assess whether there is significant loss in efficiency, we compare the

method of moments estimator to the maximum likelihood estimator in our simulation

study.

Properties of the estimator for d that we propose rely on basic results from sam-

pling from a finite population. This approach has been used in the context of esti-

mating other graph characteristics, see for example Chapter 5 of [24]. We review the

pertinent results here, prior to defining a method of moments estimator for d that

assumes m is fixed. An extension of the estimator is then considered for m of variable

size.

2.4.1.1 Sampling theory results

Consider a finite population ofN∗ values denotedX1, . . . , XN∗ . Let µ and σ2 represent

the population mean and variance: µ = X̄ = 1
N∗
∑N∗

i=1 Xi and is σ2 = 1
N∗−1

∑N∗

i=1(Xi −
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µ)2.

Suppose L values are randomly sampled without replacement. The sample mean

and variance are defined as x̄ = 1
L

∑L
i=1 Xi and s2 = 1

L−1
∑L

i=1(Xi − x̄)2. Then

E[x̄] = µ = X̄ and E[s2] = σ2. Also, Var[x̄] = (1 − L/N∗)σ2/L, and an unbiased

estimator of this variance is then (1 − L/N∗)s2/L.

If L values are sampled with replacement, then E[x̄] = µ = X̄, E[s2] = (1− 1
N∗ )σ2,

and Var[x̄] = (N∗ − 1)σ2/N∗L, and an unbiased estimator of this variance is then

s2/L. Note that the variance of x̄ is smaller when sampling without replacement.

When sampling without replacement, a confidence interval for µ is given by

x̄− t

√
(1 − L

N∗ )s2/L, x̄+ t

√
(1 − L

N∗ )s2/L


where t is an appropriate critical value. When L and N∗ are large enough, a critical

value from the normal distribution can be used instead of the t− critical value.

2.4.1.2 Sampling Algorithm for Estimating d for fixed m

The algorithm given above for method of moments estimation is:

1. For a fixed value of m, randomly choose with replacement L m-graphs for some

L ≥ 1.

2. Examine the L m-graphs to obtain X1, ..., XL.

3. Estimate d with d̂ = (N/M)x̄ where x̄ = (1/L)∑L
i=1 Xi.

A fixed value of m induces a population of N∗ =
(

n
m

)
unique m-graphs, and the

above sampling scheme is analogous to sampling L items from a finite population. The

84



value of Xi can be determined by brute force, or by an efficient algorithm, for example

the Chen and Hwang method. Sampling can proceed with or without replacement.

The proposed estimator d̂ is a method of moments estimator, which is seen by first

noting∑N∗

i=1 Xi = d·
(

n−r
m−r

)
. Then from the above sampling results, E[x̄] = d

(
n−r
m−r

)
/N∗.

Noting N/M = N∗/
(

n−r
m−r

)
yields the method of moments estimator d̂ = (N/M)x̄.

Furthermore, from the standard sampling results reviewed above, it follows that

Var(d̂) = (N/M)2 Var(x̄) = (N/M)2
(

1 − L

N∗

)
σ2/L.

An unbiased estimator of Var(d̂) is (N/M)2
(
1 − L

N∗

)
s2/L. Note this is an unbiased

estimator of Var(d̂) regardless of how the d-edges are distributed in the network.

If the m-graphs are uniformly sampled, then each Xi has the hypergeometric

distribution. In that case, the population variance is

σ2 = Md

N

(N − d)
N

(N −M)
N − 1 .

Using this value for σ2, the variance of d̂ when sampling without replacement is

then

Var(d̂) = (N/M)2 Var(x̄) = (N/M)2
(

1 − L

N∗

)
σ2/L

= 1
L

(
N

M

)2 (
1 − L

N∗

)
Md

N

(N − d)
N

(N −M)
N − 1

= 1
LM

(
1 − L

N∗

)
d(N − d))(N −M)

N − 1

≈ d(N − d)
LM

.

(2.1)

When sampling with replacement, the term (1 −L/N∗) is replaced by (1 − 1/N∗).
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The approximation in the last line of (2.1) is useful when N ≫ M and N∗ ≫ L. Both

these conditions are satisfied in our application, and therefore the approximation is

employed below.

The above results are encapsulated in the following theorem.

Theorem 2.4.1. Let X1, . . . , XL denote the numer of d-sets in L randomly chosen

sub-graphs of size m. Let d̂ = (N/M)x̄ where x̄ = (1/L)∑L
i=1 Xi. Then

1. E[d̂] = d

2. Var(d̂) = (N/M)2 Var(x̄) = (N/M)2
(
1 − L

N∗

)
σ2/L

If the m-graphs are uniformly distributed and N ≫ M , N∗ ≫ L, then

Var(d̂) ≈ d(N − d)
LM

.

2.4.1.3 Sampling Algorithm for Estimating d for variable m

Here a method of moments estimator for d is developed assuming the size of the

sampled sets are variable. We’ll see in the next section that a varying m is necessary

for optimizing the sampling procedure.

The method of moments estimator is defined in Theorem 2.4.3. First, a prelimi-

nary lemma.

Lemma 2.4.2. Let ed be any d-edge of size r. ed is contained in exactly
(

n−r
mi−r

)
order

mi subgraphs.

Proof. An order mi subgraph must contain the r vertices that belongs to ed. The

remaining mi − r vertices for the subgraph can be freely chosen from the n− r total

vertices, leaving
(

n−r
mi−r

)
possible combinations.
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Theorem 2.4.3. Suppose L m-graphs of order m1, ...,mL are randomly selected and

examined. Let Xi be the number of d-edges in the ith m-graph and Mi =
(

mi

r

)
. A

method of moments estimator for d is

d̂ = g(X1, ..., XL) = N∑L
i=1 Mi

L∑
i=1

Xi. (2.2)

.

Proof. The method of moment estimator for d is derived by matching sample and

population moments:
L∑

i=1
Xi =

L∑
i=1

E(Xi|d,mi). (2.3)

Since the m-graphs are randomly chosen, E(Xi|d,mi) can be calculated regardless

of the distribution of the d-edges. To see this, first note that the probability of any

subgraph of order mi being chosen is 1/
(

n
mi

)
. We then have

E(Xi|d,mi) = 1(
n

mi

) ( n
mi

)∑
j=1

dj

where dj is the number of d-edges in the jth subgraph, for some permutation of all(
n

mi

)
order mi subgraphs.

Since Lemma 2.4.2 applies to all d d-edges, the d-edge count from all order mi

subgraphs is:

( n
mi

)∑
j=1

dj = d ∗
(
n− r

mi − r

)
.

The proof is completed by noting that ( n−r
mi−r)
( n

mi
) = Mi

N
. Equation (2.3) can now be
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reduced to:
L∑

i=1
Xi =

L∑
i=1

E(Xi|d,mi) =
L∑

i=1

Mi

N
d (2.4)

Solving for d yields (2.2). If m1 = ... = mL = m, the expression can be further

simplified to d̂ = N
LM

∑L
i=1 Xi, the estimator obtained earlier.

The following theorem states that the method of moment estimator is an unbiased

estimator of d:

Theorem 2.4.4. Suppose L m-graphs of order m1, ...,mL are randomly selected and

tested resulting in X1, X2, . . . , XL. The method of moment estimator is unbiased

regardless of the d-edge distribution.

Proof. The proof is essentially the reverse of the derivation of d̂:

E(d̂) = E

(
N∑L

i=1 Mi

L∑
i=1

Xi

)

= N∑L
i=1 Mi

L∑
i=1

E(Xi)

= N∑L
i=1 Mi

L∑
i=1

Mi

N
d

= d.
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2.4.2 Determining the optimum subgraph size sub-

ject to a computational cost constraint

The precision to which d can be estimated depends on the size of m and the magnitude

of L. The following considers how to choose these quantities.

The variance of d̂ can be made arbitrary small by increasing the sample size L

or the size of the random m-graph (m), see (2.1). However, increasing these values

comes at a steep computational cost. Therefore a cost constraint is introduced. In

the following, we constrain the total number of edge tests to be T and propose an

algorithm for finding optimal values for L and m under this constraint.

An approximation for T is

T ≈ W0(n,m, d, r)L

where W0(n,m, d, r) denotes the expected number of tests required to examine a

single random m-graph. Obtaining a useful expression for W0(n,m, d, r) is somewhat

complicated. Note that

W0(n,m, d, r) =
m∑

x=0
p0(x)u0(x)

where u0(x) is the expected number of tests required for an m-graph with x d-edges,

and p0(x) is the probability of an m-graph having x d-edges. Under the uniform d-edge

assumption, we proved in the appendix that Xi follows a hypergeometric distribution
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with probability mass function

p0(x) =

(
M
x

)(
N−M
d−x

)
(

N
d

) .

The form of u0(x) is dependent on the method used to find d-edges.

In our simulation, W0(n,m, d, r) is approximated by

W (n,m, d, r) =
5∑

x=0
p(x)u(x) (2.5)

where we use a binomial distribution approximation

p0(x) ≈ p(x) =
(
M

x

)(
d

N

)x (
1 − d

N

)M−x

.

The binomial approximation is for faster computation and concise programming and

is totally optional. The efficiency loss is minimal as when x is small, the sampling

is essentially independent. An approximation for u0(x), for the Chen and Hwang

algorithm for finding d-edges, is

u0(x) ≈ u(x) = 1 + x log2 M +
min r,x∑

i=1

(x
i

)
r−i∑
j=0

(
i(r − 1)

j

) .
The derivation for u(x) is given in the appendix.

Note that the sum in the definition of W (n,m, d, r) in (2.5) terminates at five.

The appendix provides a heuristic explanation for this ‘small x assumption’. In short,

the probability of having more than 5 d-edges in an optimum m-graph is negligible.

For any fixed T , increasing m would cause an increase in W (n,m, d, r) and as a
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consequence, a decrease in L. There is a trade-off between the size of m and L. Using

the approximation for T in (2.1) yields:

V ar(d̂) ≈ d(N − d)
LM

.

≈ d(N − d)
T

W (n,m, d)
M

∝ W (n,m, d)
M

.

(2.6)

The second line of (2.1) implies that the optimum m minimizing the variance of d̂

does not depend on T . This may not be true in a trivial case when T is comparable

to N . For example, V ar(d̂) would be 0 if one allows enough tests to brute force

through every edge, or apply Chen and Hwang’s algorithm on the whole graph, but

those extreme cases are not considered.

An algorithm for finding an (approximate) optimal value for m is defined by the

following five steps. In this algorithm, k is used as a loop counter. Let L0 denote

the total number of m-graphs examined at the termination of the algorithm. d̂0 is a

rough guess of d generated in the process.

1. Let k = 1, m = r, L0,k = 10.

2. Examine L0,k m-graphs. If ∑L0,k

i=1 Xi ≥ 1, go to Step 3, otherwise

(a) set k = k + 1 and d̂0 = N(1 − 0.95
1

L0,kM )

(b) obtain m by minimizing W (n,m,d̂0)
M

(c) set L0,k =
⌈
(log1−d̂0/N 0.05)/M

⌉
(d) go to Step 2

3. Let d̂0 = N∑L0
i=1 Mi

∑L0
i=1 Xi.
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4. Obtain m by minimizing W (n,m,d̂0)
M

.

5. Randomly select and examine an additional m-graph. Repeat steps 3 to 5 until

the m’s for the last five iterations are identical.

An explanation and justification of the algorithm steps is as follows. The initial

guess for m in steps 1 and 2 is conservative in that the smallest possible value for

m is used, i.e., m = r. This choice for m reduces the risk of investing unnecessary

computational cost by unintentionally examining an inefficiently large m-graph. Note

that the cost would be exactly 1 when m = r regardless of the outcome. We initially

test L0,1 = 10 small m-graphs to determine whether at least one d-edge can be found.

If so, then a d̂0 can be obtained by the method of moments given in Step 3. If not, we

then guess that d is small enough such that 95% of the time we would find 0 d-edges.

The binomial approximation to the probability of finding 0 d-edges in L0,k m-graphs

is

p

L0,k∑
i=1

Xi = 0
 =

(M
0

)(
d

N

)0 (
1 − d

N

)M−0
L0,k

=
(

1 − d

N

)L0,kM

.

The d̂0 defined in step 2a above is obtained by setting this probability to 0.95. An

optimum m given d̂0 is then calculated by minimizing (2.6). L0,k is then updated

such that, given d = d̂0 and m, testing L0,k m-graphs would have an approximate

probability of 0.95 to identify at least one d-edge. The identification of the first d-edge

ends the loop between steps 1 and 2 and starts the second loop (steps 3-5) to find a

stable value for the approximation to the optimal m.
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2.4.3 Determining the number of subgraphs sub-

ject to a computational cost constraint

Here we determine the total number of m-graphs to examine after finding the optimum

m, which we denote as L1. The L defined above would then equal L0 +L1. Compared

to m, the choice of L1 is much more flexible and can be customized based on user’s

need. If one has a cost/time constraint, one can simply examine as many m-graphs

as possible. If a specific cost constraint is not imposed, one may choose to stop when

a desired precision is reached. One option is through a standard deviation/estimate

ratio: Solve for the minimum L1 such that

√
V ar(d̂)0 < kd̂0

for some user defined k ∈ (0, 1]. By (2.2) and (2.6), we have

(kd̂0)2 > Var
(N − d̂0)

∑L
i=1 Xi∑L

i=1 Mi


≈
(

N∑L0
i=1 Mi + L1M

)2
 L0∑

i=1
Var(Xi) +

L∑
i=L0+1

Var(Xi)


≈
(

N∑L0
i=1 Mi + L1M

)2
 L0∑

i=1
Mi + L1M

 d̂0

N

N − d̂0

N
.

(2.7)

We approximate the variance of the weighted sum of Xi with the weighted sum

of variance. This assumes near independence between Xi’s, which is not correct in a

strict sense but reasonable in practice given the m-graphs are small. Also N − d̂0 is
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replaced by N , which is appropriate under the assumption that N ≫ d̂0. The second

approximation uses

Var(Xi) ≈ Mi
d̂0

N

N − d̂0

N
.

Solving (2.7) for L1 yields

L1 =
N−d̂0
k2d̂0

−∑L0
i=1 Mi

M
. (2.8)

2.5 Simulation results

Simulated graphs are used to examine the performance of our estimation algorithm.

We examined the affects of the following parameters on the performance of the

method: d-edge distribution, d, n, and r. For each parameter configuration, 1000

graphs were generated and analyzed. Details of the simulations and interpretation of

results are provided in this section.

2.5.1 Estimation performance for large d

Simulation results for d-edges conforming to a uniform distribution are in Table 2.1,

and d-edges following a semi-power law distribution in Table 2.2. Due to technical

issues, we were unable to generate d-edge sets following an exact power law distribu-

tion. Instead, for fixed values (r,d) and vertices numbered from 1 to n, we generated

d-edges by:

1. 80% of the d-edges are forced to include one of the 2% largest (in index) vertices,

the remaining r − 1 vertices are uniformly generated from the 98% vertices.

2. 20% of the d-edges are uniformly generated from the 98% vertices.
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In this way, although the frequency of defective vertices does not strictly follow a

trend implied by the power-law distribution, we are able to preserve the characteristic

that a small number of vertices occur a large proportion of times, and that there is

strong d-edge overlapping.

In Tables 2.1 and 2.2, the graph parameters n, r, and d are shown in the leftmost

columns. For each parameter combination, we generated 1000 random graphs seeded

with d-edges. For each graph, L is calculated by (2.8) to achieve a 5% standard

deviation/estimate ratio, after finding the optimal m. The total number of tests T ,

varies for each graph as both L and tests spent for finding m are not fixed. The

tables display statistics describing the distribution of T and the performance of d̂.

95% confidence intervals are calcuated via bootstrapping.

2.5.2 Estimation performance for small d

Although our algorithm is not designed for graphs with few d-edges, we still report

simulation result for small d. Result for uniform d-edges is shown in Table 2.3. One

can see from the last column, for d ≤ 100, our algorithm finds most d-edges in the

sampling process if not all of them.

2.5.3 Summary of simulation results

When the d-edges follow a uniform distribution, for all (n, d, r) combinations, d̂ is

unbiased, as expected. The empirical standard deviations are all such that the ratio

to d̂ are close to the desired value of 5%, implying that our estimation of standard

deviation is adequate. The 95% Confidence intervals cover the true d approximately
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r n d m̄ E(d̂)-d Std(d̂) Std(d̂)
E(d̂)

95%
C.I.

cove-
rage

C.I.
width E(T ) Std(T )

3 100 102 16 -0.2 5.06 5.07% 94.15% 20.6 3,778.9 439.24
3 100 103 15 1.8 50.95 5.09% 94.57% 208.3 4,971.9 966.27
3 100 104 7 -15.3 524.01 5.25% 94.34% 2,095.6 4,072.2 587.13
3 100 105 3 798.7 5,942.63 5.90% 94.8% 23,231.0 232.2 97.83
3 1000 103 61 3.1 51.42 5.13% 96% 208.5 8,757.1 1,101.01
3 1000 104 31 23.0 509.28 5.08% 94.78% 2,101.1 9,549.8 2,594.26
3 1000 105 16 526.5 4,934.33 4.91% 96.1% 20,730.7 7,117.4 1,128.57
3 1000 106 8 3,795.6 50,242.24 5.01% 95.09% 207,110.6 5,443.1 933.80
4 100 102 24 -0.1 5.11 5.12% 93.83% 20.8 7,904.0 1,439.08
4 100 103 14 1.5 49.34 4.93% 96.46% 207.9 9,061.2 1,342.00
4 100 104 8 16.7 492.76 4.92% 96.08% 2,064.1 9,006.4 1,769.33
4 100 105 6 424.3 5,281.81 5.26% 94.23% 20,967.7 5,842.3 939.90
4 100 106 4 2,773.7 53,947.72 5.38% 95.05% 215,344.2 1,187.1 298.71
4 1000 103 121 5.1 50.68 5.04% 95.2% 208.6 19,564.5 18,807.53
4 1000 104 62 8.5 514.53 5.14% 93.83% 2,055.0 15,507.2 2,733.13
4 1000 105 44 334.2 5,100.90 5.08% 95.75% 20,891.0 13,305.6 2,414.30
5 100 102 28 -0.6 5.04 5.07% 95.13% 20.7 20,015.8 22,189.55
5 100 103 19 4.2 52.77 5.25% 94.36% 209.6 18,291.7 3,359.00
5 100 104 13 38.5 517.16 5.15% 94.59% 2,031.9 15,516.6 3,371.07
5 100 105 8 605.0 5,061.77 5.03% 95.46% 20,746.7 14,596.7 2,617.33
5 100 106 6 900.4 51,892.24 5.18% 94.34% 205,872.3 11,162.2 1,673.42
5 1000 103 174 4.2 54.01 5.38% 94.99% 209.1 24,006.4 4,837.66
5 1000 104 110 11.9 518.93 5.18% 95.1% 2,041.9 24,029.5 5,013.66
5 1000 105 62 387.3 5,197.67 5.18% 94.16% 20,969.2 26,709.2 8,980.36

Table 2.1: Simulation results for d-edges following uniform distribution. The statistics on
each row are calculated over 1000 random graphs.

95% of the time, and the C.I widths are approximately 2*1.96 times the row’s stan-

dard deviation. This result suggests bootstrap may be unnecessary and a normal

approximation could suffice.

The expected number of tests, E(T ), increases as r and/or n increase. The affect

of the value for d on E(T ) is more complicated, and we are not yet sure how to

interpret the relation.

From Table 2.1 and Figure 2.1, an efficiency comparison can be made between
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r n d E(d̂) Std(d̂) Std(d̂)
E(d̂)

95%C.I.
coverage

C.I.
width E(T ) Std(T )

3 100 102 100.0 6.56 6.55% 94.69% 25.6 3,648.6 660.48
3 100 103 1,016.1 97.82 9.63% 95.29% 328.5 4,156.3 1,008.15
4 100 102 100.1 5.79 5.79% 95.5% 23.4 8,274.4 1,625.78
4 100 103 1,004.9 64.18 6.39% 93.88% 257.0 9,253.6 5,455.33
4 100 104 10,113.0 746.77 7.38% 95.69% 2,681.6 8,049.8 2,073.05
4 100 105 100,446.8 8,916.66 8.88% 93.4% 31,879.9 4,550.4 1,132.94
5 100 102 99.9 5.68 5.68% 94.66% 22.0 23,126.8 26,569.72
5 100 103 1,004.2 57.25 5.70% 93.68% 224.5 17,549.1 3,478.68
5 100 104 10,017.1 607.54 6.07% 94.21% 2,302.6 16,401.8 5,130.82
5 100 105 100,570.8 6,638.73 6.60% 94.18% 23,727.4 14,001.8 3,499.06
5 100 106 1,000,548.2 62,661.91 6.26% 94.68% 248,937.0 9,828.6 1,918.72

Table 2.2: Simulation result for d-edges following power law distribution. For each row
1000 random graphs were estimated. For each graph, L was calculated by the algorithm to
achieve a standard deviation 5% of d̂, after finding an optimal m.

Chen and Hwang’s algorithm and our estimation approach. For moderate to large

values for d, our estimation method can be 5 to more than 5000 times more efficient.

In general, the more d-edges in a graph, the more efficient our approach can be

compared to testing the whole graph. From table 2.3, we can see that when d is small,

the improvements are less significant. When there are few d-edges, our estimation

method can require more tests than Chen and Hwang’s algorithm in order to reach

the 5% ratio. However, when d is small, our algorithm, although not guaranteed,

finds almost all of the d-edges. Note that a rough estimate for d is obtained when

finding an optimum m. If this estimate is small, a decision to switch to Chen and

Hwang’s algorithm might be warranted.

When the uniform distribution assumption is violated, our estimation method

is still unbiased, which was established theoretically in Theorems 2.4.1 and 2.4.4.

Furthermore, over the parameter configurations studied, the 95% C.I captures the

true d about 95% of the time. E(T ) actually decreases a little compared to the
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r n d E(d̂) Std(d̂) Std(d̂)
E(d̂) E(T ) Std(T )

Unique
d-edges

identified
3 100 25 24.7 1.31 5.30% 2,765.1 357.10 25.0
3 100 50 49.7 2.57 5.17% 3,547.7 369.93 50.0
3 100 75 74.8 3.73 4.99% 3,841.7 462.80 74.6
3 100 100 99.8 5.06 5.07% 3,778.9 439.24 97.9
3 100 1,000 1,001.8 50.95 5.09% 4,971.9 966.27 327.9
4 100 25 24.6 1.30 5.27% 6,223.6 1,034.91 25.0
4 100 50 49.5 2.53 5.10% 6,522.2 845.15 50.0
4 100 75 74.6 3.79 5.08% 7,223.2 1,020.50 74.6
4 100 100 99.9 5.11 5.12% 7,904.0 1,439.08 97.9
4 100 1,000 1,001.6 50.12 5.00% 9,151.4 1,364.43 329.1
5 100 25 24.6 1.29 5.23% 13,631.5 2,386.27 25.0
5 100 50 49.5 2.53 5.12% 16,451.7 7,008.61 49.9
5 100 75 74.5 3.82 5.13% 17,805.1 12,988.72 74.3
5 100 100 99.8 5.25 5.26% 18,785.4 20,037.39 97.4
5 100 1,000 1,003.3 55.88 5.57% 17,115.7 2,695.73 322.6

Table 2.3: Simulation results for d-edges following uniform distribution. For each row 1000
random graphs were estimated. For each graph, L was calculated by the algorithm to achieve
a standard deviation 5% of d̂, after finding an optimal m.

uniform settings. This means that our algorithm is underestimating L, the number

of m-graphs sampled. Note that the average C.I widths are still very close to 2*1.96

of the standard deviation.

The C.I width is a good indicator of whether enough m-graphs were sampled and

examined to reach a desired precision. If computational time allows, additional graphs

can be sampled to decrease the interval width. Consider the second row of Table 2.2,

and suppose the algorithm is applied to a graph resulting in d̂ = 1016 and a C.I

width of 328, obtained sampling and testing L = 500 m-graphs subsequent to finding

the optimum m. The standard deviation can be approximated by 328/2/1.96/1016,

which is 8.2% of d̂. By Equation 2.1, we can test 500/5% ∗ 8.2% − 500 = 320 more
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m-graphs to make the standard deviation closer to 5% of d̂.

2.5.4 Assessing the performance of the optimal

m and W

In this section, we address three questions about our method for choosing an optimal

m:

1. To what degree is the choice of optimal m affected by using d̂ in place of d in

2.1?

2. How well is W estimating the average cost of examining an m-graph?

3. Is the optimal m really minimizing std(d̂)?

For the first question, we compared the optimal m as determined by our algorithm

with the optimal m computed by minimizing the variance of d̂ when d is known.

Results for different values of (n, r, d) are given in Table 2.4. We list in Table 2.4

the optimal m’s derived in Table 2.1 (the m column) to the optimal m’s calculated

using d (the md column). One can see that for most settings, md and m do not differ

significantly.

For the second question, we compare W to the actual average cost T/L of Table

2.1. One can see from Table 2.4 that W is overestimating the average cost for most

of the settings.

For the last question, we plot the distribution of m selected by algorithm together

with std(d̂) for a given value of m and fixed T . The standard deviations of d̂ were
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computed empirically. In Figure 2.2, one can see that for most (n, d, r) combina-

tions, the algorithm selecting m achieved a highly efficient standard deviation, if not

optimal.

r n d m md W T/L

3 100 102 16 15 6.8 3.0
3 100 103 15 8 54.5 38.9
3 100 104 7 4 38.3 18.4
3 100 105 3 3 1 1
3 1000 103 61 58 5.9 4.8
3 1000 104 31 31 6.3 5.7
3 1000 105 16 15 6.9 5.9
3 1000 106 8 8 5.7 4.6
4 100 102 24 25 9.4 4.4
4 100 103 14 14 7.9 5.8
4 100 104 8 8 4.9 3.8
4 100 105 6 6 10.2 5.6
4 100 106 4 4 1 1
4 1000 103 121 116 8.9 7.3
4 1000 104 62 73 5.5 5.0
4 1000 105 44 41 12.7 11.0
5 100 102 28 28 7.2 4.1
5 100 103 19 19 8.5 6.6
5 100 104 13 13 8.6 6.4
5 100 105 8 8 3.6 2.7
5 100 106 6 6 3.7 2.5
5 1000 103 174 174 10.6 8.6
5 1000 104 110 111 9.6 8.7
5 1000 105 62 64 4.9 4.5

Table 2.4: Performance of optimal m and W
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Figure 2.2: A comparison of m efficiency. Standard deviation of adjacent m’s are compared
to the that of the mode of algorithm selected m.

2.6 Western US power grid test case

We applied our method to Western US grid study with DCSIMSEP [29]. This simula-

tion involves |V | = 10, 000 vertices and contains d-edges of different sizes. A previous

study [34] gave the following estimates: For r = 2, d = 564 by brute forcing through

all pairs. For r = 3, d was estimated to be between 2.0 ∗ 105 and 2.9 ∗ 105. The total

number of r = 4 d-edges were not estimated, as their algorithm did not converge

properly.

Having different d-edges sizes poses a problem: The Chen and Hwang’s basic

method assumes a single r for all d-edges. Their algorithm is not directly applicable

when this assumption is violated. For example, assuming r = 3 for an m-graph with
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r = 2 d-edges may result in the algorithm identifying some or all of r = 3 edges

containing the r = 2 d-edges as defective. Chen and Hwang proposed a method for

simultaneously identifying d-edges of all sizes with a significantly increased cost and

a far more complicated expression for u(x). We streamlined their proposal by using

brute force for all edges of size r = 2, 3, 4 when Chen and Hwang’s algorithm decides

to break an m-graph into subgraphs of order m ≤ 4.

Another major issue, which is also mentioned in the previous study[34], is that

DCSIMSEP gives false negatives. This is extremely harmful as it may crash Chen

and Hwang’s algorithm with a positive on an m-graph but a false negative on its

subgraphs. The false negatives become more frequent as m grows. Therefore we

manually set m to 6. An m-graph of order less than 6 showed very few false negatives

in our pre-run. False negatives would also bias our d̂ downward by reducing the total

d-edge count. This effect, however, can be partly offset by recounting. Consider an

example of examining two m-graphs G1 and G2 sharing some d-edges. If a shared

d-edge is hidden by G1 but identified in G2, then we can add 1 back to X1. We

consider the ability to recount as another advantage of choosing a small m.

The number of m-graphs L, is obtained by calculating std(d̂)/d̂, as mentioned in

Section 2.4. The desired ratio is set to 5%. d̂ for (2.1) is set to d = 2.5 ∗ 105, the

previous estimation for r = 3 d-set. Plugging the above numbers into (2.1) yields an

L = 8 million.

All simulations were run on Vermont Advanced Computing Cores(VACC). We

take advantage of VACC’s multi-core capability and divide the 8 million m-graphs

into 1,000 parts, running each part on separate nodes simultaneously. After all nodes

finish, we record all identified d-edges, and then do the recount. The recount process
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does not involve DCSIMSEP and thus is much faster.

The Western grid estimations are shown in Table 2.5:

Without recounting
r 2 3 4
d̂ 517 197,857 76,343,064

C.I. (478 559) (156,203 239,511) (34,701,393 124,925,014)
With recounting

r 2 3 4
d̂ 536 236,387 138,805,571

C.I. (509 562) (205,147 267,628) (97,163,900 180,447,242)
Recounting with all 564 r = 2 d-edges

r 2 3 4
d̂ 546 NA NA

C.I. (479 610) NA NA

Table 2.5: Estimations for the Western US power grid cascade failure test case. m = 6,
L = 8, 000, 000.

In table 2.5, we report 5 ME and C.I. calculated with and without recounting.

For d = 2, we also report estimation from recounting with the 564 d-edges identified

by brute forcing from the previous study.

Our algorithm took about 4.5 hours in total: 4 hours was spent on the examination

of 8 million m-graphs and the recounting took half an hour. Our estimation for

r = 3 agrees with the previous study (200,000∼ 290,000 vs ∼ 205,147 267,628). We

successfully obtained an estimation for r = 4 d-edges, which previous study did not.

In conclusion, our algorithm fulfilled its purpose: Quick estimation of large number

of d-edges.

With recounting, the estimations are adjusted upward by about 5%, 15% for

d = 2, 3 and almost 50% for d = 4. A demonstration of the severity of false negative
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and the necessity of recounting. As expected, it wasn’t enough to completely remove

bias, 95% C.I for r = 2 near miss the true value(562 vs 564). The estimation shown

in third segment of Table 2.5 was done by recounting with the knowledge of all 564

r = 2 d-edges. Without the interference of false negative, the C.I properly contained

the true value.

We did some further assessment of the estimators whose results are not shown in

the tables. By estimating with first quarter/half of the 8 million m-graphs, we notice

that the width of the C.I. for r = 2, 3, 4 has a roughly 30%, 30%, 50% increase each

time sample size is halved. For an estimator that can be written as an average over

sample, it is normal to see a 30% increase in standard deviation with halved sample

size(30% ≈ 1 − 1/
√

2). It is not the case for r = 4, indicating unknown sources of

instability.

2.7 Conclusion

This chapter describes our original algorithm for efficiently estimating the total num-

ber of latent d-edges. This new algorithm is mainly designed for large graphs and can

handle millions of d-edges with ease, while previous methods have trouble reaching

stopping criterion within a reasonable amount of time. We look at the problem from

a statistical prespective and proposed that efficiency of estimation comes from the

efficiency of gaining information, which is measured in number of d-edges identified

per test. Our algorithm begins with an initiation process which determines an opti-

mum m-graph size that maximizes the information intake per test. Then it samples

random m-graphs and records the d-edge counts. At the conclusion of sampling, a
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method of moment estimates is constructed based on the counts. We provide a proof

of unbiasedness of this estimator regardless of the d-edge distribution, as well as a

variance estimator based on uniform d-edge distribution assumption. Our simulation

on synthetic data shows that the algorithm takes even less time to finish as the d-edge

count gets larger, a characteristic that is beyond our original expectation.

The core of our algorithm is the sampling theory. Other factors can be flexible.

For example, the sample size L, the choice of m, and the algorithm for examining

m-graphs can all be customized. One only needs to adjust the variance estimation

accordingly. This gives the user a handful of choices to balance their needs. At the

same time, the flexibility allows our algorithm to adapt to some critical assumption

violations like coexistence of multiple d-edge sizes and false negative test results, as

we demonstrate in the US western grid simulation.

In some applications, it is rarely the case to have a complete graph as we assumed

in the development of the algorithm. Note that an incomplete graph can be considered

as a complete graph with a non-uniform d-edge distribution where some of the edges

can never be defective (because they don’t exist), and therefore by our results the

estimator remains unbiased, with a penalty in terms of underestimated variance.

Again the US western grid simulation is a perfect example.

For future work, it is possible to explore methods to recover statistical efficiency in

incomplete graphs. The formula for the method of moment estimator already provides

some hints: simply replace N and M with the actual number of edges in the graph

and m-graphs respectively and we may have a better unbiased estimator. Another

direction is to assess the algorithm’s efficiency for some other d-edge distributions.

For example, non-uniform structures are introduced and programmed in these works
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[33][30][32][28].

2.8 Appendix

2.8.1 Hypergeometric distribution and maximum

likelihood estimator

The hypergeometric distribution describes the probability of sampling n times without

replacement from a population of N and getting exactly k out of K marked items.

The probability mass function (pmf) is

pN,n,K(k) =

(
K
k

)(
N−K
n−k

)
(

N
n

) .

An characteristic of this pmf is that the probability does not change if one switches

the values of n and K. This can be shown with simple algebra, thus the proof

is omitted. This characteristic inspired us to explore the possibility of a tractable

solution to finding the maximum likelihood estimator.

Consider a complete graph that has a total number of N edges, of which d are

defective. By examining an m-graph, we sample M out of N edges. This matches

the case described above, except for the sample not being random. After all, all

sampled edges shared a limited vertex set. The probability of finding k d-edges can

still be calculated using a hypergeometric model as long as the d-edges are uniformly

distributed. As mentioned above, we can interchange n and K. In context, it means

to consider the latent d-set as our sample and the edges of the m-graph as “defective”.
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Knowing the pmf, we can consider the possibility of employing the method of

maximum likelihood. Under the uniform d-edge assumption, suppose L m-graphs are

examined. Let x = [x1, ..., xL]. The likelihood is:

L(d|x) =
L∏

i=1

(
M
xi

)(
N−M
d−xi

)
(

N
d

)
= c ∗

L∏
i=1

d!(N − d)!
(d− xi)!(N −M + xi − d)!

(2.9)

where c is a constant with respect to d. The log-likelihood can be maximized directly

using numerical methods. The following describes another approach.

Since d takes only integer values, we consider finding the maximum with the

following likelihood ratio:

r(d|x) = L(d+ 1|x)
L(d|x)

=
L∏

i=1

(d+ 1)(N −M + xi − d)
(d+ 1 − xi)(N − d) , d ∈ {d ∈ Z+ : L(d|x)L(d+ 1|x) ̸= 0}

(2.10)

For analysis purposes, we consider an extension of r(d|x) to R:

rc(d|x) =
L∏

i=1

(d+ 1)(N −M + xi − d)
(d+ 1 − xi)(N − d) , max xi < d < min{N −M + xi}

Let d̃ be the solution to equation rc(d̃|x) = 1. We then show that

1. There exists a unique d̃.
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2. ⌈d̃⌉ maximizes r(d|x).

Theorem 2.8.1. If xi ≪ M ≪ N for all i = 1, ..., L, then rc(d|x) = 1 has a unique

root in (max xi,min{N −M + xi}).

Proof. First we explain the support of rc(d|x). Note that with observation x, the

total number of d-edges can not go below the number of d-edges found in any m-

graph (d ≥ max{xi}). Similarly, the the total number of non-defective edges can not

go below the number of non-defective edges in any m-graph (N − d ≥ min{M −xi}).

Therefore d must be within
[

max{xi},min{N −M + xi}
]

for L to be non-zero.

Since rc(d|x) is continuous on its support, the existence of d̂ can be shown with

intermediate value theorem, we only need the two boundary values of rc(d|x) to be

on different side of 1.

The two boundary values for rc(d|x) are:

r(max xi|x) =
L∏

i=1

max xi + 1
max xi + 1 − xi

∗ N −M + xi − max xi

N − max xi

≈
L∏

i=1

max xi + 1
max xi + 1 − xi

> 1

and

r(min{N −M + xi}|x) = 0.

The uniqueness of d̃ follows by showing rc is monotonic. Take the derivative of
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ln rc(d|x):

ln rc(d|x) = L ln (d+ 1) −
L∑

i=1
ln(d+ 1 − xi) − L ln (N − d) +

L∑
i=1

ln (N −Mi + xi − d)

[ln rc(d|x)]′ = L

d+ 1 −
L∑

i=1

1
d+ 1 − xi

+ L

N − d
−

L∑
i=1

1
N −M + xi − d

=
[

L∑
i=1

( 1
d+ 1 − 1

d+ 1 − xi

)]
+
[

L∑
i=1

( 1
N − d

− 1
N −Mi + xi − d

)]

< 0

The last inequality holds as the previous equality is two summations of non-positive

values, and 0 can not be reached at the same time for both components at any xi.

Theorem 2.8.2. If xi ≪ M ≪ N for all i = 1, ..., L. then ⌈d̃⌉ among all positive

integers maximizes L, where ⌈·⌉ is the ceiling operation.

Proof. Let d̃ be the root. If d̃ is an integer, then by the definition of r(d|x), we have

L(d̃+ 1|x) = L(d̃|x). For any integer d∗ < d̃,

L(d̃|x)
L(d∗|x) =

d̃−1∏
d=d∗

r(d|x) > 1

and for any integer d∗ > d̃+ 1,

L(d∗|x)
L(d̃+ 1|x)

=
d∗−1∏

d=d̃+1

r(d|x) < 1

so both d̃ and d̃+ 1 maximizes L(d|x).
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If d̃ is not an integer, for any integer d∗ < ⌈d̃⌉,

L(⌈d̃⌉|x)
L(d∗|x) =

⌈d̃⌉−1∏
d=d∗

r(d|x) > 1

and for any integer d∗ > ⌈d̃⌉,

L(d∗|x)
L(⌈d̃⌉|x)

=
d∗−1∏
d=⌈d̃⌉

r(d|x) < 1

Therefore ⌈d̃⌉ maximizes L(d|x) in either case.

It is unfortunate that d can only take integer numbers the way we define L.

Consider an L extension to real numbers with gamma function:

(d− 1)! = Γ(d) =
∫ ∞

0
td−1e−tdt.

The “likelihood” is then

Lc(d|x) = c ∗
L∏

i=1

Γ(d+ 1)Γ(N − d+ 1)
Γ(d− xi + 1)Γ(N −Mi + xi − d+ 1)

where c is constant with respect to d. Using calculus, one can see that rc(d|x) =

Lc(d+ 1|x)/Lc(d|x) in its support and therefore Theorem 2.8.1 still holds. Note that

Theorem 2.8.1 does not imply a concave Lc(d|x), however it does ensure the MLE is

trapped between ⌊d̃⌋ and ⌈d̃⌉.

Theorem 2.8.3. If xi ≪ M ≪ N for all i = 1, ..., L. then ⌈d̃⌉, then the MLE for

Lc(d|x) is in between (⌊d̃⌋, ⌈d̃⌉).

Proof. Let db be an integer s.t. ⌈d̃⌉ < db < min(N −Mi + xi) − 1, in Theorem 2.8.1
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we showed rc(d|x) < 1 in (db, db + 1). Let dbm = arg maxd Lc(d|x), d ∈ (db, db + 1).

We immediately have Lc(dbm|x) < Lc(dbm − 1|x) ≤ maxd∈(db−1,db) Lc(d|x). It follows

by induction that Lc(dbm|x) < maxd∈(⌊d̃⌋,⌈d̃⌉) Lc(d|x).

Similarly, let da be an integer s.t. max xi + 1 < da < ⌊d̃⌋, since rc(d|x) >

1 on this region, we have Lc(dam|x) < maxd∈(⌊d̃⌋,⌈d̃⌉) Lc(d|x). It suffices to show

arg maxd Lc(d|x) ∈ (⌊d̃⌋, ⌈d̃⌉).

In conclusion, while d̃ may not be the MLE, the difference between d̃ and the

MLE must be less than 1. For our applications, where d usually ranges from a few

hundred to millions, an error of less than 1 is more than acceptable.

2.8.2 A heuristic explanation of why there are

very few d-edges in an optimal m-graph

Combining equations 2.2 and 2.1, we have:

V ar(d̂) ≈ N

ML
d

= d̂∑L
i=1 xi

d

implying that for a fixed T , the best m maximizes ∑L
i=1 xi, the total number of

identified d-edges.

As will be mentioned in the next section, the cost for identifying one d-edge of

size r in an m-graph can be considered a fixed value r log2(m). It is appropriate to

consider the process as applying the binary search algorithm r times on the m vertices

to identify each of the r “defective” vertices, which is exactly what Chen and Hwang’s
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algorithm does. The loss of efficiency comes from two sources:

1. Examining an m-graph with no d-edges would “waste” 1 test.

2. Examining an m-graph with multiple d-edges that share some vertices would

greatly increase the cost.

Simply put, examining a larger m-graph would simultaneously decrease the risk

of Type 1 loss and increase the risk for Type 2 loss. The optimum m strikes a

balance between the two type of losses, and since the computational cost of shared

“defective” vertices is so high, the optimum m almost always lean toward having

very few d-edges. In our simulation, optimum m-graphs had an average number of

d-edges from 0.4-0.6, depending on the parameters and distribution of d-edges. For

the power-law simulation, the average number of d-edges in an m-graph was lower

than for the uniform simulation. This is because in the former, d-edges in an m-graph

tend to share more vertices.

2.8.3 Brief explanation of Chen and Hwang’s

algorithm in our setting and the deriva-

tion of W

Chen and Hwang’s algorithm [23] is designed to identify a latent defect edge set within

an incomplete graph. However for easy demonstration, here we present a complete

graph as example. The purpose of this brief introduction is to give readers some

background information so they can understand the derivation of W (n,m, d, r), our
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estimator of the expected cost of Chen and Hwang’s algorithm on a random m-graph,

as well as why W is typically is an overestimate.

First we explain how a single d-edge is identified. Let G be a complete graph

with vertices V = {v1, ..., vn}. Let Gi be the subgraph induced by (v1, ...vi). Suppose

there is a single d-edge in G, denoted as (vd1, ..., vdr) with 1 ≤ d1 < ... < dr ≤ n. For

i = 1, ..., r, we call vd,r−i+1 the ith leader of the d-edge.

A d-edge is identified by finding the leaders in order. The first leader can be

identified with a binary search:

1. Let l = 1, u = n.

2. Let p = ⌊(l + u)/2⌋. Test Gp. If positive, u = p. If negative, l = p.

3. If l = u− 1, return vdr = vl. Else, go back to step 2.

The second leader can be identified by the same process, after removing the first leader

from the binary search. Note that we still need to attach the first leader to every

test, otherwise it would be guaranteed negative. The third leader can be identified

by removing the first and second leaders and so on.

We’ll adopt the name from Chen and Hwang and call this strategy the “TJ-

process” where TJ refers to the method’s authors [15][20]. Since it is a binary search

performed r times, an upper bound for cost is r log2 n.

The algorithm becomes much murkier when there are multiple d-edges in the

graph. The dichotomous nature of TJ-process has a consequence: Multiple applica-

tions will only find the same d-edge, to be more specific, the one with the minimal

first leader. If all d-edges share the same first leader, then the one with the mini-

mal second leader will be found, and so on. One may consider a bypass: applying
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TJ-process with a different permutation of V . However there is no guarantee a new

d-edge will be found, nor can we determine a stopping condition for the algorithm.

Chen and Hwang’s algorithm can be roughly described with the following recur-

sion:

1. Apply the TJ-process only on a graph that contains no identified d-edge.

2. Once a d-edge is identified in a graph, find all d-edges in a set of its subgraphs

s.t.

(a) no subgraph contains an identified d-edges.

(b) any potential d-edge must be contained in at least one of the subgraph.

For readers who wish to skip the technical details below, the takeaway message of

the above recursion is that the number of subgraphs required to satisfy (a) and (b)

becomes very large when there are multiple d-edges. Even if all these subgraphs do

not contain a single d-edges, the 1 test spent on each of these subgraphs would add

up to a huge number. The expression for u(x) in (2.4.2), the estimated average cost

of an m-graph with x d-edges, is given by (2.11), in which the components excluding

x log2 M is the number of negative tests.

We use an example to demonstrate how Chen and Hwang’s algorithm works. In

the example, d-edges will have no shared vertex. This makes the process less complex

to explain, and yet the process will have the highest cost. One may follow the same

process to see that sharing vertices will slightly reduce the cost.

Let G be a complete graph with vertices V = {1, .., 10}. E is the set of all edges

of size r = 3. The d-set is {(3, 5, 7), (4, 6, 8)}. Let v0 be the search range, that is,

114



the only set that contain unidentified d-edge vertices. We use TJ(v) to denotes TJ-

process which outputs the d-edge with minimal leader in Gv for v ∈ V . Let t be the

set of identified leaders. The pseudocode for solving the main problem of identifying

all d-edges in GV goes as:

1. v0 = V , t = ∅.

2. Test Gv0. If positive, TJ(v0). Let vd be the leader of the identified d-edges,

v0 = v0 − vd, t = t+ vd. Repeat Step 2. If negative, go to Step 3.

3. solving sub-problems Gv0+k, where k ⊆ t.

Here we step through the process. Step 2 will run twice and the two d-edges (3, 5, 7)

and (4, 6, 8) will be identified. The leaders 7 and 8 will be moved out from v0 to t

and the loop will end with a negative test on Gv0. This negative test implies that any

latent d-edge, if any, must be contained in either Gv0+{7}, Gv0+{8} or Gv0+{7,8}. We

simulate the sub-problem on Gv0+{7}. Gv0+{8} and Gv0+{7,8} will be similar.

Note that any potential d-edge in Gv0+{7} must contain {7}, otherwise Gv0 would

have had a positive test in the last loop of Step 2. Therefore {7} will be attached to

every test. Also, since an identified d-edge {3, 5, 7} ⊂ (v0 + {7}), TJ(v0 + {7}) will

be a guaranteed positive and thus is against the rule. The solution is to quarantine

some vertices from the d-edge {3, 5, 7}. Note that any potential d-edge in Gv0+{7}

must be contained in either Gv0+{7}−{3} or Gv0+{7}−{5}. Testing these two subgraphs

will yield two negatives, implying Gv0+{7} does not contain any more d-edges. Since

no new d-edge is identified in Gv0, there is no need to introduce level-3 subproblem.

The total cost can be separated into two parts: the cost on the TJ-process, and the

cost of negative tests not in a TJ-process. The TJ-process runs as many times as the
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number of d-edges(2, in our example), and always follows a positive test. An upper

bound for the first part of the cost is then d∗ [1+r∗ log(n)] = 2∗ [1+3∗ log(10)] ≈ 20.

The cost of the second part, which is the number of negative tests, equals the number

of subproblems of all levels, including the main one. This is because a decision to

stop or to introduce subproblems is made immediately after a negative test. In our

example, we had 1 main problem, followed by 2 subproblems Gv0+{7}−{3}, Gv0+{7}−{5}

from Gv0+{7}, 2 subproblems Gv0+{8}−{4}, Gv0+{8}−{6} from Gv0+{8} and 4 subproblem

Gv0+{7,8}−{3,4}, Gv0+{7,8}−{3,6}, Gv0+{7,8}−{5,4}, Gv0+{7,8}−{5,6} from Gv0+{7,8}.

The upper bound for the total cost is then 20 + (1 + 2 + 2 + 4) = 29. The

negative tests already take almost one third of the total cost, and will get larger

if there are more than 2 d-edges. Consider 10 d-edges with r = 3 not sharing a

vertex in a graph with n = 100. The first part of the cost is bounded from above by

10 ∗ [1 + 3 ∗ log(100)] = 310. d = 10 leaders will be found, resulting in 2d − 1 = 1023

possible partitions. Each partition will introduce about (r − 1)k subproblems, where

k is the number of leaders included. For subgraphs including 1 of the 10 leaders(e.g.

Gv0+{l1}), 21 = 2 level-2 subproblems will be introduced. For subgraphs including all

10 leaders, 210 = 1024 level-2 subproblems will be introduced. In this example, the

cost of negative tests greatly outnumbers that of the TJ-process.

Chen and Hwang gave an upper bound for the second part cost:

(r − 1)⌊ r
2 ⌋dr + o(dr)

One may compare it to dr log(m) to see the second part would dominate the cost even

for moderate d or r. This upper bound however, is not a good candidate for u(x) as

it greatly overestimates the cost and yields an inaccurate optimal m. We follow our
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description above and derive a more precise estimate:

u(x,m, r) ≈ 1 + x(1 + log2 M) +
min r,x∑

i=1

(x
i

)
r−i∑
j=0

(
i(r − 1)

j

)− x

= 1 + x log2 M +
min r,x∑

i=1

(x
i

)
r−i∑
j=0

(
i(r − 1)

j

) (2.11)
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Conclusion

In this dissertation we proposed and developed two estimation methods for two dis-

tinct problems. The first study considered the problem of covariate measurement

error in non-linear regression models when data are clustered and estimation in the

absence of measurement error is accomplished via generalized estimating equations.

In the second study, we employ sampling theories to greatly improve the efficiency of

estimating latent edges in large graphs.

In the GEEIV study, we noted that standardized residuals for generalized linear

models in canonical form remain unbiased (have expectation zero) in the presence

of covariate measurement error. Furthermore, for the logistic model, we showed

the residuals retain the same working correlation structure employed in the absence

of measurement error. When instrumental variables are available, the standardized

residuals can be used to construct unbiased estimating equations. An extensive sim-

ulation study showed the GEEIV approach yield essentially unbiased estimators for

most data parameter settings. The method is less successful when the outcome prob-

ability is low, the odds ratio is large, and the sample size is small. However, even

under these more extreme conditions, the estimator removes most of the bias incurred

from the measurement error.

118



The second study developed a statistical method to estimate the total number

of latent defective edge in a graph with very large latent edge count. We combined

a previous method designed for small graphs with sampling strategies to develop

our algorithm. The resulting algorithm is able to determine an optimum subgraph

size to sample, and stops when the desired precision is achieved. We tested our

algorithm on both synthetic data and a power grid simulator. Unbiased estimators

with predetermined precision were obtained on the synthetic data. Estimation on the

power grid simulator agreed with results from a previous study using extrapolation

for defective edges of size 3. The confidence interval from our method was more

precise (narrower). We were also able to obtain an estimate for defective edges of size

4, which was not accomplished by the previous study owing to the very large number

of defective edges of this size.
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