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Abstract

Agent-based models are becoming increasingly useful in studying the behavior of
real-world complex multi-agent systems; however, one of the outstanding challenges
in the modeling of coupled natural and human systems is the dearth of techniques
for creating agents that are able to learn from their past failures and successes, as
well as compounded environmental and social uncertainties. This research has been
focused on the integration of traditional agent-based modeling with machine learning
methodologies for modeling agent decision-making and its recursive impacts on eco-
nomic, environmental, and societal outcomes, feeding into the dynamic co-evolution
of the coupled natural and human system state variables within simulated worlds, re-
sulting in the development of two models incorporating and exploring the use of deep
reinforcement machine learning as a driver for decision-policy making in agent-based
models.

The first of these models is a model of agricultural land use and the adoption
of agricultural best-management practices by farmers in response to ecological and
economic scenarios as a result of municipal regulation and variance in the occurrence
of extreme weather events. The primary study area used for the model is a region of
the Missiquoi Bay Area of Lake Champlain in Vermont, containing 480 farmer agents
corresponding to agricultural land parcels within the region. A parameter sweep and
sensitivity analysis on model hyperparameters was conducted to explore the e�ects
of changes to agent calibration and training on agent decision-making and model
performance.

The second model expands upon the scope of the first, including forester agents
and commercial and residential urban agents within a larger region of the Lake Cham-
plain Basin of Vermont. Additionally, the impacts of agent decision-making take place
on the simulated landscape, resulting in gradual land cover change over time. Land
cover data from the United States Geological Survey’s National Land Cover Database
was used for initial parameterization, calibration, and training of the model (years
2001, 2006) and model testing (year 2011).

Results suggest that with appropriate scoping and hyperparameter selection, the
integration of deep reinforcement machine learning techniques into the development
of agent-based models can increase predictive accuracy in the modeling of real-world
phenomena; however, these gains must be weighed against the increased technical
complexity of such a model and the associated risk of introducing model error.
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Chapter 1

Review of Related Work

The use of agent-based models to study the behavior of human agents in complex

systems primarily dates back to the early 1970s, with some of the first formal models

being Schelling’s dynamic model of segregation [1], Reynolds’ distributed herding

model [2], and Axelrod and Hamilton’s model for the iterative prisoner’s dilemma [3].

While attempts to rationalize and describe human behavior date to antiquity, these

models were among the first to demonstrate how reducing a complex system down to

its elementary components and the simple rules that define it allows for its dynamic

behaviors to be reliably, and repeatedly, observed and studied.

The study of emergent systematic behavior and large-scale system dynamics, as

described in Anderson’s More is Di�erent [4], would quickly become known as com-

plex systems studies. Over the following decades, interest in the field grew, and the

modeling of multi-agent systems became more widespread, resulting in the develop-

ment of larger, more complex agent-based models.

While early models primarily focused on studying small homogeneous systems,

as work continued through the late 1990s and into the new millennium, researchers
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began to model the behavior of more heterogeneous agent populations [5] and explore

how agents behave when given cooperative, competitive, or organizational tasks [6].

Work from this period began to focus less on solipsistic agents with information only

about their independent state and more on how information sharing and networking

can a�ect agent behavior [7].

The number of ways to define the behavior of agents within complex agent-based

systems is myriad; however, some of the most common include probabilistic methods

and rule-based approaches. For the majority of this project, the behavior of agents

is going to be defined by artificial neural networks trained using deep reinforcement

machine learning. Agent-based systems have previously incorporated reinforcement

learning methods like SARSA and temporal di�erence learning; however, this project

is one of the first to embed this type of neural network into agents within such a

large-scale and heterogeneous model.

This specific application of reinforcement machine learning may be new, but its

study is almost as old as the field of modern computer science. One of the first

recorded mentions of reinforcement learning techniques for the development of arti-

ficial intelligence is in Turing’s Computing Machinery and Intelligence [8], wherein

he proposes that one possible way to construct an intelligent machine is to create a

“child machine,” that, through the application of punishments and rewards, is taught

to behave such that “events which shortly preceded the occurrence of a punishment

signal are unlikely to be repeated, whereas a reward signal [increases] the probability

of repetition of the events which led up to it.” Computational learning of this sort

was studied more seriously over the following decade, eventually being dubbed ’rein-

forcement learning’ in Minsky’s Steps Towards Artificial Intelligence [9]. While many
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of the techniques of this era have been supplanted by newer methodologies, some of

its key theoretical concepts became mainstays and went on to form the backbone of

modern reinforcement learning— perhaps most notably the development of temporal

di�erence learning as described in Samuel’s Some Studies in Machine Learning Using

the Game of Checkers [10].

Progress in the study of reinforcement machine learning saw little development

over the following decade; however, a resurgence of interest in artificial intelligence

during the 1970s revitalized the field and resulted in many new algorithms. Some

of the more influential of these algorithms being the temporal di�erence learning

algorithm [11], the q-learning algorithm [12], and the related SARSA algorithm [13]

for decision-policy making.

Notably, Sutton’s temporal di�erence learning algorithm category TD(⁄), where

the historical discounting factor 0 Æ ⁄ Æ 1, is the basis for many of the techniques

used in this project. Dayan proved that Sutton’s temporal di�erence learning algo-

rithm family converges for discrete problem spaces [14]; however, the problem remains

undecidable for continuous-valued problems, so consideration must be taken for model

hyperparameter selection.

Alongside these developments in reinforcement learning, advancements in comput-

ing machinery and the production and training of artificial neural networks helped

bypass many of the previous limiting factors in the study of artificial intelligence. For

example, the best method to correct neural network output had been an open ques-

tion since their first use. But, the development of algorithms for the backpropagation

of network error revolutionized the field [15]. These methods allowed for the creation

of networks that were more intricate and generalizable than ever before, and their
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increased performance made them a standard with derivatives still used today.

Entering the mid-to-late 1990s, development in artificial intelligence and reinforce-

ment machine learning again began to stall. Problems like vanishing and exploding

gradients within the hidden layers of networks, as well as physical limitations on the

size and speed of machine memory, made the use and application of deep, large-scale

neural networks infeasible for many potential use cases. Progress in the field remained

incremental until the mid-2010s when advancements in GPU-enabled computing al-

lowed for faster, more powerful, and more a�ordable high-performance computing to

enter the mainstream.

With this improvement in computing capabilities came several new reinforcement

learning methods, including deep reinforcement learning, which makes use of the

ability of artificial neural networks to perform function approximation to make the

decision-policy for a problem space. By using deep neural networks in this way, the

decision-policy table q-learning algorithms use to value decision-making in discrete

problem spaces can be replaced with a neural network with a deep q-network architec-

ture for decision-policy making in more continuous problem spaces. Deep Q-Network

learning (DQN) is a suitable algorithm for many reinforcement learning tasks, but it’s

not without its flaws. Overcoming its propensity towards biasing itself from outlier

data early in training can be incredibly di�cult. [16]

To combat some of the di�culties that can arise from using DQN, several additions

and variations to the algorithm have been developed. The addition of policy gradient

[17] and action replay [18] to the algorithm can help to smooth the learning curve

and encourage additional exploration of the problem space. Additionally, combination

algorithms like double deep q-learning (DDQN) [19] and the rainbow algorithm [20]

4



have been showing promising results; however, they are still fairly young algorithms

and haven’t been around long enough to do a proper meta-analysis of their reliability

and accuracy across problem types.
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Chapter 2

Machine Learning in Multi-Agent

Systems

Traditional ABMs often rely on rule-based or probabilistic decision-making strate-

gies, which sometimes fail to capture higher-order decision-making logic, including

reasoning from past experience, dynamic decision-making under uncertainty, and un-

derstanding of implicit or emergent external reward/incentive structures. In this

regard, one of the outstanding challenges in ABMs of coupled natural and human

systems concerns the lack of ABMs that can simulate agents with the ability to learn

from their past failures or successes and environmental and social uncertainties. [21]

In this chapter, a method of integrating machine learning into ABMs is presented

as a potential solution to this problem using a modeling methodology incorporating

elements of deep reinforcement machine learning with classical ABM techniques. This

methodology is then applied to a simple ABM of a coupled natural and human system.

The results of this application are then discussed.

6



2.1 Methodology

2.1.1 Modeling Approach

The deep reinforcement machine learning techniques that are being incorporated into

this modeling methodology are an extension of the deep q-learning methods developed

by Hasselt, Guez, and Silver [19], incorporating some of the alterations to action relay

and learning convergence as described in the rainbow algorithm developed by Hesel

et al. [20] and integrating the episodic training structure into the runtime execution

of an agent-based model.

In this regard, each agent has two paired actor-critic neural network architectures

— one pair, which is used for ‘active’ learning, and a ‘target’ pair which is used

for passive learning. The active pair is used to drive agent decision-making within

the current simulated model environment in any given time-step. The target pair

is updated periodically with the weights of the active pair. This transfer learning

is done to prevent the network from overfitting to circumstance and to prevent the

networks from diverging during training.

Within each pair, the actor network (µ) is responsible for selecting the next action

to take given the current state of the agent and the critic network (Q) is responsible

for estimating the value of the current state given the current state and action. The

actor network is trained to maximize the value of the critic network, whereas the

critic network is trained to minimize the di�erence between its estimated valuation

for each state-action air with the valuation that would be consistent with the rewards

received from past events.

7



(a) Actor-Critic Pair (b) Active-Target Pair

Figure 2.1: Diagram of (a) the actor-critic network layout and (b) the active-target transfer
learning air used by agents

High-level diagrams of these architectures and how they interact with agent states,

s =
1
s1, ..., s|s|

2
, and actions, a =

1
a1, ..., a|a|

2
, as vectorized components to produce

value estimations can be seen in Figure 2.1.

2.1.2 Agent Decision-Making

In traditional agent-based models, agents make decisions according to rule-based

decision-policies or probabilistic methods. In integrating machine learning, agents

instead make decisions according to an internal decision-policy function fi(s) = a

mapping the state of each agent to the potential actions that each agent can take.

In this approach, the decision-policy function is being approximated by an artificial

neural network (ANN), µ : S æ A. The input to this ANN is the state of the agent,

vectorized as a 1-dimensional array of length WS. The output of the ANN is a vector

of length WA encoding the action that the ANN has decided the agent should take.

Each time an agent needs to take an action, it passes its current state through the

network to generate an action. It performs this action with some probability 1 ≠ ‘.

With probability ‘, the agent will instead take a random action. This random action

is used to encourage exploration of the state space and to prevent the agent from

8



getting stuck in a local optimum.

2.1.3 Agent Learning

The policy evaluation network, Q, is updated using the Q-learning update function

(Eq 2.1), where St and At are the state and selected action at time t, – is the learning

rate, and the target Y
DDQN

t is defined as a function of the state, action, and received

reward value Rt (Eq 2.2).

’◊ œ �Q

Ë
◊t+1 = ◊t + –

1
Y

DDQN

t ≠ Q(St, At)
2

Ò◊tQ(St, At)
È

(2.1)

Y
DDQN = Rt+1 + “Q

Õ (St+1, argmax
a

(Q(St+1, a)) (2.2)

Because the networks in this system update are training using experience replay,

the argmax term present in Equation 2.2 is replaced with the output of the target

actor µ
Õ(St+1) as part of a batch update of batch size B. The actor network µ also

updates from the selected experience batch, using policy gradient with regard to the

resulting valuations provided by Q.

The target architecture initially has the same weights as the main architecture,

at the end of each training episode, weights from the main architecture are copied to

the target architecture according to the transfer learning function (Eq 2.3).

’◊
Õ
i

œ �Õ [◊Õ
i

Ω ·◊i + (1 ≠ ·) ◊
Õ
i
, · π 1] (2.3)
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2.1.4 Agent Memory

Agents in the model store a history of their past experience as a series of state

transition records (st, at, rt, st+1). These records are stored in a memory bu�er B of

fixed length N . When the memory bu�er is full, new records overwrite the oldest

records in the bu�er. The memory bu�er is used to train the agent’s decision-policy

and valuation.

Additionally, agents have a built-in ‘forgetfulness factor’, F , which has been in-

corporated in an attempt to capture some of the behavior patterns of human actors

with imperfect memory. This factor is a real number between 0 and 1 and is used to

linearly scale the amount of noise that is introduced into the memory record as the

record ages within a run. An agent with F = 0 will have perfect recall of its entire

state transition history, whereas an agent with F = 1 will have perfect recall of its

most recent state transition with actions taken in the distant past being completely

forgotten (noise term of equal range as actual term).

for all agents in each time step do

With probability ‘ select random action At

otherwise select action At Ω µ(St)

Execute At and observe reward Rt and next state St+1

Push transition record to memory M [m] Ω (St, At, Rt, St+1)

Select random minibatch B of N transitions from memory M

if Agent is forgetful, F > 0 then

Introduce random noise to transition record proportional to the

temporal distance to transition (m ≠ t) and agent forgetfulness F

10



end if

Perform Q-learning update via action replay

Perform µ update via policy gradient

end for

2.2 Experimental Design

2.2.1 Model Overview

In order to test this modeling methodology for the integration of deep reinforcement

machine learning into an agent-based model, an experimental ABM was developed.

This ABM is a model of a multi-agent of agricultural decision-makers and how their

behavior may change in response to external stimuli. The real-world basis for this

model is a study area in the Missisquoi Bay Area of the Lake Champlain Basin of

Vermont, and the model is designed to represent the agricultural decision-making

processes of farmers in this area — in particular, decisions pertaining to agricultural

productivity and the adoption or rejection of agricultural best management prac-

tices (BMPs).

Agents

There are two types of agents present in this model — 480 farmer agents, correspond-

ing to the 480 agriculturally-zoned land parcels in the Missisquoi Bay Area, and a

single regulatory agent. All agents in the model contain some internal information

about their current state and history, a set of state-transition memories used to learn

from experience, and a set of neural networks used to drive agent decision-making.

11



As the agents make decisions over time, they gradually learn the correlation between

the actions they take from each state using deep reinforcement machine learning.

The 480 agricultural agents model the behavior of farmers, herders, and other

kinds of agricultural land managers within the study area. They make annual deci-

sions about their farming practices, including whether they should change production

in one of the four modeled agricultural industries (beef, dairy, corn, and hay) and

whether they should implement an agricultural best management practice (BMP) to

reduce phosphorus runo� on their land.

The state properties and variables that make up each agricultural agent are listed

in Table 2.1. The initialization of these values is detailed in Section A.3.1.

Conditions that factor in as components of a farmer agent’s state include the

total land area the agent has devoted to cropland or pasture; the productivity of the

agent in each of the four modeled agricultural industries along with their associated

phosphorus byproduct productivity; an 5-year history of the farm’s profitability, storm

losses, and BMP usage; and similar historical information from the agent’s k-nearest

neighboring farmer agents.

This subset of state factors is summarized along with those of the regulatory

agent in Table 2.5. For the farmer agents, these break down into a few main groups:

information about their own land cover, information about their productivity in the

given time-step, a 5-year history of their own experiences, and historical information

from their 5-nearest neighbors.
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Table 2.1: Table of the state properties of agricultural agents and their associated data type
for agricultural agents in the agricultural model.

Name Description Data Type

Agent ID Unique identifier for this agent uint

Agent Status enum{3}

Land Parcel Data

Crop Land Area Ac Land devoted to growing crops (sq km) float

Pasture Land Area Ap Land devoted to grazing animals (sq km) float

Total Land Area Atot Total land in parcel (sq km) float

Productivity

Corn pc Corn production factor float

Hay ph Hay production factor float

Beef pb Beef production factor float

Dairy pd Dairy production factor float

Phosphorous pp,x Phosphorus production factor float

Cows Owned C Number of cows on farm uint

Financial History

Real Net What was net profit over last 5 years float[5]

Expected Net What was expected profit for last 5 years float[5]

Extreme Event History Extreme event presence over past 5 years uint[5]

BMP Usage History B Did farm use BMP in last 5 years bool[5]

Neighbors References to neighboring agents farmer*[5]

Neural Networks

Actor Network µ Network Weights float[l][w]
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Table 2.1: (continued...)

Name Description Data Type

Critic Network Q Network Weights float[L][W]

Target Network µ
Õ Network Weights float[l][w]

Target Network Q
Õ Network Weights float[L][W]

Memory Bank float[M*R]

Memory Bu�er float[B*R]

The actions that the farmer agents can take are listed in Table 2.2. These ac-

tions are divided into two main categories: the action of choosing to adopt or not

adopt a BMP for their farm, and adjusting the farm’s productivity in one of the four

agricultural sectors.

Table 2.2: A summary of the actions being select by the agricultural agents in the agricultural
model.

Group Action

BMP Usage Adopt BMP

Don’t Adopt BMP

Corn Production Increase by [0, S
+
c

)

Maintain

Decrease by [0, S
≠
c

)

Hay Production Increase by [0, S
+
h

)

Maintain

Decrease by [0, S
≠
h

)

Dairy Production Increase by [0, S
+
d

)
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Maintain

Decrease by [0, S
≠
d

)

Beef Production Increase by [0, S
+
b

)

Maintain

Decrease [0, S
≠
b

)

The production factors are a scalar component of production functions that have

been calculated for the region and calibrated for the years 2001–2040. These functions

are shown below for the production of corn (Eq 2.4), hay (Eq 2.5), dairy (Eq 2.7),

and beef (Eq 2.6), where t is the modeled year.

Pc(t) = pc ú A
b

c
ú 11.433 log t ≠ 86.826 (2.4)

Ph(t) = ph ú A
b

c
ú 1e≠32 exp 0.0358t (2.5)

Pb(t) = pb ú A
b

p
ú 2e≠20 exp 0.0234t (2.6)

Pd(t) = pd ú A
b

p
ú 2e≠9 exp0.0114t (2.7)

The productivity of the agent is modified by the application of the regulatory

agent’s regulations G1 (Eq 2.13) and G2 (Eq 2.14) and the amount of losses due to

extreme weather events (Eq 2.8) as a function of whether the BMP was used and

whether the number of extreme events that occurred within the given year exceeds

the expected threshold from the weather submodel.
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S(B, EE) = 1, EE < N

S(B, EE) = 0.1, EE Ø N, ¬B

S(B, EE) = (0.1 + 0.9Be), EE Ø N, B

(2.8)

The weather submodel would generate a number of rainfall events for the study

area every model year, according to a distribution calibrated according to historical

rainfall data for the region from the years 1920–1980. The number of weather events

that were necessary to occur to be considered an extreme event year was determined

by using peaks-over-threshold for the historical data.

The reward function used for training the policies of the farmer agents (Eq 2.11)

is defined by the ratio of the squared realized profits of a time-step (Eq 2.9) and the

expected profits at that time-step (Eq 2.10), translated from the range of all possible

profits (Pmin, Pmax) to the range (≠1, 1).

Pnet(t) =
ÿ

x

Px(t)G1(Pp, B, t)S(B, EE) + G2(Pp, B, t) (2.9)

Pexp(t) =
ÿ

x

Px(t)G1(Pp, B, t) + G2(Pp, B, t) (2.10)

Rf (t) = Pnet(t)2

Pexp(t) : (Pmin, Pmax) æ (≠1, 1) (2.11)

The one municipal regulatory agent is used to model a municipal government or

regulatory agency’s behavior managing agricultural practices on the landscape and

the local environment and the policies that guide them. This agent acts more slowly

than the agricultural agents, once every five time-steps, and decides if/how it should

modify its incentive structure — changing its taxation rate, the subsidization given
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to an agent adopting a BMP, and the phosphorus runo� threshold at which a penalty

is applied. The state properties of the regulatory agent are listed in Table 2.3, and

details on their initialization are included in Section A.3.1.

Table 2.3: Table of the state properties of the regulatory agent and their associated data
type for the regulatory agent in the agricultural model.

Name Description Data Type

Agent ID uint

Aggregate Agent Data

BMP Adoption float[15]

Extreme Events uint[15]

Financial History float[15]

P Runo� History float[15]

Regulation Change Limit g float

P Tax Rate Tp float

P Tax Threshold Pt float

BMP Subsidy Value Sb float

Neural Networks

Actor Network µ Network Weights float[l][w]

Critic Network Q Network Weights float[L][W]

Target Network µ
Õ Network Weights float[l][w]

Target Network Q
Õ Network Weights float[L][W]

Memory Bank float[M*R]

Memory Bu�er float[B*R]

The components of actions that the regulatory agent can take are listed in Ta-
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Table 2.4: A summary of the action factors being used to drive agent decision-making for
both types of agent present in the model.

Regulator Agent
Group Action
Tax Rate Increase by [0, T

+
g

)
Decrease by [0, T

≠
g

)
BMP Subsidy Provide/Increase

Remove/Decrease
Phosphorous Thresholdı Scale

ble 2.4 The phosphorus threshold adjustment action is notably implemented di�er-

ently in that it is a single value which is having the sign taken to determine the

direction of the adjustment.

The results of taking these actions is a shift in the regulatory parameters of the

system as shown in the set of equations below (Eq 2.12).

a0 Tp,t+1 = Tp,t + minØ0
1
T

+
p

, N (”Tp, g + k)
2

a1 Tp,t+1 = Tp,t ≠ minØ0
1
T

≠
p

, N (”Tp, g + k)
2

a2 Sb,t+1 = Tp,t + minØ0
1
S

+
b

, N (”Sb, g + k)
2

a3 Sb,t+1 = Tp,t ≠ minØ0
1
S

≠
b

, N (”Sb, g + k)
2

a4 Pt,t+1 = Pt,t + signum (a4)

(2.12)

The parameter changes impact the incentive structures provided by the phospho-

rus taxing function, G1, shown in Equation 2.13, and the BMP subsidization function,

G2, shown in Equation 2.14.

G1(P, B, t) =

Y
__]

__[

Tp Pp Ø Pt

1 Pp < Pt

(2.13)
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Table 2.5: A summary of the state factors being used as input to the agents’ ANNs.

Farmer Agent
Group Description Detail
Land Cover Cropland Normalized Area (sq m)

Pasture Normalized Area (sq m)
Productivity Corn See A

Hay
Dairy
Beef

History (5-year) Extreme Event Record Occurrence
Financial Record A
BMP Adoption Record

Network Information Financials Losses (1-year, 5-year)
BMP Adoption Usage (1-year, 5-year)

Regulator Agent
Group Description
Aggregate Data BMP Adoption

Financials Net Profits, Losses
P Runo�

History Extreme Event Record 5-year, 15-year
BMP Adoption
Financials Net Profits, Losses
P Runo�
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G2(P, B, t) =

Y
__]

__[

Sb B

0 ¬B

(2.14)

The goal of the regulator agent is to minimize the aggregate phosphorous output

and storm loss of all agricultural agents, Rr =
e
Wp

q
f Pp,f (t), Wl

q
f lf

f
, where Wp

and Wl are normalizing weights on the component inverse reward signals so that they

vary along ranges of similar magnitude.

The parameters for agent learning for both agent types are summarized in Ta-

ble 2.6.

Table 2.6: Network parameters for the ANNs used by agents in each class for the land cover
model

Parameter Agricultural Regulatory
µ Q µ Q

Input Nodes 15 32 10 15
Inner Layers 4 3 4 3
Inner Nodes 10 16 7 7
Output Nodes 17 1 5 1
Connectivity — Full —
Activation Function — ReLU —
Output Activation 5-hot Linear 2-hot +

1-Signum
Linear

Model Hyperparameters

Preliminary model runs were conducted to determine the optimal values for the hy-

perparameters for machine learning within the model. The learning hyperparameters

that were varied in these preliminary runs were the number of training episodes, the

number of steps between target network updates, the number of inner layers in the

neural networks, the number of neurons in each of those inner layer, the learning rate,
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and the batch size. The learning hyperparameters that were held constant were the

exploration rate at ‘ = 0.1, the discount factor at “ = 0.99, the learning transfer rate

at · = 0.001, the number of steps within a training episode at N = 40, the relay

memory size at M = 10000.

Table 2.7: Hyperparameters and their associated values with source or rationale, if applica-
ble, for the agricultural land-use model.

Parameter Value Source/Rationale

Learning Rate – 0.00025

Exploration Rate ‘ 0.1

Discount Factor “ 0.99

Transfer Rate · 0.001 [19]

Relay Memory Size M 10000 [19]

Number of Episodes N 1000

Number of Steps per Episode T 40 Economic production function limitation

2.2.2 Experimental Setup

The model was run for a variety of scenarios. All scenarios tested the variables BMPe,

�EE, and g. There were two classes of test: tests with agents with uniform memory

accuracy (Table 2.8) and tests with agents with heterogeneous memory accuracy

(Table 2.9).

BMP E�cacy (Be) was varied from 0.0 to 1.0 in increments of 0.1. This parameter

represents the e�ectiveness of BMPs in reducing nutrient loading from agricultural

fields. A value of 0.0 indicates that BMPs have no e�ect on nutrient loading, while
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a value of 1.0 indicates that BMPs completely eliminate nutrient loading. This pa-

rameter was varied in order to determine the e�ect of BMP e�cacy on the behavior

of the system.

Change in weather event frequency (�EE) was varied from -0.2 to 0.2 in incre-

ments of 0.05. This parameter represents the change in the frequency of extreme

weather events, such as heavy rainfall, that may be induced by climate change com-

pared to a historical baseline, so in cases where �EE = 0.2, the expected number of

extreme rainfall events that are going to occur will be 1.2 times the expected number

of extreme rainfall events according to the baseline.

The regulation change limiter (g) represents the maximum rate at which the reg-

ulatory agent will adjust the regulatory environment. Three values were tested: an

aggressive limit (g = 0.2), a moderate limit (g = 0.05), and a restrictive case (g = 0)

for testing the model’s ability to operate in a static regulatory environment. This

value alters the width of the distribution that the regulatory parameters, Tp and Sb,

are adjusted by.

The impact of agent memory accuracy was tested for two types of agent popula-

tions. In uniform agent populations, all agents had the same memory recall accuracy

(F ), where F is the probability that a memory will be recalled correctly. In het-

erogeneous agent populations, agents had di�erent memory recall accuracy, where

a proportion of agents (P ) had accuracy F = 1 and all other agents (1 ≠ P ) had

accuracy F = 0.
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Table 2.8: Table listing experimental parameters for uniform population runs

Variable Values
BMP E�cacy Be 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
Change in Event Frequency �EE -0.2, -0.15, -0.1, -0.05, 0.0, 0.05, 0.1, 0.15, 0.2
Regulation Change Limiter g 0, 0.05, 0.2
Forgetfulness Factor F 0, 0.25, 0.5, 0.75, 1

Table 2.9: Table listing experimental parameters for mixed population runs

Variable Values
BMP E�cacy Be 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
Change in Event Frequency �EE -0.2, -0.15, -0.1, -0.05, 0.0, 0.05, 0.1, 0.15, 0.2
Regulation Change Limiter g 0, 0.05, 0.2
Population Mixing P 0.25, 0.5, 0.75

2.3 Results

2.3.1 Model Performance

For each model parameterization, agents were trained for 1000 training episodes. If

more than 10% of the agents (n = 48) in the model failed to converge to a stable policy

within 1000 training episodes, the model was discarded and retrained; however, this

occurred in less than 2% of model runs. A plot showing the distribution of number

of agents which converged across model parameterizations is shown in Figure 2.2.

In this training, an agent’s networks were considered to have converged if after

50 initial training episodes, the net change in the weights of the network during a

transfer learning step was less than 10≠5. This threshold was chosen to be small

enough to ensure that the networks had reached some stable policy, but large enough

to avoid overfitting.

Models which were successfully trained and passed through this screening were
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Figure 2.2: Plot of the number of agents that converged to a stable policy for each parame-
terization of the model

(a) Initial State (y=2001) (b) End State (y=2040, g=0.05,
�EE = 0)

(c) End State (y=2040, g=0.2,
�EE = 0.2)

Figure 2.3: Sample model output showing the change in BMP adoption likelihood from a
characteristic initial model state (a) to a characteristic end states for (b) a model run with
the parameterization (g = 0.05, �EE = 0), and (c) a model run with the parameterization
(g = 0.20, �EE = 0.2). The color of each dot represents the likelihood that the agent will
adopt BMPs, with green indicating a high likelihood and red indicating a low likelihood.

then run for 40 testing runs. Within this section, some results have been omitted for

readability. A listing of results and their associated model parameterizations can be

found in Appendix C.
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2.3.2 Agent Behavior

Uniform Population Runs

For model parameterizations with uniform agent populations, the proportion of agents

which adopted a BMP in each testing model run was recorded and used to generate

a distribution of BMP adoption rates for each parameterization. Summaries of the

results of these runs are shown in Figure 2.4 for the case where the regulation change

threshold (g) was set to 0.0, Figure 2.5 for when g was set to 0.05, and Figure 2.6 for

when g was set to 0.2.

Mixed Population Runs

For model parameterizations with mixed agent populations, agents were divided into

three groups: group 1, where F = 0 for the agent and all neighbors, group 2, where

F = 1 for the agent and all neighbors, and group 3, for agents with neighbors where

F = 0 and F = 1. The proportion of agents in each group which adopted a BMP

in each testing model run was recorded and used to generate a distribution of BMP

adoption rates for each parameterization. Results of one set of parameterizations of

these runs are shown in Figure 2.7 where g = 0, �EE = 0.

2.4 Discussion
Overall, results seem to indicate that this method of introducing deep reinforcement

learning into agent-based modeling does have some viability for driving agent decision-

making; however, some components of the experimental testing show how sensitive
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(a) F = 0 (b) F = 0.5 (c) F = 1.0

Figure 2.4: Distribution of mean BMP adoption rate for uniform population runs of the
agricultural land use model, where g = 0.0, for (a) F = 0, (b) F = 0.5, and (c) F = 1.0

(a) F = 0 (b) F = 0.5 (c) F = 1.0

Figure 2.5: Distribution of mean BMP adoption rate for uniform population runs of the
agricultural land use model, where g = 0.05, for (a) F = 0, (b) F = 0.5, and (c) F = 1.0

(a) F = 0 (b) F = 0.5 (c) F = 1.0

Figure 2.6: Distribution of mean BMP adoption rate for uniform population runs of the
agricultural land use model, where g = 0.2, for (a) F = 0, (b) F = 0.5, and (c) F = 1.0
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(a) P = 0.25 (b) P = 0.5 (c) P = 0.75

Figure 2.7: Distribution of mean BMP adoption rate for mixed population runs of the
agricultural land use model, where g = 0.0, �EE = 0, for (a) P = 0.25, (b) P = 0.5, and
(c) P = 0.75

this kind of model can be be to its parameterization.

The purpose of the regulatory agent in the experimental model was to help incen-

tivize specific agent behaviors, but the experimental parameter being used (g) had

such a strong impact on the variability in agent behavior that the results of model

runs where g = 0.2 had such high variance that it is di�cult

Similarly, in the mixed population runs, the experimental method for introducing

heterogeneity into the population can introduce variance in observed behaviors, but

further testing would be needed to know if it leads to any of the desired emergent

behavioral patterns. An experimental study specifically targeting an analysis of the

heterogeneity in behaviors seen in real-world populations would be an ideal next-step.
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Chapter 3

Increasing ABM Integration

The previous chapter demonstrated how an agent-based model can be implemented

with machine learning in order to induce a model of individual behavior. This chapter

will go on to show how adding a transfer learning calibration step, in cases where

there exists some external metric for determining the ABM’s performance as a result

of agent behavior, can be integrated into this kind of ABM in order to adjust agent

training in a way that increases model performance. This method is applied in the

creation of a land-cover transition model of a study area in the Lake Champlain Basin

of Vermont.

3.1 Methodology
The methodology used here is similar to the methodology presented in Chapter 2, with

the addition of an external calibration step that takes place during model training.

Because there is an external method for validating the output of the model for each

training episode, a traditional learning step can be incorporated into the transfer

learning step as a form of adaptive transfer learning, where there base transfer rate ·
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in the transfer learning update (Eq 2.3) is replaced with an adjusted transfer rate ·adj

as in Equation 3.1.

’◊
Õ
i

œ �Õ [◊Õ
i

Ω ·adj + (1 ≠ ·adj)◊Õ
i
] (3.1)

For a given calibration method, that is, a loss function for overall model perfor-

mance, the adjusted transfer rate can be set for each transfer update based on the

performance of the model in each transfer episode. This allows transfer episodes with

a higher metric of model performance to have a greater impact on the weights of

the target network architecture, whereas transfer episodes that demonstrated poorer

performance would have a lesser impact on the target architecture.

3.2 Experimental Design

3.2.1 Model Overview

In order to test this calibration methodology and an increased degree of integration

of deep machine learning techniques into agent-based modeling, a second experimen-

tal ABM was developed. This ABM is also a model of a study area within the

Lake Champlain Basin of Vermont, but expanded to included systems outside of the

agricultural sector, as forestry and urban commercial and residential systems are also

included. In this model, agent decision-making not only impacts their economic state,

but also impacts how the land-cover of the land associated with each agent develops

and changes over time. The land-cover change is modeled as the stochastic byprod-

uct of agent action, wherein, for example, an agricultural agent deciding to increase
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its productivity with regard to grazing animals may result in an increase in its beef

production factor pb or a conversion of some unused forested land cells on the agent’s

property into in-use pasture land cells.

Unlike the model described in Chapter 2, the individual behavior of agents in

this model is not its primary area of interest. Because real-world data exists for

land-cover, there exists an external, objective method for determining the accuracy

of model performance within a training episode. The goal of this model is to explore

the potential of using real-world land-cover data and the calibration step and its

adjustments to learning transfer to steer agent learning, and consequently decision-

making, in the direction of an overall increase in the predictive accuracy of the model.

Representing Land Cover

Real world land cover data for the study area was taken for the United States Ge-

ological Survey’s National Land Cover Dataset (NLCD) for four years: 2001, 2006,

2011, and 2016. This dataset divides the study area into a matrix of 30m by 30m

land cells which have been assigned one of 15 NLCD land cover classes. For the

purposes of this model, these 15 classes were divided into 6 cover categories: urban,

forested, agricultural, barren, grassland/scrub, and other. These categories and their

corresponding NLCD land cover classes are listed in Table 3.1. A plot of the NLCD

representation of the study area for NLCD year 2001 is shown in Figure 3.1.

The land cells, as they exist in the NLCD data, provide the initial land cover

for the model within the starting year. These land cells have been divided into land

parcels, which are the collections of cells that an agent in the model has control over.

The properties that constitute the land cells within this model are listed in Table 3.2,
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Table 3.1: A listing of the 15 NLCD cover classes that are present in the dataset for the
study area, their NLCD encoding, and their associated cover category within the model.

Cover Category NLCD Cover Class NLCD Encoding
Urban Open Space Urban 21

Low Density Urban 22
Medium Density Urban 23
High Density Urban 24

Forested Deciduous Forest 41
Evergreen Forest 42
Mixed Forest 43

Agricultural Pasture 81
Crops 82

Barren Barren 31
Grassland/Scrub Scrub 52

Grassland 71
Other Water 11

Wetlands Woody 90
Wetlands Other 95

Figure 3.1: A plot of the NLCD data for the selected study area showing land-cover in real-
year 2001, each 30m by 30m land cell is colored based on its NLCD cover class (Table 3.1),
with similar colors being numerically closer classes.
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Table 3.2: Land Cell Features

Parameter Values
Parcel ID Parcel that this cell is a part of
Land Cover Category Agricultural, Forested, Urban, Other
NLCD Cover Class See Table 3.1
Land Usage Type Managed/In-Use, Adjacent, Unmanaged

Figure 3.2: Diagram showing how land cells and their associated properties are represented
within the model as a grid of NLCD land cover values (left), and how those values have land
use properties mapped onto them 1-1 (right).

and a diagram showing how this data is overlaid on the NLCD data is shown in

Figure 3.2.

Initial land-use for the cells within the model is generated via a stochastic process.

Within the land-use initialization, all cells start with a label of “unmanaged”, then

a number of cells within each parcel are labeled as “managed”, depending on the

agent type and weighted towards population centers. Finally, all cells which are

“unmanaged” and border a “managed” cell are labeled as “adjacent”.

Agents

There are four types of agent present in this model: agricultural agents, forestry

agents, commercial agents, and residential agents. There is one agent assigned for
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each land-parcel in the model, and the agent type is assigned based on the majority

land-cover of the parcel.

Agricultural agents model the behavior of farmers, herders, and other kinds of

agricultural land managers within the study area. They make annual decisions about

their farming practices, including whether they should change production in one of

the four modeled agricultural industries (beef, dairy, corn, and hay) and whether

they should implement an agricultural best management practice (BMP) to reduce

phosphorous runo� on their land. This agent type has a very similar implementation

in this model as was described for the agricultural model in Section 2.2, but with the

land-cover change further broken down by land-use. It’s modified state factors are

listed in Table 3.3, and the actions it can take are listed in Table 3.4.

Table 3.3: A summary of the state factors being used during decision-making for agricultural
agents in the land-cover model.

Group Description Detail

Land Cover cc,m Cropland/In-use Cell Count

cc,a Cropland/Adjacent Cell Count

cp,m Pasture/In-use Cell Count

cp,a Pasture/Adjacent Cell Count

ca,u Agricultural/Unmaintained Cell Count

co,a Other/Adjacent Cell Count

Productivity pc Corn

ph Hay

pd Dairy

pb Beef
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Table 3.3: (continued...)

Group Description Detail

History BMP Adoption Record

Extreme Event Record

Net Profits/Losses

Network Information BMP Adoption

Net Profits/Losses

In order to prevent any direct interference with the production functions, an ad-

ditional land-use decision action was added to the list of actions for the agricultural

agent, to explicitly capture the intent to change the scope of land-use. This action

had initially been planned for inclusion in the agricultural model described in Chap-

ter 2, but the lack of real-world land-cover data in the associated datasets prevented

its implementation.

Table 3.4: A summary of the action factors being used to drive agent decision-making for
agricultural agents in the land-cover model.

Group Action

BMP Usage Adopt BMP

Don’t Adopt BMP

Corn Production Increase by [0, S
+
c

)

Maintain

Decrease by [0, S
≠
c

)

Hay Production Increase by [0, S
+
h

)

Maintain
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Table 3.4: (continued...)

Group Action

Decrease by [0, S
≠
h

)

Dairy Production Increase by [0, S
+
d

)

Maintain

Decrease by [0, S
≠
d

)

Beef Production Increase by [0, S
+
b

)

Maintain

Decrease [0, S
≠
b

)

Land-Use Decision Grow

Maintain

Shrink

Here, it behaves as follows. A decision to “maintain” land-use means that no

land-use changes will occur. A decision to “grow” land-use means that the agent

will search for up to 2 land cells which are of land-use “adjacent” to convert into

land-use “maintained”, and will adjust its land area calculations to match. A deci-

sion to “shrink” land-use means that the agent will attempt the opposite transition,

converting up to 2 land cells from land-use “maintained” to land-use “adjacent”. In

all other agent types, this behavior is implicit to the actions that the agents take and

their associated scoping.

Forestry agents model the behavior of loggers and other kinds of forested land

managers within the study area. They make annual decisions about their practices

and whether to implement an advised management practice (AMP) on their land.
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Figure 3.3: Diagram showing how land-use, and consequently land-cover, may change for
an example 2-by-3 parcel over the course of a time-step.

The forestry agents are implemented very similarly to the agricultural agents, but the

land-cover of interest has been changed to forested land, and the production function

has been replaced with a generalized forested productivity function. The state factors

used by the forestry agents in their decision-making are listed in Table 3.5, and the

actions that these agents can take are listed in Table 3.6.

Table 3.5: A summary of the state factors being used during decision-making for forestry
agents in the land-cover model.

Group Description Detail

Land Cover cf,m Forested/In-use Cell Count

cf,a Forested/Adjacent Cell Count

cf,u Forested/Unmaintained Cell Count

co,a Other/Adjacent Cell Count

Productivity pf Forestry

History AMP Adoption

Extreme Event Record

Net Profits/Losses

Network Information AMP Adoption
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Table 3.5: (continued...)

Group Description Detail

Net Profits/Losses

Table 3.6: A summary of the action factors being used to drive agent decision-making for
forestry agents in the land-cover model.

Group Action

AMP Usage Adopt AMP

Don’t Adopt AMP

Forestry Decision Increase by [0, S
+
f

)

Maintain

Decrease by [0, S
≠
f

)

Agricultural and forestry agents are connected to and share information with their

5-nearest neighbors of the same agent type; these networks are static throughout each

model run. For both of these agent types, their learning reward is based on their net

profitability as was described in Chapter 2.

Commercial agents model the behavior of shops, factories, o�ces, and other kinds

of commercial land-holders within the study area. They make decisions bi/trimonthly

about their workforce, including their available jobs and the associated salaries.

Byproducts of their actions impact the density and sprawl of urban land cover on

the landscape. The state factors that it uses in decision-making are listed in Ta-

ble 3.7, and the actions they can take are listed in Table 3.8.
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Table 3.7: A summary of the state factors being used during decision-making for commercial
agents in the land-cover model.

Group Description

Financial Status

Employees Capacity

Actual

Utilization

Table 3.8: A summary of the action factors being used to drive agent decision-making for
commercial agents in the land-cover model.

Group Action

Business Capacity Decrease

Maintain

Increase

Employees Fire

Maintain

Hire

Commercial agents use a simple compound reward function for their performance,

with a ‘living reward’ tl, which grows as the number of time steps the commercial

agent has gone without declaring bankruptcy / employee count becoming zero, and

the realized utilization Ue of their land, such that the reward Rc = tl ú Ue.

Residential agents model the behavior of renters and landowners within the study

area. They make two decisions annually: whether to attempt a job change and

whether to try to move houses. Household satisfaction, and their reward value Rr, is
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valued as a combination of financial stability and mental satisfaction. Each household

earns wages provided by a commercial agent — these wages are determined by a

stochastic process and can be adjusted by the job over time. The decisions of these

agents do not directly impact land cover change on their associated parcel, but land

cover can transition within their parcel as a result of the decisions of other agents.

Table 3.9: A summary of the state factors being used during decision-making for residential
agents in the land-cover model.

Group Description

Financial Status

Length in State

Household Budget Monthly

Household Budget Yearly

Failed Action Count Consecutive

Table 3.10: A summary of the action factors being used to drive agent decision-making for
residential agents in the land-cover model.

Group Action

Employment Search for new job

Keep current job

Housing Search for new housing

Keep same housing

The reward function used by residential agents is similar to that used by commer-

cial agents, but the living reward is scaled by the agent’s financial status.

Commercial and residential agents exist in a bipartite network with one another.
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This network is initialized via a stochastic process and is updated as agents make

decisions. This process is detailed in Appendix B, alongside other details of agent

initialization.

The learning architecture for agents of each type is listed in Table 3.11. Similarly

to the agent-networks described in the model in Chapter 2, all networks are fully-

connected, use ReLU activation and He Initialization, and use n-hot output to encode

their selected action. Additionally, all target architectures are initially identical to

the active network architectures as specified below.

Table 3.11: Network parameters for the ANNs used by agents in each class for the land
cover model

Parameter Agricultural Forestry Commercial Residential
µ Q µ Q µ Q µ Q

Input Nodes 15 32 10 15 4 10 5 9
Inner Layers 4 3 4 3 2 2 2 2
Inner Nodes 10 16 7 7 5 5 4 5
Output Nodes 17 1 5 1 6 1 4 1

Model Hyperparameters

A summary of the fixed hyperparameters across all runs of this model are listed in

Table 3.12. Many of the parameters are taken directly from the agricultural model

described in Chapter 2, with the economic production functions taking from the

corresponding model years and the weather generation submodel using the baseline

case of �EE = 0.

The length of the training episode was set to 60 time-steps, or 5 model-years, to

match the granularity of the real-world NLCD datasets. Preliminary model runs for

determining appropriate fixed model hyperparameters were done with the land-cover
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data from NLCD year 2001 as input data, comparing the data from NLCD year 2006

with the model output year 2006.

Table 3.12: Fixed hyperparameters and their associated values for the land-cover change
model.

Parameter Value

Learning Rate – 0.00025

Exploration Rate ‘ 0.1

Base Transfer Rate · 0.001

Transition Memory Size M 10000

Number of Steps per Episode T 60

Evaluating Model Performance

For this model, the Nash-Sutcli�e e�ciency index (NSE) was used to evaluate the

goodness-of-fit of model output at the end of each training episode. The NSE is

a measure of the relative magnitude of the residual variance of modeled data com-

pared to the residual variance of the observed data. The value of the index ranges

from ≠Œ to 1, where a score of 1 indicates a perfect fit, a score of 0 indicates that

the model’s fit is no better than the mean of the observed data, and a score less than

0 indicates that the mean of the observed data is a better predictor than the model.

This index was calculated in relation to three forms of model performance. The

first is the ability of the model to appropriately predict the proportional coverage of

each land cover type in the target year, NSEplc. The second is the ability of the model

to appropriately predict the categorical transitions of land cover types from the start

year to the target year, NSEcat. The third is the ability of the model to appropriately
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predict the absolute transitions of land cover types from the start year to the target

year, NSEabs. These indices are detailed below.

A majority of land cells in the study area do not transition land cover between the

start year and target year (92.6%, n = 69124), which would heavily bias any analysis

of model performance. Therefore, these NSE indices were only calculated for those

cells that transitioned land cover.

The NSE measure of proportional coverage (NSEplc) is shown in Equation 3.2,

where PB represents the observed proportional coverage of land cover category B

in the target year, P̂B represents the simulated proportional coverage of land cover

category B in the target year, and P̄B represents the mean observed proportional

coverage of land cover category B in the target year.

NSEplc =
q

B

1
PB ≠ P̂B

22

q
B

1
PB ≠ P̄B

22 (3.2)

The NSE measure of categorical land cover transitions (NSEcat), shown in Equa-

tion 3.3, where �A,B represents the number of observed transitions from land cover

category A in the starting year to land cover category B in the target year, for the

overarching categories shown in Table 3.1, where [�A,B represents the number of simu-

lated transitions from A to B, and where �A,B represents the mean observed number

of transitions from A to B.

NSEcat =
q

A,B

1
�A,B ≠ [�A,B

22

q
A,B

1
�A,B ≠ �A,B

22 , A ”= B (3.3)

The NSE measure for absolute land cover transition (NSEact), shown in Equa-

tion 3.4, is very similar to the calculation of NSEcat, except that it is calculated for
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the absolute land cover class of each land cell and not just its categorical class. This

index is a stricter metric than the previous two indices, as, for example, a modeled

transition from cropland to deciduous forest ”82,41 compared to an observed transition

to mixed forest ”82,43, which would be labeled “correct” according to NSEcat would

be considered a misclassification according to NSEabs.

NSEabs =
q

a,b

1
�a,b ≠ ‰�a,b

22

q
a,b

1
�a,b ≠ �a,b

22 , a ”= b (3.4)

For the purposes of model calibration, as described in Section 3.1, the model was

calibrated to maximize the result of NSEcat for the transition from the starting year

2006, to the observed and modeled year 2011.

Execution Overview

A high-level overview of model execution, showing the main training loop with the

transfer calibration step and the final testing loop, is shown in Figure 3.4. A more-

detailed overview of model execution, specifically focused on the behavior and training

and agents is shown in Figure 3.5.

3.2.2 Experimental Setup

In order to avoid some of the high levels of variance seen in the experimental runs of

the agricultural model and that model’s sensitivity to agent paramterization, these

experimental runs were limited in scope to a subset of model hyperparameters that

relate to agent memory and foresight, listed in Table 3.13. Each combination of

parameterizations was tested for 40 model runs.
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Figure 3.4: Flowchart showing a high-level overview of model execution between the main
training/calibration loop (left), and the final testing runtime loop (right)

Replay batch size B was tested for the sizes 8, 16, 32, and 64. This value deter-

mines how many state transition records are sampled during the action-replay and

policy gradient learning steps. A higher number of records sampled increases the

smoothness of the gradient being sampled, at the cost of extra computation.

The discount factor “ was tested for the values 0.5, 0.9, and 0.99. This factor is

used in the Q-learning update (Eq 2.1) to discount the expected rewards at a future

time-step. A lower value of “ indicates a lower value of the reward in step t + 1 than

the current reward in step t, which compounds multiplicably with each additional

time-step forward.

The recall accuracy F
Õ, is the notational inverse of the forgetfulness factor de-

scribed in Section 2.1.4, where F
Õ = (1 ≠ F ) and consequently a recall accuracy of 1

indicates agents with 0 forgetfulness, that is, perfect record recall.
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Figure 3.5: Flowchart demonstrating the overall execution of the agent-based model and its
coupling with the machine learning processes

45



Table 3.13: Experimental parameters that were tested in experimental runs of the land-cover
transition model

Variable Values
Batch Size B 8, 16, 32, 64
Discount Factor “ 0.5, 0.9, 0.99
Recall Accuracy F

Õ 0, 0.25, 0.5, 0.75, 1

(a) NSEplc (b) NSEcat (c) NSEact

Figure 3.6: NSE index sensitivity for each index showing the variance in model classification
accuracy by each metric under di�erent model parameterizations.

3.3 Results

3.3.1 Model Performance

Model performance under each experimental parameterization was evaluated by com-

paring the land cover in model year 2016 to the recorded/observed land cover for the

study area for real year 2016.

The maximum NSE values seen during testing runs were NSEplc = 0.84, NSEcat =

0.76, and NSEact = 0.64. The sensitivity of these indices to each of the experimen-

tal parameters was evaluated by calculated the mean and variance of the indices

under each parameterization across all 40 runs. These results have been plotted in

Figure 3.6.

In order to better understand the output of the model and where misclassification
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(a) Observed Cover Change (b) “Best Fit” Cover Change (c) Best Median Change

Figure 3.7: Arrow plots showing a comparison of the categorical transitions between the three
main land-cover categories between (a) the real world data, and (b) the “best-fit” model, and
(c) the “best median” model. Arrow width between NLCD-11 and 2016 is proportional to
the number of transitions between the connected categories.

was occurring within testing runs, the land-cover transition matrices were analyzed.

Categorical cover change had been used as the calibration function for the model, so

land cover transitions were divided into three primary categories: urban U , forested F ,

and agricultural A, and an other O category for all other land-cover categories; and

instances where both the real and modeled data had a matching transition from a

land-cover category to itself were removed.

For the purposes of this discussion, the two land-cover transition matrices that

will be compared against the actual land-cover transition are the “best fit” model

(NSEcat = 0.76) and the “best median” model, the median performer for the highest

scoring parameterization during testing (NSEcat = 0.68, “ = 0.99, B = 64, F
Õ = 1).

Arrow plots, summarizing how land-cover transitions compared between these models,

are shown in Figure 3.7, with the associated confusion matrices listed in Table 3.14

Within the study area, cells with urban land-cover did not transition into any

other category of land-cover during the study period. Forested and agricultural cells

which did transition categories, primarily developed into urban land-cover, followed

by transitions into other categorizations. These forested and agricultural transitions

are the primary source of the classification error within these models and are discussed
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Table 3.14: Confusion matrix comparing the resulting categorical transitions from the NLCD
data to the modeled transitions for both the best fit, and best performing parameterization.
Because the initial cover category for both transitions are definitionally equal, it has been
omitted from the header row. The transition �ú,O represents a transition outside one of the
three major cover categories.

“Best Fit” 2016 Best Median 2016
NLCD 2016 �ú,U �ú,F �ú,A �ú,O �ú,U �ú,F �ú,A �ú,O

�U,U — 0 0 0 — 0 0 0
�U,F 0 0 0 0 0 0 0 0
�U,A 0 0 0 0 0 0 0 0
�U,O 0 0 0 0 0 0 0 0
�F,U 7 0 0 0 7 0 0 0
�F,F 1 — 5 0 0 — 7 0
�F,A 0 0 0 0 0 0 0 0
�F,O 0 7 0 36 3 5 5 30
�A,U 11 0 0 0 11 0 0 0
�A,F 0 0 0 0 0 0 0 0
�A,A 7 1 — 0 3 14 — 0
�A,O 0 4 4 3 1 0 10 0

further is the following section.

3.4 Discussion
The experimental parameters which were tested each had a di�erent degree of impact

on model performance. The recall factor F
Õ, had the strongest impact on model

performance, with values less than 0.75 resulting in model runs that were worse

performers than the probabilistic average for NSEact, and with a value of 0.5 resulting

in worse performance than average for all 3 indices. In the case of NSEact, there

is a noticeable drop in model performance for the case of “ = 0.99 compared to

“ = 0.9; however, this change is not large enough to be statistically significant when

the variance in model performance for the case of “ = 0.9 is considered.
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Looking at the transition plots and confusion matrices for some of the higher ac-

curacy model runs, the largest source of error within the tested models came from

land-cover transitions between the agricultural and forested land-cover categories.

These transitions, like most land cover transitions between cover categories, were

poorly represented within the calibration data, as land-cover transition is a relatively

slow process that even the 5-year interval of the NLCD dataset has di�culty cap-

turing. Similarly, the highest performing models tended to overclassify urbanization

land-cover changes, which were the most represented cross-category land-cover change

in the calibration data set.

The categorical classification into the group other O was the most accurate cross-

category predictor — in particular, categorical transition into the Grassland/Scrub

cover-category. These transitions are present in the calibration and testing datasets,

and frequently occur in proximity to changes in agricultural and forested land-cover

changes. It is possible that this is related to the high confusion in the land-cover

transitions between agricultural and forested land-cover regions, but that level of

testing would require land-cover datasets for similar regions with similar land-cover

transition patterns, which were outside of the scope of this modeling e�ort.

If this work were to be continued, it would be interesting to see how this type

of integrated land-cover transition model would perform over a longer period of time

or wihtin a larger study area, so the number of and type of land-cover transitions

occurring within the calibration dataset would be more representative of the land-

cover transitions occurring within the study period.
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Appendix A
Farm Model ODD+D Document

This appendix contains an ODD+D design document detailing the specifications of
the farmer behavior model described in the Chapter 2.

A.1 Overview
A.1.1 Purpose
This model aims to explore the behavior of farmers within the Missisquoi Bay Area
of the Lake Champlain Basin of Vermont. In particular, the goal is to look at how
farmers within the region may choose to change their land-use practices and adopt
or reject agricultural best management practices (BMPs) and how a government
regulator may implement taxes or subsidies on farming practices in an attempt to
stymie environmental damages to the ecosystems of Lake Champlain.

This model features 480 farmer agents, corresponding to the agricultural land
parcels within the Missisquoi Bay Area, and one municipal regulatory agent. Agents
receive input from their environment, including inter-agent communication and stochas-
tic environmental factors (viz., simulated extreme weather events). Agents make de-
cisions as frequently as once per model year, and the decision policies guiding their
decision-making are trained using deep reinforcement machine learning.

A.1.2 Entities, State Variables, and Scales
Study Area

The study area being used as the basis of this model is a subsection of the Missisquoi
Bay Area of the Lake Champlain Basin of Vermont. Each of the 480 agriculturally-
zoned land parcels in the Bay Area is used as the land basis for an agent in the model,
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Figure A.1: A map of the study area and the locations of the agricultural agents within it.

with each agricultural agent having control of one parcel of land. A map of the study
area and the locations of agents within it is shown in Figure A.1.

Agricultural Agents

Agricultural agents model the behavior of farmers, herders, and other kinds of agri-
cultural land managers within the study area. They make annual decisions about
their farming practices, including whether they should change production in one of
the four modeled agricultural industries (beef, dairy, corn, and hay) and whether
they should implement an agricultural best management practice (BMP) to reduce
phosphorus runo� on their land.

The state properties and variables that each agricultural agent has are listed in
Table A.1. The initialization of these values is detailed in Section A.3.1.

Table A.1: Table of all state properties of agricultural agents and their associated data type
for agricultural agents in this model.

Name Description Data Type
Agent ID Unique identifier for this agent uint
Agent Status enum{3}
Land Parcel Data

Crop Land Area Ac Land devoted to growing crops (sq km) float
Pasture Land Area Ap Land devoted to grazing animals (sq km) float
Total Land Area Atot Total land in parcel (sq km) float

Productivity
Corn pc Corn production factor float
Hay ph Hay production factor float
Beef pb Beef production factor float
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Table A.1: (continued...)

Name Description Data Type
Dairy pd Dairy production factor float

Phosphorous pp,x Phosphorus production factor float
Cows Owned C uint
Financial History

Real Net What was net profit over last 5 years float[5]
Expected Net What was expected profit for last 5 years float[5]

Extreme Event History Extreme event presence over past 5 years uint[5]
BMP Usage History B Did farm use BMP in last 5 years bool[5]
Neighbors References to neighboring agents farmer*[5]
Neural Networks

Actor Network µ Network Weights float[l][w]
Critic Network Q Network Weights float[L][W]

Target Network µ
Õ Network Weights float[l][w]

Target Network Q
Õ Network Weights float[L][W]

Memory Bank float[M*R]
Memory Bu�er float[B*R]

The components of actions that agricultural agents can take are listed in Table A.2.

Table A.2: Table of components of actions that farmer agents can take and their associated
encoding group for n-hot encoding

Group Action Encoding Index
BMP Usage Adopt BMP 0

Don’t Adopt BMP 1
Corn Production Increase by [0, S

+
c

) 2
Maintain 3
Decrease by [0, S

≠
c

] 4
Hay Production Increase by [0, S

+
h

] 5
Maintain 6
Decrease by [0, S

≠
h

) 7
Dairy Production Increase by [0, S

+
d

) 8
Maintain 9
Decrease by [0, S

≠
d

) 10
Beef Production Increase by [0, S

+
b

) 11
Maintain 12
Decrease [0, S

≠
b

) 13
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The production factors were derived by an underlying economic model and are
calibrated from 2001–2040. The equations used are shown for the production of corn
(Eq A.1), hay (Eq A.2), dairy (Eq A.4), and beef (Eq A.3), below.

Pc(t) = pc ú A
b

c
ú 11.433 log t ≠ 86.826 (A.1)

Ph(t) = ph ú A
b

c
ú 1e≠32 exp 0.0358t (A.2)

Pb(t) = pb ú A
b

p
ú 2e≠20 exp 0.0234t (A.3)

Pd(t) = pd ú A
b

p
ú 2e≠9 exp0.0114t (A.4)

The productivity of the agent is modified by the application of the regulatory
agent’s regulations G1 and G2 and the amount of losses due to extreme weather
events (Eq A.5) as a function of whether the BMP was used and whether the number of
extreme events that occurred within the given year exceeds the expected threshold N .

S(B, EE) = 1, EE < N

S(B, EE) = 0.1, EE Ø N, ¬B

S(B, EE) = (0.1 + 0.9Beff ), EE Ø N, B

(A.5)

The reward function uses for training the policies of the farmer agents (Eq A.8)
is defined by the ratio of the squared realized profits of a time-step (Eq A.6) and the
expected profits at that time-step (Eq A.7), translated from the range of all possible
profits (Pmin, Pmax) to the range (≠1, 1).

Pnet(t) =
ÿ

x

Px(t)G1(Pp, B, t)S(B, EE) + G2(Pp, B, t) (A.6)

Pexp(t) =
ÿ

x

Px(t)G1(Pp, B, t) + G2(Pp, B, t) (A.7)

Rf (t) = Pnet(t)2

Pexp(t) : (Pmin, Pmax) æ (≠1, 1) (A.8)

Regulatory Agent

In addition to the numerous agricultural agents, the model contains a single regula-
tory agent that models the behavior of a municipal government or regulatory agency
managing agricultural practices on the landscape and the local environment. Slower
acting than the agricultural agents, the regulator agent acts once every 5 model years,
optionally modifying its incentive structure.

The state properties of the regulatory agent are listed in Table A.3, and details
on their initialization are included in Section A.3.1.
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Table A.3: Properties of Regulatory Agent

Name Description Data Type
Agent ID Identifier for this agent uint
Aggregate Agent Data

BMP Adoption float[15]
Extreme Events uint[15]

Financial History float[15]
P Runo� History float[15]

The components of actions that the regulatory agent can take are listed in Ta-
ble A.4. The phosphorus threshold adjustment action is notably implemented dif-
ferently in that it is a single value which is having the sign taken to determine the
direction of the adjustment.

Table A.4: Table of components of actions that the regulator agent can take and their
associated encoding group

Group Action Encoding Index
Tax Rate Increase by [0, T

+) 0
Decrease by [0, T

≠) 1
BMP Subsidy Provide/Increase 2

Remove/Decrease 3
Phosphorous Thresholdı Scale 4

The goal of the regulator agent is to minimize the aggregate phosphorous output
and storm loss of all agricultural agents, Rr =

e
Wp

q
f Pp,f (t), Wl

q
f lf

f
, where Wp

and Wl are normalizing weights on the component inverse reward signals so that they
vary along ranges of similar magnitude.

A.1.3 Process Overview and Scheduling
Once every model year, starting with the first time step (t=0), the number of ex-
treme weather events for the year is generated from a simple peaks-over-threshold
weather event generator. The number of extreme weather events generated for the
year impacts the agricultural agents’ productivity for that year.

Agricultural agents then act every model year, deciding what action to take and
resolving that decision on the landscape. Every 5 model years, the regulator agent
reads the productivity and losses from the agricultural agents and decides how/if to
alter its incentive strategy for adjusting agricultural agent behavior.
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Figure A.2: A diagram of model execution throughout episodic training. Within each time
step of the episode farmer agents make decisions and learn, every five time steps the regulator
agent acts, and after 40 model years the episode ends and is reset.

An overview of model execution and the looping every model year, every 5 model
years, and every training episode is shown in Figure A.2.

A.2 Design Concepts
A.2.1 Basic Principles
This model is an agent-based model where the agents exist on a shared grid represen-
tative of the chosen study area. Each agent has control over a portion of this grid as
defined by parcel boundaries and can make decisions that can alter the productivity
and land-use practices of the land they manage. Agents take actions independently,
and their e�ect on the grid is synchronized at the end of every time step.

Agents create their decision-making policies using deep reinforcement learning,
where environmental feedback and internal reward valuation drive the way their in-
ternal neural networks learn. Additionally, as they act, state-transitions are stored as
memories within the agents, which are used to determine an agent’s learning speed
and verify that learning progresses in the right direction.

A.2.2 Emergence
There are a few areas of the model where interesting behavioral patterns are more
likely to emerge and be observed. The most visible way is how the agricultural agents
adopt/reject best management practices on their land. Their choices are also directly
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observed and recorded, which allows for the observation of behavioral trends over
time and how those trends correlate to factors like the number of extreme weather
events that occur per model year.

A.2.3 Adaptation
Agents have a few di�erent adaptive traits, viz. the neural networks used to drive
agent decision-making. The networks take in components of the agents’ current state
and use them to select an action to take, over time encoding the agents’ decision-
policies and their reward valuation into the networks.

Additionally, the agricultural agents have several features related to agricultural
production and BMP usage, which factor into their decision-making and can be ad-
justed over time.

A.2.4 Objectives
The two agent types have distinct, somewhat adversarial objectives with regard to
adapting their decision-making. Both agent types are working towards optimizing
their reward functions and associated valuation accuracy.

The goal of the agricultural agents is to maximize their yearly profits. The goal
of the regulatory agent is to minimize the aggregate storm loss accrued by the farmer
agents and their aggregate phosphorous output.

A.2.5 Learning
All human agents in the model learn and develop their decision-making policies using
deep reinforcement machine learning, specifically an adapted version of DDQN. As
the agents take actions in various states and transition between them, these state
transitions are stored in the agents’ memory. After resolving an action, the most
recent state transition is compared against state transitions in agent memory to de-
termine the direction and rate of learning within the problem space. The gradient
generated from this calculation is then used to adjust the agents’ neural networks’
weights and steer their decision-policy towards selecting actions that will create state
transitions most in line with their objectives.

A.2.6 Prediction
Because of how the internal neural networks work, the prediction of future state-
transitions is an implicitly defined process. As each agent makes decisions and expe-
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riences state transitions, it updates a valuation network that estimates the value of
taking actions from states. This estimated valuation is compared against the actual
reward received from taking that action, which is used to update the decision-making
network. Because the actual value of taking an action will not be known until the
action resolves on the landscape, the prediction is somewhat retroactively validated
and used to drive network learning, as opposed to being used to explicitly and actively
look forward while decision-making.

A.2.7 Sensing
Agricultural agents are capable of detecting some historical information about storm
productivity losses and BMP usage from the five nearest neighboring agents. They
also experience extreme weather events as they occur during model years, a�ecting
their yearly productivity. The regulator agent can read information about the state
of the agricultural agents as a collective group and can communicate a uniform reg-
ulatory policy to the agricultural agents. These data fields are listed in Table A.5.

Table A.5: A listing of information shared between agents in this model and its directionality

Value From To Type
BMP Usage (5-year) Farmers 5-nearest Neighbors bool[5]
Net Profits/Losses (5-year) Farmers 5-nearest Neighbors float[5]
BMP Usage Farmers Regulator bool
Net Profits/Losses Farmers Regulator float
P Output Farmers Regulator float
Losses (1-year)

A.2.8 Interaction
Agents in this model neither communicate nor interact with one another directly; they
do however passively share information as outlined in Section A.2.7. Additionally,
the regulator agent has the ability to change the reward/incentive structure for the
agriculture agents when it acts on 5-year intervals.

A.2.9 Stochasticity
Randomness is used in multiple components of the model. During agent initialization,
triangle distributions generate the starting productivity for the agricultural agents,
and He network initialization is used to set the initial neural network weights, which
are detailed in Section A.3.1.
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During training runs of the model, memories are selected as a basis bu�er for
learning using a uniform distribution. Additionally, in runs with nonzero forgetfulness
factors, a degree of uniform stochasticity is added to the accuracy of memory recall
proportional to the factor.

A.2.10 Collectives
Agricultural agents share some historical information with their 5-nearest neighbors,
as outlined in Section A.2.7, but generally aren’t collected in any higher ordered
structuring outside of network analysis.

A.2.11 Observation
Several components of the model are tracked during runs and compiled as observa-
tional data. Agent decisions, farmer budgets, and overall network training/perfor-
mance are recorded throughout model runs.

A.3 Details
A.3.1 Initialization
Several of the parameters are initialized according to triangular distributions, seen
below. Neural networks had weights initialized according to the He initialization
algorithm. [31].

Tri1 (a, b, c) =

Y
]

[
a +

Ò
U(b ≠ a)(c ≠ a) for 0 < U < F (c)

b ≠
Ò

(1 ≠ U)(b ≠ a)(b ≠ c) for F (c) Æ U < 1
(A.9)

Tri2 (a, b) = Tri1
3

a, b,
a

b

4
(A.10)

Tri3 (µ, ”) = Tri1 (µ ≠ ”, µ + ”, µ) (A.11)

Farmer Agents

Many of the initial values used by the agricultural agents are initialized from the input
data. The variables which are set during initialization are listed in Table A.6. Many
of these values are selected from a triangular distribution which was parameterized
according to the calibration of the underlying economic model.
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Table A.6: Initialization of Farm Agents

Value Initialization Type
Agent ID f Assigned sequentially from 0 uint
Parcel Data Ax Read from input file float
Corn Production (USD) pc Tri2(3.362551, 4259232) float
Corn Production (P) pp,c Tri2(2.02e≠4, 6.17e≠4) float
Hay Production (USD) ph Tri2(0.358672, 0.470757) float
Hay Production (P) pp,h Tri2(3.37e≠5, 1.12e≠4) float
Beef Production (USD) pb Tri2(900.0, 1200.0) float
Dairy Production (USD) pd Tri2(210.0, 250.0) float
Cow Production (P) pp,[bd] Tri2(3.366e≠47.853e≠4) float
Cows Owned C Tri2(3600, 7800) uint
Actor-Network Weights �µ He() float[][]
Critic-Network Weights �Q He() float[][]
Target-Actor Weights �µÕ Copied from �µ float[][]
Target-Critic Weights �QÕ Copied from �Q float[][]

Regulatory Agent

The regulatory agent is more reactive than proactive, so most of its internal parame-
ters cannot be set until after the agricultural agents have began to act; however, the
parameters that are generated during initialization are listed in Table A.7.

Table A.7: Initialization of Regulatory Agent

Value Initialization Type
Agent ID r Only 1, so set to 0 uint
Actor-Network Weights �µ He() float[][]
Critic-Network Weights �Q He() float[][]
Target-Actor Weights �µÕ Copied from �µ float[][]
Target-Critic Weights �QÕ Copied from �Q float[][]
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Appendix B
Land-Cover Model Design
Overview

This appendix contains an overview of the design of the land-cover transition model
described in Chapter 3. It generally adheres to the technical principles of the ODD+D
format, as shown in Appendix A, but is focused on where the specification provides
details that do not appear in the main text of this thesis.

B.1 Overview
B.1.1 Purpose
The purpose of this model is to explore potential changes to land cover as a result
of human behavior as it develops in response to projected climatological, economic,
and social scenarios within study areas of the Lake Champlain Basin of Vermont.
Four types of human agents are present in this model; these agents represent some
of the various types of people who make decisions that can change land cover on
the landscape. Agents received input from their environment, including inter-agent
communication and stochastic environmental factors (f.x. simulated extreme weather
events). Agents made decisions as frequently as once per model month, and the
decision policy guiding their decision-making was trained using deep reinforcement
machine learning.

63



B.1.2 Entities, State Variables, and Scales
Study Area

The study area being used as the basis of this model is a subsection of the Lake
Champlain Basin of Vermont. Each parcel within the study area is treated as an
agent within the model. A map of the study area and its initial land-cover is shown
in Figure 3.2.

Agents

There are four types of human agents present in this model — agricultural, com-
mercial, residential, and forester. These agents represent various types of landown-
ers/managers within each study area who are able to make decisions that can a�ect
land-use and land-cover. They make these decisions based on both their material
state and their perceived mental and financial state. Agent behavior is trained using
deep reinforcement machine learning, which provides each agent with a decision-policy
that guides their decision-making during test model runs.

The state variables that are present in every human agent in the model are outlined
in Table B.1

Table B.1: Table of all properties that are shared amongst all human agents in the land-cover
transition model.

Name Description Data type
Agent ID Unique identifier for this agent uint
Parcel ID Identifier of underlying land cell parcel uint
Agent Status Class-dependent internal status enum
Neural Networks
Actor Network �µ Network Weights float[][]
Critic Network �Q Network Weights float[][]

Target Actor �µÕ Network Weights float[][]
Target Critic �QÕ Network Weights float[][]

Agricultural Agents

Agricultural agents model the behavior of farmers, herders, and other kinds of agri-
cultural land managers within each study area. They make annual decisions about
their farming practices, including whether they should change production in one of
the four modeled agricultural industries (beef, dairy, corn, and hay) and whether
they should implement an agricultural best management practice (BMP) to reduce
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phosphorous runo� on their land. The additional state variables that are found in
every agricultural agent in the model are outlined in Table B.2.

Table B.2: Table of all state properties of agricultural agents and their associated data type
for agricultural agents in the land-cover transition model.

Name Description Data Type
Land Parcel Data (sq km)

Crop Land Area Ac Land devoted to growing crops float
Pasture Land Area Ap Land devoted to grazing animals float

Total Land Area Atot Total land in parcel float
Land Cover (Cell Count)

cc,m Cropland/In-use uint
cc,a Cropland/Adjacent uint
cp,m Pasture/In-use uint
cp,a Pasture/Adjacent uint
ca,u Agricultural/Unmaintained uint
co,a Other/Adjacent Cell Count uint

Productivity
Corn pc Corn production factor float
Hay ph Hay production factor float
Beef pb Beef production factor float

Dairy pd Dairy production factor float
Phosphorous pp,x Phosphorus production factors float[3]

Cows Owned uint
Financial History (5-year)

Realized Net Net yearly production float[5]
Expected Net Expected yearly production float[5]

Extreme Event History bool[5]
BMP Usage History Did farm use BMP in last 5 years bool[5]
Neighbors References to neighboring agents uint[5]

Forestry Agents

Forestry agents model the behavior of loggers and other kinds of forested land man-
agers within the study area. They make annual decisions about their practices and
whether to implement an advised management practice (AMP) on their land. The
forestry agents are implemented very similarly to the agricultural agents, but the land-
cover of interest has been changed to forested land, and the production function has
been replaced with a generalized forested productivity function. The additional state
factors used by the forestry agents in their decision-making are listed in Table B.3.
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Table B.3: Table of state properties of forestry agents and their associated data types in the
land-cover transition model.

Name Description Data Type
Land Parcel Data (sq km)

Forested Land Area Ap Total forested land in parcel float
Total Land Area Atot Total land in parcel float

Land Cover (Cell Count)
cf,m Forested/In-use uint
cf,a Forested/Adjacent uint
cf,u Forested/Unmaintained uint
co,a Other/Adjacent Cell Count uint

Productivity
General pf Relative production factor float

Phosphorous pp Relative production factor float
Financial History (5-year)

Realized Net Net yearly production float[5]
Expected Net Expected yearly production float[5]

Extreme Event History bool[5]
AMP Usage History Did agent use AMP in last 5 years bool[5]
Neighbors References to neighboring agents uint[5]

Commercial Agents

Commercial agents model the behavior of shops, factories, o�ces, and other kinds of
commercial land-holders within the study area. They make decisions bi/trimonthly
about their workforce, including their available jobs and the associated salaries.
Byproducts of their actions impact the density and sprawl of urban land cover on
the landscape. The additional state factors that it uses in decision-making are listed
in Table B.4.

Table B.4: Table of state properties of commercial agents and their associated data types in
the land-cover transition model.

Name Description Data Type
Days Operational Number of days operating uint
Employee Count Current number of employed agents uint
Employee Capacity Maximum number of employed agents uint
Employee IDs IDs of employed agents uint*
Employee Salaries Salaries of employed agents float*
Total Pay Total salaried paid to all employees float
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Name Description Data Type
Budget Total monthly budget float

Residential Agents

Residential agents model the behavior of renters and landowners within the study
area. They make two decisions annually: whether to attempt a job change and
whether to try to move houses. Household satisfaction, and their reward value Rr, is
valued as a combination of financial stability and mental satisfaction. Each household
earns wages provided by a commercial agent — these wages are determined by a
stochastic process and can be adjusted by the job over time. The decisions of these
agents do not directly impact land cover change on their associated parcel, but land
cover can transition within their parcel as a result of the decisions of other agents.

Table B.5: Table of state properties of residential agents and their associated data types in
the land-cover transition model.

Name Description Data Type
Employer ID ID of current employer uint
Housing Costs Total monthly cost of living float
Salary Total monthly income from employer float
Monthly Budget Net income over past 1 month float
Yearly Budget Net income over past 12 months float[12]
Time in State Number of time steps with current ‘mood’ uint
Failed Action Count Number of consecutive failed actions uint

B.1.3 Process Overview and Scheduling
Each time-step within the model is representative of one modeled month. Each model
year (12 time-steps), the number of extreme weather events for the year are generated
and the agricultural and forestry agents act.

The commercial agent has two primary decision-vectors, the decision to increase or
decrease overall productivity is resolved trimonthly (3 time-steps), while the decision
to hire/fire sta� is resolved bimonthly (2 time-steps). At the end of each model
year (12 time-steps), the commercial agent will increase the salary of all employed
residential agents by 10%.

A commercial agent which loses its last employee, by firing or quitting, will enter
the “bankrupt” state at the end of the occurent time-step, and will not be replaced
with a “new” commercial agent until 3 time-steps have passed. This new agent has a
period of 3–6 time-steps to acquire its first employee before it can bankrupt again.
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The residential agent acts monthly (1 time-step); however, its actions are depen-
dant on the behavior of other agents in the model — f.x. a residential agent cannot
move into an occupied house regardless of its price. If a residential agent intends to
leaves its job, house, or the entire system, this action cannot be blocked, it is only
additive actions which face this restriction.

A new residential agent may only enter the system if there is an available residen-
tial parcel with an occupation status of “vacant” or “for-sale” and the total number of
residential agents within the system does not match nor exceed the current residential
capacity. This new residential agent will be added to the system at the start of the
following time-step.

B.2 Initialization
B.2.1 Agent Connections
Agricultural and forestry agents are all connected to their 5-nearest agents of the
same type. Since these agents do not move on the landscape, these networks are
constant throughout each model run.

Commercial and residential agents exist within a bipartite network. During model
initialization, each commercial agent starts with an employment capacity of 10. At
model start, 90% of residential agents are assigned jobs selected with uniform like-
lihood from that available commercial capacity. The initial employment capacity
within the selected study area ensures that there will always be more initial capacity
than 90% of the initial residential capacity. These networks are dynamic and change
as agents make decisions throughout each model run.

B.2.2 Initial Agent State
Many of these values are selected from triangular distributions which was parame-
terized according to the calibration of the underlying economic model. Triangular
distributions, as described in Section A.3.1, are used for the initialization of many
parameters. Neural networks had weights initialized according to the He initialization
algorithm. [31].

Value Initialization Type
Agent ID Assigned sequentially from 0 uint
Parcel ID Read from Input Data uint
Actor-Network Weights �µ He() float[][]
Critic-Network Weights �Q He() float[][]
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Value Initialization Type
Target-Actor Weights �µÕ Copied from �µ float[][]
Target-Critic Weights �QÕ Copied from �Q float[][]

Agricultural Agents

Many of the initial values used by the agricultural agents are initialized from the
input data. The variables which are set during initialization are listed in Table B.7.

Table B.7: Table listing initialization of parameters of the agricultural agents in the land-
cover transition model

Value Initialization Type
Parcel Data Ax Read from input file float
Corn Production (USD) pc Tri2(3.362551, 4259232) float
Corn Production (P) pp,c Tri2(2.02e≠4, 6.17e≠4) float
Hay Production (USD) ph Tri2(0.358672, 0.470757) float
Hay Production (P) pp,h Tri2(3.37e≠5, 1.12e≠4) float
Beef Production (USD) pb Tri2(900.0, 1200.0) float
Dairy Production (USD) pd Tri2(210.0, 250.0) float
Cow Production (P) pp,[bd] Tri2(3.366e≠4, 7.853e≠4) float
Cows Owned C Tri2(3600, 7800) uint

Residential and Commercial Agents

Initial agent salaries are selected from the weighted categorical distribution described
in Table B.8 on the range (250, 1000). The initial rent/mortgage price for each urban
land parcel is selected from a uniform distribution on the range (400, 1100).

Table B.8: Table listing distribution of initial agent salaries and the weight on their proba-
bility.

Weight Initial Salary
10 250
20 300
30 350
50 400
70 450
85 500
90 550
85 600

69



Table B.8: (continued...)

Weight Initial Salary
70 650
60 700
50 750
50 800
50 850
50 900
30 950
20 1000
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Appendix C
Result Listings

This appendix contains listings of model results which would be di�cult to display
alongside the main text.

Table C.1: Mean BMP adoption rate for uniform-population runs of the agricultural model
for the parameterizations with results plotted in Figure 2.4, Figure 2.5, and Figure 2.6.

g F BMPe �EE Adoption Rate
0.0 0.0 0.0 -0.2 0.053
0.0 0.0 0.0 0.0 0.058
0.0 0.0 0.0 0.2 0.040
0.0 0.0 0.5 -0.2 0.150
0.0 0.0 0.5 0.0 0.252
0.0 0.0 0.5 0.2 0.461
0.0 0.0 1.0 -0.2 0.349
0.0 0.0 1.0 0.0 0.505
0.0 0.0 1.0 0.2 0.759
0.0 0.5 0.0 -0.2 0.173
0.0 0.5 0.0 0.0 0.231
0.0 0.5 0.0 0.2 0.452
0.0 0.5 0.5 -0.2 0.202
0.0 0.5 0.5 0.0 0.300
0.0 0.5 0.5 0.2 0.450
0.0 0.5 1.0 -0.2 0.399
0.0 0.5 1.0 0.0 0.488
0.0 0.5 1.0 0.2 0.589
0.0 1.0 0.0 -0.2 0.310
0.0 1.0 0.0 0.0 0.333
0.0 1.0 0.0 0.2 0.427
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Table C.1: (continued...)

g F BMPe �EE Adoption Rate
0.0 1.0 0.5 -0.2 0.339
0.0 1.0 0.5 0.0 0.349
0.0 1.0 0.5 0.2 0.450
0.0 1.0 1.0 -0.2 0.411
0.0 1.0 1.0 0.0 0.491
0.0 1.0 1.0 0.2 0.529
0.05 0.0 0.0 -0.2 0.106
0.05 0.0 0.0 0.0 0.124
0.05 0.0 0.0 0.2 0.121
0.05 0.0 0.5 -0.2 0.364
0.05 0.0 0.5 0.0 0.418
0.05 0.0 0.5 0.2 0.478
0.05 0.0 1.0 -0.2 0.733
0.05 0.0 1.0 0.0 0.793
0.05 0.0 1.0 0.2 0.847
0.05 0.5 0.0 -0.2 0.092
0.05 0.5 0.0 0.0 0.088
0.05 0.5 0.0 0.2 0.094
0.05 0.5 0.5 -0.2 0.219
0.05 0.5 0.5 0.0 0.265
0.05 0.5 0.5 0.2 0.332
0.05 0.5 1.0 -0.2 0.378
0.05 0.5 1.0 0.0 0.463
0.05 0.5 1.0 0.2 0.566
0.2 0.0 0.0 -0.2 0.304
0.2 0.0 0.0 0.0 0.276
0.2 0.0 0.0 0.2 0.361
0.2 0.0 0.5 -0.2 0.396
0.2 0.0 0.5 0.0 0.473
0.2 0.0 0.5 0.2 0.548
0.2 0.0 1.0 -0.2 0.667
0.2 0.0 1.0 0.0 0.695
0.2 0.0 1.0 0.2 0.733
0.2 0.5 0.0 -0.2 0.333
0.2 0.5 0.0 0.0 0.356
0.2 0.5 0.0 0.2 0.454
0.2 0.5 0.5 -0.2 0.396
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Table C.1: (continued...)

g F BMPe �EE Adoption Rate
0.2 0.5 0.5 0.0 0.467
0.2 0.5 0.5 0.2 0.574
0.2 0.5 1.0 -0.2 0.5957
0.2 0.5 1.0 0.0 0.586
0.2 0.5 1.0 0.2 0.641
0.2 1.0 0.0 -0.2 0.324
0.2 1.0 0.0 0.0 0.340
0.2 1.0 0.0 0.2 0.405
0.2 1.0 0.5 -0.2 0.396
0.2 1.0 0.5 0.0 0.478
0.2 1.0 0.5 0.2 0.590
0.2 1.0 1.0 -0.2 0.520
0.2 1.0 1.0 0.0 0.608
0.2 1.0 1.0 0.2 0.661

Figure 2.7

Table C.2: Mean BMP adoption rate for mixed-population runs of the agricultural model
for the parameterizations with results plotted in Figure 2.7 for each sub-population: (1) lo-
cal F = 0, (2) local F = 1, and (3) mixed neighborhood.

g Group P BMPe �EE Adoption Rate
0.0 1 0.25 0.0 0.0 0.111
0.0 2 0.25 0.0 0.0 0.202
0.0 3 0.25 0.0 0.0 0.209
0.0 1 0.25 0.5 0.0 0.270
0.0 2 0.25 0.5 0.0 0.322
0.0 3 0.25 0.5 0.0 0.313
0.0 1 0.25 1.0 0.0 0.507
0.0 2 0.25 1.0 0.0 0.529
0.0 3 0.25 1.0 0.0 0.508
0.0 1 0.5 0.0 0.0 0.140
0.0 2 0.5 0.0 0.0 0.186
0.0 3 0.5 0.0 0.0 0.166
0.0 1 0.5 0.5 0.0 0.265
0.0 2 0.5 0.5 0.0 0.302
0.0 3 0.5 0.5 0.0 0.289
0.0 1 0.5 1.0 0.0 0.504
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Table C.2: (continued)

0.0 2 0.5 1.0 0.0 0.537
0.0 3 0.5 1.0 0.0 0.522
0.0 1 0.75 0.0 0.0 0.111
0.0 2 0.75 0.0 0.0 0.199
0.0 3 0.75 0.0 0.0 0.149
0.0 1 0.75 0.5 0.0 0.271
0.0 2 0.75 0.5 0.0 0.323
0.0 3 0.75 0.5 0.0 0.321
0.0 1 0.75 1.0 0.0 0.518
0.0 2 0.75 1.0 0.0 0.546
0.0 3 0.75 1.0 0.0 0.518
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