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ABSTRACT 
 

Multiple sclerosis is an immune-mediated disease of the central nervous system 

that commonly results in impaired sensory function, balance, coordination, and fatigue. 

Persons with multiple sclerosis (PwMS) experience high rates of falls, with over half 

experiencing a fall in any three-month period. Presently, fall risk is assessed at biannual 

office visits, but symptoms are known to fluctuate and it is not clear that these assessments 

provide an adequate picture of a patient’s fall risk. Remote monitoring of a patient’s 

balance and mobility with wearable sensors may provide a way to better characterize fall 

risk, but technologies for making these measurements are just emerging. The purpose of 

this work was to advance the state of science in remote monitoring of balance and mobility, 

and to use the resulting technology to identify potential predictors of fall risk in PwMS. 

The primary technical contribution of this work was a data analysis platform that 

allows for remote characterization of balance and mobility impairment. The platform 

detects walking and standing bouts from free-living wearable accelerometer data and 

computes metrics that describe how patients are engaging in these balance-challenging 

activities. This platform was leveraged to examine data from two cohorts of PwMS.  

First, data from the platform were used to better understand the relationship 

between walking bout duration and measures that describe how a patient is walking. 

Walking metrics were significantly different between bouts of differing lengths, and 

between walking bouts observed in and out of the clinic. Long remote bouts were the 

closest to in-clinic measurements and were best able to identify PwMS at higher risk for 

falls using deep learning models. Interestingly, short remote bouts were best when using 

more traditional machine learning techniques.  

Data from the platform were then used to investigate how much data is enough for 

capturing valid measures of balance and mobility impairment remotely. Analysis revealed 

only two days of data are needed to capture most measures of gait and postural sway in our 

cohorts of PwMS. In general, minimum wear duration was predicted by the daily variability 

of a measurement and number of daily observations.  

Finally, data from the platform were used to further establish remote postural sway, 

measured by chest-worn accelerometer, as a digital endpoint for balance impairment. 

Chest-derived measures of sway were validated relative to gold-standard force platforms. 

A new analysis approach, which builds individualized distributions of each postural sway 

measure, was introduced that increased accuracy for classifying PwMS’ risk for falls and 

the strength of associations with patient-reported measures (PRMs) of balance impairment. 

Remote measures of sway differed from these lab measures but had stronger associations 

to PRMs. A patient-specific clustering approach for analyzing remote sway further 

strengthened associations and enabled detection of PwMS at higher risk for falls.  

Overall, this body of work addresses several key challenges of remote wearable 

sensor data analysis and introduces remote postural sway as a novel digital endpoint for 

balance impairment. 
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 CHAPTER 1: WEARABLES AND FALL RISK IN PERSONS WITH 

MULTIPLE SCLEROSIS 

1.1. About Multiple Sclerosis 

Multiple Sclerosis (MS) is characterized by progressive demyelination and axonal 

damage throughout the central nervous system [1], [2]. As a result, persons with MS 

(PwMS) experience in symptoms including debilitating fatigue and impaired coordination, 

muscle strength, and sensation [1]. Collectively, these symptoms lead to problems with 

balance and postural control, especially during dynamic activities, as well as altered 

movement and gait patterns [3]. MS is estimated to impact over 2.3 million people globally 

with a typical symptom onset of 30 years old. 

1.2. Falls in MS 

Despite the young age of symptom onset, over half of PwMS experience a fall in 

any given 3-month period, similar incidence to 80 year-old adults [4]. Over half of these 

falls result in injury, which increases fear of falling and decreases quality of life [5]. As a 

result of the young age of symptom onset coupled with the frequent falls, MS is a 

substantial long-term burden on the health care system, costing an estimated to be $85.4 

billion in the United States alone [6]. 

1.3. Clinical Assessment of Falls in MS 

PwMS are most commonly assessed by a clinician at biannual office visits; an 

observation frequency incapable of capturing the true time-varying nature of symptoms in 

MS [7]. Fall history is one of the most important predictors of fall risk in PwMS [8], but 

only 51% of falls are self-reported [9]. In clinical practice, fall prevention interventions are 

not often prescribed until recurrent falls have been reported to a healthcare provider. An 
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objective method of characterizing fall risk may enhance our ability to prescribe 

preventative interventions. 

1.3.1. Patient Reported Measures 

A common and accessible method to assess impairment and fall risk is to use a 

questionnaire, known as patient reported measures (PRMs) [8], [10]–[21]. There are 

several PRMs designed to capture differing aspects of MS. The most common PRMs are 

the Activities-Specific Balance Confidence (ABC) to capture balance confidence [22], 

Modified Fatigue Impact Scale (MFSI) to capture fatigue [23], [24], Multiple Sclerosis 

Walking Scale (MSWS) to capture walking impairment [25] and Falls Efficacy Scale to 

capture fear of falling [26]. The Expanded Disability Status Scale is a neurologist 

administered PRM that is designed to assess overall disability. Each of these has been 

shown to relate to fall risk in some respect; ABC has been shown to be the best predictor 

of falls in PwMS [27], [28]. However, these assessments are subjective and only capture a 

single observation and therefore cannot provide an objective assessment of PwMS’s 

disease state. 

1.3.2. Functional Assessments 

Another means of assessing fall risk and impairment are functional assessments. 

These are simple tasks that are designed to allow a clinician to assess mobility and 

impairment. Examples include chair stand tests [29], [30], timed up and go [31], [32], walk 

tests [33], [34], dual tasking [35], [36], balance tests [37]–[40], and reaction time 

assessments [41]. While the results of these assessments may be related to fall risk [8], 

[21], there is little consensus on standardized threshold that would considered a PwMS at 

an elevated risk of falls [29]. Additionally, these assessments, such as the Berg Balance 
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Assessment, may only be sensitive to more severe disease states [42]. Lastly, functional 

assessments require a clinician and thereby only capture a one-time assessment and do not 

account for any variability in time of day or participant’s schedules. 

1.3.3. Clinical Interventions 

Once an elevated risk of falls is identified, clinical interventions are typically 

prescribed. Common interventions include pharmacological treatments, exercise/physical 

therapy, education, home set up, and using assistive devices. Studies have found that these 

interventions can significantly increase quality of life in MS both with and without 

pharmacological treatment [43]–[45]. Exercise based interventions, however, have been 

shown to be more effective in earlier stages of disease, highlighting the need for earlier 

identification of fall risk [43].  

1.4. Introduction to Wearable Sensing 

Traditional gait and balance assessments require cumbersome equipment such as 

motion capture or force platforms. In addition to the prohibitive cost of these technologies, 

these methods also limit assessments to laboratory-based environments. Wearable inertial 

measurement units may provide an opportunity to quickly and unobtrusively capture the 

fall-related biomechanics of PwMS, and in clinical environments [46], [47]. To this end, 

several recent studies have demonstrated the ability of body-worn sensors to capture 

biomechanical measures associated with fall risk in PwMS (e.g., walking speed [48], stride 

time variability [49], and balance measures of postural sway [50], [51]) and demonstrate 

correlations with clinical assessments [51]–[53]. Recent advances in wearable technology 

pair improvements in battery life with conformal designs [54] allow studies to be deployed 

in the free-living environment. The advancing sensor design coupled with lower device 
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cost, compared to motion capture, make wearables-based assessments more accessible for 

clinicians and patients. As a result, sensors are being integrated into point of care; thus, 

algorithms and analysis techniques need to be designed to utilize these data. 

1.5. Wearable Sensing Methods of Fall Risk Assessment 

Objective fall risk assessments can also benefit from wearable sensors. While non-

wearable objective measures exist [28], [55], [56], wearables provide a simple low-cost 

approach to measure motion and thus fall risk. Wearables allow fall risk assessment both 

in laboratory/clinic environments and in free-living conditions.  [47].  

1.5.1. Laboratory Based Assessment Methods 

Gait in PwMS is becoming a well-studied area, with several laboratory-collected 

measures showing relationships to fall status [46], [52]. Studies assess various aspects of 

gait such as stride time variability [49], backwards walking [57], and measures of stability 

[55], [58]. The best performing models of fall classification utilize deep learning [27] 

methods to learn representations straight from the raw data instead of using manual feature 

extraction. 

Wearables-based postural sway has not been used extensively in fall risk 

assessment up to this point. Sun et al. shows that sway measures can be used to classify 

fallers from non-fallers during a lab-based standing assessment, however, accuracy is poor 

at 53% [59]. Most standing and balance related assessments are still conducted using force 

plates [50] and analyze dynamic balance [40], [60]. As a result, several open questions 

exist, regarding the best method to compute sway features, which body locations should be 

measured, etc.  
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In addition to gait and sway assessments, there is a body of research aiming to 

augment the already utilized functional assessments with wearables to increase sensitivity. 

Studies have shown that adding sensors to chair stand tests [29], [61] and timed-up-and-go 

tests [61] increases our ability to classify fall risk. While this is a promising method to 

increase detection, these methods still require clinician supervision, thus limiting their 

deployment to broader communities. 

1.5.2. Remote Assessment Methods 

In order to increase accessibility of assessments, wearables are beginning to be 

leveraged in remote studies to monitor PwMS during their daily life [47]. Storm et al. 

demonstrated that gait in PwMS is significantly different during free-living conditions 

compared to the lab [62]. The impact of these results on remote gait fall risk assessment 

remains an open question that will be explored in this dissertation. Interestingly, studies 

have found that remotely collected chair stand tests actually provide greater predictability 

than those collected in the clinic [63].  Postural sway measures, however, have not been 

investigated remotely prior to the work presented herein.  

1.5.3. Prior Work 

Prior to the completion of this dissertation work, the author completed a study 

utilizing deep learning to classify fall risk from in lab walking [27]. In this analysis, one-

minute of hallway walking was found to provide excellent fall classification performance, 

with an area under receiver operator characteristic curve (AUC) of 0.88, when using the 

data from a thigh and chest accelerometer as input to deep learning models. This approach 

outperformed other feature-based gait approaches and other clinical methods. However, 

when this model was applied to remotely collected data in PwMS, the results were very 
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poor, with an AUC of 0.40.  This result provided the motivation for the work presented 

herein.  

1.6. Purpose of Work 

The purpose of this work is to address the challenges of remote monitoring to allow 

for robust assessment of gait and balance impairment related to fall risk in persons with 

MS. This will be investigated using a data analysis platform developed by the author to 

characterize gait and postural sway remotely. In doing so, several questions will be 

investigated. Does remote walking duration affect gait and fall risk assessment? How much 

data is sufficient for remote monitoring? Can metrics of postural sway be measured from 

the chest? Is there a more sensitive way to calculate measures of postural sway? And 

finally, can remotely collected postural sway classify fall risk and demonstrate clinical 

utility? 
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CHAPTER 2: OPEN-SOURCE DATASET REVEALS RELATIONSHIP 

BETWEEN WALKING BOUT DURATION AND FALL RISK 

CLASSIFICATION PERFORMANCE IN PERSONS WITH MULTIPLE 

SCLEROSIS. 

2.1. Introduction 

Over 50% of falls result in injury and 66% of first-time falls require a visit to the 

emergency department, reducing quality of life and yielding an estimated annual healthcare 

cost of $80 billion in the United States alone [5]. Of the 2.3 million PwMS globally, over 

half will experience a fall in any three-month period [64]. As MS is a chronic condition, 

injurious falls pose a substantial and long-term burden to patient quality of life and the 

healthcare system [65].   

Given these impacts, effective fall prevention is critical. Fall risk in PwMS is 

difficult to assess as it is known to vary both within and across days. Fall risk may be 

elevated in the absence of an assistive device (e.g., walking sticks) [66] or during balance-

challenging tasks, such as walking, position transfers, and changes of direction [67]. 

However, current clinical assessments often only occur once every six months; an 

observation frequency incapable of capturing the true time-varying nature of symptoms in 

MS, limiting the ability to prescribe preventative interventions [7]. There is a clear need 

for novel assessments that are sensitive to this inherent variability and that can capture the 

relationship between symptom fluctuations and fall risk. One approach is for assessments 

to incorporate continuous monitoring in free-living conditions, which provide far more 

than a twice-per-year snapshot of symptoms, and advanced machine learning techniques 

that can effectively capture the complex relationship between these movement data and fall 
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risk.  

With the growing availability of wearable sensor data, it may now be possible to 

leverage machine learning, and particularly deep learning models, to learn high-level 

outcomes like fall risk directly from raw sensor data without manual feature engineering 

[68], [69]. Studies employing deep learning for time series classification tasks, such as our 

prior work classifying fall risk in PwMS from in-lab measurements [27] and work from 

others to detect falls and classify fall risk in non-MS populations with balance and mobility 

impairment [70]–[78], have found superior results when compared to machine learning 

techniques that rely on manually-constructed features. Notably, these results are achieved 

despite the significant amounts of data needed for training deep learning models. It is 

possible that given larger available datasets, performance of these models could improve 

further, but the accumulation of these large datasets remains a barrier to entry for many 

into the use of deep learning models for characterizing fall risk.  

Remote gait monitoring in PwMS may enable continuous fall risk assessment and 

the deployment of personalized fall prevention interventions. In this approach, data from 

individual walking bouts could inform fall risk status instantaneously. This vision has 

motivated the development of fall risk classification models that require only wearable 

sensor data from a single gait bout as model inputs [27], [79], [80]. However, deploying 

these models remotely comes with additional challenges that may impact model 

performance. For example, it is well established in PwMS [62], [81], [82] and other 

populations [83]–[85] that gait observed in the clinic differs from gait observed remotely 

(especially for gait speed-dependent variables). Similarly, studies in older adults [86] and 

PwMS [62] have also discovered that gait parameters change with walking bout duration. 
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However, it is currently unclear how walking bout duration relates to fall risk in PwMS 

[66], [86], and this has not been evaluated in previous development of fall risk 

classification models [27], [79], [80].   

The primary objective of this work is to share a new, open-source dataset that can 

help other research groups develop digital biomarkers of impairment and fall risk in PwMS. 

In service to this objective, we present a framework for remote gait analysis on this dataset 

and use it to examine how gait parameters and fall risk classification performance, based 

on feature-based machine learning and stride acceleration based deep learning methods, 

change in relation to walking bout duration in PwMS.  

2.2. Materials and Methods 

2.2.1. Dataset: Subjects and Protocol 

A sample of 38 PwMS (21:17 fallers:non-fallers; 12:27 Male:Female, mean ± 

standard deviation age 51 ± 12 y/o), recruited from the Multiple Sclerosis Center at 

University of Vermont Medical Center participated in this study (exclusion: no major 

health conditions other than MS, no acute exacerbations within the previous three-months, 

ambulatory without the use of assistive devices). PwMS who self-reported to have fallen 

within the previous six-months were characterized as fallers based on the criteria “consider 

a fall as an event where you unintentionally came to rest on the ground or a lower level.” 

All participants were asked to return for two additional identical study visits six-months 

and one-year following their initial visit. Of the 38 original cohort, 28 returned for a six-

month follow-up (15:13 fallers:non-fallers; 8:20 Male:Female), and 15 returned for a one-

year follow-up (6:9 fallers:non-fallers;6:9 Male:Female). Patients completed self-reported 

6-month fall history each visit, allowing their fall status to change at subsequent visits. The 
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high attrition rate observed in this study was largely due to the COVID-19 pandemic, as 3 

six-month and 11 one-year follow-ups were cancelled for this reason. 

On the day of testing, subjects provided written informed consent to participate in 

the study. A neurologist with subspecialty expertise in MS completed the Expanded 

Disability Status Scale (EDSS) for each subject [87]. Subjects were asked to complete the 

our fall history survey: Fall Trips and Slips 6-month Survey, Activities-specific Balance 

Confidence Scale (ABC) [22], Modified Fatigue Impact Scale (MFIS) [23], Neurological 

Sleep Index (NSI) [88], and Twelve Item MS Walking Scale (MSWS) [25]. Two missing 

NSI entries in the clinical survey data were filled using k-nearest-neighbors (n=3) [89]. 

Table 1 reports demographics of the sample.  

Table 1: Subject Demographics 

Visit Assessment Fallers Non-faller 

Initial 

N 21 17 

Age 56.0 (9.05) 45 (12.92) 

Sex 5M:16F 7M:10F 

ABC 75.0 (18.8) 91.4 (15.5) 

EDSS 3.3 (1.4) 2.3 (1.0) 

MFIS 39.8 (17.9) 29.2 (16.7) 

MSWS 55.0 (23.3) 27.5 (11.5) 

NSI 56.6 (17.2) 46.6 (22.2) 

6-month 

N 15 13 

Age 55.3 (10.3) 44.2 (14.0) 

Sex 4M:11F 4M:9F 

ABC 73.8 (14.1) 90.1 (11.5) 

EDSS 3.3 (1.3) 2.0 (0.8) 

MFIS 41.0 (17.2) 25.1 (19.5) 

MSWS 46.0 (22.3) 31.3 (14.0) 

NSI 58.9 (23.3) 42.6 (23.2) 

1-year 

N 6 9 

Age 57.0 (9.7) 49.9 (10.8) 

Sex 4M:2F 2M:7F 

ABC 72.3 (22.0) 79.3 (17.1) 

EDSS 3.6 (1.6) 2.3 (1.1) 

MFIS 38.5 (14.4) 35.9 (18.9) 
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MSWS 59.7 (24.4) 38.7 (12.3) 

NSI 43.0 (23.4) 60.6 (13.0) 

Mean (standard deviation) of survey results partitioned by fall status. ABC: Activity-

Specific Balance Confidence; EDSS: Expanded Disability Status Scale; MFIS: Modified 

Fatigue Impact Scale; MSWS: MS Walking Scale; NSI: Neurological Sleep Index; N: 

number of subjects in group 

 

 

Subjects performed several activities in the lab completed in the following order: 

right and left tibialis anterior maximum voluntary contraction, timed-up-and-go (TUG) [1], 

timed 25-foot walk test [90], 30-second chair stand test [91], lying to standing transition, 

three separate two-minute standing tests: tandem standing, feet shoulder-width apart eyes 

open, and feet shoulder-width apart eyes close, one-minute hallway walk at a self-selected 

pace including one turn, 30-second normal standing, 30-second upright sitting, 30-second 

slouch sitting, and 30 seconds each lying on back, left side, right side, and prone. During 

the lab visit, subjects were instrumented with MC10 BioStamp sensors. Accelerometer 

(31.25 Hz, ±16G) and electromyography (1000 Hz) were collected from the right and left 

tibialis anterior. Accelerometer (250 Hz, ±16G) and angular rate gyroscope data (250 Hz, 

±2000º/s) were collected from the chest and lower back as well as bilaterally from the 

anterior thighs, proximal lateral shank, and dorsal aspect of the feet. Electromyography 

was collected to allow the investigation of foot drop, a common cause of falls in PwMS 

[92]. Detailed placement information can be found in Table 2. At the conclusion of the lab 

visit, the participants were sent home with two MC10 BioStamp sensors for 48 hours 

located on the medial chest and right anterior thigh measuring acceleration (31.25 Hz ± 

16G) placed in accordance with Table 2. Data from these sensors were recorded throughout 

the subject’s daily life. These deidentified data are available at 

https://simtk.org/projects/msense_ms_adls. This protocol was approved by the University 
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of Vermont’s Institutional Review Board (CHRMS 18-0285). Portions of this dataset have 

been used previously to support the development of approaches for characterizing fall risk 

from lab-based gait and from in-lab and remotely tracked thirty-second chair-stand tests 

[27], [29], [63]. In these studies, raw gait data collected in lab and deep learning models 

were able to adequately classify fall risk, and chair-stand-tests conducted remotely and in 

lab provided similar levels of fall risk classification performance. 

Table 2: Sensor Placement 

Location Sensing Modality 1 Sensing Modality 2 Placement Details 

Medial Chest Accel: 250 Hz, ±16G 
Gyro: 250 Hz, 

±2000º/s 

Secured to sternum just 

below sternoclavicular 

joint. 

Sacrum Accel: 250 Hz, ±16G 
Gyro: 250 Hz, 

±2000º/s 

Between or just above 

PSIS 

Anterior 

Thigh (R/L) 
Accel: 250 Hz, ±16G 

Gyro: 250 Hz, 

±2000º/s 

Anterior aspect of thigh 

~25% from knee to hip 

Proximal 

Lateral Shank 

(R/L) 

Accel: 250 Hz, ±16G 
Gyro: 250 Hz, 

±2000º/s 

Secured to proximal 

lateral shank, ~4 fingers 

below fibular head 

Tibialis 

Anterior 

(R/L) 

Accel: 31.25 Hz, 

±16G 
EMG: 1000 Hz 

Placed on muscle belly 

(widest part) of TA 

Dorsal Foot 

(R/L) 
Accel: 250 Hz, ±16G 

Gyro: 250 Hz, 

±2000º/s 

Placed on metatarsals 2-

4 

R/L: sensor placed symmetrically on right and left side of body; Accel: acceleration; EMG: 

electromyography; Gyro: gyroscopic data (angular velocity); PSIS: posterior superior iliac 

spine; TA: tibialis anterior. 

 

2.2.2. Remote Gait Analysis 

An overview of the remote gait analysis pipeline is presented in Figure 1. The 

depicted framework begins with acceleration gathered from the BioStamp sensors located 

on the thigh and chest followed by activity classification (e.g. finding walking), event 

detection within walking bouts, feature extraction, and finally analysis. Each aspect of this 

pipeline (gait bout identification, stride detection, parameter extraction, and analysis) are 
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discussed in more detail below. In terms of analysis, we examine the impact of context and 

bout duration on discriminating fallers from non-fallers, and on the performance of feature-

based and deep learning methods for classifying fall risk. These analyses are only 

performed on the data from the initial study visit (n = 38). 

Figure 1:  Pipeline for free-living gait analysis from BioStamp nPoint wearable 
sensor data.  

 

Pipeline for free-living gait analysis from BioStamp nPoint wearable sensor data. Activity 

classification is performed via deep neural network (BiLSTM architecture) on windows of 

accelerometer data sampled from the chest and thigh. Walking bouts are extracted from the 

resulting activity timeseries and gait events are identified using previously validated 

approaches to detect strides. Gait parameters are extracted from each walking bout and 

used for further analysis. 

 

2.2.3. Activity Classification 

Activity classification was carried out with wearable sensor data from the chest and 

thigh. Gait bouts were identified using a deep learning approach that leverages a Long 

Short Term Memory (LSTM), a type of recurrent neural network for analyzing time series 

data, architecture adapted from [93]. Specifically, the network is composed of a single 

Bidirectional LSTM (BiLSMT) layer with 215 hidden units [94], a 40% drop out layer 

[95], and Adam optimization [96]. This classifier was developed using 58% data from 

PwMS, 26% from healthy adults, and 16% from persons with Parkinson’s Disease to 
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provide a wide variety of example gait and non-gait data for training. Data labeled as gait 

were sampled from prescribed slow, comfortable, and fast walking trials completed 

overground, as well on a treadmill for healthy adults. Data labeled as non-gait were 

sampled from standing, sitting, lying, running and stair ascent and descent. Ten-fold cross 

validation was conducted on the training set consisting of 20,000 4-second observations 

(50:50 gait:non-gait) yielding validation accuracy of 98.5%. Performance on a held-out test 

set consisting of 3,000 observations (50:50 gait:non-gait) was 98.4%, providing evidence 

that the classifier is well positioned to be used on new datasets. This network was then 

leveraged to identify all walking bouts completed by all subjects during the 48-hour free-

living wear period. Walking bouts were identified by classifying 4-second segments of 

data, where consecutive walking segments were concatenated into a single bout. 

2.2.4. Stride Detection 

Following walking bout identification, strides were extracted using the method 

described and validated in [97], [98]. At a high level, this stride extraction method estimates 

step and stride frequency from the power spectral density of the thigh accelerometer signal. 

A filter bank based on these frequencies then provides the signals used to identify foot-off 

and foot-contact events from specific signal features. This algorithm has been validated on 

a wide range of walking speeds, 0.56-1.78 m/s [98], which covers the expected range of 

walking speeds for PwMS [99]. Bouts with fewer than two extracted strides were removed 

automatically before proceeding with the analysis that follows.  

2.2.5. Gait Parameter Extraction 

Following walking bout and stride identification, the following features were 

calculated for each stride and averaged for each bout; stance time, swing time, stride time, 
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coefficient of variation of stride time (stride time CV), duty factor, and coefficient of 

variation of duty factor (duty factor CV) [97]. The remaining features were calculated on 

the entire bout: Root mean square of the anterior-posterior acceleration from the chest 

sensor (RMS AP) [100], medial-lateral frequency dispersion of the chest sensor (Freqd 

ML) [100], and the entropy ratio between the thigh and chest [101]. Lyapunov exponent of 

the medial lateral (Ly ML) and anterior-posterior (Ly AP) chest sensor were calculated for 

gait bouts longer than 60 seconds [100].  

The features mentioned above were selected based on previous literature that 

demonstrates their association with MS-induced gait impairment and fall risk. Stance time, 

swing time, and stride time have been shown to be significantly correlated with patient 

reported walking impairment in PwMS [102]. Stride time, duty factor [103], RMS AP, and 

Freqd ML have been shown to identify differences in walking impairment between PwMS 

and healthy controls [100]. Stride time CV has been shown to be strongly associated with 

fall risk in PwMS [104]. Non-linear measures, entropy ratio [101] and Lyapunov exponent 

in the ML and AP directions of chest acceleration [100], have been shown to capture gait 

stability in PwMS.  

2.2.6. Walking Content and Bout Duration Analysis 

Gait parameter data were grouped into one of three categories based on the duration 

of the walking bout from which they were extracted: short – 8 seconds or shorter; medium 

– 12-28 seconds; or long – 32 seconds or longer. These durations were based on results 

reported in other examinations of free-living gait [105]. Comparisons to gait parameters 

derived from lab-collected hallway-walking data and combined home data, grouped as all, 

were also made, see Table 4.  Bouts where strides could not be identified or with 
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physiologically impossible values, defined as two standard deviations above and below the 

population average stride time, were deleted (496 removed in total). Gait parameters for 

each walking bout in each duration were summarized using mean, median, max, min, 

standard deviation, 5
th

 percentile, and 95
th

 percentile for each subject.  

Group differences in each of the gait parameters were identified using Wilcoxon 

Rank Sum tests between fallers and non-fallers at each bout duration and between in-lab 

and free-living contexts. A significance threshold of ! = 0.05 was used for all statistical 

testing.  

2.2.7. Feature-based Fall Risk Classification 

Statistical models that require extracted features for discriminating between 

individuals at high and low risk for falls were trained and tested on five different feature-

sets: gait parameters calculated on short, medium, and long gait bouts, all free-living gait 

bouts, and in-lab gait data. These feature-sets contained one entry per identified valid 

walking bout. Classifier performance was established using leave-one-subject-out cross 

validation (LOSO-CV). In this approach, data from all but one participant (N = 37) were 

partitioned into a training dataset while data from the remaining subject was used for 

testing. This process was repeated until data from each subject had been included in the 

test set. The LOSO-CV approach ensures the model was tested on subjects it had not 

previously seen, which provides a realistic estimate of how the model would perform 

during real-world use. The normalized posterior probabilities, known as the decision 

scores, assigned to the held-out subject were combined to calculate an overall model 

performance by considering the area under the receiver operating characteristic curve 

(AUC). AUC was chosen as the main performance metric because it provides a 
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comprehensive measure of how well a classifier is able to discriminate between groups 

without selecting a specific threshold and allows the results to be compared to other studies.  

Features were normalized using z-scores then reduced using principal components 

analysis (PCA) within each iteration of the LOSO-CV.  Prior to feature reduction, short, 

medium, and all-bouts have 8 features per input, long bouts have 9 features per input, and 

lab bouts have 11 features per input. To explain the discrepancy in the number of features, 

note that Entropy Ratio is computed for the long bouts and Entropy Ratio, Lyapunov 

Exponent AP-direction, and Lyapunov Exponent ML-direction are computed for lab 

walking. The principal components that explained 95% of the variance of these reduced 

feature sets were extracted, resulting in approximately 6 principal components for each 

home walking duration and 7 principal components for lab data. The reduced feature sets 

were then used to train Logistic Regression (LR) [106], Support Vector Machine (SVM) 

[107], Decision Tree [108], K-Nearest Neighbors (KNN) [109], and Ensemble of Trees 

(ENS) [108] binary statistical classification models to discriminate between subjects at 

high and low fall risk. A variety of model types were used to capture different relationships 

in the feature space, as each model excels with different shaped feature spaces [110]. 

Similar modeling approaches have been used previously to assess fall risk, as the fall risk 

of non-fallers is considered low and fallers high [27], [111]. Model hyperparameters were 

optimized with MATLAB’s Optimize Hyperparameters feature, with no access to test data, 

for each input feature set to provide the highest classification performance in terms of 

AUC.  
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2.2.8. Deep Learning Fall Risk Classification 

Based on previous literature [27], we also developed deep learning models for 

classifying walking fall risk. As used previously, we leveraged Long Short-Term Memory 

(LSTM) networks for this analysis. In our prior work, we demonstrated that the best 

classification performance was achieved considering four strides of data per input to the 

model, and showed that model performance changed with the number of strides considered 

[27]. For our analysis, we first optimized our networks to provide the best performance 

using four strides per input. This was done by extracting every walking bout with four or 

more strides and concatenating every consecutive, non-overlapping, four strides into a 

model input. These inputs contain three channels of raw acceleration from both the thigh 

and chest sensor from sequential strides. These data were arranged as a 6xN cell array, 

where the six represents the number of acceleration channels from both sensors and N 

represents the lengths of each stride summed. In the example case of a four-stride input, 

each input consisted of the thigh and chest acceleration from extracted stride 1 

concatenated with the data from stride 2, then 3 and 4.  Model outputs were a decision 

score for each input representing the posterior probability that the input belonged to a given 

class. Models were trained using LOSOCV, where n = 36 for training, n = 1 for validation, 

and n = 1 for testing for each training iteration (n = 35). A modified LOSOCV procedure 

was used for the deep learning methods to include an additional validation set to investigate 

the impacts of 18djustting the number of training epochs; note, this method ensures that all 

data from a given subject is only included in one of the training, validation, or test sets. 

Using four stride inputs, we optimized our model over the number of LSTM or 

Bidirectional LSTM (BiLSTM) layers, training epochs, and number of hidden units based 
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on the validation performance. The best two models were then selected and used to train 

inputs with one through twenty-two strides. The model referred to as LSTM 2 consisted of 

the following layers: an LSTM layer with 290 hidden units, 30% dropout, BiLSTM layer 

with 10 hidden units, 40% dropout, a fully connected layer, and softmax. The model 

referred to as LSTM 3 consisted of the following layers: an LSTM layer with 85 hidden 

units, 55% dropout, an LSTM layer with 85 hidden units, 55% dropout, an LSTM layer 

with 235 hidden units, 45% dropout, a fully connected layer, and softmax. The models 

were trained for 55 and 125 epochs, respectively, and both utilized Adam optimization. 

Model denoted as ABC contained the subjects’ ABC score in the model inputs. 

Performance was assessed using area under the receiver operator curve (AUC) from the 

held-out test set for individual input predictions and for an aggregated model performance 

using the median classification from each subject.  

2.3. Results 

A total of 15,097 free-living walking bouts were analyzed, with 9,135 (61%) 

identified as short, 4,840 (32%) as medium, and only 1,122 (7%) as long. Gait parameters 

differed considerably between bout lengths (Table 3). Notably, stride time CV, swing time, 

duty factor CV, RMS AP, and Freqd ML were significantly different between all bout 

durations. Stride time CV and RMS AP increased, and Freqd ML decreased with increasing 

duration. The increase in stride time CV at home may indicate greater stride to stride 

variability. Swing time of short and medium bouts was similar and greater than that 

observed during long bouts. Collectively, the increase in motion in the direction of travel 

and decrease in lateral motion implies that PwMS walk with greater stability during longer 

walking bouts.  
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Table 3: Difference of Medians Testing for Free-Living Gait Parameters from 
Differing Bout Lengths 

Comparison Feature Median 1 Median 2 p-value 

4-8 vs. 12-28 

Stride Time 1.16 1.16 0.460 

Stride Time CV 0.067 0.085 < 0.001 
Stance Time 0.71 0.71 0.644 

Swing Time 0.44 0.45 0.012 
Duty Factor 0.62 0.62 0.025 

Duty Factor CV 0.042 0.054 < 0.001 
RMS AP 0.14 0.14 < 0.001 
Freqd ML 0.62 0.60 < 0.001 

4-8 vs. 32+ 

Stride Time 1.16 1.12 < 0.001 
Stride Time CV 0.067 0.079 < 0.001 

Stance Time 0.71 0.69 < 0.001 

Swing Time 0.44 0.42 < 0.001 

Duty Factor 0.62 0.62 0.005 
Duty Factor CV 0.04 0.051 < 0.001 

RMS AP 0.14 0.15 < 0.001 
Freqd ML 0.62 0.55 < 0.001 

12-28 vs. 

32+ 

Stride Time 1.16 1.12 < 0.001 
Stride Time CV 0.085 0.079 < 0.001 

Stance Time 0.71 0.69 < 0.001 
Swing Time 0.45 0.42 < 0.001 
Duty Factor 0.62 0.62 0.081 

Duty Factor CV 0.054 0.051 0.011 
RMS AP 0.14 0.15 < 0.001 
Freqd ML 0.61 0.55 < 0.001 

Rank sum test with level of significance ! = 0.05, significant results bolded and italicized. 

Stride, swing, and stance time in seconds; Freqd ML in Hz; RMS AP in √g; Duty Factor is 

unitless.  

 

Significant differences between home and lab walking were found for all bout 

durations (Table 4). Freqd ML was significantly higher in free-living than in-lab conditions 

for all walking durations, with the shorter durations showing the largest differences. Stride 

time was also increased in free-living gait, with significant differences found in short, 

medium, and combined walking durations. As expected, these results imply that longer 

free-living walking bouts are the most similar to those completed in the lab, however, 

significant differences in the longer bouts remain. Specifically, the long free-living bouts 
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have significantly higher entropy ratios, and Lyapunov exponents in the AP direction than 

those completed in the lab – each of which indicates a decrease in stability in free-living 

situations.   

Table 4: Difference of Medians Testing for Free-Living and in Lab Gait Parameters 
from Differing Bout Lengths 

Comparison Feature 
Median  

In-lab 

Median  

Free-living 
p-value 

Lab data vs 4-8 

Stride Time 1.11 1.16 < 0.001 
Stride Time CV 0.06 0.067 0.030 

Stance Time 0.69 0.71 0.001 
Swing Time 0.42 0.44 0.045 
Duty Factor 0.62 0.62 0.473 

Duty Factor CV 0.045 0.042 < 0.001 
RMS AP 0.14 0.14 0.641 

Freqd ML 0.55 0.62 < 0.001 

Lab data vs. 12-

28 

Stride Time 1.11 1.16 < 0.001 
Stride Time CV 0.06 0.085 < 0.001 

Stance Time 0.69 0.71 0.001 
Swing Time 0.42 0.45 0.014 
Duty Factor 0.62 0.62 0.979 

Duty Factor CV 0.045 0.054 0.050 
RMS AP 0.14 0.14 0.538 

Freqd ML 0.55 0.60 < 0.001 

Lab data vs. 32+ 

Stride Time 1.11 1.12 0.160 

Stride Time CV 0.060 0.079 < 0.001 
Stance Time 0.69 0.69 0.206 

Swing Time 0.42 0.42 0.312 

Duty Factor 0.62 0.62 0.776 

Duty Factor CV 0.045 0.051 0.050 
RMS AP 0.14 0.15 0.042 
Freqd ML 0.55 0.55 0.205 

Lyapunov AP 0.006 0.014 < 0.001 
Lyapunov ML 0.013 0.012 0.194 

Entropy Ratio 1.78 2.55 < 0.001 

Lab data vs All 

home data 

Stride Time 1.11 1.16 < 0.001 
Stride Time CV 0.060 0.064 0.821 

Stance Time 0.69 0.71 0.002 
Swing Time 0.42 0.44 0.037 
Duty Factor 0.62 0.62 0.673 

Duty Factor CV 0.045 0.042 0.195 

RMS AP 0.14 0.14 0.948 

Freqd ML 0.55 0.61 < 0.001 
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Unit of stride, swing, and stance duration is seconds. Unit Freqd ML is Hz, RMS AP is √g, 

and Duty Factor is unitless. All p-values found using a rank sum test using a significance 

threshold of 0.05, significant results are bolded and italicized. 

 
 

Significant differences between the gait parameters of fallers and non-fallers were 

observed for short and long walking bouts as seen in Table 5. Notably, in short walking 

bouts, we see fallers have a lower RMS AP, signifying higher impairment as expected 

[100]. This suggests short and long walking bouts are more sensitive to fall risk compared 

to medium duration walking bouts. Fall classification models trained on the gait parameters 

explored in this study performed best on lab walking bouts and short walking bouts when 

considering home walking only (see AUC of knn for 8-seconds or less in Fig. 2).  

 

Figure 2: Fall Risk Classification Model AUC for Short Home, Medium Home, 
Long Home, All Home, and In-Lab Walking Bouts 

 
 

 
Table 5: Significant Differences of Medians of Gait Parameters for Fallers vs Non-
Fallers from Differing Bout Lengths 

Bout 

Duration 
Feature Median Faller  

Median 

Non-faller 
p-value 
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4-8 

Max RMS AP 0.25 0.36 0.012 
Med RMS AP 0.13 0.15 0.019 
Mean RMS AP 0.14 0.15 0.019 
95

th
 P RMS AP 0.20 0.22 0.037 

12-28 No significant differences 

32+ 

5
th

 P Duty Factor 0.57 0.58 0.017 
Mean Duty Factor 0.61 0.62 0.017 
Med Duty Factor  0.61 0.63 0.018 
Max Duty Factor 0.65 0.66 0.029 
Max Stance Time 0.79 0.86 0.033 
95

th
 P Duty Factor 0.64 0.65 0.038 

Min Entropy Ratio 1.06 0.92 0.039 
Med Swing Time 0.43 0.43 0.040 

Unit of step, swing, and stance duration is seconds. Unit Freqd ML is Hz, RMS AP is √g, 

and Duty Factor is unitless. All p-values found using a rank sum test using a significance 

threshold of 0.05, significant results are bolded and italicized.  5
th

 or 95
th

 P: 5
th

 or 95
th

 

percentile; Med: Median. 

 

The best overall feature-based fall classifier was a decision tree model using lab 

walking bouts. Performance of this model was characterized by an AUC of 0.70. The best 

performing feature-based home fall classification model was a KNN with short bout inputs 

achieving an AUC of 0.63. The KNN model also performed best for medium walking 

bouts, and all home walking bouts, providing AUCs of 0.52 and 0.59 respectively. The best 

performing feature-based model on long home walking bouts was the LR model, with an 

AUC of 0.54. The best performing deep learning model was the LSTM 2 trained on inputs 

with 22 strides with ABC for all walking bouts using the median aggregation of all 

classifications at home with an AUC of 0.76. The best performing non-aggregated model 

was LSTM 3 with ABC trained on input with three strides from all walking bouts. Detailed 

performance of the models can be found in Table S1, located in the appendix. Figure 3 

reveals that when using the median aggregation, the performance of the medium bouts sees 

a notable improvement compared to the other bout lengths, suggesting that the aggregation 

may be reducing some of the noise inherent in that walking duration. Figure 4 shows the 
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performance of each model relative to its input size, which seems to show that short, 

medium, and long bouts continue to increase their performance with dataset size. In 

contrast, the all-bouts models seem to achieve stable performance levels as dataset size is 

increased.  

Figure 3: Fall risk classification model AUC for best performing deep learning model 
from short, medium, long, and all walking bouts for 1-5 inputs per stride without 
aggregation (left) and with median aggregation (right). 
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Figure 4: Fall risk classification model AUC for LSTM 2 ABC and LSTM 3 ABC for 
all stride durations colored by bout length, short (blue), medium (pink), long (red), 
and all (black), plotted against the training set size for each model. 

 

Fall risk classification model AUC for LSTM 2 ABC and LSTM 3 ABC for all stride 

durations colored by bout length, short (blue), medium (pink), long (red), and all (black), 

plotted against the training set size for each model showing increasing performance, 

increasing exponential fits, for several model/bout configurations with data set size. Notice 

the stronger increasing trends in the right LSTM 3 plots in all and long bouts compared to 

the LSTM 2 plot. Additionally notice the increase in slope of short LSTM 2 compared to 

short LSTM 3. This suggests that the larger models are needed to capture variability in 

longer bouts and smaller models perform better with shorted bouts. Note, the medium trend 

(not shown) was strongly increasing for both LSTM 2 and 3. 

 

The impact of these results is twofold. First, considering the feature-based methods, 

these models show that overall fall risk is best predicted by lab walking and that for free 

living gait fall risk is best predicted by considering short-duration walking bouts. Second, 

we show that deep learning models trained on raw stride data perform better on home data 

when considering all bouts and using a larger number of strides per input. As the strides 

per input increase, the gait is likely more similar to steady-lab walking than variable free-

living walking. With this hypothesis, both the feature-based models and deep learning 
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modeling reach a similar conclusion (supported by Table 4), namely that many consecutive 

clean strides are needed to classify fall risk using this framework. Figure 4, however, shows 

that the performance of both models using medium, and all bouts seems to increase with 

dataset size. Short bouts using the LSTM 2 model also appear to show and increasing 

performance with more data, however, the limited range of data set sizes for small data 

limits the ability to find trends.  Performance using long bouts is better captured using a 

larger model such as LSTM 3 which shows improvement with increasing data set size 

compared to the smaller LSTM 2 model where this trend does not exist. These trends, 

however, suggest that the addition of more data, and perhaps models that can better account 

for the variability may provide better performance. 

2.4. Discussion 

In this paper we present a novel wearable sensor dataset collected from PwMS. 

This dataset includes data from a supervised laboratory visit, neurologist assessments, 

patient reported measures, and an unsupervised monitoring period for each PwMS. Novel 

findings from the in-lab period of this study have found walking and 30-second chair 

stand tests to be indicative of fall risk [27], [29]. Analysis of free-living 30-second chair 

stand tests and posture transitions have also revealed relationships with fall risk and 

impairment [63]. Herein, we presented a preliminary analysis of walking in the free-

living environment as it relates to fall risk and differing lengths of walking bouts.  

The main finding from this study is that both gait bout length and environment 

influence wearables-based fall classification in PwMS. Specifically, the best performance 

overall was observed for classifiers that use lab data or long, steady walking bouts that are 

similar to the lab (Fig. 2 and Table A1). The best performing feature-based model on free-
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living data was trained on short walking bouts, suggesting that short free-living bouts may 

be worth further exploration with a more nuanced feature-set. Our best un-aggregated deep 

learning model was trained on 3-stride inputs from all bouts. We hypothesize this 

performed best because deep learning models require a large amount of data to train and 

considering all bouts allows the model access to far more data than just the short bouts.  

Compared to other fall risk classification studies, the performance of our remote 

fall risk classifier is on par with many lab-based studies, but still lags behind the best 

approaches. In-lab studies have achieved AUCs between 0.73 and 0.79 in older adults 

[112]. In PwMS an in-lab study using the dynamic gait index achieved an AUC of 0.80 

[55] and our prior work, where a deep learning model was used on walking data, achieved 

an AUC of 0.88 [27]. The difference between our previous lab-based fall risk performance 

of 0.88 and the performances presented herein highlights a key challenge in using deep 

learning methods on remote data. Namely, that the model must be able to reconcile the 

additional variability in gait observed under free living conditions. Performance was 

observed to increase with increasing dataset size in figure 4, indicating that deep learning 

approaches may be able to learn appropriate representations of the data to account for this 

variability, but the dataset considered here is likely not large enough. By open-sourcing 

these data, we aim to allow future researchers to realize the promise of deep learning for 

fall risk classification in PwMS.  

Our finding that bout length and environment influence discrimination of fallers 

from non-fallers is in agreement with similar gait-based classification applications in 

patients with neurological disorders. For example, one study found that the features that 

best discriminate between PwMS and healthy controls were different when using lab data 



28 

and home data [113]. Similarly, other studies demonstrate that shorter walking bouts 

provide better discriminative power when trying to identify a person with Parkinson’s 

Disease versus healthy controls as well [105], and pace is different in free-living walking 

compared to in-lab for PwMS [62].  

The influence of bout length and environment on fall classification is likely related 

to the observed differences in the various gait descriptors used as features in the 

classification models (Tables 3 and 4). This finding contributes more generally to the 

growing body of evidence that controlled in-lab observations of gait are not representative 

of free-living conditions. In the current study, this discrepancy was more pronounced for 

short and medium walking bouts than for long; a finding which is likely due to the fact that 

the in-lab walking bout was, by our definition, a long walking bout (one-minute long). 

Differences observed between gait parameters calculated at differing bout lengths (see 

Table 3) show that stride, stance, and swing time decrease as bout duration increases. This 

likely means that PwMS are increasing their cadence for longer walking bouts. The 

observed decrease in ML frequency dispersion with increasing bout length also suggests 

PwMS walk more steadily, with less lateral motion for long duration walking bouts. These 

results are consistent with Storm et al., who found that gait pace significantly increased 

and variability significantly decreased with increasing bout length [62]. Karle et al. found 

little correlation between an in-lab 2-minute walk test and free-living walking [81]. In older 

adults, Najafi et. Al observed significantly different walking strategies between short and 

long walks [86]. The reason for this change in gait is unknown, however, it can be 

speculated that shorter walking bouts may elicit more goal-direction actions towards 

activities other than walking while longer bouts are more purposeful [105]. Further 
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expanding on the involuntary nature of shorter walking bouts, subjects may be more likely 

to be dual-task walking, in other words focused on more than just walking, and may be 

more impacted by the start-up and stopping strides [114]. This conjecture aligns with 

research on dual-task walking in PwMS that shows dual-task walking is more 

discriminative of impairment than single task walking [57].  

The distribution of bout length in free-living gait from the current sample (61% 

short, 32% medium, 7% long) is comparable to what has been observed in Parkinson’s 

disease [105]. Preliminarily, this consistency across populations may suggest a 

phenomenon that is representative of free-living gait more generally. This raises important 

questions concerning remote gait analysis more broadly to be investigated in future 

research. For example, does bout length explain the free-living vs. in-lab discrepancy in 

various gait descriptors consistently observed across multiple populations? If the observed 

distribution of bout lengths does generalize, then free-living gait is generally short-bout 

and less purposeful while long, purposeful walking is rare. Further, given that in-lab 

investigations of gait are controlled and supervised by a clinician or researcher, they may 

naturally elicit more purposeful walking from the subject (even over short distances) and 

be less prone to the impacts of fatigue inherent in daily-life. Thus, differences in free-living 

and in-lab gait may be explained by the fact that aggregated metrics of free-living data 

(e.g., average gait speed in a 24-hour period) are dominated by those characteristic of short-

duration gait bouts (> 50%) and is influenced to a far lesser extent by metrics characteristic 

of long-duration and purposeful gait bouts (< 10%).  

There are several limitations to our study. First, our relatively small sample with 

moderate to low impairment may not generalize to a larger population of PwMS, 
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particularly PwMS with EDSS greater than six, who were not represented in this study. 

Other studies utilize different sensing modalities that provide gait speed, which was not 

available with our data collection set up. Additionally, our analysis methods require a four 

second window to be classified as non-walking to denote separate bouts. This definition of 

what defines a separate bout may impact certain gait quantity metrics, however, our study 

uses gait quality metrics which have been shown to be independent of temporal gait bout 

definitions [115]. Lastly, symptoms in PwMS are known to fluctuate over differing time 

scales and thus, 48 hours may not have been a long enough collection time to provide an 

accurate depiction of each participants overall mobility status [7]. Future work will be 

needed to determine how gait parameters vary in PwMS on longer time scales.  

With the presented dataset, we hope to alleviate one of the most challenging issues 

related to human subject research with wearables: not having enough data. Publicly 

available datasets gathered from PwMS are largely related to medical imaging [116]–[118] 

and medication [119]. One dataset tackles a related issue: remote fall detection in PwMS 

[120], however, it is lacking data from PwMS who have yet to become recurrent fallers, 

preventing the investigation of gait as it relates to distinguishing fallers from non-fallers 

and potentially fall-risk prediction. Utilizing the presented data, potentially with other 

collected or open-source data, researchers may be able to leverage deep learning to enhance 

the performance of their digital biomarkers and phenotypes, and particularly for detecting 

fall risk in PwMS in both lab and free-living environments. With that said, the vision of 

real-time monitoring fall risk monitoring comes with challenges such as when and how to 

alert the user to an elevated fall risk, how or if to integrate with their comprehensive care, 

and these data need to be protected. These are all challenges that will need to be addressed 
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and researched in the future as we move towards a preventative care paradigm for falls in 

PwMS and other populations with balance and mobility impairment.  

2.5. Conclusion 

Herein, we introduce a new open-source dataset featuring activities of daily living 

and functional assessments from a lab environment as well as two days of free-living data 

in PwMS. This dataset features data from PwMS with lower impairment, including 

approximately half that do not yet have recurrent fall histories. As an example use case, we 

present a study of gait in the free-living environment. In this study, we explored differences 

in gait parameters calculated on short, medium, and long duration walking bouts.  

Specifically, we investigated the significant differences between durations of home 

walking and in-lab walking and fall classification performance using features calculated 

from differing walking durations. Several significant differences were found between the 

gait parameters at differing durations. We also demonstrated that fall risk classification 

performance using gait changes based on walking bout duration. Short walking bouts, 8 

seconds or less, were found to be the most discriminative, providing significant differences 

between fallers and non-fallers and providing the best free-living fall classification 

performance in the feature-based models. Additionally, we demonstrated that in-lab 

walking gait parameters are significantly different from free-living walking, at all 

durations, and that fall risk models used on remote data should be trained with remote data. 

While future studies are required to assess the reliability of these findings over a longer 

time period, these results suggest that remote gait analysis may benefit from focusing on 

short walking bouts in future analysis.   
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CHAPTER THREE: HOW MUCH DATA IS ENOUGH? A RELIABLE 

METHODOLOGY TO EXAMINE LONG-TERM WEARABLE DATA 

ACQUISITION IN GAIT AND POSTURAL SWAY 

3.1. Introduction 

Wearable sensors are increasingly common, with a vast number of uses including 

health research [47], [56], [63], [121]–[128],  and fitness tracking [129]–[131]. Laboratory-

based studies of features of gait and postural sway have contributed important foundational 

knowledge to the field of wearable sensor-based movement tracking [59], [122], [132]–

[136]. However, they also indicate that movement characteristics measured in the lab often 

do not reflect those displayed during daily life, and thus only capture a limited picture of 

balance and mobility impairment [123], [137], [138]. Recent advances in wearable 

technology pair improvements in battery life with conformal designs [54], allowing studies 

to be deployed in the free-living environment. Work in this emerging area has focused 

largely on demonstrating feasibility [139] and identifying reliable measures of gait 

performance [121], [137]. 

Many free-living studies of balance and mobility have been conducted in older adults, 

however, these studies may be more informative in certain clinical populations, such as 

those with neurological disorders [47], [140]. For example, persons with multiple sclerosis 

(PwMS) experience symptom fluctuations due to disease. As a result, a bi-annual clinic 

visit or in-lab assessment may not capture an accurate picture of their impairment, nor its 

variability [141]. In contrast, remote observation with wearable sensors could enable a 

more accurate assessment of balance and mobility impairment that is sensitive to variability 

over time and is captured while patients are engaging in their everyday lives. However, it 
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is not yet clear how long we must monitor these patients to capture an accurate picture of 

their impairment and its variability. Prior studies have found that the necessary wear 

duration for capturing measures of mobility impairment depends on the activity, metric, 

and population being considered. For example, two to three days of data are required to 

capture gait speed, and four days are required for capturing daily step counts in healthy 

adults [138], [142]. Three days are needed for remotely monitoring chair stand tests in 

healthy adults and persons with Parkinson’s disease [143]. Between two and seven days 

are required for physical activity metrics (e.g., Actigraphy) depending on which metric is 

being considered [144]–[149]. While these studies recommend sensor wear durations, there 

is not an established method for arriving at these conclusions. Some studies rely on intra-

class correlations (ICC) for this analysis [138], [143]. Others use analysis of variance [146], 

generalizability theory [148] (similar to ICC), or a combination of ICC and difference 

testing [147]. Each of these approaches considers different aspects of the data, leading to 

slightly different conclusions. Moreover, these methods do not consider how wear duration 

impacts the relationship between sensor-derived parameters and other important variables 

such as patient-reported measures of impairment. This burgeoning field of research has 

only considered a small subset of potential wearable-derived metrics for characterizing 

balance and mobility impairment and a standardized and rigorous process for evaluating 

necessary wear duration remains an unmet need.  

For PwMS, prior work has identified key laboratory-based measures of balance and 

mobility impairment that can be derived from wearable sensor data. Spatiotemporal gait 

metrics, such as gait speed and stride time, have been associated with disease severity 

[137], [150] and fall risk [122]. Similarly, postural sway metrics have been associated with 
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fall risk and balance impairment in PwMS [56], [151]. Given these findings, it is likely that 

remote monitoring of gait and postural sway could be important in this population. 

However, it remains unclear how long PwMS must be monitored in the free-living 

environment to provide reliable measurements of these parameters. 

The purpose of this work is to demonstrate a comprehensive and reproducible 

approach for determining the wearable monitoring duration needed to capture an accurate 

picture of impairment and its variability. We aim to establish this minimum monitoring 

period to balance patient burden, convenience, and cost. We apply this approach to study 

the impact of wear duration on postural sway and gait measures in PwMS.  

3.2. Materials and Methods 

An overview of the approach used for studying the wear duration required for 

capturing gait and balance impairment and its variability with wearables in a sample of 

PwMS is provided in Figure 5. As depicted, we remotely collected data from PwMS, used 

a classification model to identify period of walking and standing, computed metrics of gait 

and sway, and then performed our analysis of wear duration. The sample and associated 

experimental protocol are detailed in Section 3.2.1. The framework for detecting walking 

and standing bouts and extracting associated balance and mobility performance parameters 

is presented in Section 3.2.2. Finally, the three-stage wear duration analysis is presented in 

Section 3.2.3 along with details for how it was implemented in this study. 
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Figure 5: Overview of approach for wear duration analysis. 

 

Accelerometer data were collected from BioStamp nPointâ (Medidata) devices worn on 

the chest and bilaterally on the thighs by a sample of persons with multiple sclerosis 

(PwMS) for six-weeks. Sensors were worn for all hours of the day during monitoring 

periods. A deep learning approach was used to detect bouts of walking and standing from 

which performance measures were extracted. Measures were analyzed through a three-

stage process to determine the number of days of wear required to capture an accurate 

picture of impairment and its variability. 

3.2.1. Participants and Protocol 

Herein we consider data from 22 PwMS (5:16 Male:Female, mean ± standard 

deviation age 51 ± 9 y/o) recruited from the Multiple Sclerosis Center at University of 

Vermont Medical Center and from the University of Vermont’s IDEAL for MS Program 

(inclusion: no condition affecting balance and mobility other than MS, ambulatory without 

aid, no known skin hypersensiveity to adhesives or hydrogel, not preg-t or breastfeeding).  

Participants were asked to complete biweekly at-home sensor wear for 12 weeks, 

yielding six weeks of sensor data for analysis. All participants completed at least two-

weeks of monitoring (n=22), 21 participants completed five weeks and 19 completed all 

six weeks of monitoring. During the sensor wear weeks, participants were asked to 

complete a daily 30-second chair stand test, a one-minute walk, and a 30-second standing 
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balance assessment (upright and still for 30-seconds). Each evening participants were 

asked to complete a daily falls survey and the Acitivity-Specific Balance Confidence 

assessment (ABC) [22]. At the end of each non-sensor wear week, participants were asked 

to complete the Modified Fatigue Impact Scale (MFIS) [23] and 12 item Multiple Sclerosis 

Walking Scale (MSWS) [25]. This timing was chosen because these surveys ask 

participants to recall the past two weeks. During active sensor wear weeks, participants 

were instrumented with BioStamp nPoint sensors for all hours of the day located on the 

left upper chest, and bilaterally on the anterior aspect of each thigh collecting acceleration 

(31.25 Hz, ±16G) and electromyography (250 Hz) data. This sensor system is FDA cleared 

and details of these sensors has been perviously disucssed [152]. Data from the sensors was 

saved locally on the sensors and then uploaded to the nPoint cloud via a provided dock 

following a daily sensor change. Participants were also asked to fill out the Patient-

Determined Disease Steps (PDDS) following the completion of their monitoring period 

[153]. Due to the remote nature of the study, patient disability was assessed with PDDS 

instead of a neurologist-conduct Expanded Disability Severity Assessment [154]. The 

mean (std) survey results for our cohort are as follows: PDDS 0.88 (1.05); ABC 77.6 (21.9); 

MFIS 28.3 (16.1); MSWS 19.1 (7.1). This protocol was approved by the University of 

Vermont’s Institutional Review Board (CHRMS 21-0401). 

3.2.2. Remote Analysis Pipeline 

Periods of walking and standing were identified in the wearable accelerometer data 

from each participant using a classification model described previously [123]. Briefly, this 

model uses a deep learning approach where windows of raw accelerometer data from the 

thigh and chest are classified as walking, standing, sitting, lying or other using a model 
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with two Long-Short-Term-Memory layers [123], [155]. This model was trained on over 

100,000 four-second observations of acceleration from a different cohort of PwMS, healthy 

adults, and persons with Parkinson’s disease resulting in a validation accuracy over 96%. 

Following activity classification, gait events were identified using the thigh 

acceleration-based method described in previous work [98], [121]. Walking bouts with two 

or more valid strides were used for analysis. Temporal, stability, and asymmetry measures 

of gait were extracted from each bout. The temporal gait parameters (computed for each 

stride and averaged across the bout) considered were stride duration, stance duration, swing 

duration, duty factor and double support duration [121]. The gait asymmetry parameters 

considered were duty factor asymmetry (normalized using the L1-norm, "#$%%&'($ =

	 |"#$%&'()*&|
+.-(|"#$%&|/|()*&|)), an affine transformation of the correlation between right thigh and left 

thigh raw acceleration such that a result of one corresponds to a correlation of zero with 

the transformation (+,((&-.'/,0	"#$%%&'($ = 0.5 ∗ (1 − 8,((((/9ℎ', -&<')), and 

asymmetry of an ensemble average of stride acceleration between the right and left leg 

normalized by the L1-norm method (Acceleration Asymmetry) [121]. The gait stability 

parameters considered were the root-mean-square (RMS) of the anterior-posterior (AP) 

acceleration (RMS AP), frequency dispersion of the media-lateral (ML) acceleration [135],  

entropy ratio between the trunk and thigh [156], and Lyapunov Exponent of the AP and 

ML directions [135]. The entropy ratio was only calculated for walking bouts longer than 

30 seconds, and the Lyapunov Exponent was only calculated for walking bouts longer than 

one minute. Entropy ratio asymmetry normalized using the L1 method was also calculated. 
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3.2.3. Wear-time Analysis 

We propose a three-stage process for analyzing the wear duration required for 

capturing impairment and its variability with wearables. The stages include 1) difference 

testing, 2) intra-class correlation (ICC), and 3) correlation to established clinical measures. 

These three stages fit nicely into the emerging framework for identifying digital medicine 

technologies that are fit for purpose [140], [157]. Specifically, Stages 1 and 2 are key 

aspects of Analytical Validation, which aims to establish the performance of algorithms 

that translate raw sensor data into measures of human physiology or behavior. Stage 3 is a 

key aspect of Clinical Validation, which aims to demonstrate that a digital medicine 

technology captures the phenotype of interest in the intended clinical population. To inform 

the proposed three-stage analysis, the researcher must first partition their dataset into 

candidate wear durations (e.g., 1 hour, 1 day, 1 week, 1 month) and choose a duration 

(baseline) they aim to compare against. The baseline should be a wear duration that is 

expected a priori to capture impairment and its variabilty for the measures being 

considered. In Stage 1, statistical difference testing (e.g., ranksum tests) is used to identify 

the wear durations that demonstrate significant differences in the median, 95
th

 percentile, 

or variability (coefficient of variation – CV) relative to baseline. In Stage 2 intra-class 

correlation analysis is used to identify the reliability of measures extracted from each wear 

duration relative to baseline. We recommend conducting this analysis with the median, 95
th

 

percentile, and variability of each measure, to capture the central tendency and edges of 

the distribution, using a ‘C-k’ or similarity type correlation, as done previously, with the 

addition of CV to capture variability [138]. Wear durations that demonstrate an ICC of 0.7 

and higher provided reliable measures. In Stage 3, correlation (e.g., Spearman rank 
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correlation) between measures extracted from each wear duration and estabished clinical 

measures are examined. Wear durations that yield significant correlations with established 

clinical measures are said to capture the clinical phenotype of interest in the intended 

patient population.  

For the dataset of PwMS we considered here, one week of data served as the 

baseline, and we examined wear durations of one, two, or three days, and two, three, four, 

five, and six weeks in Stages 1 and 2. For Stage 3, we examined wear durations of between 

one and fourteen days. For the statistical analysis, we leveraged non-parametric ranksum 

testing with a significance threshold of 0.05 for Stage 1 and ‘C-k’ type ICCs (threshold of 

0.7 indicating a strong ICC) for Stage 2. For Stage 3, we computed Spearman rank 

correlations between sensor-derived measures (median, 95
th

 percentile, and CV) at each 

wear duration and the the ABC (median over the two weeks) and MFIS (sampled at the 

end of the two weeks). The ABC captured balance confidence and has been shown to relate 

to fall risk and other functional-assessments [158], [159]. The MFIS captured fatigue [160], 

which has been shown to relate to fall risk [159], and is widely used clinically [161]. We 

considered the emergence of a significant correlation followed by similar strength 

correlations to be a reliable estimate for required wear duration. A power analysis was 

performed on selected features to determine the stability of these findings. This was done 

using a bootstrap with 1,000 replicates and comparing the synthetic data between two 

durations [162]. 

The outlined three-stage wear duration analysis allows us to identify the number of 

days of wear required for capturing impairment and its variability with wearables. 

However, it is important that we also understand what factors may impact wear duration 
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so that we can better predict how many days may be required. To this end, we employed 

regression analysis to investigate our hypothesis that longer wear periods are required for 

measures with relatively few observations or with high variability during a given day. We 

operationalized this hypothesis by defining the wear duration as number of days required 

to yield no statistically significant differences relative to baseline and strong ICCs for a 

given physiological measure. Number of observations was captured by considering the 

average number of times a measure was computed per day and variability was captured 

with the CV of the measure per subject across a two-day period.   

3.3. Results 

Examining the outcome of the three-stage wear duration analysis, we first report 

results of the difference testing (Diff) and intra-class correlation (ICC) analysis for 

measures of gait (Section 3.3.1) and postural sway (Section 3.3.2) across the wear durations 

noted above. In Section 3.3.3 we then examine the correlations between the gait and sway 

measures and PRMs of balance confidence and fatigue for wear durations ranging from 

one day to two weeks. Finally, in Section 3.3.4, we present findings from the regression 

analysis. 

The results of the Diff and ICC stages of the wear duration analysis for the gait and 

sway measures are summarized in Table 6 for a baseline wear duration of one week. This 

table reports a percentage of features that have strong ICCs, in the ICC column, and 

percentage of features that do not have significant differences in the Diff column. 

Percentages were used to report the results in a simple frame of reference.    

Table 6: Summary of reliability analysis including difference testing and intra-class 
correlation 

Comparison Gait ICC Gait Diff Sway ICC Sway Diff 
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Median 95th 
P 

CV Median 95th 
P 

CV Median 95th 
P 

CV Median 95th 
P 

CV 

1 Day v 1 
Week (n=22) 

100 80 60 100 100 80 38 46 8 100 100 77 

2 Days v 1 
Week (n=22) 

100 100 90 100 100 100 100 92 92 100 100 100 

3 Days v 1 
Week (n=22) 

100 100 100 100 100 100 100 100 100 100 100 100 

2 Weeks v 1 
Week (n=22) 

100 100 100 100 100 100 100 100 85 100 100 100 

3 Weeks v 1 
Week (n=21) 

100 100 100 100 100 100 100 100 100 100 100 100 

4 Weeks v 1 
Week (n=21) 

100 90 80 100 100 100 100 100 100 100 100 100 

5 Weeks v 1 
Week (n=21) 

100 90 90 100 100 100 100 100 85 100 100 100 

6 Weeks v 1 
Week (n=19) 

100 100 100 100 100 100 100 100 85 100 100 100 

Weekday v 
Weekend 
(n=22) 

100 90 90 100 100 100 100 100 100 100 100 100 

7 Summary results of ranksum difference testing (Diff) and intra-class correlation (ICC) 

for gait (10 parameters) and sway (13 parameters) measures in persons with multiple 

sclerosis (MS). For Diff, values are percentage of features that did not have a significant 

difference across wear durations. For ICC, values are percentage of features that had 

strong (≥0.70) ICC between the compared wear durations. Lyapunov Exponent AP, 

Lyapunov Exponent ML, Entropy Ratio, and Entropy Ratio Asymmetry are not included 

in this summary analysis. Data used to inform this table are reported in Appendix B.  

                       

3.3.1. Difference Testing and Intra-Class Correlation for Gait Measures 

The results of Table 6 suggest that an adequate median of stabillity, asymmetry, 

and temporal gait measures can be obtained from one day of data in this sample, as there 

were not significant differences between gait measures at those wear durations and all ICCs 

were strong. However, for 95
th

 percentile only 80% of the gait measures have strong ICCs 

(RMS_AP and stance duration are weak, see Table B3 for detailed results). For CV we 

observed only 60% of gait mesures have strong ICC from one day (Double Support 

Duration, Stance, Stride, and Swing Duration are weak) and one significant difference 

(Swing Suration). Increasing the wear duration to two days eliminated these weak ICCs, 

aside from one weak CV of Swing Duration ICC, and the significant difference for the 

temporal, stability and asymmetry gait measures relative to baseline in this sample of 
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PwMS. Notably, as we examined the comparisons of wear durations of one week and 

longer, we saw that some gait measures exhibit reduced ICC strength (significant 

differences are not detected) for wear durations of 4 and 5 weeks. This reduction in ICC is 

still observed in bootstraped samples, suggesting a reduction in sample size is an unlikely 

explanation. 

Interestingly, we found that at least two days of monitoring are needed for entropy 

ratio measures (Entropy Ratio, and Entropy Ratio Asymmetry) and that one full week is 

needed for Lyapunov exponent measures (Lyapunov Exponent AP, Lyapunov Exponent 

ML) of gait stability in PwMS (see Table B3). These gait measures likely required longer 

wear durations because they can only be computed from walking bouts of at least 30 

(entropy) or 60 (lyapunov exponent) seconds, effectively limiting the number of 

observations of these measures each day. Comparing weekdays to weekend, we observed 

strong agreement between timeframes, however, we saw the Lyapunov exponent features 

and double support duration did not exhibit strong ICCs (see Table B3). With the presented 

information we cannot speculate on why these differences were obervered.  

3.3.2. Difference Testing and Intra-Class Correlation for Postural Sway Measures 

For postural sway measures, the results of Table 6 indicate that sway may require longer 

durations than were required for gait. Only 38% of measures show strong ICCs for their 

median (46% for 95
th

 percentile and 8% for CV) and 23% show differences in their CV for 

one day of data. Two days of data improved the results (no significant differences, median 

ICCs all strong, 92% of 95
th

 percentile and CV ICCs are strong), and all measures had 

strong ICCs and no significant differences after three days. The features that fail to show a 

strong ICC for two days of data are 95
th

 percentile of Sway Area and CV of the Mean 
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Period. Moving to longer comparisons, including three days, and one week to longer 

periods, we found the data remains consistent with no significant differences aside from 

some features demonstrating weak ICCs for CV comparing one-week to longer durations. 

Unlike the gait measures, we did not oberserve any difference between weekdays and 

weekends. We speculate that postural sway measures require more data than gait measures 

because the sway features have a wider distribution of values and/or we only consider 

standing bouts that were 30 seconds or longer, thereby reducing our observations of these 

features. The bootstrapped power analysis suggests that the observed ICCs would slightly 

increase (<10%) with a larger sample size, however this small increase would not change 

our conclusions regarding the number of days required. 

3.3.3. Correlation of Gait and Sway Features to PRMs 

The results of Stage 3 of the wear duration analysis are reported in the heat maps 

of Figures 6 and 7 where gait and postural sway measures are correlated with PRMs of 

balance confidence (Figure 6) and fatigue (Figure 7). Significant correlations are indicated 

with colored boxes while those in black do not reach significance. Only features that 

display significance for at least one wear period are depicted. 
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Figure 6: ABC: Movement Feature Correlations to Diagnostic Target 

 
Spearman correlation between Activity-Specific Balance Confidence (ABC) and measures 

of gait and postural sway by number of sensor-wear days. Cells shaded in blue represent 

significant correlations and cells shaded in black were not significant. PCTL: Percentile; 

CV: Coefficient of Variation; RMS: Root Mean Square; AP: Anterior-Posterior; ML: 

Medial-Lateral. 

Considering the correlations between the measures of gait and postural sway and 

balance confidence (Figure 6), we saw the amount of time required to establish a steady 

significant correlation varies by feature. Both the median and 95
th

 percentile of gait 

asymmetry measures provided reliable correlations with only one day of data and the 

strongest correlations were seen within the first two days of data for most. In the sway 

features, we saw two days were required to establish a significant correlation with Range, 
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and four days were required to estalish significant correlations with the 50
th

 percentile 

frequency. The fluctuation of significance seen in other features may suggest these features 

were not as consistent across a longer period of time. Interestingly, most significant 

correlations with the ABC survey occurred with the median or 95
th

 percentile of the 

features, not the CV. This may suggest that the ABC survey is not sensistive to variation 

in these gait and sway features and instead is related to more extreme values and typical 

values of participants during walking and standing activities.   

In contrast to the PRM of balance confidence, for the correlations between the 

measures of gait and postural sway and PRM of fatigue (Figure 7), we did not find a steady 

nor significant relationship between MFIS and gait asymmetry. As with the ABC, Range 

is reliably established with only two days of data. Two new consistent relationships that 

emerged from this analysis are sway Distance and the gait feature RMS AP, which provide 

reliable correlation after at least two and four days of data, respectively.  

Considering the correlation results to both PRMs, unsurprisingly we find different 

results for each survey. This idea makes sense because we would not expect all features to 

have the same relationship between balance confidence and fatigue, or other clinical 

comparisons. Taking these differences into account, we considered a feature reliable when 

a significant relationship appears with either survey (ABC or MFIS) and the strength 

remains similar in the following days. With these criteria, we would consider the gait 

asymmetry features to be clinically valid with one day of data based on the ABC PRM 

results, even though the MFIS relationships were less clear. An example of a relationship 

we would not consider valid is the correlation between the 95
th

 percentile of correlation 
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asymmetry and MFIS, which is significant at two days and then drops out of significance 

with an approximate 0.18 drop in the correlation coefficient as well, as seen in Figure 3.  

Figure 7: MFIS: Movement Feature Correlations to Diagnostic Target 

 

Spearman correlation between Modified Fatigue Impact Scale (MFIS) and measures of gait 

and postural sway by number of sensor-wear days. Cells shaded in blue represent 

significant correlations and cells shaded in black were not significant. PCTL: Percentile; 

CV: Coefficient of Variation; RMS: Root Mean Square; AP: Anterior-Posterior; ML: 

Medial-Lateral. 

3.3.4. Analysis of Factors Impacting Wear Duration 

Results from the proposed three-stage wear duration analysis suggest that wear 

duration is dependent on both the physiological measure being considered (analytical 

validation aspects) and the underlying disease state (clinical validation) that was being 

assessed. Specifically, in considering the results of Table 6, there seemed to be support for 

our hypothesis that wear duration is impacted by how often one observes a given measure 

during a day and the inherent variability of the measure. For example, the Lyapunov 

exponent-based measure of gait stability has very few observations per day relative to more 

traditional gait measures and takes almost a week of data rather than only two days. 
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Similarly, postural sway measures inherently have more variability than gait measures and 

require more days of data. However, to address our hypothesis more directly, we also 

present the regression results of Table 7. Here, we regress variability (log-transformed CV), 

number of observations (count), and their interaction on wear duration. All predictors, 

including an intercept, were at least trend-level significant and the model explains over 

40% of the variance in wear duration. Based on the model coefficients, one can see that 

our hypothesis is supported. Controlling for count, an increase in measure variability will 

yield a subsequent increase in required wear duration. Similarly, controlling for variability, 

a decrease in the number of daily observations will yield a subsequent increase in required 

wear duration. Interestingly, the trend-level interaction term suggests that as variability 

increases, the relative impact of the number of daily observations on wear duration 

decreases.  

Table 7: Wear duration time regression analysis 

Coefficient Estimate Standard Error P-Value 

Intercept 4.41 0.53 < 0.01 

Log CV 0.86 0.41 0.047 
Count -0.011 0.0029 < 0.01 

Interaction (Log CV * Count) -0.0040 0.0020 0.054 

R-Squared: 0.46; Adjusted R-Squared: 0.39 

Number of Observations: 27 

7
 Regression analysis of days required for each feature using the log of the coefficient of 

variation (CV) and feature count computed from two days as predictors: Days Required ~ 

1 + Log CV + Count + Interaction. Bolded p-values represent significant predictors at a 

0.05 significance threshold. 

3.4. Discussion 

We have proposed a three-stage analysis for determining the wear duration required 

for capturing impairment and its variability with wearables that aligns with current best 
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practices for developing digital medicine technologies that are fit for purpose. The process 

was used to examine data from a sample of PwMS who have mild to moderate balance and 

mobility impairment. We now discuss these results, place them in the context of existing 

literature, and suggest next steps for future researchers. 

Results from the proposed three stage wear duration analysis are more nuanced than 

expected and illustrate that each stage provides unique insights. The results of Stages 1 and 

2 (difference testing and ICC, Table 6) suggest two days of monitoring are sufficient for 

most gait and sway features in this sample of PwMS. These results align with prior work 

in older adults that suggests that two to three days of data are required for measuring gait 

speed [138].  However, some measures, like Lyapunov exponent-based gait stability, can 

require up to a week of data in this sample. The results of Stage 3 (correlation with PRMs) 

suggest that two to three days are needed to find relationships with balance confidence and 

a week may be needed to find significant relationships with fatigue.  Collectively, these 

results suggest that wear duration is dependent on both the measure being considered and 

the underlying disease state being addressed. This likely means that studies that use only 

one method to determine the necessary wear duration (e.g., [138], [143]) may not be 

capturing the full picture and could either be collecting data for too long, wasting resources 

and increasing patient burden, or not long enough, yielding unreliable measures or missing 

key relationships with the underlying disease state being monitored.  

Regression results support our hypothesis that wear duration is impacted by how 

often a given measure is observed during a day and the inherent variability of the measure. 

These results could be used to inform deployment of wearables for characterizing digital 

biomarkers of impairment in several ways. First, given estimates of the number of 
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observations of a measure and its variability, the model could be used to predict an estimate 

of necessary wear duration. These parameters could be estimated from a small study (two 

days of remote wear based on the results presented here), or potentially from values 

reported in the literature. For example, remote studies of gait often report number of 

observed walking bouts each day and variability of the associated gait measures (e.g., see 

supplementary material of [138]) which could inform this estimate. This result could also 

be used to inform protocol changes to reduce the number of required days. For example, if 

a measure like Lyapunov exponent-based gait stability is critical for a given application, 

the protocol could include asking participants to engage in a certain number of longer 

duration walking bouts each day to increase the number of observations.   

The proposed approach is in line with developing best practices for ensuring that 

digital medicine technologies are fit for purpose. As we push to realize the promise of 

digital medicine enabled by remote patient monitoring with cutting edge wearables, it is 

critical that the associated measures of impairment are appropriately validated and in the 

intended patient populations. As demonstrated by the results of Table 6 and Figures 6 and 

7, the wear duration analysis presented herein is a key aspect of this validation as the 

resulting conclusions are impacted by the wear duration considered. Moreover, this 

multifaceted approach is important as each aspect provides slightly different information 

and can lead to different conclusions. Importantly, this analysis impacts every application 

of wearables in digital medicine and can inform the use of these technologies for informing 

clinical care or as novel endpoints in clinical trials. In the specific studies of gait and 

postural sway, these results suggest that studies aiming to capture remote assessment of 

variability likely need only 2-3 days to adequately assess these parameters per monitoring 
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period. This finding may alter study design to include several 2-3 day snap shots over a 

long period of time instead of one long block of monitoring.  

There are several limitations to this study, including the limited sample size, and 

lack of demographic and geographic diversity of the PwMS. We suspect some of the 

correlations that alternate between significant or not may resolve to a cleaner relationship 

and firmer conclusions with a larger sample size. Additionally, we do not how long the 

two-to-three-day monitoring period is valid for. Particularly in PwMS where we observe 

symptom fluctuations, studies should be conducted to analyze the change between several 

two-to-three-day monitoring periods occurring throughout the year. Lastly, our approach 

requires the collection of a long baseline monitoring period, which may be prohibitive in 

some populations. In these circumstances, using the regression approach to determine 

necessary wear time may be more appropriate.  

3.5. Conclusion 

Herein, we present an analysis framework designed to establish a minimum 

duration of wearable sensor data needed to estimate features in the free-living environment. 

This approach combines previously used methods, difference testing and intra-class 

correlation, with an analysis of correlations to PRMs. In the present study, we employ this 

method to find that the intra-feature variance between two days in PwMS compared to one 

week of data is low, however, if the desired outcome of the study is strong correlations 

with clinical assessments and surveys, a longer monitoring period is likely needed for 

optimal results. Regression results also reveal necessary wear time is significantly related 

to number of observations and variability.  
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CHAPTER FOUR: CHEST-BASED WEARABLES AND INDIVIDUALIZED 

DISTRIBUTIONS FOR ASSESSING POSTURAL SWAY IN PERSONS WITH 

MULTIPLE SCLEROSIS 

4.1. Introduction 

Balance and mobility impairment affect a wide variety of individuals including 

older adults and those living with musculoskeletal and neurological disorders [163]–[167]. 

Persons with multiple sclerosis (PwMS) are particularly impacted [168]–[170]. Multiple 

sclerosis (MS) is associated with progressive demyelination of central nervous system 

axons which leads to delayed or altered nerve communication and subsequent sensory 

impairment, motor impairment, fatigue, and reduction in postural control. These 

impairments are often most impactful during balance challenging activities [171]. As a 

result, over half of PwMS fall in any given three-month period, similar incidence to 80 

year-old adults [172], however symptoms of MS typically manifest around age 30 years 

[173]. This heightened risk for falls impacts quality of life and creates a long-term care 

burden [174].  

 Balance impairment is typically assessed with subjective patient reported 

measures (PRM) [22], non-instrumented balance assessments [175], [176] and/or balance 

assessments using force platforms [177], [178]. Force platforms have emerged as the gold 

standard for postural sway analysis, which considers objective movement features captured 

during a period of standing for characterizing balance impairment [177]. Studies utilizing 

force platforms have been able to distinguish between impaired individuals and healthy 

controls [177] and classify the fall risk of older adults [179] and PwMS [59]. However, 

force platforms are expensive and limit accessibility to specialized clinics or research 
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laboratories. To address these challenges, studies have shown that postural sway can be 

assessed using data from just a sacral accelerometer [177], [180], [181]. Sacral sensor-

derived postural sway measures have been used to classify fall risk in PwMS [180], 

distinguish between disease states [59], [177], [182] and to augment current assessment 

techniques [183], thereby achieving similar clinical utility to the force platform.   

 New chest-worn sensor patches are increasingly being used clinically to capture 

cardiac electrophysiology over long periods of time, replacing more cumbersome Holter 

monitors [152], [184]. In addition to being less cumbersome than Holter monitors, these 

chest-worn sensors may be easier to apply in remote settings compared to a sacral sensor 

when used for movement analysis. Cardiac measures, such as heart rate, have been shown 

to relate to disease severity and fatigue in PwMS [185] and may inform new measures of 

fatiguability [186]. Wide adoption of these devices, which often include accelerometers, 

may also provide an opportunity for expanding our ability to capture measures of postural 

sway using these devices, but chest-worn accelerometers have not yet been validated for 

this purpose. Validation of chest-based sway measures would allow postural sway to be 

assessed from a growing class of sensors and in studies not conducive to traditional force 

plate or sacrum measurements. 

The purpose of this study is to validate the measurement of postural sway features 

gathered from chest-worn accelerometers. We compare chest-based measures to current 

measurement techniques to establish current validity. Then we compare the clinical 

significance of chest and sacrum-based measurements. We also introduce a new method of 

computing postural sway features by generating a distribution of feature values, which 

allows more nuanced relationships to be found. 
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4.2. Methods 

In addressing these objectives, we first establish concurrent validity of postural 

sway measures derived from a chest-worn accelerometer by comparing them to gold-

standard force platform measures. We then examine the clinical significance of these 

measures by investigating relationships to PRMs and determining which measures can 

detect differences in tasks and between PwMS at high and low risk for experiencing a fall 

based on their prior fall history. We first present the data processing methodology 

leveraged for computing postural sway measures and then describe how we establish 

concurrent validity and clinical significance. 

Figure 8: Process overview of Individualized Distributions (ID) and a 30-second single 
observation (SO) methods. 

 

Data were collected using wearable sensors located on the chest and sacrum during various 

standing tasks. Features were computed using ID or SO method. The resulting feature 

displays the value of an example feature computed using the standard SO method on top 

of the distribution obtained from the ID method. 

 

4.2.1. Data Processing for Postural Sway Parameters 

Wearable accelerometer data were gathered from the chest and sacrum locations 

using Biostamp nPointÒ (Medidata) sensors (62 Hz ± 16G, see Figure 8). The chest sensor 
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was secured to the sternum, just below the sternoclavicular joint and the sacrum sensor was 

placed between or just above the posterior superior iliac spine. Following a standing 

calibration activity which allowed projection of accelerometer measurements along 

anatomical directions, the acceleration data were down sampled to 31.25 Hz and a 4
th

 order, 

zero-phase Butterworth low-pass filter with a cutoff frequency of 3.5 Hz was applied 

before computing the magnitude of the acceleration in the horizontal plane. Thirty-second 

epochs of these data were used to compute 15 postural sway features. These features 

included thirteen features from Mancini et al [177]: Jerk, Distance (Dist), Root-Mean-

Square (RMS), Path, Range, Mean Velocity (MV), Mean Frequency (MF), Area, Power 

(Pwr), median power frequency (F50), 95% power frequency (F95), Centroidal Frequency 

(CF), and Frequency Dispersion (FD). We also considered two features that capture signal 

complexity: Approximate Entropy (ApEn) [187], and Lyapunov Exponent (LyExp) [182], 

[188]. 

4.2.2. Concurrent Validity 

4.2.2.1. Subjects and Protocol 

For establishing concurrent validity, we considered data from 16 PwMS (4:12 

Male:Female, mean (standard deviation) age 50.6 (10.5) y/o) recruited from the Multiple 

Sclerosis Center at University of Vermont Medical Center (inclusion: no condition 

affecting balance/mobility other than MS, ambulatory without aid, no known 

hypersensitivity to adhesives or hydrogel, not pregnant or breastfeeding). Participants were 

asked to complete several functional assessments in a supervised laboratory setting. For 

this analysis, we consider data from a standing task where participants stood on a force 

platform for 30 seconds with their eyes open and with their feet a comfortable width apart. 
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Wearable sensor data were collected as described above and ground truth center of pressure 

(COP) data were collected with an AMTI Force Platform (1000 Hz) that was down sampled 

to 100 Hz and filtered using a 4
th

-order, zero-phase Butterworth low-pass filter with a cutoff 

frequency of 10 Hz. Participants were also asked to complete the following PRMs: Activity 

Specific Balance Confidence (ABC) [22], Modified Fatigue Impact Scale (MFIS) [23], 

Multiple Sclerosis Walking Scale (MSWS) [25], and Patient-Determined Disease Steps 

(PDDS) to characterize the sample [153]. The mean (standard deviation) of the PRMs for 

this cohort were as follows: ABC 80.4 (19.6); MFIS 31.7 (16.5); MSWS 20.3 (8.1); PDDS 

0.93 (1.1). This protocol was approved by the UVM Institutional Review Board (CHRMS 

21-0401). 

4.2.2.2.  Statistical Analysis 

Gold standard values of the aforementioned postural sway parameters are computed 

from force platform COP data. From the same trial, we also computed the sway features 

from accelerometer data collected from the previously validated sacrum location and our 

proposed chest location. Sacrum findings will be used to contextualize results and to enable 

comparison to previous sacrum sensor validation studies.  

Relationships between the force plate and sensor features are established using 

Spearman correlation (significance level of 0.05) as done in previous validation studies 

[177]. Sensor-derived features demonstrating a significant association with the gold 

standard parameters are considered valid at the recorded location.  

Spearman correlation between features within a measurement type and location are 

also considered to characterize the independence of the postural sway feature set. We 

considered features to be linearly dependent at significant correlation of |0.7| or higher. 
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4.2.3. Clinical Significance 

4.2.3.1. Subjects and Protocol 

For examining clinical significance, we consider data from a separate, larger sample 

of 39 PwMS (21:18 fallers:non-fallers; 12:27 Male:Female, mean ± standard deviation age 

51 ± 12 y/o), recruited from the Multiple Sclerosis Center at University of Vermont 

Medical Center (exclusion: no major health conditions other than MS, no acute 

exacerbations within the previous three-months, ambulatory without the use of assistive 

devices). PwMS who self-reported to have fallen within the previous six-months were 

characterized as fallers based on the criteria “consider a fall as an event where you 

unintentionally came to rest on the ground or a lower level.” This study has been previously 

described in detail and the data are publicly available [189]. Participants were asked to 

complete various activities of daily living, several PRMs, and a neurologist administered 

Expanded Disability Status Scale (EDSS) [154]. In this analysis we utilize chest and 

sacrum acceleration data from three two-minute standing trials, eyes-open comfortable 

standing, eyes-closed standing, and tandem standing, where participants were asked to 

stand with their feet in a straight line. We also utilize the ABC, MFIS, and MSWS PRMs. 

The mean and standard deviation of these assessments is broken down between fallers and 

non-faller in Table 8. This protocol was approved by the University of Vermont’s 

Institutional Review Board (CHRMS 18-0285). 

Table 8: Subject Demographics 
Assessment: N Age Sex ABC EDSS MFIS MSWS 

Fallers 21 
56.0 (9.1) 5M 

16F 
75.0 (18.8) 3.3 (1.4) 39.8 (17.9) 55.0 (22.3) 

Non-Fallers 18 
45.0 (12.9) 7M 

11F 
91.4 (15.5) 2.3 (1.0) 29.2 (16.7) 27.5 (11.5) 

Mean (standard deviation) of assessments and patient reported measures partitioned by fall 

status. ABC: Activity-Specific Balance Confidence; EDSS: Expanded Disability Status 
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Scale; MFIS: Modified Fatigue Impact Scale; MSWS: MS Walking Scale; N: number of 

subjects in group. 

4.2.3.2.  Statistical Analysis 

Following traditional approaches, we calculate the outlined features of sway based 

on sensor data from the first 30 seconds of each two-minute balance assessment trial 

(Single Observation - SO). We also considered postural sway parameters derived from 

subject-specific distributions created by computing each feature for a sequence of 30 

second windows offset by five samples (0.16 seconds) over one-minute of data from each 

balance assessment (Individualized Distribution Method - ID). We then extracted the 5th 

percentile, 25th percentile, median, 75th percentile, 95th percentile, and standard deviation 

to characterize each distribution. These approaches result in one feature per sway metric in 

the SO method and six distribution features of each sway metric for ID. For this reason, we 

consider a significant result for a sway measure if one or more of the ID features 

demonstrate significance. This process is outlined in Figure 8, where the difference 

between the two computational approaches is evident. 

Wilcoxon rank sum tests [190] were used to detect differences in medians between 

normal and eyes-closed standing, normal and tandem standing, and eyes-closed and tandem 

standing. Significant differences indicate that a given sensor-derived measure of postural 

sway is sensitive to expected differences in balance performance (i.e., eyes open > eyes 

closed > tandem). This same approach was used to determine if these sensor-derived 

measures of postural sway were significantly different between fallers and non-fallers in 

the eyes-open, eyes-closed, and tandem standing tests. Effect size of differences is assessed 

with Cohen’s D [191]. Finally, Spearman rank correlation is used to identify significant 

associations between sensor-derived measures of postural sway and PRMs. These were 
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examined for features derived using both the SO and ID approaches to determine how 

sensitive each approach is to MS-specific balance impairment.  

4.3. Results 

4.3.1. Concurrent Validity 

Five chest- and sacrum-derived postural sway features were significantly and 

positively correlated with the force platform (Table 9). Five postural sway features were 

also significantly correlated between chest and sacrum sensors. Jerk had the strongest 

correlation among all comparisons (r = 0.71-0.91), followed by Range (r = 0.60-0.94) and 

Distance (r = 0.58-0.74). Significant, moderate correlations were also found for FD, MF, 

and ApEn. 

Chest-derived and sacrum-derived postural sway features have more collinearity 

between features compared to the force plate derived features (see Figure 9 for heatmaps 

illustrating significant associations between features measured with chest sensors – top, 

and a force plate – bottom). In the chest sensor, sacrum sensor, and force platform data, 

RMS, Path, MV, Area, and Power are highly positively correlated and Dist and MF are 

highly negatively correlated. In the chest and sacrum sensor data, F50 and F95 are highly 

positively correlated whereas they are highly negatively correlated in the force plate data. 

In the chest sensor data, FD and ApEn are positively correlated and in the chest and sacrum 

sensor data, CF and Range are positively correlated. The high number of features that are 

colinear within all three instrumentation setups suggests that while this feature set is well 

established in the literature [50], [59], [134], [180], [192] many of the features may contain 

very similar information, and the number of features reported may be able to be reduced, 

at least in this cohort. 
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Table 9: Eyes Open Postural Sway Feature Correlation 

  Chest & FP Sacrum & FP Chest & Sacrum 
Feature r p r p r p 
Jerk 0.88 < 0.01 0.71 < 0.01 0.91 < 0.01 
Dist 0.71 <0.01 0.74 < 0.01 0.58 0.02 
RMS - - - - - - 
Path - - - - - - 
Range 0.60 0.01 0.74 < 0.01 0.94 < 0.01 
MV - - - - - - 
MF 0.78 < 0.01 - - - - 
Area - - - - - - 
Pwr - - - - - - 
F50 - - - - - - 
F95 - - - - - - 
CF 0.44 0.09 0.59 0.02 0.43 0.10 
FD 0.62 0.01 0.63 0.01 0.51 0.04 
ApEn - - - - 0.53 0.03 
LyExp - - - - - - 

Significant correlations of postural sway features amongst sensors and force platform (FP) 

comparisons. Results approaching significance (0.05 < p < 0.10) are italicized. 
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Figure 9: Heat maps illustrating significant correlations between postural sway 
features derived from the chest sensor (top) and force platform (bottom). 

 
 

Correlations of features from chest and force plate data to themselves. Boxes are colored 

based on correlation strength and direction (positive/negative). Non-significant 

correlations are shown in white. α = 0.05. 
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4.3.2. Clinical Significance 

As shown in Figure 10, the ID method found more significant differences in 

features than the SO method between tasks for both chest and sacrum sensor locations. 

These tasks were expected to elicit varying levels of balance performance in this cohort 

such that performance during the eyes open task would be significantly better than during 

the eyes closed task and both would be significantly better than during the tandem standing 

task. As expected, significant differences in postural sway features were observed between 

each of the tasks. The largest number of significant differences were found between the 

eyes-open and tandem standing tasks and between the eyes-closed and tandem standing 

tasks. In contrast, few significant differences were found between the eyes-open and eyes-

closed tasks. The effect sizes of these differences range from 0.42-0.80 when comparing 

eyes open to eyes closed, 0.21 to 1.91 comparing eyes open to tandem standing, and 0.21 

to 1.81 when comparing eyes closed to tandem standing. The larger number of differences 

found in the ID method mean the effect sizes range from comparable to those of the SO 

method for the strongest effects to much weaker in the more nuanced differences.  
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Figure 10: Number of significant differences in features between tasks in chest and 
sacrum sensors for the Single Observation (SO) and the Individualized 

Distributions (ID) methods. 

 
Tasks: eyes-open (EO), eyes-closed (EC), and tandem standing (TS), are expected to elicit 

significantly different postural sway performance. For the ID method, multiple significant 

differences within each postural sway feature’s statistics are not included (i.e., significant 

median and standard deviation differences of jerk count as one significant correlation, not 

two). α = 0.05. 

 

Considering faller and non-faller groups, the most differences were detected with 

the ID method during the tandem standing task with the chest sensor location. Jerk, MV, 

Area, CF, and FD all demonstrated statistically significant differences with moderate effect 

sizes ranging from 0.29 to 0.60. Additional details on these results can be found in Table 

C5. Using the ID method for the eyes closed and tandem standing tasks, Range and MV 

were found to be approaching significance for the sacrum and chest sensor locations. Only 

Range computed from the sacrum sensor during the eyes-closed task was found to be 

approaching a significant difference in the SO method. 

The greatest number of significant or trend level relationships between postural 

sway features and PRMs were consistently found from the ID method. In the ID method, 

the edges of the distribution are important, as demonstrated by our strongest correlations 

coming from the 5
th

 percentile of these distributions. The chest sensors with the ID method 
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found significant and approaching significant relationships in at least one of the six 

statistics between MF and four of the five PRMs (Figure 11, Tables C1-C4). In the SO 

method, no significant relationships were found between MF and the PRMs.  

Considering correlations of postural sway features from both computational 

methods, the chest sensor features had more associations with MSWS while the sacrum 

sensor had more associations with EDSS and MFIS (see Figure 11). For example, during 

the tandem standing task the sacrum sensor had seven significant EDSS correlations using 

the SO method and eight using the ID method, while the chest sensor had two significant 

EDSS correlations using both methods. While the sacrum sensor had several additional 

relationships between postural sway features and PRMs, as compared to the chest sensor, 

the overall level of association was similar between the two sensor locations. 
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Figure 11: Significant correlations between age, EDSS, ABC, MFIS, and MSWS and 
postural sway features. 

 

Number of significant correlations between age, EDSS, ABC, MFIS, and MSWS and postural sway features 
for chest (top) and sacrum (middle) sensor data for the Single Observation (SO - blue) and the Individualized 
Distributions (ID - purple) methods. Range of correlations to ABC during tandem standing with median 
indicated by black line (bottom). For SSD, multiple significant correlations within each postural sway 
feature’s statistics are not included. Tasks are indicated as eyes-open (EO), eyes-closed (EC), and tandem 
standing (TS). α = 0.1.  
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Comparing standing tasks, tandem standing consistently demonstrated the greatest 

number of significant relationships between postural sway features and PRMs across both 

computational methods. For example, considering the chest sensor location, the ID method 

had eight postural sway features significantly associated with ABC in the tandem standing 

task, only four from the eyes-closed task, and no significant associations from the eyes-

open task. The bottom of Figure 11 demonstrates the range of correlations between ABC 

and tandem standing for each computational method and shows the increased median and 

overall stronger correlations observed using the ID method. As a result of the ID method, 

the strongest correlation increased by 21%. The remaining correlation information is 

located in Tables C1-C4.  One of these highly correlated features was jerk. Figure 12 

depicts jerk ID computed for each subject during the tandem standing task. From these 

distributions, it is clear that there is significant variability in the Jerk across the collection 

of 30-second epochs sampled from the one-minute of tandem standing task data. There is 

also a clear relationship between ID-computed Jerk and EDSS (left) and ABC (right) such 

that subjects with a higher EDSS and lower ABC score (less balance confidence) show 

higher jerk. The strongest correlations observed were between the 5
th

 percentile of Jerk 

with EDSS and ABC were 0.54 and 0.47, respectively. 
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Figure 12: Individualized distributions of Jerk with subject sorted in order of EDSS 
on left and ABC on right. 

 

Individualized distributions of Jerk found using the chest sensor data for the tandem 

standing task with subjects sorted in order of Expanded Disability Severity Score (EDSS) 

shown on the left and Activities Specific Balance Confidence Score (ABC) shown on the 

right. Higher EDSS and balance confidence subjects are at the top of the figures. The 

strongest correlations were 0.54 and 0.47 for EDSS and ABC with the 5
th

 percentile. 

 

4.4. Discussion 

The purpose of this work was to validate the measurement of postural sway features 

from a chest-worn accelerometer and to advance a new approach for considering postural 

sway data that better captures expected variability in sway performance. In doing so, we 

investigated the concurrent validity of this approach by comparing to gold standard force 

platform derived measures. We then further explored the significance and sensitivity of 

sway features from chest and sacrum sensors by exploring differences between standing 

tasks, differences between fallers and non-fallers, and correlations to PRMs in a sample of 

PwMS.  

Our investigation of concurrent validity suggests valid measures of postural sway 

can be gathered from a chest accelerometer. We found that five chest-, and five sacrum- 

computed features were significantly correlated with force platform-derived features 

(Table 9). These results align with prior validations of sensor-derived measures of postural 
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sway, but from a new body location that has emerged as having broad clinical utility and 

acceptance for wearable device use, both in clinic and at home. For example, a previous 

study investigating the concurrent validity of a sacrum accelerometer for measuring sway 

found eight measures significantly correlated using a slightly larger sample with more 

pronounced balance impairment [177].  

Our investigation of clinical significance indicates that chest acceleration-derived 

measures of postural sway are related to PRMs of balance confidence (ABC), fatigue 

(MFIS), and walking impairment (MSWS) as well as neurologist-administered measures 

of disability (EDSS). Significant associations were observed for features derived from each 

of the tasks, with the tandem standing task providing the largest number of significant 

relationships. This is likely because tandem standing was the most balance challenging task 

performed. Prior studies have shown that a person’s ability to respond to postural 

perturbations and engage in balance challenging tasks, like tandem standing, is clinically 

relevant and is associated with characteristics like fall risk [193], [194].  

Additionally, our analysis suggests that conducting a one-minute trial and creating 

subject specific distributions is more sensitive to MS-related disability than a single 30-

second epoch of data as considered in traditional postural sway analysis. This was 

manifested in task differences (Figure 10), faller-non-faller comparisons, and PRM 

correlations (Figure 11). This is likely a result of the ID method’s inherent ability to resolve 

the variability and extremes of balance performance observed during balance assessments. 

This is particularly apparent in the PRM correlations for data collected during the eyes-

open task. Using the traditional SO method, very few significant correlations were 

observed (two from chest, six from sacrum), which suggests that the task may not be 
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providing information relevant to MS-related balance or mobility impairment. However, 

the ID method reveals several additional significant relationships - 10 from chest and 13 

from sacrum. 

The increased sensitivity of the ID method also leads to stronger relationships to 

PRMs. As shown in Figure 11, the ID approach yields a 21% increase in correlation 

strength above the SO approach. This is a substantial increase for a method that looks at 

the same postural sway data, just in a slightly different way by sliding a window instead 

on computing one value.  This increase in correlation strength has a number of important 

impacts. Notably, the sample size required to resolve a correlation of 0.39 with 80% power 

is N=36. In contrast, only N=24 participants are needed to resolve a correlation of 0.47 

with 80% power. Fewer required participants reduces study burden (cost, time) for 

participants and researchers alike. 

 Considering the results from Figure 9, there is significant collinearity in this set 

of postural sway features, despite extensive use in the literature. Combining the results of 

Figure 9 with Tables C1 and C2 suggests that this feature set can be reduced while 

capturing the same relationships. Within the set of highly correlated features, Path, MF, 

RMS, Power, Area, F95, and F50, we found Path, RMS, Power, and Area were only 

significantly related to PRMs when computed from the chest and MF, F50, and F95 were 

only significantly related to PRMs when computed from the sacrum. If we were to down 

select for future work the features from these sets that are related to the most PRMs, we 

would keep Area for chest measurements and F50 for sacrum. Following a similar 

procedure as discussed above, we could continue to reduce the feature set to obtain a 

minimal set of Jerk, Dist, Range, Area, F50, ApEn, and LyExp. 
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Consistently, we observed the features Jerk and Range to provide the strongest and 

most significant relationships to PRMs in addition to being able to distinguish fallers from 

non-fallers. However, based on our previous findings [192], the strength of these 

relationships is poor compared to those observed on postural sway data collected during 

daily life (e.g., Range and ABC had a correlation of 0.71 from free living data compared 

to the 0.36 observed using the ID method). This difference may be related to the well 

documented issue that laboratory based tests are not able to adequately capture the 

variability with which people, and particularly PwMS whose symptoms are known to 

change dramatically from day to day, move in free living environments [189], [195]. 

Considering the results presented herein and our previous findings, postural sway features 

computed from chest accelerometer data are valid, which allows for easy sensor placement 

if deployed in a remote setting. Collectively, these results highlight the need for an in-depth 

investigation of wearable-derived postural sway measures in the free-living environment.  

There are several limitations to this study. First, our analysis of concurrent validity 

is based on a relatively small sample of 16 PwMS, compared to the 39 PwMS used to 

determine clinical significance, but this size is similar to those used in other postural sway 

validations (e.g., [134], [177] ). There is a lack of demographic and regional diversity in 

this sample. Additionally, our proposed ID approach requires at least one minute of data 

and therefore may not be compatible with existing datasets or ongoing study designs where 

only 30 seconds of postural sway are captured. Finally, our inclusion criteria limit these 

studies to lower impairment individuals. We expect a more impaired sample would result 

in stronger signals, however, that remains untested with our current dataset.   
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Despite these limitations, due to the ease of placement, ability to be utilized on a 

growing class of wearables and validity relative to gold standard measures, chest 

acceleration derived features of postural sway show promise to serve as a powerful tool for 

understanding impairment in PwMS in a clinical setting and at home. We find these 

methods have similar sensitivity to previously validated measures, thereby allowing 

sensitive assessments of postural sway in study designs not conducive to force platforms 

or sacrum sensors. Moreover, the presented ID approach will likely increase the utility of 

these measures. Further studies are needed to assess the ability of this approach to identify 

fallers from non-fallers and these relationships need to be investigated in the home 

environment to test the viability of these methods outside of the clinic to further explore 

how these interesting findings may be extended to impact comprehensive care of PwMS 

and potentially to other conditions that impact balance and mobility. 

4.5. Conclusion 

We examine the use of a chest-worn accelerometer to capture measures of postural 

sway. We utilized a force platform to establish the concurrent validity of chest-based 

postural sway measures and then analyzed the clinical significance of these measures. We 

found sway measures from the chest were able to distinguish between standing tasks and 

fall status and were significantly related to PRMs of balance confidence, fatigue, and 

walking impairment, and a neurologist administered measure of MS-related disability in a 

sample of PwMS. Additionally, we presented a new means of processing postural sway 

features that results in greater sensitivity to task difference and fall status and exposes more 

associations with PRMs. These findings support the use of chest-worn accelerometers for 

characterizing postural sway.  
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CHAPTER FIVE: ASSESSING FREE-LIVING POSTURAL SWAY IN 

PERSONS WITH MULTIPLE SCLEROSIS 

5.1. Introduction 

Multiple sclerosis (MS) is a immune mediated disorder leading to the 

demyelination of central nervous system axons affecting an estimated 2.8 million people 

worldwide [196]. Subsequently, nerve signals are altered or delayed leading to sensory 

impairment, motor impairment, fatigue, and postural instability. As a result, an estimated 

50-80% of persons with multiple sclerosis (PwMS) have balance and gait disfunction and 

over 50% experience a fall in any given 3-month period [4], [197]. This incidence of falls 

is similar to 80 year-old adults, however, symptoms of MS typically manifest around 30 

years-old creating a long-term quality of life and health care burden [198], [199]. 

Postural instability and balance impairment  are typically assessed with subjective 

patient reported measures (PRM) [22], non-instrumented balance assessments [175], [176] 

and/or balance assessments using force platforms [177], [178]. Force platforms are the gold 

standard for postural sway analysis, which considers objective movement features captured 

during a period of standing for characterizing balance impairment [177]. Studies utilizing 

force platforms have been able to distinguish impaired individuals from controls [177] and 

classify the fall risk of older adults [179] and PwMS [59]. However, force platforms are 

expensive and limit accessibility to specialized clinics or research laboratories. To address 

these challenges, studies have shown that postural sway can be assessed using data from 

just a sacral or chest accelerometer [51], [177], [180], [181]. Sensor-derived postural sway 

measures have been used to classify fall risk in PwMS [180], distinguish between disease 

states [51], [59], [177], [182], [200] and to augment current assessment techniques [183], 
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thereby achieving similar clinical utility to the force platform.  

These promising balance assessments, however, are all performed in clinical or 

laboratory settings, which limits their accessibility. Therefore, an investigation into 

remotely assessed postural sway is needed. Recent studies of chest accelerometer-based 

postural sway have found stronger relationships to PRMs from remotely collected 

measures compared to in-clinic assessment [51], [53]. These differing relationships to 

PRMs may be explained by differences between remote and in-clinic measures. Studies 

comparing remote and in-clinic gait have found the remote parameters are significantly 

different and have higher variability compared to those from an in-clinic assessment [201], 

[202]. As a result, separate models are needed to examine in-clinic and remote gait, but it 

is not yet clear if these same discrepancies in data exist for postural sway. 

Another challenging aspect of remote monitoring is the inherent increase in 

variability, compared to laboratory measures. This additional variability creates challenges 

for interpretability and requires additional care to be taken during analysis such that simple 

averaging of parameters across days or weeks may not be appropriate. One approach is to 

ask participants to perform repeated prescribed activities throughout the monitoring period 

to provide consistent context for analysis. For example, this approach has been applied to 

30-second chair stand tests [203] and ten-meter walk tests [204], where participants were 

asked to complete multiple trials remotely. Another approach is to use GPS data to capture 

measurements in consistent physical locations, again providing context for analysis [205]. 

While these approaches help control variability, they also reduce the data available for 

analysis, potentially losing important information in favor of simplified analyses. There 

may instead be a benefit to pursuing new methods that allow us to select which data to 
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analyze in a fully unsupervised manner, but these approaches have not yet been developed. 

The purpose of this work is to introduce remote postural sway as a potential 

biomarker for balance impairment in PwMS. In doing so, we compare postural sway 

features computed in-clinic and remotely, demonstrate relationships to PRMs, investigate 

the ability of remote postural sway to classify fall risk in PwMS, and show how data-driven 

clustering can help identify which remote postural sway observations to analyze. 

5.2. Methods 

To address the goal of introducing remotely collected postural sway as a biomarker, 

we collected free-living data from PwMS as shown in the first section of Figure 13. We 

then utilize our activity classification model to determine was activities participants are 

performing at home using raw acceleration, depicted in the middle section of Figure 13. 

first present a comparison of features to the commonly used laboratory assessment. Then 

we examine postural sway features computed from the standing bouts and determine which 

data are suitable for analysis, depicted in the last section of Figure 13. Lastly, we utilize 

our selected measures of remote postural sway to correlated to PRMs, classify fall risk, and 

attempt to contextualize our findings.  
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Figure 13: Data Processing Overview 

 

Data processing overview. Free-living data collected from thigh and chest accelerometer 

and then classified using a deep learning classifier. Features of postural sway were 

computed for each standing bout. Feature values vary through the day, clustering 

techniques were used to find similar data. 

5.2.1. Participants and Protocol 

To address these objectives, we utilize a dataset of 33 PwMS (16:17 fallers:non-

fallers; 10:23 Male:Female, mean ± standard deviation age 50 ± 13 y/o), recruited from the 

Multiple Sclerosis Center at University of Vermont Medical Center (exclusion: no major 

health conditions other than MS, no acute exacerbations within the previous three-months, 

ambulatory without the use of assistive devices). PwMS who self-reported to have fallen 

within the previous six-months were characterized as fallers based on the criteria “consider 

a fall as an event where you unintentionally came to rest on the ground or a lower level.” 

Our analysis required a subset of the larger publicly available dataset that has been 

described in detail in our previous work [202]. Participants were asked to complete several 

PRMs, several activities of daily living, and a neurologist administered Expanded 
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Disability Status Scale (EDSS) assessment [206] during a laboratory visit. Participants 

were then asked to complete a 48-hour monitoring period of daily life immediately 

following the laboratory visit. The PRMs utilized in this analysis were Activities-Specific 

Balance Confidence (ABC) [22], Multiple Sclerosis Walking Scale (MSWS) [207], and 

Modified Fatigue Impact Scale (MFIS) [208]. The in-laboratory assessment used in this 

analysis was a 2-minute standing balance assessment where participants were instructed to 

stand with their feet should width apart. The lab and remote assessment periods were 

instrumented with Biostamp nPointÒ (Medidata) sensors (62 Hz ± 16G) located on the 

chest and thigh. The chest sensor was secured to the sternum, just below the 

sternoclavicular joint and the thigh sensor was on the anterior aspect of the right thigh 

~25% from the knee to hip. 

5.2.2. Data Processing 

5.2.2.1. Remote Activity Identification 

Data recorded from both the laboratory and remote sessions were first reoriented to 

align the cranial-caudal axis with gravity based on the first ten seconds of the lab standing 

trial. Following calibration, remote data was classified using a previously described 

classification framework that identifies bouts of walking, standing, sitting, and lying [53], 

[209]. Briefly, this model uses a Bidirectional Long-Short-Term Memory Network 

(BiLSTM) to perform classifications on raw acceleration data from a chest and thigh 

sensor. This model was trained on a mix of persons with MS, Parkinson’s, and healthy 

adults and provides a 97% accuracy on a held-out test set. This model was used to identify 

all remote standing bouts that were 30-seconds or longer. 30-seconds was chosen as the 

minimum because this is length of the typical in balance lab assessment [51], [177]. The 
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first minute of the laboratory standing balance assessment was used for in-lab analysis. 

Data was processed using the individualized distributions [51] approach where a 30-second 

window is slid 5 samples over the trial to create a distribution of each sway parameter.  

5.2.2.2. Postural Sway Parameter Extraction 

Following the identification of standing periods in both lab and remote data, the 

acceleration data were down sampled to 31.25 Hz and a 4th order, zero-phase Butterworth 

low-pass filter with a cutoff frequency of 3.5 Hz was applied before computing the 

magnitude of the acceleration in the horizontal plane. Fifteen features were computed for 

each 30-second lab epoch and/or valid remote standing period. These features included 

thirteen features from Mancini et al [177]: Jerk, Distance (Dist), Root-Mean-Square 

(RMS), Path, Range, Mean Velocity (MV), Mean Frequency (MF), Area, Power (Pwr), 

median power frequency (F50), 95% power frequency (F95), Centroidal Frequency (CF), 

and Frequency Dispersion (FD). We also considered two features that capture signal 

complexity: Approximate Entropy (ApEn) [187], and Lyapunov Exponent (LyExp) [182], 

[188]. 

5.2.2.3. Data Clustering Methodology 

Clustering methods provide a way to sort through the data in an unsupervised 

manner to find similar data. A popular method of clustering is called ‘K-Means.’ This 

method begins with an initial but not optimal clustering, then relocates each point to its 

new nearest center, updates the clustering centers by calculating the mean of the member 

points, and repeats the relocating-and-updating process until convergence criteria are 

satisfied [210], [211]. These techniques may be able to sort through the different type of 

data that may exist in remote analyses from participants performing other activities while 
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standing such as washing dishes, standing in line, etc. Similar methods have been used to 

cluster symptoms in PwMS to increase predictability of physical activity in PwMS [212]. 

We will examine whether these methods increase relationships found in remote postural 

sway herein. 

To filter the noise that is inherent in remotely collected data, we employed the 

aforementioned kmeans clustering [210], [211] to identify similar subsets of data. The 

optimal number of clusters was chosen using MATLAB’s evalclusters function with 

DaviesBouldin criterion and Euclidean distance for 1 to 5 clusters. This was performed for 

each participant and resulted in an average of best number of clusters of 4. Then using the 

z-scores of the reduced feature set, four clusters were identified for each participant. The 

clusters were assigned based on the sorted centroid of the feature FD because this feature 

is strongly related to impairment and is a measure of the range of movements in a standing 

bout. Cluster 1 contains all the data from the cluster with the highest centroid of FD, cluster 

4 contains the data with the lowest FD, and clusters 2 and 3 fall in between sequentially.  

5.2.3. Statistical Analysis 

With the postural sway features extracted from both the lab and home standing, 

first we used a Ranksum difference test to check for differences in medians. Effect sizes of 

these differences were reported by Cohen’s D. Median and inter-quartile range (IQR) are 

also reported for each feature. Then, we computed the spearman correlations between the 

postural sway features and PRMs. The multiple observations of features per participant 

were aggregated using the following summary statistics: 5
th

 percentile (P5), 25
th

 percentile 

(P25), median (Med), 75
th

 percentile (P75), 95
th

 percentile (P95), and standard deviation 

(STD). The results of the strongest significant aggregation were reported. Using the results 
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of the correlations to PRMs and previously published [51] cross-correlations between the 

features, we then selected a reduced feature-set for remote analysis containing features that 

demonstrate correlations to PRMs and are not highly correlated to each other. When 

choosing between highly related features, the feature with the strongest remote PRM 

correlation was chosen. Details of feature correlations are provided in the results; however, 

the reduced remote feature set contained the following features: RMS, Range, Area, CF, 

FD, and LyExp. 

To examine the clinical significance of the clusters, we computed spearman 

correlations to both ABC and EDSS for the data from each cluster and compared the 

features with a Ranksum test to lab features. Due to the reduced amount of data per 

participant, correlations were performed using the raw feature values instead of summary 

statistics. Additionally, we computed the spearman correlation of the lab features with 

clustered features for the median and 95
th

 percentile of each feature. For comparison, these 

same methods have been applied to the non-clustered data. 

5.2.4. Fall Risk Classification 

Using the features extracted from both in lab and remote data, the six-month fall 

history was used to inform classification models of fallers and non-fallers. Logistic 

regression (LR) and support vector machine (SVM) classification models were trained, 

optimized, and tested separately on both the lab and remote features. Leave-One-Subject-

Out cross-validation (LOSOCV) was performed to ensure data from participants was not 

in both the test and training set. Performance was assessed using area under the receiver 

operating characteristic curve (AUC), accuracy (acc), sensitivity (sens), specificity (spec), 

and F1 score. Model performance was computed using both the outputs from each 
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individual input and by aggregating the median decision score from each observation of an 

individual participant, resulting in one prediction per participant. Lastly, the weights of the 

LR model were then used to measure feature importance.  

We also created fall risk classification models with features from each cluster. Both 

LR and SVM models were trained and evaluated using LOSOCV, and performance of each 

cluster was again assessed using AUC, accuracy, sensitivity, specificity, and F1 score, both 

with and without aggregation. Hyperparameters of both models were tuned, lasso 

regularization was used with OptimizeLearnRate to train the LR models and the SVM 

model was found to perform best with a linear kernel and SMO solver. The model weights 

from the lasso regression were also considered for feature importance. The number of faller 

and non-faller observations for each cluster was also reported. A permutation analysis was 

conducted to compare the model AUC against random chance, this was done using 100 run 

average of classification results compared to 1000 replicates of permuted labels. 

5.3. Results 

All fifteen sway features computed were significantly different between the lab and 

all remote data as seen in Table 10. Very high effect sizes were also observed for Pwr, 

Path, and RMS. When correlating the remote data to PRMs, seen in Table 11, we found 

the strongest relationships across all PRMs with the feature FD, frequency dispersion. The 

PRMs ABC and MFIS demonstrated the most significant correlations to remote sway, 

however, the strongest relationship observed, r = -0.62, was the 75
th

 percentile of FD with 

MSWS. 

Table 10: Difference Testing Between Lab and Remote Sway 
Feature Lab Median Lab IQR Remote Median Remote IQR P-value Cohen’s D 
Jerk 0.043 0.041 0.103 0.132 <0.001 0.838 



80 

Dist 0.001 0.002 0.006 0.011 <0.001 0.904 
RMS 0.045 0.034 0.709 0.118 <0.001 8.50 
Path 1.39 1.071 22.2 3.749 <0.001 8.37 
Range 0.066 0.054 0.392 0.353 <0.001 1.45 
MV 1.24 1.127 21.6 4.015 <0.001 7.51 
MF 195 548.7 541 2995 <0.001 0.63 
Area 0.018 0.029 4.84 3.213 <0.001 2.20 
Pwr 0.002 0.033 0.503 0.160 <0.001 4.64 
F50 0.081 0.033 0.080 0.0002 <0.001 1.48 
F95 0.225 0.026 0.217 0.003 <0.001 1.35 
CF 0.701 0.057 0.715 0.011 <0.001 0.711 
FD 1.85 0.251 1.788 0.035 <0.001 1.00 
ApEn 0.515 0.178 0.343 0.282 <0.001 1.05 
LyExp -0.457 14.74 -2.54 5.464 <0.001 1.13 

Median and interquartile range (IQR) testing of lab and remote sway metrics with ranksum 

difference testing and Cohen’s D effect size (α = 0.05) 

 

Table 11: Correlations of Remote Sway Features to Patient Reported Measures 
Feature  EDSS  ABC  MFIS  MSWS 
Jerk - - - - - - - - 
Dist - - - - - - - - 
RMS - - - - P75 0.34 - - 
Path - - - - P75 0.32 - - 
Range - - STD 0.36 - - - - 
MV - - - - Med 0.33 - - 
MF - - - - - - - - 
Area - - P75 0.39 STD 0.45 STD 0.30 
Pwr - - - - P75 0.34 - - 
F50 - - - - - - - - 
F95 - - - - - - - - 
CF P75 0.38 Med -0.51 Med 0.38 Med 0.49 
FD P75 -0.59 P75 0.56 P75 -0.40 P75 -0.62 
ApEn - - P5 0.31 P5 -0.33 P5 -0.32 
LyExp - - STD 0.38 - - - - 

Strongest spearman correlations observed between sway features and patient reported 

measured. EDSS: Expanded Disability Severity Scale; ABC: Activities-Specific Balance 

Confidence; MFIS: Modified Fatigue Impact Scale; MSWS: Multiple Sclerosis Walking 

Scale; P5: 5
th

 Percentile; Med: Median; P75: 75
th

 Percentile; STD: Standard Deviation; 

Strongest correlation for each patient reported measure in italics. (α = 0.10). 

 

Measures of postural sway were found to be able to assess fall risk when computed 

on in-lab data. We observed an AUC of 0.74 fall risk classification which increased to 0.79 

when we took the median of each participants classifications. This was found using a 

logistic regression model and the weights of the model for a feature importance are 
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depicted in Figure 14. To establish a baseline remote data performance, we first fit models 

using all the collected data. The best performing model was a logistic regression with AUC 

of 0.52 before aggregation and 0.44 after, suggesting the model is unable to perform any 

better than guessing likely due to noisy data. More model performance details can be found 

in Table 13. 

Figure 14: Feature importance of logistic regression model for in-lab fall risk 
classification. 

 

Feature importance of postural sway features computed from in-lab fall risk classification. 

 

 

Clustering methods were then applied to investigate whether selecting subsets of 

data would provide an increase over all data performance by potentially removing noise 

and identifying similar data. The average optimal number of clusters was found to be 4, 

the optimal number of clusters for each participant is depicted in Figure 15. 
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Figure 15: Optimal number of clusters for each participant for kmeans clustering. 

 

Optimal number of clusters by participant for kmeans clustering using MATLAB’s 

evalclusters function.  

 

Each cluster was found to establish differing relationships to PRMs. As seen in 

Table 12, the strongest correlation to ABC was observed with FD from cluster 2, however, 

the strongest correlation to EDSS was observed with RMS from cluster 3. Overall, features 

from clusters 1-3 all establish meaningful correlations to PRMs while cluster 4 does not. 

When compared to lab data, all features were different between the clusters and lab data 

except ApEn for cluster 1 and ApEn, CF, and FD for cluster 2.  Only clusters 2 and 3 have 

significant correlations between lab derived and clustered features. The feature RMS has a 

correlation of 0.36 and 0.43 with the median of clusters 2 and 3 respectively. The feature 

CF was also significantly correlated with cluster 2 (r = -0.46). Interestingly, while not 

significant, the features Range and FD, are negatively correlated with the lab data for all 

home data and clusters 1-3. All other features, including those from all home data, were 

not significantly correlated to lab-derived features. When averaging the amount of time 

spent in each cluster across all of the participants, fallers spent 12.05% of the time in cluster 
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1, 25.94% in cluster 2, 42.83% in cluster 3, and 19.18% in cluster 4. Non-fallers spent 

7.69% in cluster 1, 24.35% in cluster 2, 38.56% in cluster 3, and 29.43% in cluster 4. 

Differences in time spent in clusters 1 and 4 between fallers and non-fallers approaches 

significance, (p = 0.055, p = 0.050, respectively), however, this was not the case for 

clusters 2 and 3. Figure 16 demonstrates the z-score differences between the clusters 

and all of the home data. Here we find Range and FD are both higher and CF is lower 

in clusters 1 and 2 compared to home. 

Figure 16: Z-score differences of clustered data and lab data for selected features. 

 

Differences between clustered data and all home data. Z-scores computed from difference 

between clustered/lab feature and all home data. 

Table 12: Correlations of Clustered Features to EDSS and ABC 
All Data 

Feature RMS Range Area CF FD LyExp 
EDSS -0.38 -0.14 -0.13 0.18 -0.26 0.14 
ABC 0.24 0.25 - -0.21 0.25 -0.07 

Cluster 1 
EDSS -0.18 -0.22 - 0.24 -0.38 -0.21 
ABC - 0.51 -0.21 -0.57 0.55 0.33 

Cluster 2 
EDSS -0.30 -0.25 - 0.41 -0.55 0.10 
ABC 0.20 0.40 - -0.55 0.64 -0.12 

Cluster 3 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Lab
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

Z-
Sc

or
e 

Fr
om

 A
ll 

H
om

e 
D

at
a

RMS
Range
Area
CF
FD
LyExp



84 

EDSS -0.61 -0.19 -0.38 0.22 -0.27 0.30 
ABC 0.42 0.33 0.14 -0.21 0.20 -0.16 

Cluster 4 
EDSS - - 0.17 0.17 -0.16 0.11 
ABC -0.12 - -0.22 -0.19 0.19 - 

EDSS: Expanded Disability Severity Scale; ABC: Activities-Specific Balance Confidence. 

Spearman correlation between postural sway features from each cluster and patient 

reported measures. (α = 0.05). 

 

Training models to classify fall risk from the different clusters of data revealed 

vastly difference performance between clusters. Considering the aggregation of 48 hours 

of data, clusters 1-4 achieve AUCs of 0.57, 0.71, 0.53, and 0.32 respectively, as shown in 

Table 13. SVM models were found to perform best for clusters 1-3 while a logistic 

regression model provided the best performance for cluster 4. Overall, cluster 2 exhibits 

the strongest fall classification performance. Cluster 1 has a strong unaggregated 

performance, AUC 0.73 with the highest observed accuracy, sensitivity, and F1 score, 

however cluster 1 has a strong class imbalance toward fallers, which is corrected for by 

aggregation resulting in the AUC of 0.57. Details regarding class balances, additional 

model performance measures, and significance tests for model results are provided in Table 

13. 

Table 13: Fall risk classification performance by input data source of postural sway 
features. 

Data Model Input Size AGG ACC SPE SEN AUC F1 p-val 

Lab LR 
F: 3008 None 0.69 0.74 0.64 0.74 0.67 <0.001 

NF: 3196 Med 0.76 0.82 0.69 0.79 0.69 0.003 

All Home LR 
F: 2337 None 0.62 0.39 0.62 0.52 0.62 0.034 

NF: 2308 Med 0.45 0.65 0.56 0.44 0.50 0.417 

C1 SVM 
F: 200 None 0.77 0.55 0.87 0.73 0.84 <0.001 
NF: 93 Med 0.60 0.57 0.63 0.57 0.63 0.299 

C2 SVM 
F: 643 None 0.69 0.69 0.69 0.72 0.71 <0.001 

NF: 555 Med 0.73 0.86 0.63 0.71 0.71 0.018 

C3 SVM 
F: 1065 None 0.58 0.73 0.43 0.53 0.51 0.003 
NF: 998 Med 0.53 0.79 0.31 0.53 0.42 0.111 

C4 LR 
F: 495 None 0.50 0.44 0.58 0.31 0.50 <0.001 

NF: 658 Med 0.40 0.29 0.50 0.32 0.47 0.151 
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Fall risk classification performance by input data source of postural sway features. C1 – 

C4: Cluster 1 – Cluster 4; LR: Logistic Regression; SVM: Support Vector Machine; AGG: 

Aggregation; F: Fallers; NF: Non-fallers; Med: Median; ACC: Accuracy; SPE: Specificity; 

SEN: Sensitivity; AUC: Area Under Curve. p-val: p-values of permutation test. Bold 

values signify the highest performance in column or significance of P-values. Note: results 

tested to be significantly different from random, results lower than AUC of 0.5 are tested 

for a significant performance reduction compared to random.  

 

5.4. Discussion 

The purpose of this work was to introduce postural sway as a remote digital 

biomarker. In doing so, we compared the metrics to those computed from a lab standing 

assessment, computed correlations to PRMs, and trained fall classification models to 

establish clinical significance. In these analyses, we explored the impact of selecting 

subsets of data by clustering compared to considering all free-living data.  

When comparing lab and remotely collected postural sway, all features were found 

to be significantly different with larger IQRs observed in many cases. Interestingly, many 

of the features with high effect sizes were related to sway path, suggesting that perhaps 

sway patterns are more variable at home. These findings suggest that modeling approaches 

need to be trained using data from the targeted use environment. Similar observations were 

made in remotely collected gait in PwMS [202].    

Our investigation of clinical significance finds several significant correlations 

between PRMs and remote sway features. The strongest correlations were observed with 

FD for EDSS, ABC, and MSWS, while Area provided the strongest correlations to MFIS. 

In our previous studies, we have found few significant relationships between standard eyes-

open standing and PRMs in the lab [51]. The strongest in-lab correlation we observed was 

-0.37 between Dist and MFIS while in this analysis we not only find a stronger relationship 

to MFIS with Area (r=0.45), we also find a correlation of -0.62 between FD and MSWS 
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when considering remotely collected sway. Based on these findings, it is clear that remote 

sway demonstrates clinical significance in relation to PRMs. 

Using the remote and lab measures to train fall classification models, however, we 

find that considering all the remote data is not clinically meaningful when trying to classify 

fall risk, highlighting the need for some level of preprocessing such as clustering. The in-

lab features were able to achieve an AUC of 0.79 in an eyes-open balance assessment 

compared to 0.52 remotely. Investigating the feature importance of the well fit lab model 

reveals the most important features from this set in the lab are RMS, Path, MV, Area, and 

Pwr. These findings are different from those previously found in MS that suggest the three 

domains to explain balance variance are sway amplitude and velocity and sway frequency 

and jerk in the anterior-posterior (AP) and medial-lateral (ML) directions [213]. These 

features may not arise as important in this analysis because we do not require our 

participants to perform a lying calibration and therefore cannot distinguish between AP 

and ML features.  

When clustering methods were applied to the remote data, we found differing 

relationships with each cluster. Based on ranksum tests, cluster 2 provided the fewest 

significant differences when compared to the lab standing, followed by cluster 1. All 

features were significantly different for clusters 3 and 4. When correlating these home and 

clustered features with the lab-derived features, we find most features are not correlated, 

meaning lab performance is not indicative of real world standing. Additionally, features 

like CF, FD, and Range have negative correlations, suggesting that those who have less 

sway in the lab assessment have larger sway ranges at home. This may reflect an increase 

in confidence and movement in those who are less impaired. We also found the overall 
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highest correlations when using data from cluster 2 between ABC and FD (r=0.64). 

Interestingly, however, the strongest correlation to EDSS was found between RMS in 

cluster 3 (r=0.61). This suggests that the clusters may capture different relationships within 

the data.   

Perhaps the most interesting finding is that when the data from the clusters were 

used to train fall risk models, cluster 2 was able to achieve performance near that of the lab 

assessment. These clustering results show promise that accurate assessments can still be 

made with remote data when appropriate data are selected for analysis. Herein, the 

clustering was simply used as a method to select different sets of unique data. The improved 

performance and correlations observed when doing so motives using similar unsupervised 

methods to remove unwanted data or select data of interest in future remote analyses. A 

similar approach may have been able to explain the differences between fall classification 

performance of PwMS from gait from the lab and home [122], [202].  

There are some limitations to this study. First, our analysis was based on a relatively 

small sample of 33 PwMS. There is a lack of demographic and regional diversity in this 

sample. Additionally, our methods do not distinguish between AP and ML direction 

features, which may provide different results when doing so. Finally, our inclusion criteria 

limit these studies to lower impairment individuals. We expect a more impaired sample 

would result in stronger signals, however, that remains untested with our current dataset. 

Despite these limitations, we were still able to provide strong results and 

motivations for the remote assessment of postural sway. Future studies need to be done to 

determine if these same clustering methods can be applied to deep learning methods of fall 
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risk classification. Studies should also be done to determine if similar clustering methods 

provide meaning findings in other fields of remote analysis, such as for gait.  

5.5. Conclusion 

Herein we examine the use of postural sway as a remote digital biomarker. We 

demonstrated that sway measures collected in the lab are significantly different from those 

collected remotely and that stronger correlations are found with remote data. However, lab 

sway features were able to accurately assess fall risk while remote measures were unable 

to do so. To address this, we applied a clustering method to identify similar data at home 

and found differing relationships to PRMs and fall risk within each cluster. The best 

performing cluster was able to achieve similar performance to lab collected sway and 

provided stronger correlations than both the lab and all home data. The results presented 

herein motivate the inclusion of postural sway as an analysis method in future remote 

studies. 
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CHAPTER SIX: CONCLUSION 

6.1. Summary of Developments 

The goal of this dissertation was to address challenges of remote monitoring to 

allow for robust assessment of gait and balance impairment related to fall risk in persons 

with multiple sclerosis. These challenges and questions were examined with a data analysis 

platform that was developed for remote analysis. This platform detects the participants’ 

activities, such as walking and standing, and then computes the appropriate gait, sway, or 

other activity features and outputs the results for further analysis. This platform was 

designed to function with data from several studies and patient cohorts to facilitate remote 

analysis for others and in future work. 

The introduction provided in Chapter 1 motivates and discusses falls in MS, current 

techniques of fall risk assessment, and how wearable sensing can be used to improve the 

standard of care. Specifically, this includes discussion of how remote studies may be more 

appropriate and accessible, however, there are few studies investigating fall risk remotely, 

particularly in the field of postural sway. Further, prior work is discussed and how the 

excellent performance achieved using in-lab assessments techniques did not translate when 

applied to remote data. Based on these challenges, this work aimed to answer the following 

questions: Does walking duration affect gait and fall risk assessment? How much data is 

enough? Can we measure postural sway from the chest? Is there a better way to compute 

sway metrics? Can remotely collected postural sway classify fall risk and demonstrate 

clinical utility?  

Chapter two addresses the challenges regarding walking duration. The major 

contribution of this work is the demonstration that features of gait do change in PwMS 
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based on walking duration. This builds upon on the work on Storm et al. that demonstrated 

significant differences between lab and remote gait parameters [137].  As a result, walking 

duration also has an impact on fall risk classification models. In this analysis, it was found 

that longer walks were most similar to in-lab walking. These longer walks also provided 

the input data to the best performing fall risk classification models. In addition to these 

findings, the data set used to train these models was released publicly to address the 

common lack of data in clinical populations.  

Chapter three addresses a common question asked by reviewers when reviewing a 

remote study: how much data is enough? To answer this question, this study utilized six 

weeks of data and compared features of gait and sway computed from shorter durations of 

wear. Searching through literature on methods to determine sufficient monitoring time, 

there was a lack of a defined methodology to do so. Therefore, this study proposed a 

standardized three-part method to determine an adequate monitoring period. First 

difference testing and intra-class correlation were used to establish analytical validation. 

Then clinical significance was established by correlating to PRMs. Applying this analysis 

to gait and sway features, we found that most measures were analytically valid in two to 

three days of monitoring and in some cases, longer periods of monitoring were needed to 

establish clinical significance. Overall, the number of days required was found to be 

significantly related coefficient of variation of the feature and number of daily 

observations. 

Chapter four addresses two challenges in the field of postural sway. First, can sway 

features be obtained from the chest for more convenient remote monitoring. Second, is 

there a better method to compute sway features than first proposed in Mancini et al. where 
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features are computed once based on a 30-second standing period [50]. In this analysis, 

sway measures computed from the chest were found to be comparable to the previously 

validated sacrum accelerometer location. Once concurrent validity was established, chest 

measures were also found to relate to PRMs and demonstrate differences between fallers 

and non-fallers. This study also proposed a novel method of computing postural sway 

features called Individualized Distributions (ID). This approach required an additional 30-

seconds of standing data and used a sliding window approach to create a distribution of 

each feature rather than a single value. The resulting distribution was found to capture more 

differences between fallers and non-fallers and have more numerous and stronger 

correlations to PRMs.  

Chapter five builds upon the finding that postural sway can be assessed from the 

chest and only requires two days of monitoring. This study presents an analysis of remotely 

collected postural sway and shows its relationship to PRMs, fall risk, and different groups 

of data that exists in remote data. Measures of remote sway were found to provide stronger 

correlations to PRMs when compared to lab-derived features, however, lab-derived 

features far outperformed remote features when classifying fall risk. To explain this 

performance discrepancy, clustering was employed to identify clusters of similar remote 

data that may provide improved predictive power. In doing so, one cluster was able to 

obtain fall classification performance nearing in-lab performance while also improving 

upon the remote correlations to PRMs.  

6.2. Implications of Work 

This work answers foundational questions and challenges required to successfully 

design, collect, and analyze wearable sensors data in remote settings and also provides a 



92 

platform for remote analysis. Chapter two explains that the duration of the activity, gait in 

this case, has an impact on participant performance and prediction power. Future studies 

need to consider this notion when performing remote analyses. Chapter two also outlines 

an open-sourced dataset that was released along with the paper. This serves to help fill the 

clinical population data shortage and encourage other groups to share study data as well.  

Chapter three has several implications for future study design. The finding that two-

three days is sufficient to monitor features of gait and sway suggests longer studies may be 

a waste of resources. More frequent shorter observation periods may be more useful when 

trying to track aspects of disease like symptom fluctuations. The number of required days 

to adequately measure a feature was found to be related to variability and number of 

observations. This knowledge can be applied during feature engineering and development 

to ensure the selected features are appropriate for the desired study length. Additionally, 

this study also proposed a framework that can be used to perform similar analyses in other 

populations or activities.  

Chapter four demonstrates that sway measures can be obtained from the far more 

accessible chest sensor location compared to a sacrum sensor. This allows these measures 

to be obtained the growing number of cardiac-focuses wearables and alleviates the remote 

monitoring of postural sway. In addition, this study also demonstrates that sway measures 

computed using individualized distributions provide greater predictive power compared to 

those computed in the standard approach.  

Lastly, Chapter 5 builds upon previous findings and demonstrates that postural 

sway is a clinically significant remote digital endpoint. This is the first study to formally 

introduce remote sway in PwMS and other populations. The use of clustering to find 
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stronger relationships also suggests similar methods may be used in other fields of remote 

analysis. The remote analysis framework used to perform these analyses was licensed for 

use by Medidata Solutions and is being broadly applied to other clinical populations. 

Overall, this work shows clinically significant measures can be obtained remotely when 

proper processing and analysis is performed.  

  



94 

References 

[1] D. Podsiadlo and S. Richardson, “The timed ‘Up & Go’: a test of basic functional 

mobility for frail elderly persons,” J. Am. Geriatr. Soc., vol. 39, no. 2, pp. 142–148, 

Feb. 1991. 

[2] Y. Nilsagård, Cecilia Lundholm, E. Denison, and L-G. Gunnarsson, “Predicting 

accidental falls in people with multiple sclerosis — a longitudinal study,” Clin. 
Rehabil., vol. 23, no. 3, pp. 259–269, Mar. 2009, doi: 10.1177/0269215508095087. 

[3] S. L. Kasser, J. V. Jacobs, M. Ford, and T. W. Tourville, “Effects of balance-

specific exercises on balance, physical activity and quality of life in adults with 

multiple sclerosis: a pilot investigation,” Disabil. Rehabil., vol. 37, no. 24, pp. 

2238–2249, Nov. 2015, doi: 10.3109/09638288.2015.1019008. 

[4] S. Coote, L. Comber, G. Quinn, C. Santoyo-Medina, A. Kalron, and H. Gunn, “Falls 

in People with Multiple Sclerosis,” Int. J. MS Care, vol. 22, no. 6, Art. no. 6, 2020, 

doi: 10.7224/1537-2073.2020-014. 

[5] E. W. Peterson, C. C. Cho, L. von Koch, and M. L. Finlayson, “Injurious Falls 

Among Middle Aged and Older Adults With Multiple Sclerosis,” Arch. Phys. Med. 
Rehabil., vol. 89, no. 6, pp. 1031–1037, Jun. 2008, doi: 

10.1016/j.apmr.2007.10.043. 

[6] B. Bebo et al., “The Economic Burden of Multiple Sclerosis in the United States: 

Estimate of Direct and Indirect Costs,” Neurology, vol. 98, no. 18, pp. e1810–

e1817, May 2022, doi: 10.1212/WNL.0000000000200150. 

[7] J. Veldhuijzen van Zanten, M. R. Douglas, and N. Ntoumanis, “Fatigue and 

fluctuations in physical and psychological wellbeing in people with multiple 

sclerosis: A longitudinal study,” Mult. Scler. Relat. Disord., vol. 47, p. 102602, Jan. 

2021, doi: 10.1016/j.msard.2020.102602. 

[8] M. H. Cameron, E. Thielman, R. Mazumder, and D. Bourdette, “Predicting falls in 

people with multiple sclerosis: fall history is as accurate as more complex 

measures,” Mult. Scler. Int., 2013, Accessed: Jan. 02, 2020. [Online]. Available: 

https://link.gale.com/apps/doc/A377777201/HWRC?u=vol_b92b&sid=HWRC&xid

=552f58cd 

[9] P. N. Matsuda, A. Shumway-Cook, A. M. Bamer, S. L. Johnson, D. Amtmann, and 

G. H. Kraft, “Falls in multiple sclerosis,” PM R, vol. 3, no. 7, pp. 624–632; quiz 

632, Jul. 2011, doi: 10.1016/j.pmrj.2011.04.015. 

[10] C. Hentzen et al., “Are falls in people with multiple sclerosis related to the severity 

of urinary disorders?,” Ann. Phys. Rehabil. Med., vol. 64, no. 4, p. 101452, Jul. 

2021, doi: 10.1016/j.rehab.2020.10.006. 

[11] J. E. Zelaya, C. Murchison, and M. Cameron, “Associations Between Bladder 

Dysfunction and Falls in People with Relapsing-Remitting Multiple Sclerosis,” Int. 
J. MS Care, vol. 19, no. 4, pp. 184–190, 2017, doi: 10.7224/1537-2073.2016-049. 

[12] H. Choobsaz, S. ShahAli, R. Salehi, S. Noorizadeh Dehkordi, and S. Shanbehzadeh, 

“Discriminative ability of fall efficacy scale international in Iranian people with 

multiple sclerosis,” Mult. Scler. Relat. Disord., vol. 42, p. 102083, Jul. 2020, doi: 

10.1016/j.msard.2020.102083. 



95 

[13] P. D. Hoang et al., “Fall risk in people with MS: A Physiological Profile 

Assessment study,” Mult. Scler. J. - Exp. Transl. Clin., vol. 2, p. 

2055217316641130, Dec. 2016, doi: 10.1177/2055217316641130. 

[14] R. van Vliet, P. Hoang, S. Lord, S. Gandevia, and K. Delbaere, “Falls efficacy 

scale-international: a cross-sectional validation in people with multiple sclerosis,” 

Arch. Phys. Med. Rehabil., vol. 94, no. 5, pp. 883–889, May 2013, doi: 

10.1016/j.apmr.2012.10.034. 

[15] Y. Nilsagård et al., “Falls in people with MS--an individual data meta-analysis from 

studies from Australia, Sweden, United Kingdom and the United States,” Mult. 
Scler. Houndmills Basingstoke Engl., vol. 21, no. 1, pp. 92–100, Jan. 2015, doi: 

10.1177/1352458514538884. 

[16] R. Mazumder, W. E. Lambert, T. Nguyen, D. N. Bourdette, and M. H. Cameron, 

“Fear of Falling Is Associated with Recurrent Falls in People with Multiple 

Sclerosis: A Longitudinal Cohort Study,” Int. J. MS Care, vol. 17, no. 4, pp. 164–

170, 2015, doi: 10.7224/1537-2073.2014-042. 

[17] G. Quinn, L. Comber, C. McGuigan, A. Hannigan, R. Galvin, and S. Coote, “Risk 

factors for falling for people with Multiple Sclerosis identified in a prospective 

cohort study,” Clin. Rehabil., vol. 35, no. 5, pp. 765–774, May 2021, doi: 

10.1177/0269215520973197. 

[18] L. Prosperini and L. Castelli, “Spotlight on postural control in patients with multiple 

sclerosis,” Degener. Neurol. Neuromuscul. Dis., vol. 8, pp. 25–34, 2018, doi: 

10.2147/DNND.S135755. 

[19] A. Kalron, R. Aloni, M. Dolev, L. Frid, U. Givon, and S. Menascu, “The 

relationship between gait variability and cognitive functions differs between fallers 

and non-fallers in MS,” J. Neural Transm. Vienna Austria 1996, vol. 125, no. 6, pp. 

945–952, Jun. 2018, doi: 10.1007/s00702-018-1843-y. 

[20] A. Kalron, R. Aloni, and G. Allali, “The relationship between depression, anxiety 

and cognition and its paradoxical impact on falls in multiple sclerosis patients,” 

Mult. Scler. Relat. Disord., vol. 25, pp. 167–172, Oct. 2018, doi: 

10.1016/j.msard.2018.07.029. 

[21] D. Cattaneo, A. Regola, and M. Meotti, “Validity of six balance disorders scales in 

persons with multiple sclerosis,” Disabil. Rehabil., vol. 28, no. 12, pp. 789–795, 

Jun. 2006, doi: 10.1080/09638280500404289. 

[22] L. E. Powell and A. M. Myers, “The Activities-specific Balance Confidence (ABC) 

Scale,” J. Gerontol. Ser. A, vol. 50A, no. 1, pp. M28–M34, Jan. 1995, doi: 

10.1093/gerona/50A.1.M28. 

[23] “Modified Fatigue Impact Scale,” Shirley Ryan AbilityLab. 

https://www.sralab.org/rehabilitation-measures/modified-fatigue-impact-scale 

(accessed Jun. 16, 2020). 

[24] L. B. Strober et al., “Tired of not knowing what that fatigue score means? 

Normative data of the Modified Fatigue Impact Scale (MFIS),” Mult. Scler. Relat. 
Disord., vol. 46, p. 102576, Nov. 2020, doi: 10.1016/j.msard.2020.102576. 

[25] J. C. Hobart, A. Riazi, D. L. Lamping, R. Fitzpatrick, and A. J. Thompson, 

“Measuring the impact of MS on walking ability: The 12-Item MS Walking Scale 

(MSWS-12),” Neurology, vol. 60, no. 1, pp. 31–36, Jan. 2003, doi: 

10.1212/WNL.60.1.31. 



96 

[26] L. Yardley, N. Beyer, K. Hauer, G. Kempen, C. Piot-Ziegler, and C. Todd, 

“Development and initial validation of the Falls Efficacy Scale-International (FES-

I),” Age Ageing, vol. 34, no. 6, pp. 614–619, Nov. 2005, doi: 10.1093/ageing/afi196. 

[27] B. M. Meyer et al., “Wearables and Deep Learning Classify Fall Risk from Gait in 

Multiple Sclerosis,” IEEE J. Biomed. Health Inform., pp. 1–1, 2020, doi: 

10.1109/JBHI.2020.3025049. 

[28] E. Sebastião, Y. C. Learmonth, and R. W. Motl, “Mobility measures differentiate 

falls risk status in persons with multiple sclerosis: An exploratory study,” 

NeuroRehabilitation, vol. 40, no. 1, Art. no. 1, 2017, doi: 10.3233/NRE-161401. 

[29] L. J. Tulipani, B. Meyer, D. Larie, A. J. Solomon, and R. S. McGinnis, “Metrics 

extracted from a single wearable sensor during sit-stand transitions relate to 

mobility impairment and fall risk in people with multiple sclerosis,” Gait Posture, 

vol. 80, pp. 361–366, Jul. 2020, doi: 10.1016/j.gaitpost.2020.06.014. 

[30] Y. Nilsagård, M. Andreasson, A. Carling, and H. Vesterlin, “Examining the validity 

and sensitivity to change of the 5 and 10 sit-to-stand tests in people with multiple 

sclerosis,” Physiother. Res. Int. J. Res. Clin. Phys. Ther., vol. 22, no. 4, Oct. 2017, 

doi: 10.1002/pri.1681. 

[31] A. Kalron, M. Dolev, and U. Givon, “Further construct validity of the Timed Up-

and-Go Test as a measure of ambulation in multiple sclerosis patients,” Eur. J. 
Phys. Rehabil. Med., vol. 53, no. 6, pp. 841–847, Dec. 2017, doi: 10.23736/S1973-

9087.17.04599-3. 

[32] G. Quinn, L. Comber, C. McGuigan, R. Galvin, and S. Coote, “Discriminative 

ability and clinical utility of the Timed Up and Go (TUG) in identifying falls risk in 

people with multiple sclerosis: a prospective cohort study,” Clin. Rehabil., vol. 33, 

no. 2, Art. no. 2, Feb. 2019, doi: 10.1177/0269215518793481. 

[33] Y. Nilsagård, E. Westerdahl, A. Wittrin, and M. Gunnarsson, “Walking Distance as 

a Predictor of Falls in People With Multiple Sclerosis,” Physiother. Res. Int. J. Res. 
Clin. Phys. Ther., vol. 21, no. 2, pp. 102–108, Jun. 2016, doi: 10.1002/pri.1625. 

[34] A. Kalron, S. Menascu, M. Dolev, and U. Givon, “The walking speed reserve in low 

disabled people with multiple sclerosis: Does it provide greater insight in detecting 

mobility deficits and risk of falling than preferred and fast walking speeds?,” Mult. 
Scler. Relat. Disord., vol. 17, pp. 202–206, Oct. 2017, doi: 

10.1016/j.msard.2017.08.010. 

[35] Y. Etemadi, “Dual task cost of cognition is related to fall risk in patients with 

multiple sclerosis: a prospective study,” Clin. Rehabil., vol. 31, no. 2, pp. 278–284, 

Feb. 2017, doi: 10.1177/0269215516637201. 

[36] D. A. Wajda, R. W. Motl, and J. J. Sosnoff, “Dual task cost of walking is related to 

fall risk in persons with multiple sclerosis,” J. Neurol. Sci., vol. 335, no. 1–2, pp. 

160–163, Dec. 2013, doi: 10.1016/j.jns.2013.09.021. 

[37] L. E. Dibble, C. Lopez-Lennon, W. Lake, C. Hoffmeister, and E. Gappmaier, 

“Utility of disease-specific measures and clinical balance tests in prediction of falls 

in persons with multiple sclerosis,” J. Neurol. Phys. Ther. JNPT, vol. 37, no. 3, pp. 

99–104, Sep. 2013, doi: 10.1097/NPT.0b013e3182a18460. 

[38] K. D. Mitchell, H. Chen, and S. P. Silfies, “Test-Retest Reliability, Validity, and 

Minimal Detectable Change of the Balance Evaluation Systems Test to Assess 



97 

Balance in Persons with Multiple Sclerosis,” Int. J. MS Care, vol. 20, no. 5, pp. 

231–237, 2018, doi: 10.7224/1537-2073.2016-118. 

[39] J. V. Jacobs and S. L. Kasser, “Balance impairment in people with multiple 

sclerosis: preliminary evidence for the Balance Evaluation Systems Test,” Gait 
Posture, vol. 36, no. 3, pp. 414–418, Jul. 2012, doi: 10.1016/j.gaitpost.2012.03.026. 

[40] T. Hortobágyi et al., “Beam Walking to Assess Dynamic Balance in Health and 

Disease: A Protocol for the ‘BEAM’ Multicenter Observational Study,” 

Gerontology, vol. 65, no. 4, pp. 332–339, 2019, doi: 10.1159/000493360. 

[41] M. Tijsma, E. Vister, P. Hoang, and S. R. Lord, “A simple test of choice stepping 

reaction time for assessing fall risk in people with multiple sclerosis,” Disabil. 
Rehabil., vol. 39, no. 6, Art. no. 6, 2017, doi: 10.3109/09638288.2016.1148784. 

[42] S. Caselli et al., “When ‘good’ is not good enough: a retrospective Rasch analysis 

study of the Berg Balance Scale for persons with Multiple Sclerosis,” Front. 
Neurol., vol. 14, May 2023, doi: 10.3389/fneur.2023.1171163. 

[43] S. Beer, F. Khan, and J. Kesselring, “Rehabilitation interventions in multiple 

sclerosis: an overview,” J. Neurol., vol. 259, no. 9, pp. 1994–2008, Sep. 2012, doi: 

10.1007/s00415-012-6577-4. 

[44] J. Tollár et al., “Exercise Effects on Multiple Sclerosis Quality of Life and Clinical-

Motor Symptoms,” Med. Sci. Sports Exerc., vol. 52, no. 5, pp. 1007–1014, May 

2020, doi: 10.1249/MSS.0000000000002228. 

[45] S. Coote, N. Hogan, and S. Franklin, “Falls in people with multiple sclerosis who 

use a walking aid: prevalence, factors, and effect of strength and balance 

interventions,” Arch. Phys. Med. Rehabil., vol. 94, no. 4, pp. 616–621, Apr. 2013, 

doi: 10.1016/j.apmr.2012.10.020. 

[46] Y. Moon et al., “Monitoring gait in multiple sclerosis with novel wearable motion 

sensors,” PLOS ONE, vol. 12, no. 2, p. e0171346, Feb. 2017, doi: 

10.1371/journal.pone.0171346. 

[47] M. L. Frechette, B. M. Meyer, L. J. Tulipani, R. D. Gurchiek, R. S. McGinnis, and 

J. J. Sosnoff, “Next Steps in Wearable Technology and Community Ambulation in 

Multiple Sclerosis,” Curr. Neurol. Neurosci. Rep., vol. 19, no. 10, p. 80, Sep. 2019, 

doi: 10.1007/s11910-019-0997-9. 

[48] R. S. McGinnis et al., “A machine learning approach for gait speed estimation using 

skin-mounted wearable sensors: From healthy controls to individuals with multiple 

sclerosis,” PLoS ONE, vol. 12, no. 6, Jun. 2017, doi: 10.1371/journal.pone.0178366. 

[49] Y. Moon, D. A. Wajda, R. W. Motl, and J. J. Sosnoff, “Stride-Time Variability and 

Fall Risk in Persons with Multiple Sclerosis,” Mult. Scler. Int., vol. 2015, 2015, doi: 

10.1155/2015/964790. 

[50] M. Mancini et al., “ISway: a sensitive, valid and reliable measure of postural 

control,” J. NeuroEngineering Rehabil., vol. 9, no. 1, Art. no. 1, 2012, doi: 

10.1186/1743-0003-9-59. 

[51] B. M. Meyer et al., “Chest-Based Wearables and Individualized Distributions for 

Assessing Postural Sway in Persons with Multiple Sclerosis,” IEEE Trans. Neural 
Syst. Rehabil. Eng., pp. 1–1, 2023, doi: 10.1109/TNSRE.2023.3267807. 

[52] E. Sebastião, Y. C. Learmonth, and R. W. Motl, “Mobility measures differentiate 

falls risk status in persons with multiple sclerosis: An exploratory study,” 

NeuroRehabilitation, vol. 40, no. 1, pp. 153–161, 2017, doi: 10.3233/NRE-161401. 



98 

[53] B. M. Meyer et al., “How Much Data Is Enough? A Reliable Methodology to 

Examine Long-Term Wearable Data Acquisition in Gait and Postural Sway,” 

Sensors, vol. 22, no. 18, Art. no. 18, Sep. 2022, doi: 10.3390/s22186982. 

[54] Y. Cheng, K. Wang, H. Xu, T. Li, Q. Jin, and D. Cui, “Recent developments in 

sensors for wearable device applications,” Anal. Bioanal. Chem., vol. 413, no. 24, 

pp. 6037–6057, Oct. 2021, doi: 10.1007/s00216-021-03602-2. 

[55] M. M. Mañago, M. Cameron, and M. Schenkman, “Association of the Dynamic 

Gait Index to fall history and muscle function in people with multiple sclerosis,” 

Disabil. Rehabil., pp. 1–6, May 2019, doi: 10.1080/09638288.2019.1607912. 

[56] R. Sun et al., “Assessment of Postural Sway in Individuals with Multiple Sclerosis 

Using a Novel Wearable Inertial Sensor,” Digit. Biomark., vol. 2, no. 1, pp. 1–10, 

2018, doi: 10.1159/000485958. 

[57] E. M. Edwards et al., “Backward Walking and Dual-Task Assessment Improve 

Identification of Gait Impairments and Fall Risk in Individuals with MS,” Mult. 
Scler. Int., vol. 2020, p. e6707414, Sep. 2020, doi: 10.1155/2020/6707414. 

[58] S. Tajali, M. Mehravar, H. Negahban, J. H. van Dieën, M.-J. Shaterzadeh-Yazdi, 

and R. Mofateh, “Impaired local dynamic stability during treadmill walking predicts 

future falls in patients with multiple sclerosis: A prospective cohort study,” Clin. 
Biomech., vol. 67, pp. 197–201, Jul. 2019, doi: 10.1016/j.clinbiomech.2019.05.013. 

[59] R. Sun, K. L. Hsieh, and J. J. Sosnoff, “Fall Risk Prediction in Multiple Sclerosis 

Using Postural Sway Measures: A Machine Learning Approach,” Sci. Rep., vol. 9, 

no. 1, p. 16154, Dec. 2019, doi: 10.1038/s41598-019-52697-2. 

[60] A. T. Peebles, A. P. Bruetsch, S. G. Lynch, and J. M. Huisinga, “Dynamic balance 

in persons with multiple sclerosis who have a falls history is altered compared to 

non-fallers and to healthy controls,” J. Biomech., vol. 63, pp. 158–163, Oct. 2017, 

doi: 10.1016/j.jbiomech.2017.08.023. 

[61] H. J. Witchel et al., “Thigh-Derived Inertial Sensor Metrics to Assess the Sit-to-

Stand and Stand-to-Sit Transitions in the Timed Up and Go (TUG) Task for 

Quantifying Mobility Impairment in Multiple Sclerosis,” Front. Neurol., vol. 9, p. 

684, 2018, doi: 10.3389/fneur.2018.00684. 

[62] F. A. Storm, K. P. S. Nair, A. J. Clarke, J. M. Van der Meulen, and C. Mazzà, 

“Free-living and laboratory gait characteristics in patients with multiple sclerosis,” 

PLOS ONE, vol. 13, no. 5, p. e0196463, May 2018, doi: 

10.1371/journal.pone.0196463. 

[63] L. J. Tulipani, B. Meyer, D. Allen, A. J. Solomon, and R. S. McGinnis, “Evaluation 

of unsupervised 30-second chair stand test performance assessed by wearable 

sensors to predict fall status in multiple sclerosis,” Gait Posture, vol. 94, pp. 19–25, 

May 2022, doi: 10.1016/j.gaitpost.2022.02.016. 

[64] S. Coote, J. J. Sosnoff, and H. Gunn, “Fall Incidence as the Primary Outcome in 

Multiple Sclerosis Falls-Prevention Trials,” Int. J. MS Care, vol. 16, no. 4, pp. 178–

184, 2014, doi: 10.7224/1537-2073.2014-059. 

[65] K. Berg, S. Wood-Dauphine, J. I. Williams, and D. Gayton, “Measuring balance in 

the elderly: preliminary development of an instrument,” Physiother. Can., Apr. 

2009, doi: 10.3138/ptc.41.6.304. 

[66] S. L. Kasser, A. Goldstein, P. K. Wood, and J. Sibold, “Symptom variability, affect 

and physical activity in ambulatory persons with multiple sclerosis: Understanding 



99 

patterns and time-bound relationships,” Disabil. Health J., vol. 10, no. 2, pp. 207–

213, Apr. 2017, doi: 10.1016/j.dhjo.2016.10.006. 

[67] D. Cattaneo, C. De Nuzzo, T. Fascia, M. Macalli, I. Pisoni, and R. Cardini, “Risks 

of falls in subjects with multiple sclerosis,” Arch. Phys. Med. Rehabil., vol. 83, no. 

6, pp. 864–867, Jun. 2002, doi: 10.1053/apmr.2002.32825. 

[68] D. Yu and L. Deng, “Deep Learning and Its Applications to Signal and Information 

Processing [Exploratory DSP,” IEEE Signal Process. Mag., vol. 28, no. 1, pp. 145–

154, Jan. 2011, doi: 10.1109/MSP.2010.939038. 

[69] S. Hochreiter and J. Schmidhuber, “Long short-term memory.,” Neural Comput., 
vol. 9, no. 8, p. 1735, Nov. 1997. 

[70] D. Giansanti, V. Macellari, and G. Maccioni, “New neural network classifier of fall-

risk based on the Mahalanobis distance and kinematic parameters assessed by a 

wearable device,” Physiol. Meas., vol. 29, no. 3, pp. N11–N19, Mar. 2008, doi: 

10.1088/0967-3334/29/3/N01. 

[71] C. Tunca, G. Salur, and C. Ersoy, “Deep Learning for Fall Risk Assessment With 

Inertial Sensors: Utilizing Domain Knowledge in Spatio-Temporal Gait 

Parameters,” IEEE J. Biomed. Health Inform., vol. 24, no. 7, pp. 1994–2005, Jul. 

2020, doi: 10.1109/JBHI.2019.2958879. 

[72] A. Nait Aicha, G. Englebienne, K. S. Van Schooten, M. Pijnappels, and B. Kröse, 

“Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk 

Accelerometry,” Sensors, vol. 18, no. 5, p. 1654, May 2018, doi: 

10.3390/s18051654. 

[73] E. Torti et al., “Embedded Real-Time Fall Detection with Deep Learning on 

Wearable Devices,” in 2018 21st Euromicro Conference on Digital System Design 
(DSD), Aug. 2018, pp. 405–412. doi: 10.1109/DSD.2018.00075. 

[74] I. Wayan Wiprayoga Wisesa and G. Mahardika, “Fall detection algorithm based on 

accelerometer and gyroscope sensor data using Recurrent Neural Networks,” IOP 
Conf. Ser. Earth Environ. Sci., vol. 258, p. 012035, May 2019, doi: 10.1088/1755-

1315/258/1/012035. 

[75] M. Musci, D. D. Martini, N. Blago, T. Facchinetti, and M. Piastra, “Fall Detection 

using Recurrent Neural Networks,” p. 7, Apr. 2018. 

[76] F. Luna-Perejon et al., “An Automated Fall Detection System Using Recurrent 

Neural Networks,” in Artificial Intelligence in Medicine, D. Riaño, S. Wilk, and A. 

ten Teije, Eds., in Lecture Notes in Computer Science. Cham: Springer International 

Publishing, 2019, pp. 36–41. doi: 10.1007/978-3-030-21642-9_6. 

[77] F. Luna-Perejón, M. J. Domínguez-Morales, and A. Civit-Balcells, “Wearable Fall 

Detector Using Recurrent Neural Networks,” Sensors, vol. 19, no. 22, Art. no. 22, 

Jan. 2019, doi: 10.3390/s19224885. 

[78] X. Yu, H. Qiu, and S. Xiong, “A Novel Hybrid Deep Neural Network to Predict 

Pre-impact Fall for Older People Based on Wearable Inertial Sensors,” Front. 
Bioeng. Biotechnol., vol. 8, Feb. 2020, doi: 10.3389/fbioe.2020.00063. 

[79] Y. Zhou et al., “Classification of Neurological Patients to Identify Fallers Based on 

Spatial-Temporal Gait Characteristics Measured by a Wearable Device,” Sensors, 

vol. 20, no. 15, p. 4098, Jul. 2020, doi: 10.3390/s20154098. 



100 

[80] R. Z. U. Rehman et al., “Gait Analysis with Wearables Can Accurately Classify 

Fallers from Non-Fallers: A Step toward Better Management of Neurological 

Disorders,” Sensors, vol. 20, no. 23, p. 6992, Dec. 2020, doi: 10.3390/s20236992. 

[81] V. Karle et al., “The Two-Minute Walk Test in Persons with Multiple Sclerosis: 

Correlations of Cadence with Free-Living Walking Do Not Support Ecological 

Validity,” Int. J. Environ. Res. Public. Health, vol. 17, no. 23, p. 9044, Dec. 2020, 

doi: 10.3390/ijerph17239044. 

[82] S. Shema-Shiratzky et al., “A wearable sensor identifies alterations in community 

ambulation in multiple sclerosis: contributors to real-world gait quality and physical 

activity,” J. Neurol., vol. 267, no. 7, pp. 1912–1921, Jul. 2020, doi: 

10.1007/s00415-020-09759-7. 

[83] S. Del Din, A. Godfrey, B. Galna, S. Lord, and L. Rochester, “Free-living gait 

characteristics in ageing and Parkinson’s disease: impact of environment and 

ambulatory bout length,” J. Neuroengineering Rehabil., vol. 13, no. 1, p. 46, 12 

2016, doi: 10.1186/s12984-016-0154-5. 

[84] K. C. Foucher, L. E. Thorp, D. Orozco, M. Hildebrand, and M. A. Wimmer, 

“Differences in Preferred Walking Speeds in a Gait Laboratory Compared With the 

Real World After Total Hip Replacement,” Arch. Phys. Med. Rehabil., vol. 91, no. 

9, pp. 1390–1395, Sep. 2010, doi: 10.1016/j.apmr.2010.06.015. 

[85] N. Takayanagi et al., “Relationship between Daily and In-laboratory Gait Speed 

among Healthy Community-dwelling Older Adults,” Sci. Rep., vol. 9, no. 1, p. 

3496, Dec. 2019, doi: 10.1038/s41598-019-39695-0. 

[86] B. Najafi, J. L. Helbostad, R. Moe-Nilssen, W. Zijlstra, and K. Aminian, “Does 

walking strategy in older people change as a function of walking distance?,” Gait 
Posture, vol. 29, no. 2, pp. 261–266, Feb. 2009, doi: 

10.1016/j.gaitpost.2008.09.002. 

[87] A. Kalron and U. Givon, “Gait characteristics according to pyramidal, sensory and 

cerebellar EDSS subcategories in people with multiple sclerosis,” J. Neurol., vol. 

263, no. 9, pp. 1796–1801, Sep. 2016, doi: 10.1007/s00415-016-8200-6. 

[88] R. Mills, A. Tennant, and C. Young, “The Neurological Sleep Index: A suite of new 

sleep scales for multiple sclerosis,” Mult. Scler. J. - Exp. Transl. Clin., vol. 2, pp. 1–

10, Apr. 2016, doi: 10.1177/2055217316642263. 

[89] O. Kramer, “K-Nearest Neighbors,” in Dimensionality Reduction with Unsupervised 
Nearest Neighbors, O. Kramer, Ed., in Intelligent Systems Reference Library. 

Berlin, Heidelberg: Springer, 2013, pp. 13–23. doi: 10.1007/978-3-642-38652-7_2. 

[90] M. Kaufman, D. Moyer, and J. Norton, “The significant change for the Timed 25-

foot Walk in the multiple sclerosis functional composite,” Mult. Scler. Houndmills 
Basingstoke Engl., vol. 6, no. 4, pp. 286–290, Aug. 2000, doi: 

10.1177/135245850000600411. 

[91] C. J. Jones, R. E. Rikli, and W. C. Beam, “A 30-s Chair-Stand Test as a Measure of 

Lower Body Strength in Community-Residing Older Adults,” Res. Q. Exerc. Sport, 
vol. 70, no. 2, pp. 113–119, Jun. 1999, doi: 10.1080/02701367.1999.10608028. 

[92] J. Graham, “Foot drop: Explaining the causes, characteristics and treatment,” Br. J. 
Neurosci. Nurs., vol. 6, no. 4, pp. 168–172, Apr. 2010, doi: 

10.12968/bjnn.2010.6.4.47792. 



101 

[93] Y. Chen, K. Zhong, J. Zhang, Q. Sun, and X. Zhao, “LSTM Networks for Mobile 

Human Activity Recognition,” presented at the 2016 International Conference on 

Artificial Intelligence: Technologies and Applications, Atlantis Press, Jan. 2016, pp. 

50–53. doi: 10.2991/icaita-16.2016.13. 

[94] A. Graves and J. Schmidhuber, “Framewise phoneme classification with 

bidirectional LSTM and other neural network architectures,” Neural Netw., vol. 18, 

no. 5, pp. 602–610, Jul. 2005, doi: 10.1016/j.neunet.2005.06.042. 

[95] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” J. Mach. 
Learn. Res., vol. 15, no. 56, pp. 1929–1958, 2014. 

[96] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” 

ArXiv14126980 Cs, Jan. 2017, Accessed: Feb. 04, 2022. [Online]. Available: 

http://arxiv.org/abs/1412.6980 

[97] R. D. Gurchiek et al., “Open-Source Remote Gait Analysis: A Post-Surgery Patient 

Monitoring Application,” Sci. Rep., vol. 9, no. 1, pp. 1–10, Nov. 2019, doi: 

10.1038/s41598-019-54399-1. 

[98] R. D. Gurchiek, C. P. Garabed, and R. S. McGinnis, “Gait event detection using a 

thigh-worn accelerometer,” Gait Posture, vol. 80, pp. 214–216, Jul. 2020, doi: 

10.1016/j.gaitpost.2020.06.004. 

[99] A. Supratak, G. Datta, A. R. Gafson, R. Nicholas, Y. Guo, and P. M. Matthews, 

“Remote Monitoring in the Home Validates Clinical Gait Measures for Multiple 

Sclerosis,” Front. Neurol., vol. 9, p. 561, Jul. 2018, doi: 10.3389/fneur.2018.00561. 

[100] J. M. Huisinga, M. Mancini, R. J. St. George, and F. B. Horak, “Accelerometry 

Reveals Differences in Gait Variability Between Patients with Multiple Sclerosis 

and Healthy Controls,” Ann. Biomed. Eng., vol. 41, no. 8, pp. 1670–1679, Aug. 

2013, doi: 10.1007/s10439-012-0697-y. 

[101] J. J. Craig, A. P. Bruetsch, S. G. Lynch, and J. M. Huisinga, “The relationship 

between trunk and foot acceleration variability during walking shows minor changes 

in persons with multiple sclerosis,” Clin. Biomech., vol. 49, pp. 16–21, Nov. 2017, 

doi: 10.1016/j.clinbiomech.2017.07.011. 

[102] M. Pau et al., “Clinical assessment of gait in individuals with multiple sclerosis 

using wearable inertial sensors: Comparison with patient-based measure,” Mult. 
Scler. Relat. Disord., vol. 10, pp. 187–191, Nov. 2016, doi: 

10.1016/j.msard.2016.10.007. 

[103] U. Givon, G. Zeilig, and A. Achiron, “Gait analysis in multiple sclerosis: 

Characterization of temporal–spatial parameters using GAITRite functional 

ambulation system,” Gait Posture, vol. 29, no. 1, pp. 138–142, Jan. 2009, doi: 

10.1016/j.gaitpost.2008.07.011. 

[104] Y. Moon, D. A. Wajda, R. W. Motl, and J. J. Sosnoff, “Stride-Time Variability 

and Fall Risk in Persons with Multiple Sclerosis,” Mult. Scler. Int., vol. 2015, 2015, 

doi: 10.1155/2015/964790. 

[105] V. V. Shah et al., “Effect of Bout Length on Gait Measures in People with and 

without Parkinson’s Disease during Daily Life,” Sensors, vol. 20, no. 20, Art. no. 

20, Jan. 2020, doi: 10.3390/s20205769. 

[106] D. W. Hosmer, Applied logistic regression., Third edition / David W. Hosmer, 

Jr., Stanley Lemeshow, Rodney X. Sturdivant.. Hoboken, New Jersey : Wiley, 2013. 



102 

[107] Aurélien Géron, Understanding support vector machines. O’Reilly Media, Inc, 

2017. 

[108] Zsolt Nagy, Artificial Intelligence and Machine Learning Fundamentals. Packt 

Publishing, 2018. 

[109] W. Lee, Python® Machine Learning. Indianapolis, Indiana: Indianapolis, 

Indiana: John Wiley & Sons, Inc. doi: 10.1002/9781119557500. 

[110] J. E. T. Akinsola, “Supervised Machine Learning Algorithms: Classification and 

Comparison,” Int. J. Comput. Trends Technol. IJCTT, vol. 48, pp. 128–138, Jun. 

2017, doi: 10.14445/22312803/IJCTT-V48P126. 

[111] R. Z. U. Rehman et al., “Gait Analysis with Wearables Can Accurately Classify 

Fallers from Non-Fallers: A Step toward Better Management of Neurological 

Disorders,” Sensors, vol. 20, no. 23, Dec. 2020, doi: 10.3390/s20236992. 

[112] P. Bet, P. C. Castro, and M. A. Ponti, “Fall detection and fall risk assessment in 

older person using wearable sensors: A systematic review,” Int. J. Med. Inf., vol. 

130, p. 103946, Oct. 2019, doi: 10.1016/j.ijmedinf.2019.08.006. 

[113] V. V. Shah et al., “Laboratory versus daily life gait characteristics in patients 

with multiple sclerosis, Parkinson’s disease, and matched controls,” J. 
NeuroEngineering Rehabil., vol. 17, no. 1, p. 159, Dec. 2020, doi: 10.1186/s12984-

020-00781-4. 

[114] L. Weed, C. Little, S. L. Kasser, and R. S. McGinnis, “A Preliminary 

Investigation of the Effects of Obstacle Negotiation and Turning on Gait Variability 

in Adults with Multiple Sclerosis,” Sensors, vol. 21, no. 17, Art. no. 17, Jan. 2021, 

doi: 10.3390/s21175806. 

[115] V. V. Shah et al., “Does gait bout definition influence the ability to discriminate 

gait quality between people with and without multiple sclerosis during daily life?,” 

Gait Posture, vol. 84, pp. 108–113, Feb. 2021, doi: 10.1016/j.gaitpost.2020.11.024. 

[116] G. Bateman, J. Lechner-Scott, A. Bateman, J. Attia, and R. Lea, “Multiple 

sclerosis 2020,” vol. 2, Aug. 2020, doi: 10.17632/mytp5z2zdd.2. 

[117] Ž. Lesjak et al., “A Novel Public MR Image Dataset of Multiple Sclerosis 

Patients With Lesion Segmentations Based on Multi-rater Consensus,” 

Neuroinformatics, vol. 16, no. 1, pp. 51–63, Jan. 2018, doi: 10.1007/s12021-017-

9348-7. 

[118] “NITRC: Longitudinal Multiple Sclerosis Lesion Imaging Archive: 

Tool/Resource Info.” https://www.nitrc.org/projects/longitudinal_ms/ (accessed 

Dec. 07, 2021). 

[119] “Full dataset of relapsing-remitting MS patients (N = 145).” PLOS ONE, Jan. 

24, 2019. doi: 10.1371/journal.pone.0211120.s001. 

[120] C. Mosquera-Lopez et al., “Automated Detection of Real-World Falls: Modeled 

From People With Multiple Sclerosis,” IEEE J. Biomed. Health Inform., vol. 25, no. 

6, pp. 1975–1984, Jun. 2021, doi: 10.1109/JBHI.2020.3041035. 

[121] R. D. Gurchiek et al., “Open-Source Remote Gait Analysis: A Post-Surgery 

Patient Monitoring Application,” Sci. Rep., vol. 9, no. 1, Art. no. 1, Nov. 2019, doi: 

10.1038/s41598-019-54399-1. 

[122] B. M. Meyer et al., “Wearables and Deep Learning Classify Fall Risk from Gait 

in Multiple Sclerosis,” IEEE J. Biomed. Health Inform., pp. 1–1, 2020, doi: 

10.1109/JBHI.2020.3025049. 



103 

[123] L. J. Tulipani, B. Meyer, S. Fox, A. J. Solomon, and R. S. McGinnis, “The Sit-

to-Stand Transition as a Biomarker for Impairment: Comparison of Instrumented 

30-Second Chair Stand Test and Daily Life Transitions in Multiple Sclerosis,” IEEE 
Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc., vol. PP, Apr. 

2022, doi: 10.1109/TNSRE.2022.3169962. 

[124] R. S. McGinnis et al., “A machine learning approach for gait speed estimation 

using skin-mounted wearable sensors: From healthy controls to individuals with 

multiple sclerosis,” PLOS ONE, vol. 12, no. 6, p. e0178366, Jun. 2017, doi: 

10.1371/journal.pone.0178366. 

[125] R. D. Gurchiek et al., “Sprint Assessment Using Machine Learning and a 

Wearable Accelerometer,” J. Appl. Biomech., vol. 35, no. 2, pp. 164–169, Apr. 

2019, doi: 10.1123/jab.2018-0107. 

[126] L. J. Tulipani, B. Meyer, D. Larie, A. J. Solomon, and R. S. McGinnis, “Metrics 

extracted from a single wearable sensor during sit-stand transitions relate to 

mobility impairment and fall risk in people with multiple sclerosis,” Gait Posture, 

vol. 80, pp. 361–366, Jul. 2020, doi: 10.1016/j.gaitpost.2020.06.014. 

[127] F. P. Bernhard et al., “Wearables for gait and balance assessment in the 

neurological ward - study design and first results of a prospective cross-sectional 

feasibility study with 384 inpatients,” BMC Neurol. Lond., vol. 18, 2018, doi: 

http://dx.doi.org/10.1186/s12883-018-1111-7. 

[128] R. S. McGinnis et al., “Rapid detection of internalizing diagnosis in young 

children enabled by wearable sensors and machine learning,” PLOS ONE, vol. 14, 

no. 1, p. e0210267, Jan. 2019, doi: 10.1371/journal.pone.0210267. 

[129] C. R. Bellenger, D. J. Miller, S. L. Halson, G. D. Roach, and C. Sargent, “Wrist-

Based Photoplethysmography Assessment of Heart Rate and Heart Rate Variability: 

Validation of WHOOP,” Sensors, vol. 21, no. 10, Art. no. 10, Jan. 2021, doi: 

10.3390/s21103571. 

[130] W. Ahmed, J. Capodilupo, A. Nicolae, R. Aruh, C. J. Liden, and B. T. Tom, 

“Wearable continuous physiological monitoring device,” USD792597S1, Jul. 18, 

2017 Accessed: May 20, 2022. [Online]. Available: 

https://patents.google.com/patent/USD792597S1/en?assignee=whoop%2c+inc&oq=

whoop%2c+inc 

[131] C. B. Brumback, D. W. Knight, J. Park, A. C. Axley, and S. G. J. Yuen, 

“Biometric monitoring device with contextually-or environmentally-dependent 

display,” US8784271B2, Jul. 22, 2014 Accessed: May 20, 2022. [Online]. 

Available: https://patents.google.com/patent/US8784271B2/en?q=fitbit&oq=fitbit 

[132] M. Patel, A. Pavic, and V. A. Goodwin, “Wearable inertial sensors to measure 

gait and posture characteristic differences in older adult fallers and non-fallers: A 

scoping review,” Gait Posture, vol. 76, pp. 110–121, Feb. 2020, doi: 

10.1016/j.gaitpost.2019.10.039. 

[133] N. Baker, C. Gough, and S. J. Gordon, “Inertial Sensor Reliability and Validity 

for Static and Dynamic Balance in Healthy Adults: A Systematic Review,” Sensors, 

vol. 21, no. 15, p. 5167, Jul. 2021, doi: 10.3390/s21155167. 

[134] M. Ghislieri, L. Gastaldi, S. Pastorelli, S. Tadano, and V. Agostini, “Wearable 

Inertial Sensors to Assess Standing Balance: A Systematic Review,” Sensors, vol. 

19, no. 19, Art. no. 19, Sep. 2019, doi: 10.3390/s19194075. 



104 

[135] J. M. Huisinga, M. Mancini, R. J. St. George, and F. B. Horak, “Accelerometry 

Reveals Differences in Gait Variability Between Patients with Multiple Sclerosis 

and Healthy Controls,” Ann. Biomed. Eng., vol. 41, no. 8, Art. no. 8, Aug. 2013, 

doi: 10.1007/s10439-012-0697-y. 

[136] G. Allali et al., “Gait variability in multiple sclerosis: a better falls predictor than 

EDSS in patients with low disability,” J. Neural Transm., vol. 123, no. 4, pp. 447–

450, Apr. 2016, doi: 10.1007/s00702-016-1511-z. 

[137] F. A. Storm, K. P. S. Nair, A. J. Clarke, J. M. Van der Meulen, and C. Mazzà, 

“Free-living and laboratory gait characteristics in patients with multiple sclerosis,” 

PloS One, vol. 13, no. 5, Art. no. 5, 2018, doi: 10.1371/journal.pone.0196463. 

[138] M. D. Czech et al., “Age and environment-related differences in gait in healthy 

adults using wearables,” Npj Digit. Med., vol. 3, no. 1, Art. no. 1, Sep. 2020, doi: 

10.1038/s41746-020-00334-y. 

[139] F. E. Godkin et al., “Feasibility of a continuous, multi-sensor remote health 

monitoring approach in persons living with neurodegenerative disease,” J. Neurol., 
Oct. 2021, doi: 10.1007/s00415-021-10831-z. 

[140] R. S. McGinnis and E. W. McGinnis, “Advancing Digital Medicine with 

Wearables in the Wild,” Sensors, vol. 22, no. 12, Art. no. 12, Jan. 2022, doi: 

10.3390/s22124576. 

[141] S. L. Kasser, A. Goldstein, P. K. Wood, and J. Sibold, “Symptom variability, 

affect and physical activity in ambulatory persons with multiple sclerosis: 

Understanding patterns and time-bound relationships,” Disabil. Health J., vol. 10, 

no. 2, Art. no. 2, Apr. 2017, doi: 10.1016/j.dhjo.2016.10.006. 

[142] A. Mueller et al., “Continuous Digital Monitoring of Walking Speed in Frail 

Elderly Patients: Noninterventional Validation Study and Longitudinal Clinical 

Trial,” JMIR MHealth UHealth, vol. 7, no. 11, p. e15191, Nov. 2019, doi: 

10.2196/15191. 

[143] L. Adamowicz et al., “Assessment of Sit-to-Stand Transfers during Daily Life 

Using an Accelerometer on the Lower Back,” Sensors, vol. 20, no. 22, Art. no. 22, 

Jan. 2020, doi: 10.3390/s20226618. 

[144] T. L. Hart, A. M. Swartz, S. E. Cashin, and S. J. Strath, “How many days of 

monitoring predict physical activity and sedentary behaviour in older adults?,” Int. 
J. Behav. Nutr. Phys. Act., vol. 8, p. 62, Jun. 2011, doi: 10.1186/1479-5868-8-62. 

[145] C. E. Matthews, B. E. Ainsworth, R. W. Thompson, and D. R. Bassett, “Sources 

of variance in daily physical activity levels as measured by an accelerometer,” Med. 
Sci. Sports Exerc., vol. 34, no. 8, pp. 1376–1381, Aug. 2002, doi: 

10.1097/00005768-200208000-00021. 

[146] R. J. Gretebeck and H. J. Montoye, “Variability of some objective measures of 

physical activity,” Med. Sci. Sports Exerc., vol. 24, no. 10, pp. 1167–1172, Oct. 

1992. 

[147] K. S. van Schooten, S. M. Rispens, P. J. Elders, P. Lips, J. H. van Dieën, and M. 

Pijnappels, “Assessing physical activity in older adults: required days of trunk 

accelerometer measurements for reliable estimation,” J. Aging Phys. Act., vol. 23, 

no. 1, pp. 9–17, Jan. 2015, doi: 10.1123/japa.2013-0103. 

[148] M. Kang, K. Bjornson, T. V. Barreira, B. G. Ragan, and K. Song, “The 

minimum number of days required to establish reliable physical activity estimates in 



105 

children aged 2-15 years,” Physiol. Meas., vol. 35, no. 11, pp. 2229–2237, Nov. 

2014, doi: 10.1088/0967-3334/35/11/2229. 

[149] S. Levin, D. R. Jacobs, B. E. Ainsworth, M. T. Richardson, and A. S. Leon, 

“Intra-individual variation and estimates of usual physical activity,” Ann. 
Epidemiol., vol. 9, no. 8, pp. 481–488, Nov. 1999, doi: 10.1016/s1047-

2797(99)00022-8. 

[150] A. Supratak, G. Datta, A. R. Gafson, R. Nicholas, Y. Guo, and P. M. Matthews, 

“Remote Monitoring in the Home Validates Clinical Gait Measures for Multiple 

Sclerosis,” Front. Neurol., vol. 9, Jul. 2018, doi: 10.3389/fneur.2018.00561. 

[151] R. Sun, K. L. Hsieh, and J. J. Sosnoff, “Fall Risk Prediction in Multiple 

Sclerosis Using Postural Sway Measures: A Machine Learning Approach,” Sci. 
Rep., vol. 9, no. 1, Art. no. 1, Dec. 2019, doi: 10.1038/s41598-019-52697-2. 

[152] E. Jortberg et al., “A novel adhesive biosensor system for detecting respiration, 

cardiac, and limb movement signals during sleep: validation with 

polysomnography,” Nat. Sci. Sleep, vol. 10, pp. 397–408, Nov. 2018, doi: 

10.2147/NSS.S179588. 

[153] Y. C. Learmonth, R. W. Motl, B. M. Sandroff, J. H. Pula, and D. Cadavid, 

“Validation of patient determined disease steps (PDDS) scale scores in persons with 

multiple sclerosis,” BMC Neurol., vol. 13, no. 1, p. 37, Apr. 2013, doi: 

10.1186/1471-2377-13-37. 

[154] J. F. Kurtzke, “Rating neurologic impairment in multiple sclerosis: An expanded 

disability status scale (EDSS),” Neurology, vol. 33, no. 11, pp. 1444–1444, Nov. 

1983, doi: 10.1212/WNL.33.11.1444. 

[155] Y. Chen, K. Zhong, J. Zhang, Q. Sun, and X. Zhao, “LSTM Networks for 

Mobile Human Activity Recognition,” Atlantis Press, Jan. 2016, pp. 50–53. doi: 

10.2991/icaita-16.2016.13. 

[156] J. J. Craig, A. P. Bruetsch, S. G. Lynch, and J. M. Huisinga, “The relationship 

between trunk and foot acceleration variability during walking shows minor changes 

in persons with multiple sclerosis,” Clin. Biomech., vol. 49, pp. 16–21, Nov. 2017, 

doi: 10.1016/j.clinbiomech.2017.07.011. 

[157] J. C. Goldsack et al., “Verification, analytical validation, and clinical validation 

(V3): the foundation of determining fit-for-purpose for Biometric Monitoring 

Technologies (BioMeTs),” NPJ Digit. Med., vol. 3, p. 55, 2020, doi: 

10.1038/s41746-020-0260-4. 

[158] Y. Nilsagård, A. Carling, and A. Forsberg, “Activities-Specific Balance 

Confidence in People with Multiple Sclerosis,” Mult. Scler. Int., vol. 2012, p. 

e613925, Aug. 2012, doi: 10.1155/2012/613925. 

[159] S. Tajali et al., “Predicting falls among patients with multiple sclerosis: 

Comparison of patient-reported outcomes and performance-based measures of lower 

extremity functions,” Mult. Scler. Relat. Disord., vol. 17, pp. 69–74, Oct. 2017, doi: 

10.1016/j.msard.2017.06.014. 

[160] N. Téllez, J. Río, M. Tintoré, C. Nos, I. Galán, and X. Montalban, “Does the 

Modified Fatigue Impact Scale offer a more comprehensive assessment of fatigue in 

MS?,” Mult. Scler. J., vol. 11, no. 2, pp. 198–202, Apr. 2005, doi: 

10.1191/1352458505ms1148oa. 



106 

[161] L. B. Strober et al., “Tired of not knowing what that fatigue score means? 

Normative data of the Modified Fatigue Impact Scale (MFIS),” Mult. Scler. Relat. 
Disord., vol. 46, p. 102576, Nov. 2020, doi: 10.1016/j.msard.2020.102576. 

[162] K. Kleinman and S. S. Huang, “Calculating Power by Bootstrap, with an 

Application to Cluster-Randomized Trials,” eGEMs, vol. 4, no. 1, p. 1202, Feb. 

2017, doi: 10.13063/2327-9214.1202. 

[163] K. J. Loughran et al., “Balance impairment in individuals with COPD: a 

systematic review with meta-analysis,” Thorax, vol. 75, no. 7, pp. 539–546, Jul. 

2020, doi: 10.1136/thoraxjnl-2019-213608. 

[164] S. W. Muir, K. Berg, B. Chesworth, N. Klar, and M. Speechley, “Quantifying 

the magnitude of risk for balance impairment on falls in community-dwelling older 

adults: a systematic review and meta-analysis,” J. Clin. Epidemiol., vol. 63, no. 4, 

pp. 389–406, Apr. 2010, doi: 10.1016/j.jclinepi.2009.06.010. 

[165] C. L. Martin et al., “Gait and balance impairment in early multiple sclerosis in 

the absence of                 clinical disability,” Mult. Scler. J., vol. 12, no. 5, pp. 620–

628, Sep. 2006, doi: 10.1177/1352458506070658. 

[166] F. Khan and M. F. Chevidikunnan, “Prevalence of Balance Impairment and 

Factors Associated with Balance among Patients with Stroke. A Cross Sectional 

Retrospective Case Control Study,” Healthcare, vol. 9, no. 3, Art. no. 3, Mar. 2021, 

doi: 10.3390/healthcare9030320. 

[167] I. Schwartz, L. Kandel, A. Sajina, D. Litinezki, A. Herman, and Y. Mattan, 

“Balance is an important predictive factor for quality of life and function after 

primary total knee replacement,” J. Bone Joint Surg. Br., vol. 94, no. 6, pp. 782–

786, Jun. 2012, doi: 10.1302/0301-620X.94B6.27874. 

[168] M. H. Cameron and Y. Nilsagard, “Balance, gait, and falls in multiple 

sclerosis,” Handb. Clin. Neurol., vol. 159, pp. 237–250, 2018, doi: 10.1016/B978-0-

444-63916-5.00015-X. 

[169] G. Quinn, L. Comber, R. Galvin, and S. Coote, “The ability of clinical balance 

measures to identify falls risk in multiple sclerosis: a systematic review and meta-

analysis,” Clin. Rehabil., vol. 32, no. 5, pp. 571–582, May 2018, doi: 

10.1177/0269215517748714. 

[170] J. J. Sosnoff et al., “Mobility, Balance and Falls in Persons with Multiple 

Sclerosis,” PLOS ONE, vol. 6, no. 11, p. e28021, Nov. 2011, doi: 

10.1371/journal.pone.0028021. 

[171] S. L. Kasser, J. V. Jacobs, M. Ford, and T. W. Tourville, “Effects of balance-

specific exercises on balance, physical activity and quality of life in adults with 

multiple sclerosis: a pilot investigation,” Disabil. Rehabil., vol. 37, no. 24, pp. 

2238–2249, Nov. 2015, doi: 10.3109/09638288.2015.1019008. 

[172] S. Coote, L. Comber, G. Quinn, C. Santoyo-Medina, A. Kalron, and H. Gunn, 

“Falls in People with Multiple Sclerosis,” Int. J. MS Care, vol. 22, no. 6, pp. 247–

255, 2020, doi: 10.7224/1537-2073.2020-014. 

[173] S. M. Rao, Neurobehavioral Aspects of Multiple Sclerosis. Oxford University 

Press, 1990. 

[174] J. Dunn, “Impact of mobility impairment on the burden of caregiving in 

individuals with multiple sclerosis,” Expert Rev. Pharmacoecon. Outcomes Res., 
vol. 10, no. 4, pp. 433–440, Aug. 2010, doi: 10.1586/erp.10.34. 



107 

[175] “Berg Balance Scale,” Shirley Ryan AbilityLab. 

https://www.sralab.org/rehabilitation-measures/berg-balance-scale (accessed Dec. 

13, 2022). 

[176] F. B. Horak, D. M. Wrisley, and J. Frank, “The Balance Evaluation Systems 

Test (BESTest) to Differentiate Balance Deficits,” Phys. Ther., vol. 89, no. 5, pp. 

484–498, May 2009, doi: 10.2522/ptj.20080071. 

[177] M. Mancini et al., “ISway: a sensitive, valid and reliable measure of postural 

control,” J. NeuroEngineering Rehabil., vol. 9, no. 1, p. 59, 2012, doi: 

10.1186/1743-0003-9-59. 

[178] B. Chen, P. Liu, F. Xiao, Z. Liu, and Y. Wang, “Review of the Upright Balance 

Assessment Based on the Force Plate,” Int. J. Environ. Res. Public. Health, vol. 18, 

no. 5, Art. no. 5, Jan. 2021, doi: 10.3390/ijerph18052696. 

[179] J. Swanenburg, E. D. de Bruin, D. Uebelhart, and T. Mulder, “Falls prediction in 

elderly people: a 1-year prospective study,” Gait Posture, vol. 31, no. 3, pp. 317–

321, Mar. 2010, doi: 10.1016/j.gaitpost.2009.11.013. 

[180] R. Sun et al., “Assessment of Postural Sway in Individuals with Multiple 

Sclerosis Using a Novel Wearable Inertial Sensor,” Digit. Biomark., vol. 2, no. 1, 

pp. 1–10, 2018, doi: 10.1159/000485958. 

[181] A. J. Solomon, J. V. Jacobs, K. V. Lomond, and S. M. Henry, “Detection of 

postural sway abnormalities by wireless inertial sensors in minimally disabled 

patients with multiple sclerosis: a case-control study,” J. Neuroengineering 
Rehabil., vol. 12, p. 74, Sep. 2015, doi: 10.1186/s12984-015-0066-9. 

[182] A. Hadamus et al., “Nonlinear and Linear Measures in the Differentiation of 

Postural Control in Patients after Total Hip or Knee Replacement and Healthy 

Controls,” Diagnostics, vol. 12, no. 7, Art. no. 7, Jul. 2022, doi: 

10.3390/diagnostics12071595. 

[183] I. Carpinella et al., “Balance Impairments in People with Early-Stage Multiple 

Sclerosis: Boosting the Integration of Instrumented Assessment in Clinical 

Practice,” Sensors, vol. 22, no. 23, p. 9558, Dec. 2022, doi: 10.3390/s22239558. 

[184] E. Sen-Gupta et al., “A Pivotal Study to Validate the Performance of a Novel 

Wearable Sensor and System for Biometric Monitoring in Clinical and Remote 

Environments,” Digit. Biomark., vol. 3, no. 1, pp. 1–13, Apr. 2019, doi: 

10.1159/000493642. 

[185] M. Hilty et al., “Continuous monitoring with wearables in multiple sclerosis 

reveals an association of cardiac autonomic dysfunction with disease severity,” 

Mult. Scler. J. - Exp. Transl. Clin., vol. 8, no. 2, p. 20552173221103436, 2022, doi: 

10.1177/20552173221103436. 

[186] G. Prigent, S. Apte, A. Paraschiv-Ionescu, C. Besson, V. Gremeaux, and K. 

Aminian, “Concurrent Evolution of Biomechanical and Physiological Parameters 

With Running-Induced Acute Fatigue,” Front. Physiol., vol. 13, p. 814172, 2022, 

doi: 10.3389/fphys.2022.814172. 

[187] A. M. Sabatini, “Analysis of postural sway using entropy measures of signal 

complexity,” Med. Biol. Eng. Comput., vol. 38, no. 6, pp. 617–624, Nov. 2000, doi: 

10.1007/BF02344866. 



108 

[188] J. Kędziorek and M. Błażkiewicz, “Nonlinear Measures to Evaluate Upright 

Postural Stability: A Systematic Review,” Entropy, vol. 22, no. 12, Art. no. 12, Dec. 

2020, doi: 10.3390/e22121357. 

[189] B. M. Meyer et al., “Open-source dataset reveals relationship between walking 

bout duration and fall risk classification performance in persons with multiple 

sclerosis,” PLOS Digit. Health, vol. 1, no. 10, p. e0000120, Oct. 2022, doi: 

10.1371/journal.pdig.0000120. 

[190] H. B. Mann and D. R. Whitney, “On a Test of Whether one of Two Random 

Variables is Stochastically Larger than the Other,” Ann. Math. Stat., vol. 18, no. 1, 

pp. 50–60, Mar. 1947, doi: 10.1214/aoms/1177730491. 

[191] D. Lakens, “Calculating and reporting effect sizes to facilitate cumulative 

science: a practical primer for t-tests and ANOVAs,” Front. Psychol., vol. 4, p. 863, 

Nov. 2013, doi: 10.3389/fpsyg.2013.00863. 

[192] B. M. Meyer et al., “How Much Data Is Enough? A Reliable Methodology to 

Examine Long-Term Wearable Data Acquisition in Gait and Postural Sway,” 

Sensors, vol. 22, no. 18, p. 6982, Sep. 2022, doi: 10.3390/s22186982. 

[193] M. H. G. Gerards, C. McCrum, A. Mansfield, and K. Meijer, “Perturbation-

based balance training for falls reduction among older adults: Current evidence and 

implications for clinical practice,” Geriatr. Gerontol. Int., vol. 17, no. 12, pp. 2294–

2303, 2017, doi: 10.1111/ggi.13082. 

[194] D. L. Sturnieks et al., “Force-Controlled Balance Perturbations Associated with 

Falls in Older People: A Prospective Cohort Study,” PLOS ONE, vol. 8, no. 8, p. 

e70981, Aug. 2013, doi: 10.1371/journal.pone.0070981. 

[195] F. A. Storm, K. P. S. Nair, A. J. Clarke, J. M. Van der Meulen, and C. Mazzà, 

“Free-living and laboratory gait characteristics in patients with multiple sclerosis,” 

PloS One, vol. 13, no. 5, p. e0196463, 2018, doi: 10.1371/journal.pone.0196463. 

[196] C. Walton et al., “Rising prevalence of multiple sclerosis worldwide: Insights 

from the Atlas of MS, third edition,” Mult. Scler. Houndmills Basingstoke Engl., 
vol. 26, no. 14, pp. 1816–1821, Dec. 2020, doi: 10.1177/1352458520970841. 

[197] M. H. Cameron and Y. Nilsagard, “Balance, gait, and falls in multiple 

sclerosis,” Handb. Clin. Neurol., vol. 159, pp. 237–250, 2018, doi: 10.1016/B978-0-

444-63916-5.00015-X. 

[198] S. M. Rao, Neurobehavioral Aspects of Multiple Sclerosis. Oxford University 

Press, 1990. 

[199] J. Dunn, “Impact of mobility impairment on the burden of caregiving in 

individuals with multiple sclerosis,” Expert Rev. Pharmacoecon. Outcomes Res., 
vol. 10, no. 4, Art. no. 4, Aug. 2010, doi: 10.1586/erp.10.34. 

[200] P. G. Monaghan, A. S. Monaghan, A. Hooyman, B. W. Fling, J. M. Huisinga, 

and D. S. Peterson, “Utilizing the ISway to Identify and Compare Balance Domain 

Deficits in People with Multiple Sclerosis,” Arch. Phys. Med. Rehabil., pp. S0003-

9993(23)00153–3, Apr. 2023, doi: 10.1016/j.apmr.2023.02.018. 

[201] F. A. Storm, K. P. S. Nair, A. J. Clarke, J. M. Van der Meulen, and C. Mazzà, 

“Free-living and laboratory gait characteristics in patients with multiple sclerosis,” 

PloS One, vol. 13, no. 5, Art. no. 5, 2018, doi: 10.1371/journal.pone.0196463. 

[202] B. M. Meyer et al., “Open-source dataset reveals relationship between walking 

bout duration and fall risk classification performance in persons with multiple 



109 

sclerosis,” PLOS Digit. Health, vol. 1, no. 10, Art. no. 10, Oct. 2022, doi: 

10.1371/journal.pdig.0000120. 

[203] L. J. Tulipani, B. Meyer, D. Allen, A. J. Solomon, and R. S. McGinnis, 

“Evaluation of unsupervised 30-second chair stand test performance assessed by 

wearable sensors to predict fall status in multiple sclerosis,” Gait Posture, vol. 94, 

pp. 19–25, May 2022, doi: 10.1016/j.gaitpost.2022.02.016. 

[204] M. Ullrich et al., “Detection of Unsupervised Standardized Gait Tests From 

Real-World Inertial Sensor Data in Parkinson’s Disease,” IEEE Trans. Neural Syst. 
Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc., vol. PP, Oct. 2021, doi: 

10.1109/TNSRE.2021.3119390. 

[205] W. Wang and P. G. Adamczyk, “Analyzing Gait in the Real World Using 

Wearable Movement Sensors and Frequently Repeated Movement Paths,” Sensors, 

vol. 19, no. 8, Art. no. 8, Jan. 2019, doi: 10.3390/s19081925. 

[206] J. F. Kurtzke, “Rating neurologic impairment in multiple sclerosis: An expanded 

disability status scale (EDSS),” Neurology, vol. 33, no. 11, Art. no. 11, Nov. 1983, 

doi: 10.1212/WNL.33.11.1444. 

[207] J. C. Hobart, A. Riazi, D. L. Lamping, R. Fitzpatrick, and A. J. Thompson, 

“Measuring the impact of MS on walking ability: The 12-Item MS Walking Scale 

(MSWS-12),” Neurology, vol. 60, no. 1, Art. no. 1, Jan. 2003, doi: 

10.1212/WNL.60.1.31. 

[208] “Modified Fatigue Impact Scale,” Shirley Ryan AbilityLab, Jun. 16, 2020. 

https://www.sralab.org/rehabilitation-measures/modified-fatigue-impact-scale 

(accessed Jun. 16, 2020). 

[209] L. J. Tulipani, B. Meyer, S. Fox, A. J. Solomon, and R. S. Mcginnis, “The Sit-

to-Stand Transition as a Biomarker for Impairment: Comparison of Instrumented 

30-Second Chair Stand Test and Daily Life Transitions in Multiple Sclerosis,” IEEE 
Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc., vol. 30, pp. 

1213–1222, 2022, doi: 10.1109/TNSRE.2022.3169962. 

[210] X. Jin and J. Han, “K-Means Clustering,” in Encyclopedia of Machine Learning, 

C. Sammut and G. I. Webb, Eds., Boston, MA: Springer US, 2010, pp. 563–564. 

doi: 10.1007/978-0-387-30164-8_425. 

[211] J. MacQueen, “Classification and analysis of multivariate observations,” in 5th 
Berkeley Symp. Math. Statist. Probability, University of California Los Angeles LA 

USA, 1967, pp. 281–297. 

[212] R. W. Motl and E. McAuley, “Symptom Cluster as a Predictor of Physical 

Activity in Multiple Sclerosis: Preliminary Evidence,” J. Pain Symptom Manage., 
vol. 38, no. 2, pp. 270–280, Aug. 2009, doi: 10.1016/j.jpainsymman.2008.08.004. 

[213] P. G. Monaghan, A. S. Monaghan, A. Hooyman, B. W. Fling, J. M. Huisinga, 

and D. S. Peterson, “Using the Instrumented Sway System (ISway) to Identify and 

Compare Balance Domain Deficits in People With Multiple Sclerosis,” Arch. Phys. 
Med. Rehabil., vol. 0, no. 0, Apr. 2023, doi: 10.1016/j.apmr.2023.02.018. 

 

  



110 

Appendix A 

Strides AGG 
Short 
Model 

Short 
AUC 

Medium 
Model 

Medium 
AUC 

Long 
Model 

Long 
AUC 

All Model 
All 

AUC 

22 
None N/A N/A N/A N/A 

LSTM 2 
ABC 

0.68 
LSTM 3 

ABC 
0.64 

Median N/A N/A N/A N/A 
LSTM 3 

ABC 
0.69 

LSTM 2 
ABC 

0.76 

21 

None 
N/A N/A N/A N/A 

LSTM 2 
ABC 

0.70 
LSTM 3 

ABC 
0.60 

Median 
N/A N/A N/A N/A 

LSTM 2 
ABC 

0.68 
LSTM 3 

ABC 
0.69 

20 

None 
N/A N/A N/A N/A 

LSTM  2 
ABC 

0.65 
LSTM 2 

ABC 
0.64 

Median 
N/A N/A N/A N/A 

LSTM 3 
ABC 

0.67 
LSTM 2 

ABC 
0.67 

19 

None 
N/A N/A N/A N/A 

LSTM 3 
ABC 

0.68 
LSTM 3 

ABC 
0.67 

Median 
N/A N/A N/A N/A 

LSTM 3 
ABC 

0.64 
LSTM 2 

ABC 
0.63 

18 

None 
N/A N/A N/A N/A 

LSTM 2 
ABC 

0.65 
LSTM 2 

ABC 
0.66 

Median 
N/A N/A N/A N/A 

LSTM 2 
ABC 

0.68 
LSTM 3 

ABC 
0.64 

17 
None N/A N/A N/A N/A 

LSTM 2 
ABC 

0.61 
LSTM 2 

ABC 
0.63 

Median N/A N/A N/A N/A 
LSTM 3 

ABC 
0.62 

LSTM 2 
ABC 

0.62 

16 

None 
N/A N/A 

LSTM 2 
0.59 

LSTM 2 
ABC 

0.66 
LSTM 3 

ABC 
0.63 

Median 
N/A N/A 

LSTM 2 
ABC 

0.61 
LSTM 2 

ABC 
0.64 

LSTM 2 
ABC 

0.64 

15 

None 
N/A N/A 

LSTM 3 
0.60 

LSTM 2 
ABC 

0.67 
LSTM 3 

ABC 
0.69 

Median 
N/A N/A 

LSTM 3 
ABC 

0.63 
LSTM 2 

ABC 
0.66 

LSTM 3 
ABC 

0.72 

14 

None 
N/A N/A 

LSTM 3 
ABC 

0.63 
LSTM 2 

ABC 
0.68 

LSTM 3 
ABC 

0.63 

Median 
N/A N/A 

LSTM 2 
ABC 

0.64 
LSTM 2 

ABC 
0.69 

LSTM 2 
ABC 

0.65 

13 
None N/A N/A 

LSTM 3 
ABC 

0.57 
LSTM 3 

ABC 
0.69 

LSTM 3 
ABC 

0.66 

Median N/A N/A 
LSTM 3 

ABC 
0.62 

LSTM 3 
ABC 

0.67 
LSTM 2 

ABC 
0.69 

12 

None 
N/A N/A 

LSTM 2 
ABC 

0.61 
LSTM 2 

ABC 
0.67 

LSTM 3 
ABC 

0.65 

Median 
N/A N/A 

LSTM 3 
ABC 

0.66 
LSTM 2 

ABC 
0.69 

LSTM 2 
ABC 

0.69 

11 

None 
N/A N/A 

LSTM 3 
ABC 

0.60 
LSTM 2 

ABC 
0.68 

LSTM 3 
ABC 

0.69 

Median 
N/A N/A 

LSTM 2 
ABC 

0.66 
LSTM 2 

ABC 
0.64 

LSTM 3 
ABC 

0.68 

10 

None 
N/A N/A 

LSTM 2 
ABC 

0.62 
LSTM 3 

ABC 
0.66 

LSTM 2 
ABC 

0.70 

Median 
N/A N/A 

LSTM 2 
ABC 

0.68 
LSTM 3 

ABC  
0.63 

LSTM 2 
ABC 

0.74 

9 
None N/A N/A 

LSTM 3 
ABC 

0.63 
LSTM 2 

ABC 
0.68 

LSTM 2 
ABC 

0.62 

Median N/A N/A 
LSTM 2 

ABC 
0.67 

LSTM 2 
ABC 

0.63 
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0.71 
LSTM 3 
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0.69 

LSTM 3 
ABC 
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N/A N/A 
LSTM 3 
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0.64 

LSTM 2 
ABC 

0.66 
LSTM 2 

ABC 
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0.65 
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0.63 
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N/A N/A 
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ABC 
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LSTM 2 

ABC 
0.61 

LSTM 2 
ABC 

0.64 
LSTM 2 

ABC 
0.66 

Median LSTM 3 
ABC 

0.57 
LSTM 3 
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LSTM 2 
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0.59 
LSTM 2 

ABC 
0.62 
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None LSTM 3 
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0.66 
LSTM 3 
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0.65 

LSTM 2 
ABC 

0.65 
LSTM 3 

ABC 
0.71 

Median LSTM 3 
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LSTM 3 

ABC 
0.74 

LSTM 3 
ABC 

0.60 
LSTM 3 

ABC 
0.73 
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0.66 
LSTM 2 

ABC 
0.60 

LSTM 3 
ABC 

0.66 
LSTM 2 

ABC 
0.71 

Median LSTM 3 
ABC 

0.66 
LSTM 2 

ABC 
0.73 

LSTM 3 
ABC 

0.64 
LSTM 2 

ABC 
0.73 

1 

None LSTM 2 
ABC 

0.65 
LSTM 2 

ABC 
0.61 

LSTM 2 
ABC 

0.69 
LSTM 3 

ABC 
0.69 

Median LSTM 2 
ABC 

0.66 
LSTM 3 

ABC 
0.67 

LSTM 2 
ABC 

0.61 
LSMT 3 

ABC 
0.73 

LSTM: Long-Short Term Memory Neural Network; LSTM 2: Model with one LSTM layer and one BilSTM layer; LSTM 3: Model 
with LSTM Layers; AGG: Aggregation technique (none or median of all remote stride observations); AUC: Area Under the Receiver 
Operating Characteristic Curve; ABC: Activity Specific Balance Confidence added as input feature; N/A: Not enough data available 
to extract specified number of strides from each subject. 
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Appendix B 

Difference Testing Results 

Table B1: Gait Feature Ranksum Difference Testing in Persons with MS 

Gait Feature 
(14 total) 

1D v 
1W 

2D v 
1W 

3D v 
1W 

WE v 
WD 

1W v 
2W 

1W v 
3W 

1W v 
4W 

1W v 
5W 

1W v 
6W 

Acceleration Asymmetry          
Correlation Asymmetry          
Double Support Duration CV         
Duty Factor          
Duty Factor Asymmetry          
Entropy Ratio           
Entropy Ratio Asymmetry          
Frequency Dispersion ML          
Lyapunov Exponent AP          
Lyapunov Exponent ML           
RMS AP          
Stance Duration          
Stride Duration          
Swing Duration CV         

Number of Significant 
Differences 

2-CV 
0-M 

0-95th P 

0-CV 
0-M 

0-95th P 

0-CV 
0-M 

0-95th P 

0-CV 
0-M 

0-95th P 

0-CV 
0-M 

0-95th P 

0-CV 
0-M 

0-95th P 

0-CV 
0-M 

0-95th P 

0-CV 
0-M 

0-95th P 

0-CV 
0-M 

0-95th P 
B1 Difference testing of gait features for PwMS. A significant difference of the feature at the timeframe is denoted by 
CV, M, or 95th P for Coefficient of Variation, Median, and 95th Percentile, respectively. The timeframes are abbreviated 
as follows: 1D = 1 Day, 2D = 2Days, 1W = 1 Week, WE = Weekend, WD = Weekday, etc. If the box is empty, no 
significant difference was found. The significance threshold was 0.05.  

Table B2: Sway Feature Ranksum Difference Testing in Persons with MS 

Sway Feature 
(13 total) 

1D v 
1W 

2D v 
1W 

3D v 
1W 

WE v 
WD 

1W v 
2W 

1W v 
3W 

1W v 
4W 

1W v 
5W 

1W v 
6W 

Area CV         
Centroidal Frequency          
Distance          
50th Percentile Frequency          
95th Percentile Frequency          
Frequency Dispersion          
Jerk          
Mean Period CV         
Mean Velocity          
Path          
Power CV         
Range          
RMS          

Number of Significant 
Differences 

3-CV 
0-M 

0-95th P 

0-CV 
0-M 

0-95th P 

0-CV 
0-M 

0-95th P 

0-CV 
0-M 

0-95th P 

0-CV 
0-M 

0-95th P 

0-CV 
0-M 

0-95th P 

0-CV 
0-M 

0-95th P 

0-CV 
0-M 

0-95th P 

0-CV 
0-M 

0-95th P 
B2 Difference testing of sway features for PwMS. Timeframes are abbreviated as follows: 1D = 1 Day, 2D = 2Days, 1W 
= 1 Week, WE = Weekend, WD = Weekday, etc. A significant difference of the feature at the timeframe is denoted by 
CV, M, or 95th P for Coefficient of Variation, Median, and 95th Percentile, respectively. If the box is empty, no significant 
difference was found. The significance threshold was 0.05. 

ICC Results 
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Table B3: Intra-class Correlation Wear Duration Gait Analysis in Persons with MS  

Gait Feature 
(14 total) 

1D v 
1W 

2D v 1W 3D v 
1W 

WE v 
WD 

1W v 
2W 

1W v 
3W 

1W v 
4W 

1W v 
5W 

1W v 
6W 

Acceleration 
Asymmetry 

0.92 0.95 0.98 0.96 0.99 0.97 0.96 0.95 0.98 
0.89 0.97 0.98 0.94 0.98 0.97 0.94 0.93 0.98 
0.80 0.90 0.91 0.92 0.98 0.90 0.91 0.89 0.94 

Correlation 
Asymmetry 

0.96 0.98 0.99 0.98 1.00 0.99 0.98 0.97 0.96 
0.75 0.90 0.95 0.91 0.98 0.96 0.95 0.96 0.95 
0.94 0.96 0.98 0.95 0.98 0.98 0.96 0.93 0.96 

Double Support 
Duration 

0.95 0.96 0.98 0.93 0.99 0.98 0.87 0.89 0.96 
0.84 0.83 0.91 0.38 0.93 0.88 0.74 0.48 0.72 
0.62 0.84 0.98 0.60 0.96 0.92 0.87 0.78 0.79 

Duty Factor 0.96 0.98 0.99 0.98 0.98 0.97 0.91 0.95 0.93 
0.70 0.94 0.97 0.96 0.99 0.96 0.95 0.86 0.89 
0.80 0.91 0.92 0.87 0.97 0.93 0.84 0.76 0.83 

Duty Factor 
Asymmetry 

0.96 0.97 0.99 0.98 0.99 0.99 0.97 0.98 0.97 
0.79 0.97 0.96 0.96 0.99 0.99 0.95 0.97 0.96 
0.89 0.94 0.97 0.96 0.97 0.97 0.95 0.94 0.96 

Entropy Ratio - 0.84 0.85 0.71 0.98 0.95 0.62 - - 
- 0.91 0.96 0.91 0.98 0.97 0.81 - - 
- 0.82 0.91 0.90 0.87 0.90 0.53 - - 

Entropy Ratio 
Asymmetry 

- 0.97 0.96 0.88 0.95 0.94 0.92 - - 
- 0.83 0.85 0.60 0.86 0.87 0.78 - - 
- 0.45 0.72 0.32 0.91 0.85 0.39 - - 

Frequency 
Dispersion ML 

0.96 0.95 0.97 0.94 0.99 0.99 0.93 0.89 0.79 
0.76 0.93 0.95 0.93 0.99 0.99 0.96 0.89 0.96 
0.87 0.94 0.98 0.87 0.98 0.98 0.91 0.84 0.94 

Lyapunov Exponent 
AP 

- - - 0.57 0.99 0.97 0.83 0.66 0.89 
- - - 0.71 0.97 0.97 0.73 0.44 0.93 
- - - 0.02 0.00 0.00 0.08 0.19 0.00 

Lyapunov Exponent 
ML 

- - - 0.79 0.84 0.88 0.83 0.84 0.92 
- - - 0.57 0.98 0.97 0.80 0.60 0.82 
- - - 0.15 0.57 0.07 0.53 0.00 0.00 

RMS AP 0.83 0.95 0.96 0.94 0.98 0.97 0.88 0.94 0.95 
0.68 0.93 0.95 0.87 0.97 0.92 0.86 0.87 0.90 

 0.83 0.88 0.94 0.86 0.95 0.95 0.64 0.83 0.91 
Stance Duration 0.89 0.95 0.98 0.89 0.99 0.98 0.93 0.94 0.98 

0.53 0.96 0.96 0.90 0.99 0.98 0.94 0.88 0.92 
0.57 0.94 0.96 0.85 0.97 0.96 0.78 0.85 0.88 

Stride Duration 0.92 0.95 0.99 0.90 0.99 0.99 0.96 0.98 0.99 
0.84 0.92 0.95 0.88 0.98 0.97 0.95 0.88 0.96 
0.45 0.90 0.96 0.81 0.97 0.95 0.84 0.90 0.94 

Swing Duration 0.97 0.98 0.99 0.96 0.99 0.98 0.93 0.96 0.97 
0.82 0.91 0.92 0.92 0.96 0.93 0.82 0.80 0.87 
0.38 0.65 0.78 0.72 0.94 0.86 0.58 0.59 0.72 

Number of Strong 
Correlations 

10 12 12 13 14 14 13 11 12 
8 12 12 11 14 14 14 9 12 

 6 10 12 10 12 12 8 9 10 
B3 Intra-class correlation of gait features between differing timeframes in PwMS. Non-shaded cells are the correlations 
between feature medians, grey shaded cells are the correlation between feature 95th percentiles and blue shaded cells are 
the correlation between feature coefficient of variation (CV) values. Features and/or timeframes are abbreviated as 
follows: AP: Anterior-posterior; ML: Medio-lateral; RMS: Root Mean Square; 1D = 1 Day, 2D = 2Days, 1W = 1 Week, 
WE = Weekend, WD = Weekday, etc. Correlations are considered strong if the reported value is greater than or equal to 
0.70, values below are bolded and italicized.  

 
Table B4: Intra-class Correlation Wear Duration Sway Analysis in Persons with MS 

Sway Feature 
(13 total) 

1D v 1W 2D v 1W 3D v 1W WE v 
WD 

1W v 
2W 

1W v 
3W 

1W v 
4W 

1W v 
5W 

1W v 
6W 
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Area 0.49 0.86 0.94 0.93 0.96 0.94 0.84 0.87 0.93 
0.40 0.38 0.95 0.91 0.98 0.95 0.92 0.81 0.96 
0.46 0.81 0.89 0.85 0.92 0.90 0.88 0.86 0.91 

Centroidal 
Frequency 

0.84 0.96 0.99 0.95 1.00 0.99 0.97 0.98 0.99 
0.73 0.90 0.97 0.88 0.99 0.99 0.96 0.97 0.98 

 0.49 0.90 0.95 0.91 0.96 0.96 0.93 0.92 0.95 
Distance 0.75 0.94 0.97 0.94 0.97 0.97 0.83 0.89 0.94 

0.46 0.86 0.95 0.76 0.96 0.92 0.89 0.88 0.92 
0.47 0.94 0.96 0.93 0.96 0.96 0.77 0.86 0.94 

50th Percentile 
Frequency 

0.80 0.96 0.99 0.96 0.98 0.97 0.94 0.95 0.96 
0.74 0.94 0.98 0.94 0.98 0.98 0.94 0.96 0.97 
0.52 0.84 0.88 0.78 0.96 0.93 0.90 0.83 0.91 

95th Percentile 
Frequency 

0.74 0.97 0.99 0.97 0.98 0.96 0.95 0.94 0.96 
0.64 0.94 0.98 0.94 0.98 0.98 0.95 0.97 0.98 
0.32 0.71 0.90 0.79 0.95 0.91 0.56 0.88 0.89 

Frequency 
Dispersion 

0.64 0.95 0.96 0.95 0.98 0.98 0.91 0.93 0.97 
0.66 0.91 0.96 0.89 0.97 0.95 0.93 0.92 0.94 
0.46 0.87 0.93 0.93 0.97 0.96 0.86 0.92 0.95 

Jerk 0.85 0.88 0.96 0.92 0.98 0.95 0.71 0.84 0.92 
0.68 0.87 0.96 0.87 0.96 0.93 0.76 0.83 0.90 
0.27 0.79 0.87 0.90 0.93 0.91 0.87 0.83 0.90 

Mean Period 0.01 0.97 0.97 0.97 0.90 0.90 0.84 0.83 0.94 
0.43 0.78 0.96 0.90 0.94 0.96 0.95 0.72 0.96 
0.56 0.67 0.87 0.49 0.84 0.83 0.40 0.41 0.75 

Mean Velocity 0.56 0.97 0.96 0.96 0.97 0.96 0.95 0.94 0.96 
0.85 0.80 0.93 0.94 0.95 0.97 0.94 0.86 0.97 
0.72 0.94 0.97 0.90 0.92 0.90 0.76 0.93 0.88 

Path 0.51 0.97 0.96 0.98 0.97 0.96 0.95 0.93 0.96 
0.84 0.79 0.94 0.94 0.95 0.97 0.94 0.86 0.97 
0.62 0.91 0.96 0.94 0.94 0.93 0.83 0.93 0.91 

Power 0.24 0.96 0.95 0.98 0.96 0.97 0.97 0.92 0.97 
0.82 0.72 0.94 0.94 0.95 0.97 0.92 0.82 0.97 
0.77 0.91 0.96 0.93 0.94 0.92 0.76 0.92 0.88 

Range 0.65 0.91 0.94 0.94 0.97 0.97 0.82 0.88 0.96 
0.48 0.94 0.97 0.95 0.98 0.96 0.88 0.91 0.94 
0.39 0.77 0.87 0.68 0.91 0.87 0.85 0.58 0.83 

RMS 0.49 0.97 0.96 0.97 0.97 0.97 0.95 0.93 0.97 
0.83 0.79 0.95 0.94 0.95 0.97 0.93 0.86 0.98 
0.61 0.92 0.96 0.95 0.95 0.94 0.93 0.93 0.92 

Number of Strong 
Correlations 

5 13 13 13 13 13 13 13 13 
6 12 13 13 13 13 13 13 13 

 1 12 13 11 13 13 11 11 13 
B4 Intra-class correlation of sway features between differing timeframes in PwMS. Non-shaded cells are the correlations 
between feature medians, grey shaded cells are the correlation between feature 95th percentiles and blue shaded cells are 
the correlation between feature coefficient of variation (CV) values. Timeframes are abbreviated as follows: 1D = 1 Day, 
2D = 2Days, 1W = 1 Week, WE = Weekend, WD = Weekday, etc. Correlations are considered strong if the reported 
value is greater than or equal to 0.70, values below are bolded and italicized. 
  



115 

Appendix C 

TABLE C1 
PRM AND POSTURAL SWAY FEATURES CORRELATIONS FOR CHEST SENSOR LOCATION USING SO METHOD 

  Age EDSS ABC MFIS MSWS 

Feature EO EC TS EO EC TS EO EC TS EO EC TS EO EC TS 

Jerk - - 0.41 0.28 0.43 0.48 - -0.40 -0.39 - - 0.28 - 0.39 0.31 

Dist - - - - - - - - - - - - - - - 

RMS - - - - - - - - -0.32 - - - - - 0.38 

Path - - - - - - - - -0.32 - - - - - 0.36 

Range - - - - 0.32 0.27 - -0.32 -0.26 - - 0.26 - 0.36 0.28 
MV - - - - - - - - -0.31 - - - - - 0.36 

MF - - - - - - - - - - - - - - - 

Area - - - - - - - - -0.35 - - - - 0.29 0.43 

Pwr - - - - - - - - -0.32 - - - - - 0.38 

F50 - - - - - - - - - - - - - - - 

F95 - - - - - - - - - - - - - - - 

CF - - - - - - - - - - - - - - - 

FD - - - - - - - - - - - - - - - 

ApEn - - - - - - - - - - - - - - - 

LyExp - - - - - - - - - - - - -0.30 - - 
Significant and approaching significant correlations of postural sway features with PRMs for the Single Observation (SO) method. 
Approaching significant correlations are italicized. Eyes-Open (EO); Eyes-Closed (EC); Tandem Standing (TS). 
 

TABLE C2 
PRM AND POSTURAL SWAY FEATURES CORRELATIONS FOR SACRUM SENSOR LOCATION USING SO METHOD 

  Age EDSS ABC MFIS MSWS 

Feature EO EC TS EO EC TS EO EC TS EO EC TS EO EC TS 

Jerk - - 0.37 0.42 0.50 0.49 -0.34 -0.50 -0.37 - 0.32 0.36 - 0.48 0.30 
Dist 0.33 - - - 0.27 0.33 - - - - - - - - - 

RMS - - - - - - - - - - - - - - - 

Path - - - - - - - - - - - - - - - 

Range 0.38 0.31 0.34 0.36 0.36 0.47 -0.38 -0.38 -0.42 - 0.33 0.27 0.33 0.51 0.40 

MV - - - - - - - - - - - - - - - 

MF -0.29 - - - - -0.34 - - - - - - - - - 

Area - - - - - - - - - - - - - - - 

Pwr - - - - - - - - - - - - - - - 

F50 - - - 0.27 - 0.29 - - - - - - - - 0.27 
F95 - - - - - 0.27 - - - - - - - - - 

CF - - - - - - - - - - - -0.32 - - - 

FD - -0.27 - - - - - - - - - - - - - 

ApEn - -0.38 - - - - - - - - - - - - - 

LyExp - - - - - 0.44 - - - - - - - - 0.27 
Significant and approaching significant correlations of postural sway features with PRMs for the Single Observation (SO) method. 
Approaching significant correlations are italicized. Eyes-Open (EO); Eyes-Closed (EC); Tandem Standing (TS). 
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TABLE C3 
PRM AND POSTURAL SWAY FEATURES CORRELATIONS FOR CHEST SENSOR LOCATION USING ID METHOD 

   Age EDSS ABC MFIS MSWS 

Feature 
Summary 
Statistic EO EC TS EO EC TS EO EC TS EO EC TS EO EC TS 

Jerk 

p5 - 0.30 0.33 - 0.46 0.54 - -0.38 -0.47 - - 0.37 - - 0.38 

p25 - 0.30 0.32 0.27 0.45 0.49 - -0.36 -0.43 - - 0.33 - - 0.33 

Med - - 0.33 - 0.45 0.49 - -0.36 -0.44 - - 0.35 - - 0.34 

p75 - - 0.31 - 0.45 0.43 - -0.37 -0.38 - - 0.31 - - 0.30 

p95 - - 0.34 0.28 0.46 0.43 - -0.36 -0.37 - - 0.31 - - 0.30 

STD - - 0.27 - 0.34 - - -0.32 - - - - - - - 

Dist 

p5 - - - - - - - 0.32 - - -0.43 - - -0.43 - 

p25 - - - - - - - 0.28 -0.31 -0.28 -0.48 - - -0.48 0.27 

Med - - - - - - - - -0.27 -0.38 -0.47 - -0.30 -0.47 - 

p75 - - - - - - - - - -0.37 -0.45 - -0.31 -0.45 0.28 

p95 - - - - - - - - - -0.35 -0.32 - - -0.32 - 

STD - - - - - - - - - -0.33 -0.30 - - -0.30 0.29 

RMS 

p5 - - - - - - - - -0.34 - - - - - 0.35 

p25 - - - - - - - - -0.36 - - - - - 0.37 

Med - - - - - - - - -0.35 - - - - - 0.36 

p75 - - - - - - - - -0.34 - - - - - 0.35 

p95 - - - - - - - - -0.35 - - - - - 0.36 

STD - - - - - - - - - -0.27 - - - - - 

Path 

p5 - - - - - - - - -0.31 - - - - - 0.33 

p25 - - - - - - - - -0.33 - - - - - 0.33 

Med - - - - - - - - -0.34 - - - - - 0.34 

p75 - - - - - - - - -0.33 - - - - - 0.34 

p95 - - - - - - - - -0.35 - - - - - 0.36 

STD - - - - - - - - - - - - - - 0.27 

Range 

p5 - - - - 0.28 - - -0.27 -0.32 - - - - - 0.26 

p25 - - - - - 0.31 - - -0.36 - - - - - 0.31 

Med - - - - - 0.27 - - -0.32 - - - - - 0.28 

p75 - - - - - - - - -0.29 - - - - - - 

p95 - - - - - - - - -0.31 - - - - - 0.32 

STD - - 0.35 - - - - - - - - - - - - 

MV 

p5 - - - - - - - - - - - - 0.28 - 0.27 

p25 - - - - - - - - -0.27 - - - - - 0.29 

Med - - - - - - - - -0.28 - - - - - 0.29 

p75 - - - - - - - - -0.29 - - - - - 0.30 

p95 - - - - - - - - -0.32 - - - - - 0.34 

STD - - - - - - - - -0.32 -0.36 - - - - 0.34 

MF 

p5 - - - - - - - - - 0.32 0.37 - 0.33 0.37 - 

p25 - - - - - - - -0.25 - 0.28 0.45 - 0.35 0.45 - 

Med - - - - - - - -0.26 - - 0.43 - 0.31 0.43 - 

p75 - - - - - - - -0.33 - - 0.40 - - 0.40 - 

p95 - - - - 0.27 - - -0.37 - - 0.40 - - 0.40 - 

STD - - - - - - - -0.32 - - 0.36 - - 0.36 - 

Area 

p5 - - - - - - - - -0.32 - - - - - 0.38 

p25 - - - - - - - - -0.33 - - - - - 0.37 

Med - - - - - - - - -0.33 - - - - - 0.39 

p75 - - - - - - - - -0.33 - - - - - 0.39 

p95 - - - - - - - - -0.32 - - - - - 0.39 

STD - - - - - - - - - - - - - - 0.33 

Pwr 
p5 - - - - - - - - -0.34 - - - - - 0.35 

p25 - - - - - - - - -0.36 - - - - - 0.37 

Med - - - - - - - - -0.35 - - - - - 0.36 
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p75 - - - - - - - - -0.34 - - - - - 0.35 

p95 - - - - - - - - -0.35 - - - - - 0.36 

STD - - - - - - - - -0.29 - - - - - 0.31 

 

 

TABLE C3 (CONT.) 
PRM AND POSTURAL SWAY FEATURES CORRELATIONS FOR CHEST SENSOR LOCATION USING ID METHOD 

   Age EDSS ABC MFIS MSWS 

Feature 
Summary 
Statistic EO EC TS EO EC TS EO EC TS EO EC TS EO EC TS 

F50 STD - - - - - 0.26 - - - - - - 
-
0.29 - - 

F95 Med - - - - - - - - - - - 0.27 - - - 
CF N/A - - - - - - - - - - - - - - - 
FD STD - - - - - - - - - - - 0.31 - - - 

ApEn 

p5 - - - - - - - - - 0.27 - - - - - 

p25 - - - - 0.26 - - - - 0.28 0.34 - - 0.34 - 

Med - - - - - - - - - 0.29 0.27 - - 0.27 - 

p75 - - - - - - - - - - 0.26 - - 0.26 - 

LyExp 
p25 - - - - - - - 0.26 - - - - - - - 

Med - - - - - - - 0.28 - - - - - - - 

STD 0.33 - - - - - - - - - - - - - - 
Significant and approaching significant correlations of postural sway features with PRMs for the Individualized Distributions (ID) 
method. Approaching significant correlations are italicized. Eyes-Open (EO); Eyes-Closed (EC); Tandem Standing (TS). 
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TABLE C4 
PRM AND POSTURAL SWAY FEATURES CORRELATIONS FOR SACRUM SENSOR LOCATION USING ID METHOD 

   Age EDSS ABC MFIS MSWS 
Feature Summary Statistic EO EC TS EO EC TS EO EC TS EO EC TS EO EC TS 

Jerk 

p5 - - 0.34 0.33 0.51 0.56 -0.32 -0.41 -0.45 - - 0.41 - 0.39 0.37 

p25 - - 0.35 0.33 0.50 0.56 -0.32 -0.41 -0.45 - - 0.42 - 0.40 0.36 

Med - - 0.32 0.33 0.50 0.52 -0.33 -0.47 -0.42 - - 0.40 - 0.44 0.32 

p75 - - 0.31 0.31 0.53 0.50 -0.32 -0.49 -0.40 - 0.28 0.40 - 0.47 0.30 
p95 - - 0.32 0.31 0.51 0.49 -0.31 -0.48 -0.39 - 0.29 0.40 - 0.47 0.31 
STD - - - 0.31 0.41 - -0.30 -0.42 - - 0.44 0.28 - 0.46 - 

Dist 

p5 - - - - - 0.36 - - -0.27 - - - - - - 

p25 - - - - - 0.36 - - -0.36 - - - - - - 

Med - - - - - - - - - - - - 0.28 - - 

p75 - - - - - - -0.32 - - - - - 0.29 - - 

p95 - - - - - - -0.27 - - - - - - - - 
STD - - - - - - -0.32 - - - - - - - - 

RMS N/A - - - - - - - - - - - - - - - 

Path N/A - - - - - - - - - - - - - - - 

Range 

p5 - 0.37 - - 0.42 0.44 -0.37 -0.42 -0.52 - - 0.37 0.33 0.49 0.46 

p25 - 0.33 - - 0.35 0.48 -0.41 -0.37 -0.48 - - 0.29 0.35 0.45 0.37 

Med - 0.34 - - 0.34 0.46 -0.37 -0.35 -0.44 - - - 0.32 0.42 0.37 

p75 - 0.37 - - 0.35 0.42 -0.30 -0.32 -0.40 - - - 0.29 0.43 0.33 

p95 - 0.35 0.30 - 0.31 0.46 -0.27 -0.30 -0.46 - - 0.31 - 0.41 0.44 

STD - - - - - 0.35 - - -0.27 - - - - - 0.34 

MV STD - - - - - - - - -0.28 -0.33 -0.29 - - - - 

MF 
p75 - - - - - -0.34 - - 0.31 - - - - - - 

p95 - - - - - -0.31 - - - - - - - - - 

Area 

p25 - - - - - - -0.28 - - - - - - - - 

Med - - - - - - -0.29 - - - - - - - - 

p75 - - - - - - -0.28 - - - - - - - - 

p95 - - - - - - -0.30 - - - - - - - - 

STD - - - - - - -0.37 - - - - - 0.29 - - 

Pwr N/A - - - - - - - - - - - - - - - 

F50 

p25 - - - - - 0.31 - - -0.27 - - - - - - 

Med - - - - - 0.31 - - -0.28 - - 0.27 - - - 

p75 - - - - - 0.31 - - -0.28 - - - - - 0.27 
p95 - - - - - 0.29 - - - - - - - - 0.27 
STD - - - - - 0.29 - - -0.27 - - - - - 0.29 

F95 

p5 - - - - - 0.29 - - - - - 0.28 - - - 
p25 - - - - - 0.29 - - -0.27 - - 0.28 - - - 

Med - - - - - 0.28 - - -0.27 - - 0.27 - - - 

p75 - - - - - 0.29 - - - - - - - - - 

p95 - - - - - - - - - - - - - - 0.27 
STD - - - - - 0.30 - - -0.31 - - - - - 0.33 

CF 

p5 - - - - - - - - 0.27 - - -0.29 - - - 

p75 - - - - - - - - - - - -0.27 - - - 

STD - - - - - 0.29 - - -0.31 - - - - - 0.31 

FD 

p5 - -0.31 - - - - - - - - - - -0.35 - - 

p25 - -0.31 - - - - - - - - - - - - - 

Med - -0.27 - - - - - - - - - - - - - 

p95 - - - - - 0.27 - - - - - 0.29 - - - 

ApEn 

p5 - -0.30 - - - - - - - - - - - - - 
p25 - -0.32 - - - - - - - - - - - - - 
Med - -0.34 - - - - - - - - - - -0.27 - - 
p75 - -0.36 - - - - - - - - - - -0.31 - - 
p95 - -0.37 - - - - - - - - - - -0.33 - - 
STD - - - -0.44 - - 0.39 - - -0.45 -0.34 - -0.38 -0.34 - 
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TABLE C4 (CONT.) 
PRM AND POSTURAL SWAY FEATURES CORRELATIONS FOR SACRUM SENSOR LOCATION USING ID METHOD 

   Age EDSS ABC MFIS MSWS 
Feature Summary Statistic EO EC TS EO EC TS EO EC TS EO EC TS EO EC TS 

LyExp 

p5 - - - - - 0.29 - - -0.31 - - - - - 0.33 

p25 - - - - - 0.43 - - -0.36 - - 0.33 - - 0.31 

Med - - - - - 0.40 - - -0.42 - - 0.30 - - 0.37 

p75 - - - - - 0.31 - - -0.29 - - - - - 0.30 
p95 - - - - - 0.34 - - -0.28 - - - - - 0.28 

Significant and approaching significant correlations of postural sway features with PRMs for the Individualized Distributions (ID) method. Approaching significant 
correlations are italicized. Eyes-Open (EO); Eyes-Closed (EC); Tandem Standing (TS). 
 

TABLE C5 
FALLER NON-FALLER COMPARISONS FOR CHEST AND SACRUM DERIVED POSTURAL SWAY FEATURES

Eyes-Closed Single Observation 

    Chest Sacrum 

Feature Statistic F Med NF Med p Cohen's d F Med NF Med p Cohen's d 

Range N/A - - - - 0.05 0.03 0.08 0.42 

Eyes-Open Subject Specific Distribution 

MV STD 0.09 0.14 0.06 -0.35 - - - - 

Eyes-Closed Subject Specific Distribution 

Jerk STD - - - - 0.00 0.00 0.08 0.48 

Range 
p95 - - - - 0.06 0.04 0.08 0.47 

STD - - - - 0.01 0.00 0.05 0.36 

Tandem Standing Subject Specific Distribution 

Jerk 

p75 0.10 0.08 0.06 0.36 - - - - 

p95 0.11 0.08 0.06 0.41 - - - - 

STD 0.01 0.00 0.10 0.48 - - - - 

Range p5 - - - - 0.06 0.04 0.05 0.59 

MV STD 0.19 0.09 0.05 0.60 - - - - 

Area 

p5 0.06 0.03 0.08 0.33 - - - - 

p25 0.07 0.04 0.07 0.34 - - - - 

Med 0.09 0.04 0.07 0.29 - - - - 

p75 0.09 0.04 0.07 0.32 - - - - 

CF 
Med 0.70 0.71 0.05 -0.56 - - - - 

p75 0.70 0.71 0.05 -0.51 - - - - 

FD 

p5 1.77 1.71 0.06 0.36 - - - - 

p25 1.82 1.76 0.05 0.39 - - - - 

Med 1.85 1.78 0.04 0.43 - - - - 

p75 1.90 1.81 0.05 0.46 - - - - 

p95 1.96 1.85 0.04 0.48 - - - - 

Significant and nearing significant differences between fallers (F) and non-fallers (NF) for features of postural sway. Median (Med), p values(p), and Cohen's d 
reported for each test. Results provided for features computed from chest and sacrum.
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