
University of Vermont University of Vermont

UVM ScholarWorks UVM ScholarWorks

Graduate College Dissertations and Theses Dissertations and Theses

2023

Effects of Morphology on Genetic Assimilation of Learned Effects of Morphology on Genetic Assimilation of Learned

Behavior Behavior

Natalie L. Tolley
University of Vermont

Follow this and additional works at: https://scholarworks.uvm.edu/graddis

 Part of the Artificial Intelligence and Robotics Commons, and the Robotics Commons

Recommended Citation Recommended Citation
Tolley, Natalie L., "Effects of Morphology on Genetic Assimilation of Learned Behavior" (2023). Graduate
College Dissertations and Theses. 1771.
https://scholarworks.uvm.edu/graddis/1771

This Thesis is brought to you for free and open access by the Dissertations and Theses at UVM ScholarWorks. It
has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of
UVM ScholarWorks. For more information, please contact schwrks@uvm.edu.

https://scholarworks.uvm.edu/
https://scholarworks.uvm.edu/graddis
https://scholarworks.uvm.edu/etds
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis/1771?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1771&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:schwrks@uvm.edu

Effects of Morphology on Genetic
Assimilation of Learned Behavior

A Thesis Presented

by

Natalie L. Tolley

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements
for the Degree of Master of Science
Specializing in Computer Science

August, 2023

Defense Date: July 20, 2023
Thesis Examination Committee:

Joshua Bongard, Ph.D., Advisor
Dryver Huston, Ph.D., Chairperson

Nicholas Cheney, Ph.D.
Cynthia Forehand, Ph.D., Dean of the Graduate College

Abstract

The Baldwin effect is an evolutionary theory regarding the assimilation of ontoge-
netic changes into a population’s genome via selection pressure to entrench beneficial
phenotypes discovered through learning. In evolutionary computation, the incorpo-
ration of learning into non-embodied agents allows them to navigate otherwise rough
fitness landscapes by allowing for local exploration at particular points in that land-
scape. Prior work investigating the specific mechanisms by which learned behavior is
genetically assimilated is almost entirely limited to non-situated, non-embodied sim-
ulations such as bitstring manipulation. However, recent research has demonstrated
that genetic assimilation can be observed in embodied agents. Learning more about
the ways embodiment may affect the mechanisms of genetic assimilation can help
us better understand how learning can affect evolution and enhance our design of
evolved, learning, embodied systems.

To accomplish this, we co-evolve the initial values and learning rules for each
synapse in the controlling neural network of three different robots to investigate the
impact of morphology on the Baldwin Effect. We found that the different morpholo-
gies tested were capable of genetic assimilation within the evolutionary timespans
provided and that each morphology exhibited significant differences in the amounts
of genetic assimilation they were capable of. These differences were due entirely to
different behaviors between morphologies, while the rate of genetic assimilation due
to evolution of non-learning synaptic weights was constant regardless of morphology.

I dedicate this thesis to my cat, Chickadee, who has never learned a thing.

ii

Acknowledgements

I would like to express my deep gratitude to my advisor, Josh Bongard, for his

support, patience, and mentorship throughout my research. Every time I felt that

my research had hit a dead end, he managed to turn the problem over until I saw the

possibilities in what had seemed to be obstacles. Without his help, I never would have

completed this research. I would also like to thank the entire Morphology, Evolution,

and Cognition Lab for their questions, suggestions, and interest in my work.

Lastly, I want to thank my family, especially my parents Kirsten and George

Tolley, for their support and encouragement to pursue a graduate degree.

Computations were performed, in part, on the Vermont Advanced Computing

Center.

iii

Table of Contents
Dedication . ii
Acknowledgements . iii

1 Introduction and Background 1
1.1 Introduction . 1
1.2 Artificial Neural Networks . 2
1.3 Evolutionary Algorithms . 4

1.3.1 Evolutionary Algorithm Cycle 4
1.3.2 Genotype and Phenotype . 5
1.3.3 Fitness Landscape . 5

1.4 Learning in Neural Networks . 7
1.4.1 Hebbian Learning . 8

1.5 The Baldwin Effect . 9
1.5.1 Computational Models . 10
1.5.2 Embodied Instances . 12

1.6 Embodiment . 13

2 Methods 15
2.1 Overview . 15
2.2 Controller Design . 15

2.2.1 Neural Network . 15
2.2.2 Genome Design . 16
2.2.3 Hebbian Learning . 17

2.3 Morphologies . 17
2.3.1 Snake . 18
2.3.2 Quadruped . 19
2.3.3 Hexapod . 19

2.4 Evolutionary Algorithms . 19
2.4.1 Genetic Algorithm . 19
2.4.2 Hebbian Evolutionary Strategy 21

2.5 Simulation . 22

3 Results 24
3.0.1 Quantitative Analysis of Phenotypic Change 24
3.0.2 Behavior of Evolved Learning Parameters 27

4 Discussion and Future Work 30

iv

A Technical Diagrams of Robot Morphology 36

v

Chapter 1

Introduction and Background

1.1 Introduction

Design of embodied agents, also known as robots, is a complex task. Any given

robot must not only be equipped with a body capable of performing its duties, but

a control policy capable of manipulating this body even in adverse or unforeseen

circumstances. Given that robots are most commonly used in scenarios humans find

dangerous, messy, or difficult, a powerful control policy is required to ensure that

tasks are successfully completed. Because the creation of such a controller is such

a complex task, evolutionary algorithms are often employed to automate the design

process.

The field of evolutionary robotics centers around the use of evolutionary algo-

rithms to automate the development of robotic systems, drawing inspiration from the

ways evolution acts on biological organisms. Evolutionary algorithms are an ideal

choice for the design of robotic control and morphology, where parameters are diffi-

cult to optimize due to the highly nonlinear nature of the problems at hand. However,

1

evolutionary algorithms suffer from their own shortcomings in certain highly complex

design spaces, many of which can be addressed through the introduction of learning

capabilities to evolved agents. Recent research has shown that exploiting a feature of

evolution known as the Baldwin effect, which allows evolution to tune where and how

learning occurs, can produce significantly higher-fitness solutions than approaches

that cannot exploit this effect. Understanding how the Baldwin effect operates in

embodied systems can help us better exploit it in future research to produce more

useful and capable machines, as well as to understand the ways in which lifetime

learning interacts with evolution in organisms.

1.2 Artificial Neural Networks

Control of robotic systems often takes the form of an artificial neural network, a form

of information processing which takes inspiration from the function of organic nervous

systems. At the most basic level, they take information in some numerical form and

transform it via several parallel and serial operations into a numerical output. When

used to solve problems, neural control policies can be open loop or closed loop. An

open loop controller processes information composed of discrete instances that may

have no relation, like in image recognition. A closed-loop controller describes scenarios

where the output of the network affects the information that comes in next, like the

controller of a robot.

There are two components to a neural network: the neurons and the synapses. The

function of a neuron is to sum incoming values from other neurons it is connected to,

perform a single mathematical operation on this sum, and then pass the output along

2

its outgoing connections to other neurons. The synapses are responsible for connecting

neurons to each other, and modulate the signals they transmit. Each synapse has

an associated synaptic weight, which determines how much it inhibits or excites the

output of its presynaptic neuron. A synaptic weight of greater magnitude will not

dampen the signal at all, while a synaptic weight of 0 will nullify the signal completely,

and a negative synaptic weight will flip the signal of its presynaptic neuron. The input

to a postsynaptic neuron is the dot product of the output of the presynaptic neurons

connected to it and the weights of the synaptic connections those outputs are being

transmitted over [1]. A given neuron nj with presynaptic neurons < n1, n2, ..., ni >,

each with output oi transmitting along synaptic connections < s1j, s2j, ..., sij > with

weight wij will have an input mj demonstrated by the following equation:

mj =< n1, n2, ..., nj > · < w1j, w2j, ..., wij >

In order for a neural network to produce useful output, the weights of these synap-

tic connections must be modified and tuned. Determining the ideal synaptic weights

so that a network exhibits the desired properties is non-intuitive, so the process is

automated via a gradient descent algorithm. To tune a synapse, the neural network

undergoes a training phase where the ideal output for a given input is already known,

and the network can therefore be judged by how accurate it is. The responsibility for

deviation between the desired output and the network’s output can then be propa-

gated backwards across the synapses, assigned proportional to their calculated role

in producing the result. As synapses are adjusted, the neural network travels across

a "gradient" of performance, moving further down the slope as it reduces error.

However, there exist applications for which error cannot be back-propagated, such

3

as our robot example. When we have no idea what the ideal control policy looks like,

no error can be calculated and no gradient towards a desired output can be formed.

Further, in systems where ANNs are required to embody a highly-nonlinear trans-

formation of input into output, the impact of any one synapse at a given moment

of time is difficult to calculate, making attribution of the final outcome to any indi-

vidual synaptic weight difficult. This is known as the credit assignment problem [2].

In cases such as these, unsupervised gradient-free methods such as evolutionary al-

gorithms become useful [3].

1.3 Evolutionary Algorithms

Evolutionary algorithms are a stochastic method of searching a problem’s solution

space that takes inspiration from biological evolution. They are particularly useful

for optimisation problems where the best solution is not known, or where the mapping

from input to output is too non-linear to predict how the system should be changed

to improve its behavior, and so are ideal for designing the controllers for embodied

agents.

1.3.1 Evolutionary Algorithm Cycle

Unlike other supervised learning methods, evolutionary algorithms work with no op-

timal solution to measure results against. Instead, a group of solutions (also referred

to as a population of individuals) is iterated through a cycle of evaluation, selection,

and mutation. During evaluation, individuals are evaluated and given a quantifiable

measure of how well they performed, called their fitness. This fitness is used to com-

4

pare different individuals against each other, to determine which performed the best

in the selection phase. In selection, individuals with lower fitness are removed from

the population while those whose fitness is relatively higher remain. In mutation,

remaining individuals are copied and altered in some way to produce new solutions.

The new individuals are then evaluated, and the cycle repeats.

1.3.2 Genotype and Phenotype

We use the term "genotype" to refer to the variable values making up an individual

solution. The genotype typically takes the form of a vector of values, and dictates

the way the individual performs when evaluated in ways similar to how a biological

genome affects an animal’s features. The phenotype of the individual is the behavior

displayed when the genome is applied to the problem space as a solution. A neural

network controller for a robot typically has a genotype made up of specific synaptic

weights, while the phenotype would be the movement that the robot produces when

simulated with that set of synaptic weights. While the genotype is passed from parent

to offspring directly, only altered by mutation, the phenotype, which is only passed

indirectly via expression of similar genotypes in similar environments, is the way by

which fitness can be measured.

1.3.3 Fitness Landscape

The fitness landscape of a particular problem refers to the mapping of genomes to their

respective fitness values. The term refers to the way that variations in fitness between

solutions create "peaks" and "valleys" of performance. Evolutionary algorithms gen-

5

erate solutions randomly within solution-space, and then "climb" the slopes of higher

fitness by making incremental steps through this space with mutation, with the goal

of reaching a globally-optimal solution, but in practice often becoming trapped in lo-

cal optima. It is important to note that while local "peaks" of fitness can be identified

within solution-space, it is often impossible to determine whether a given solution is

truly optimal or simply optimal for the area covered by iterations of the algorithm.

Figure 1.1: A plot demonstrating the relationship between genotype and fitness in a fitness
landscape. Most genotypes have many dimensions, and cannot be flattened to a simple 2D
plot, though principles demonstrated in simplified plots apply to higher-dimensional land-
scapes.

Due to the lack of information about the shape of the fitness landscape within the

algorithm itself, there are certain fitness landscapes which are difficult for evolutionary

algorithms to traverse and find solutions in: landscapes with too many peaks and

valleys may trap evolutionary algorithms in local optima early in the process, and

are called "rugged". In addition, barren landscapes with only a few, very localized

points of fitness are intractable due to the lack of a slope for evolution by mutation

to ascend. Due to the exhaustive search required to solve these landscapes, they are

also referred to as "needle in the haystack" landscapes.

6

Current approaches to the problem of rugged fitness landscapes revolve around

encouraging diversity in a population to avoid early convergence on a sub-optimal

genotype, through techniques such as age-fitness Pareto optimization [4] or selecting

for novelty over fitness [5]. Fitness landscapes with isolated high-performance geno-

types, meanwhile, may be "smoothed" with the addition of learning, which causes

some component of the agent’s phenotype to change over its lifetime. This trans-

forms it from a single point in the fitness landscape to a localized trajectory, and thus

increases its chances of stumbling onto a fitness gradient.

Figure 1.2: Difficult-to-traverse landscapes may confound simpler evolutionary algorithms.
Especially rugged landscapes (left) have many local optima that result in very early conver-
gence without the ability to explore further. Needle in the haystack landscapes (right) have
little to no slope for mutation to climb, and locating the peak through mutation becomes an
intractable exhaustive-search problem at even moderate problem-space complexity.

1.4 Learning in Neural Networks

In this work we use ’learning’ to specifically refer to the modifications a neural net-

work undergoes while actively being simulated, as opposed to the generation-level

modifications made by the genetic algorithm. The term "Evolved Plastic Artificial

Neural Network" (EPANN), coined by Soltoggio et al., refers to neural networks with

7

evolved parameters that are also capable of learning as the information they receive

changes [6]. In their review of current EPANN learning techniques, Soltoggio et al.

identified Hebbian learning as being of specific interest, due to its roots in theories of

biological neural function and capacity for entirely unsupervised learning.

1.4.1 Hebbian Learning

Hebbian learning is a type of unsupervised neural-network training that follows prin-

ciples of synaptic connectivity first proposed by Donald Hebb, who theorized that

synaptic connections would grow in strength when the presynaptic neuron’s firing was

shortly followed by the postsynaptic neuron’s activation [7]. Willshaw and Dayan pro-

posed a modified Hebbian theory featuring a set of three different learning rules which

would allow for the depression of synaptic connections under various conditions [8].

Further investigation of the role of depressive synaptic modifications by Miller and

Mackay showed that the type of depression mattered as well. Synaptic constraints

that decreased by a constant amount tended to ’sharpen’ networks down to the most

highly-correlated connections, while constraints that decreased proportional to the

current synaptic weight more evenly spread the signalling of the network [9].

Floreano and Mondada used these principles when designing learning rules for a

physical robot which could navigate a very simple track. The robot’s neural network,

which was composed of 27 synapses, could modify the strength of those synapses

according one out of four possible equations. Each equation rewarded a different kind

of relationship between neurons: firing together, exclusively pre- or post- synaptic

activation, and modification proportional to the neuron’s similarity. The type of

equation attached to a given synapse, as well as the learning rate of the synapse,

8

were evolved parameters. Their findings demonstrated the real-life utility of Hebbian

learning systems, as well as an example of dynamic stability - though the controller

was in a constant state of change, the behavior of the robot remained consistent [10].

With more modern evolutionary strategies capable of scaling development to much

larger parameter sets [11], Hebbian learning rules can now be applied to controllers for

much larger networks. Recent examples of Hebbian-inspired controllers in embodied

agents find that not only can a properly-developed Hebbian parameter set fully adjust

randomly-generated networks, networks operating under Hebbian learning rules are

much more adaptive to novel scenarios than non-learning networks [12] [13]. Addi-

tionally, the Hebbian parameter sets could reassert full capability after widespread

perturbation to the network, and once control is asserted, networks’ learning could be

switched off with minimal loss of function. As opposed to earlier work, these Hebbian

learning rules operated on an ABCD Hebbian model, where each synapse has its own

set of tuned parameters governing how it changes.

1.5 The Baldwin Effect

The Baldwin effect describes a theory in evolutionary science by which changes in

individual phenotypes in a population can drive genetic assimilation of those changes

into the genotype [14]. Individuals who discover beneficial phenotypes instigate an

evolutionary pressure to perform that phenotype in their population, until the desired

trait is assimilated into the population’s genome as an inherent, rather than acquired,

property. This theory was expanded upon by Waddington [15] to describe how genetic

assimilation might occur in a population. Phenotypic variation due to environmental

9

factors must be possible, along with the eventual transfer from external inducement

of change to internal. The population must also experience genetic variation and a

selection pressure for the phenotype in question [15]. The two key factors outlined

by Baldwin and Waddington were genetic assimilation, the encoding of a previously

ontogenetically acquired trait into the genome, and canalization, the elimination of

environmental interaction as a factor in the trait’s expression.

A classic example of this phenomenon can be observed in ostriches, who are born

with callus tissue on the bottoms of their feet. Ostriches, who run on abrasive terrain

their entire lives, require these calluses to be able to move about without injuring

themselves. The development of callus tissue when skin is abraded is encoded into

the genome of an ostrich, a beneficial phenotypic change. The evolutionary pressure

to develop calluses as quickly as possible eventually results in the genetic assimilation

of the trait [16].

1.5.1 Computational Models

The Baldwin effect was first demonstrated in a computational model in 1987, by

Hinton and Nowlan [17]. In their research, they demonstrated how a bitstring-

maximisation problem could be solved with evolutionary algorithms even if only the

maximum value bitstring was assigned a non-zero fitness, forming an extreme ’needle

in the haystack’ fitness landscape. The addition of learning allowed what would have

been non-viable genomes which were close to the solution the possibility to stumble

upon the correct string during their lifetimes. By assigning fitness proportional to

the amount of time an individual took to locate the solution string, the ’needle’ was

widened into a climbable slope, with the time-based fitness function pushing the pop-

10

ulation to start their simulation time closer to the solution where they could discover

it sooner. This experiment was replicated by Mills and Watson in 2005, in an altered

form that showed canalization of genes was not necessary for a trait to become genet-

ically assimilated [18]. By removing the ’?’ allele and allowing all genes a low chance

to mutate, they showed that even when learning is not eliminated, the needle in the

haystack may still be found.

Learning is not, however, universally beneficial and does not guarantee conver-

gence towards genetic assimilation by itself. Mayley demonstrated that while learn-

ing does smooth out rugged landscapes generated by tunably difficult N-K equations,

this can result in genetically diverse populations being rendered phenotypically indis-

tinguishable, as all individuals who begin evaluation close enough to a local optimum

can reach it through learning [19]. Mayley called this the hiding effect, and showed

that in order to continue genetic assimilation once this point has been reached, there

must be a cost to learning, either applied directly through simulated energy expen-

diture or indirectly through the time spent learning. Other experiments in complex

environments were performed by Le et al., who observed the Baldwin effect in dy-

namic environments, as well as among populations which could learn from each other,

though the problems themselves were still simple bitstrings [20] [21]. In more complex

cases, full canalization may be less desirable. In an experiment evolving neural net-

work structure and weights, Downing observed that a percentage of synapses never

canalized, and theorized that it might reflect the same tendencies biological agents

had towards maintaining neural plasticity [22].

Genetic assimilation also requires a direct mapping between the genome and al-

terations made by learning. If the link between evolved genotype and learned pheno-

11

type is too indistinct, then mutation will be unable to replicate or assimilate learned

changes, however beneficial. This is observed both in non-embodied cases [23] [24] as

well as in the morphologies of embodied agents [25].

1.5.2 Embodied Instances

In 2011, Bongard et al. showed that including a morphological developmental tra-

jectory in embodied agents when designing controllers for locomotion yielded signif-

icantly more robust behavior than in agents who began at the final morphological

stage [26]. While both the phenotypic change and genetic assimilation of the end

phenotype were externally predefined, this research laid the grounds for Kriegman et

al’s research into the same phenomenon in soft robots [27] [28]. Their work evolved

a developmental trajectory for the size of each voxel component in the robot’s body,

allowing for dramatic morphological change during evaluation. It was noted that

the local exploration through ontogenetic change allowed for robots to stumble across

high-fitness morphologies, which created points of attraction for evolution in the same

manner as Hinton and Nowlan’s experiments. A robot whose body ended up rolling

forwards near the end of its life received a boost to its fitness that caused rolling be-

havior to be encouraged. The effect on fitness was so dramatic that the discovery of

rolling and its assimilation are both easily-identifiable points on the final generational

fitness plots.

Another instance of this phenomenon is claimed by Gupta et al., who evolved

morphologies alongside reinforcement-learning controllers [29]. In a variety of task

environments, they developed morphologies that rapidly evolved to better facilitate

learning, and observed that agents evolved in more difficult environments showed

12

more adaptability to novel scenarios than those evolved to perform simpler tasks.

All these embodied examples are significant for both the complexity of the problems

compared to prior work as well as the unique ways morphology affects the development

of controllers. Some morphologies appear to be more permissive to learning and

exploration, while others make these tasks more difficult [28] [25].

1.6 Embodiment

When we discuss embodiment, we refer to a combination of traits which define the

way an agent relates to its environment. An agent is said to be situated if it is capable

of perceiving data about its environment. It is embodied if it is capable of affecting

its environment in some way. All of the embodied agents discussed in this research

are also situated, though that is not the case universally.

Problem spaces dealing with the control and design of embodied agents has the

potential to be much more complicated than non-embodied ones. This is because

physical existence introduces a temporal component to all problems by default, and

so when designing control we must take into account the fact that individual outputs

may have long-term consequences for behavior [6]. Also worth considering is the gap

between reality and simulation, where most embodied agents are developed. Since one

of the most common uses of embodied agents is in robotics, which are often required

to operate in difficult real-world environments, high-performing controllers capable

of operating in these difficult scenarios are required. Sims [30] demonstrated the

effectiveness of evolutionary algorithms in designing these controllers, and they have

been a popular method for decades. However, as discussed before, the drawbacks of

13

overly-complex problem spaces makes designing controllers for complex tasks difficult,

even with the aid of evolution.

Given the desirability of high-performing embodied systems and the advantages

the Baldwin Effect has been observed to confer on such systems, it becomes clear

that furthering our understanding how embodiment interacts with and affects genetic

assimilation can only be beneficial to the design of such systems in the future.

14

Chapter 2

Methods

2.1 Overview

To explore the interactions between embodiment and the Baldwin Effect, we chose

to co-evolve neural network controllers and a set of Hebbian learning parameters.

This approach was tested in three morphologies of varying complexity, and the re-

sulting parameter sets and behaviors were analyzed for signs of genetic assimilation

of learning. A key component of this analysis was synaptic variance, which served as

a quantifiable measure of how much learning a particular individual did.

2.2 Controller Design

2.2.1 Neural Network

The controllers developed in these experiments are feed-forward neural networks with

an input, hidden and output layer. The input layer has a neuron for each sensor in

15

the robot being controlled, and the hidden layer has a number of neurons equal to

the input layer. The output layer, meanwhile, has a neuron for each motor in the

robot. All neurons have a tanh activation function, bounding their output to [-1, 1].

Each layer is fully connected to the previous layer, with synaptic weights within the

range [-1, 1]. For the sake of precision, all neuron outputs and synaptic weights are

rounded to the 6th decimal place during simulation. A general diagram of the neural

neural networks used is depicted in Figure 2.1.

Figure 2.1: A general diagram for the neural network’s layout. Each layer is fully connected
to the layer previous, resulting in N ∗ N ∗ M synapses per network.

2.2.2 Genome Design

Each controller has a genome which determines the weight of its synapses at simula-

tion timestep 0 w0
ij, as well as the plasticity of each synapse ηij, which appears in the

Hebbian update equation. Values for w0 fall within [-1, 1], and η is bounded to [0, 1].

16

2.2.3 Hebbian Learning

Alongside the evolved population of neural network genomes we also develop a set of

parameters for Hebbian learning, H. This parameter set, as well as the equations by

which synapses are modified and the way H is evolved, is a modified version of the

methods utilized by Najarro and Risi [12]. Rather than an S × 5 set of parameters,

each synapse sij corresponds with only four variables, < Aij, Bij, Cij, Dij, with control

of the fifth parameter ηij shifted to the genome for reasons discussed in Section 2.4.2.

A, B, C, and D are all initially generated as values within [-1, 1] but are not kept

within those bounds when H is updated.

After the neurons of a controller have fired during a simulation’s update step,

the potential change in weight ∆w for synapse sij connecting neurons i and j with

activation levels oi and oj at timestep t is determined by the following equation:

∆wt
ij = ηij ∗ (Aij ∗ ot

i ∗ ot
j + Bij ∗ ot

i + Cij ∗ ot
j + Dij)

∆wt
ij is then added to wt

ij, and the resulting value is rounded to the sixth decimal

place, bounded to [−1, 1], and used as the weight of sij for the network update

sequence in timestep t + 1.

2.3 Morphologies

Three distinct morphologies were tested using these controllers. These morpholo-

gies are parametrically defined, with a common limb length shared between each of

them. This was partially done to make scaling of the robots’ sizes easier, and to

17

ensure similarity between the forces the robots motors were capable of. All robots

are rigid-bodied, with single-axis hinge joints providing capacity for movement and

proprioceptive sensors monitoring their current rotational position. These joints’

maximum deviation from their resting position is limited to π
3 radians. Additional

sensory information is generated by "touch" sensors in robots’ limbs, which reports a

value of +1 if in contact with the ground and a -1 otherwise. Figures 2.2-2.4 show

technical diagrams of the robots’ shape and joints. While morphological complexity

is a difficult concept to rigorously define, these three specific designs were chosen due

to the varying size of their neural networks and number of moving parts, and are

listed in order from smallest to largest.

Figure 2.2: All three morphologies at rest in simulation. The current position of each of
these robots defines a zero-degree rotation in their joints, from which every hinge may rotate
a maximum of π

3 radians. Technical diagrams of the robots’ bodies and joint angles may be
found in Appendix A.

2.3.1 Snake

The first morphology, a three-jointed robot, is composed of four segments connected

end-to-end. It has the smallest network, with only 11 neurons and 28 synaptic con-

nections. The Snake has four sensors: one for each of its joints, and a touch sensor

in a segment at one end.

18

2.3.2 Quadruped

[hbt!] The second morphology is a recreation of the quadrupedal robot used in Na-

jarro and Risi’s research, consisting of four two-jointed legs connected in a radially

symmetric fashion to a central body [12]. While similar in shape, this robot has fewer

degrees of freedom than the design it is based on, as its hinge joints rotate on only

one axis instead of two. This robot has a touch sensor at the bottom segment of each

leg and a proprioceptive sensor at each joint, for a total of 12 inputs, 8 outputs, and

240 synapses in the network.

2.3.3 Hexapod

The last morphology is a six-legged bilaterally symmetrical robot. Its legs have sensors

at their lower segments similar to the Ant, though due to the increased number of

legs its neural network is larger, with 18 inputs, 12 outputs, and 540 synapses. Unlike

the Quadruped, the Hexapod’s body-leg joints rotate along an axis perpendicular to

the ground, rather than parallel.

2.4 Evolutionary Algorithms

2.4.1 Genetic Algorithm

The population P of controllers at the beginning of each generation g is composed of

30 genomes. Randomly-selected individuals are copied, and their copies are subjected

to mutation. During mutation, each individual parameter has a 10% chance of being

19

Figure 2.3: A diagram illustrating the two evolutionary algorithms running in this experi-
ment. The co-evolution between the Hebbian parameter set and the neural network genomes
means that every genome requires re-evaluation during the simulation step, to ensure that
their performance is maintained when paired with the new set of Hebbian parameters.

modified. This modification consists of a new value being selected from a normal

distribution centered on the parameter’s current value, so that most values selected

for mutation do not change drastically. If the new value falls outside the bounds set

for its parameter type, it is set at the bound limit instead.

In Najarro and Risi’s work, control of the plasticity parameter η falls under the

mass gradient-descent evolutionary strategy responsible for refining the Hebbian pa-

rameters. We place η under the control of a genetic algorithm with point-mutation

to allow for finer tuning of individual synapses, as η is the prime control parameter

for how much learning a synapse will do in simulation.

A total of 30 children are produced in this manner, and the entire population

- parents and children - are simulated with Hebbian parameters generated from H.

Following the conclusion of simulation, each controller obtains a fitness value equal to

its final horizontal displacement, regardless of direction. The highest-fitness controller

in Pg is automatically saved for the population of the next generation Pg+1, and the

remaining 29 spots are filled via randomized tournament selection. This process

consists of selecting three random individuals from Pg and adding the highest-fitness

20

among those three to Pg+1. After Pg+1 has been filled, the cycle begins again in the

new generation.

2.4.2 Hebbian Evolutionary Strategy

We maintain a "parent set" of Hebbian parameters H, with the properties discussed

in Section 2.2.3. At the beginning of a generation, H is used to create P randomly-

modified copies of itself, permuting each parameter with random noise N(0, 1) ∗ σ,

where σ is an externally-defined hyper-parameter. These randomly permuted copies

are each assigned to a controller in the population, and used as that controller’s Heb-

bian rule set during simulation. After the entire population has finished simulation,

H is updated by taking the sum of the deviations in each of its parameters, weighted

by the fitness F of each of those copies and dampened by a learning rate α, as shown

in the equation below.

Hg+1 = Hg + α

Pσ
∗

P∑
p=0

F (p) ∗ N(0, 1)p

Contrary to Najarro and Risi’s use of this algorithm, we did not decay the values

of α or σ, as imposing artificial time limits on the development of learning rules would

run contrary to the aims of this research. We found that even without the imposition

of decay, hebbian parameters converged to values within ±8.

21

2.5 Simulation

Robots are simulated with Pybullet, an open-source Python physics simulation li-

brary. The code responsible for constructing robot morphologies and managing the

communication between Pybullet and the neural network was originally developed

by Bongard [31], though extensive modifications have been made to allow for hid-

den neurons, reduce computation in processing neural network updates, allow for live

synaptic updates, and track the neural network’s state at each timestep. Robots’

simulation environment consisted of a flat, featureless plane with a constant down-

ward gravitational force of 9.8 m/s. Simulation in this environment ran for 1000

timesteps, with each timestep consisting of three steps: sense, update, and act. Each

of these steps denotes a different part of the simulation updating, and each generates

information that is used by the next stage.

In the sense stage, the simulation updates its physical state. Objects in mid-air

are accelerated downwards, motors move, and sensors’ states are updated. This stage

is handled entirely by Pybullet’s in-built stepSimulation() function.

In the think stage, the controller updates its internal states. Input neurons update

with the new values generated by their associated sensors, and pass these values

forward through the network. The output neurons generate new angles for the motors

to take on in the next stage. After every neuron’s new value has been calculated,

synaptic weights are updated according to the equations discussed in Section 2.3.

This is also the stage at which all synaptic weight and neuron activation is recorded

for post-simulation analysis.

Lastly, in the act stage, the robot’s morphology acts on the information processed

22

by the controller. Each hinge joint’s target angle is set to a percentage of its maximum

rotational range equal to the activation of its associated motor neuron. An output

of 0 causes a joint to move towards its resting position, a negative number indicates

contraction, and a positive number extension. These target angles translate into

physical acceleration of the connected body parts in the sense stage when the loop

repeats.

Following the conclusion of 1000 simulation loops, the final horizontal displace-

ment of the robot and its synaptic activity are recorded, passed back to the main

evolutionary loop, and utilized as that controller’s fitness.

23

Chapter 3

Results

3.0.1 Quantitative Analysis of Phenotypic Change

An obstacle encountered when attempting to measure our findings comes in the way

that the Baldwin Effect is typically observed. As is noted in Chapter 1, prior exper-

iments investigating the Baldwin Effect in action utilized problem spaces where an

optimal outcome was known and the problem space was discrete, or at least continu-

ous over a small number of dimensions. This resulted in solution sets whose approach

towards an optimum could be easily observed and measured, and whose canalisation

of the optimal phenotype was similarly straightforward.

A highly non-linear problem space, such as is presented here, has no known optimal

solution. Observations of the Baldwin Effect in embodied agents in the past have often

been post-hoc, with examples drawn from particularly dramatic outcomes where the

gradual canalisation of a learned strategy can be easily observed qualitatively [28].

Since we modify only the controllers of our robots, not the morphologies, we cannot

expect to be able to easily observe similar results visually, and thus the problem

24

emerges of finding a way to quantify the genetic assimilation of learning.

The Baldwin effect requires two events to occur - first, learning must discover

a desirable phenotype, and second, evolution must then push the genome towards

performing that phenotype as an inherent trait. Thus, the amount of change an

individual undergoes over the course of its lifetime can be said to be an approximate

measure of how much (or how little) it has assimilated the behavior it learns. An

individual who performs less learning than its predecessors but maintains the same

fitness (or does even better) can be said to be more "baldwinized". It is important to

note that we cannot use the shortcut of looking directly at the genome and measuring

the number of non-learning traits, as Hinton and Nowlan did, to determine whether

behavior is fully assimilated. As Mayley showed, canalisation is not equivalent to

genetic assimilation [19]. Additionally, the nature of the neural network controller

may require some synapses to remain fully plastic in order to maintain a high-fitness

behavior [22].

As the development of our robots centers around the modification of their synaptic

weights, we observe the lifetime variance of those weights to determine the amount

of development the robots’ neural networks undergo. The higher synaptic variance is

across the network, the more synapses are being modified, and the more learning is

being performed. We measure the learning an individual network p has done as the

mean of the variance of synaptic weights:

Vp = 1
S

∑
I,J

var(wij)

To show that this reduction in learning is due to genetic assimilation, we track

the population’s fitness values. The performance (and thus, the fitness) of a robot

25

is the result of two factors: its starting conditions (genome) and its interactions

with the environment (learning). If learning is significantly reduced while fitness

remains the same, then the genome must be taking more responsibility for maintaining

performance. Thus, a population that has "baldwinized" its learned behavior will

at least maintain its fitness while significantly reducing learning, thus indicating a

transfer of behavior to inherent traits.

F 0
p <= F 199

p , V 0
p >> V 199

p

Analysis of generational fitness and variances of 50 separate evolutionary runs for

controllers of each morphology shows controllers for all three morphologies managed

to significantly increase their fitness and maintain that increase while significantly

decrease synaptic variance in their networks by generation 200.

Figure 3.1: Plots of average network variance (left) and final displacement (right) of the
best-performing individuals of each morphology across 50 200-generation evolutionary trials.
Independent T-tests find all three morphologies showed significant decreases in variance
(p<.05) and increases in fitness (p«.005), indicating they have genetically assimilated some
portion of their behavior.

26

3.0.2 Behavior of Evolved Learning Parameters

Having established that morphology does not appear to affect the ability of the Bald-

win effect to take effect, we investigate further to examine the ways in which be-

havior became genetically assimilated. The governing equation for synaptic change,

and thus, learning, contains two main components capable of reducing ∆w: ηs, the

plasticity of the synapse, and (ABCD)s, the Hebbian parameters operating on that

synapse. Should either η or all four Hebbian parameters be reduced to zero, then ∆w

would also be zero, and the synapse would not change.

Analysis of η values over evolutionary time found that the number of synapses with

a plasticity of 0 increased rapidly over the first 30 generations before asymptotically

approaching about 33 percent of the network’s synapses. This pattern and proportion

held true for all three morphologies. At the same rate, and with roughly the same

asymptote, the number of synapses with their plasticity set to the maximum value

of 1 also increased. Hebbian parameters, on the other hand, failed to reach their

zero-learning case in any synapse across all morphologies in any run.

Further comparison of non-learning synapses with their attached learning param-

eters revealed a third case for synaptic non-learning. Due to the constraints limiting

synaptic weight to within [-1, 1], synapses which existed at either boundary were able

to spend the entire simulation pushing up against it. Their plasticities and Hebbian

parameters were all non-zero, but due to the network’s behavior they were constantly

attempting to reach more extreme values and being reset. Since synaptic weights

were bounded before being recorded at each timestep, this registered as a net change

of 0, and thus the synapses did not learn. Analysis of the proportions of "bounded"

27

Figure 3.2: Shown are generational development of synaptic plasticities for each morphology.
An independent T-test with Bonferroni correction finds the final proportion of synapses with
zero plasticity in the network is not different enough in any of the three morphologies to
be significant (p>.025). The plasticity of these synapses appears to be polarizing, with the
number of synapses with the maximum η of 1 increasing at more or less the same pace as
those with a value of 0.

synapses in networks showed a statistically significant difference between morpholo-

gies. Contrary to the generational development of eta, however, the percentage of

"bounded" synapses in each morphology’s network decreased over evolutionary time.

This is likely due to these synapses having their η values reduced to 0 transferring

them from one "non-learning" category to the other.

28

Figure 3.3: Shown are plots of the proportions of each network’s synapses which are "bound"
at their maximum (or minimum) values due to the pressures placed on them by their learn-
ing rules over evolutionary time. Controllers for all three morphologies saw a significant
decrease in this proportion between generations 0 and 200, though the final percentages were
significantly different.

29

Chapter 4

Discussion and Future Work

In this work we have introduced a method for measuring the degree to which a

neural network has genetically assimilated behavior learned to solve a complex task

where the optimal solution is not known, and used it to study the Baldwin effect

in three morphologically-distinct embodied control problems. Our results suggest

that while genetic assimilation of behavior will occur regardless of morphology - all

three controller types successfully completed some amount of genetic assimilation in

the generational time provided - the amount of assimilation depends on morphology.

Additionally, while morphology has an effect on genetic assimilation through learned

behavior, the rate and capacity for canalization appears to be constant regardless of

morphology.

It is unclear why canalization was similar across networks of different complexity

that were operating different control problems, and whether the fraction of synapses

locked in this manner is significant. One explanation could be that the lack of fur-

ther canalization is an instance of Mayley’s "hiding" effect. Hebbian plasticity is

a powerful learning tool capable of rapid change, and if controllers are traversing

30

Morphology η = 0 bounded total %
Snake .361 .417∗ .778∗

Quadruped .335 .281∗ .616∗

Hexapod .331 .253∗ .585∗

Table 4.1: Causes for zero-variance in synapses, displayed as the mean percentage of the
network’s synapses they represent. Asterisks indicate that values have been determined to
be significantly different from other values in the same column by an independent T-test
(p«.001).

phenotype-space too quickly, then the effects of starting at a slightly poorer location

in the fitness landscape might not make themselves as apparent. This would explain

the lack of further canalization past a certain point, but not why all three morpholo-

gies, which represent presumably entirely different fitness landscapes, would cease

canalizing at almost exactly the same point. A confounding factor in identifying

patterns in the canalization process is that comparison between individuals within

a given morphology type is made difficult by the networks’ fully-connected hidden

layer. Because hidden neurons are topologically interchangeable, the same synapse

may serve a different function between two neural networks with identical structures.

This means that even if certain structures were being converged upon within the 50

runs completed, a much deeper analysis would be required to identify such patterns.

The large number of synapses locked at their extreme values is an expected re-

sult - Najarro and Risi observed the tendency towards extremes in their findings [12]

and Miller noted that Hebbian rules which followed a subtractive bias such as the

one present in the ABCD Hebbian strategy tended towards extremes, "sharpening"

synapses which played a major role in behavior while disregarding others. This be-

havior may function as a sort of "holding pattern" for the neural network - synapses

are held more or less in stasis by their boundaries, but remain ready to respond to

31

any changes in input patterns, similar to the ways biological systems retain plasticity

in otherwise stable phenotypes, ready to respond to perturbations in their environ-

ments. This would be easily tested with the introduction of novel obstacles in the

agents’ environment. If encountering new stimuli causes previously-stable "bounded"

synapses to assume new configurations, then we can deduce that their prior state was

specific to the old environment, and that their continued high plasticity is necessary

for the adaptability of the controller.

It is well-established that morphology and control are deeply linked [32], and

prior literature’s investigation into morphological development has shown that certain

morphologies are significantly more permissive to evolve controllers for [28]. The same

has been found to be true for neural network topologies, to the extent that a properly-

evolved neural network structure may perform complex tasks with no tuning at all

[33]. The differing levels of "sharpening" created by learning could be a result of the

Hebbian learning rules attempting to simulate an alteration to the network’s topology

by maximizing the most-used connections as much as possible. Synaptic connections

with higher weight carry more importance, and can potentially drown out the signal

from neurons with lower-fidelity connections. If it is the case that phenotypic change

is attempting to simulate an alteration to neural network topology, and the alterations

made depend on the morphology being controlled, then this approach may be useful

for optimizing neural network topologies to specific embodied agents.

32

Bibliography

[1] Hugo de Garis. Genetic programming: Building artificial nervous systems using
genetically programmed neural network modules. Proceedings of the 7th Inter-
national Conference on Machine Learning, pages 132–139, 1990.

[2] Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IRE,
49:8–30, 1961.

[3] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, 1989.

[4] Michael D. Schmidt and Hod Lipson. Age-fitness pareto optimization. In GECCO
’10: Proceedings of the 12th annual conference on Genetic and evolutionary com-
putation, pages 534–544. ACM, 2010.

[5] Joel Lehman and Kenneth O. Stanley. Abandoning objectives: Evolution
through the search for novelty alone. Evolutionary Computation, 19:189–223,
2011.

[6] Andrea Soltoggio, Kenneth O. Stanley, and Sebastian Risi. Born to learn: the
inspiration, progress, and future of evolved plastic artificial neural networks.
Neural Networks, 108:48–67, 2018.

[7] Donald Hebb. The Organization of Behavior. Wiley & Sons, 1949.

[8] David Willshaw and Peter Dayan. Optimal plasticity from matrix memories:
What goes up must come down. Neural Computation, 2:85–93, 1990.

[9] Kenneth D. Miller and David J. C. Mackay. The role of constraints in hebbian
learning. Neural Computation, 6:100–126, 1994.

[10] Dario Floreano and Francesco Mondada. Evolution of plastic neurocontrollers
for situated agents. From Animals to Animats 4: Proceedings of the Fourth
International Conference on Simulation of Adaptive Behavior (SAB 1996), pages
402–410, 1996.

33

[11] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning. ArXiv, abs/1703.03864, 2017.

[12] Elias Najarro and Sebastian Risi. Meta-learning through hebbian plasticity in
random networks. In Advances in Neural Information Processing Systems, vol-
ume 33, pages 20719–20731. Curran Associates, Inc., 2020.

[13] Andrea Ferigo, Giovanni Iacca, Eric Medvet, and Federico Pigozzi. Evolving heb-
bian learning rules in voxel-based soft robots. IEEE Transactions on Cognitive
and Developmental Systems, 2022.

[14] J. Mark Baldwin. A new factor in evolution. The American Naturalist, 30:441–
451, 1896.

[15] C. H. Waddington. Canalization of development and the inheritance of acquired
characters. Nature, 150:563–565, 1942.

[16] Scott F. Gilbert. Diachronic biology meets evo-devo: C.h. waddington’s approach
to evolutionary developmental biology. American Zoologist, 40:729–737, 2000.

[17] Geoffrey E. Hinton and Steven J. Nowlan. How learning can guide evolution.
Complex Systems, 1, 1996.

[18] Rob Mills and Richard A. Watson. Genetic Assimilation and Canalisation in the
Baldwin Effect, pages 353–362. Springer Berlin Heidelberg, 2005.

[19] Giles Mayley. Landscapes, learning costs, and genetic assimilation. Evolutionary
Computation, 4:213–234, 1996.

[20] Nam Le, Anthony Brabazon, and Michael O’Neill. How the ’Baldwin Effect’
Can Guide Evolution in Dynamic Environments, pages 164–175. Springer Inter-
national Publishing, 2018.

[21] Nam Le, Michael O’Neill, and Anthony Brabazon. Evolutionary consequences of
learning strategies in a dynamic rugged landscape. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 812–819. ACM, 2019.

[22] Keith L Downing. The baldwin effect in developing neural networks. In Genetic
and Evolutionary Computation, pages 555–562. ACM, 2010.

[23] Kim W. C. Ku and M. W. Mak. Empirical Analysis of the Factors That Affect
the Baldwin Effect, pages 481–490. Springer Berlin Heidelberg, 1998.

34

[24] Kim W.C. Ku. Enhance the baldwin effect by strengthening the correlation be-
tween genetic operators and learning methods. In IEEE International Conference
on Evolutionary Computation, pages 3302–3308. IEEE, 2006.

[25] Federico Pigozzi, Federico Julian Camerota VerdĂš, and Eric Medvet. How
the morphology encoding influences the learning ability in body-brain co-
optimization. In Genetic and Evolutionary Computation Conference (GECCO
’23). ACM, 2023.

[26] Josh Bongard. Morphological change in machines accelerates the evolution of
robust behavior. Proceedings of the National Academy of Sciences, 108:1234–
1239, 2011.

[27] Sam Kriegman, Nick Cheney, Francesco Corucci, and Josh C. Bongard. A mini-
mal developmental model can increase evolvability in soft robots. In Proceedings
of the Genetic and Evolutionary Computation Conference, pages 131–138. ACM,
2017.

[28] Sam Kriegman, Nick Cheney, and Josh Bongard. How morphological develop-
ment can guide evolution. Scientific Reports, 8, 2018.

[29] Agrim Gupta, Silvio Savarese, Surya Ganguli, and Li Fei-Fei. Embodied intelli-
gence via learning and evolution. Nature Communications, 12, 2021.

[30] Karl Sims. Evolving virtual creatures. In Proceedings of the 21st annual con-
ference on Computer graphics and interactive techniques, pages 15–22. ACM,
1994.

[31] Josh Bongard. Pyrosim, 2022. https://github.com/jbongard/pyrosim.

[32] Rolf Pfeifer and Josh Bongard. How the body shapes the way we think: a new
view of intelligence. MIT press, 2006.

[33] Adam Gaier and David Ha. Weight agnostic neural networks. In Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc, 2019.

35

https://github.com/jbongard/pyrosim

Appendix A
Technical Diagrams of Robot Mor-
phology

Figure A.1: A diagram of the Snake, with views from the top (left) and side (right). Joint
axes of rotation are indicated by red arrows.

36

Figure A.2: A diagram of the Quadruped, with views from the top (left) and side (right).
Joint axes are indicated by red arrows.

Figure A.3: A diagram of the Hexapod, with views from the top (left) and front (right).
Joint axes are indicated by red arrows. Note that, unlike the Quadruped, the hip joints are
normal to the ground rather than parallel.

37

	Effects of Morphology on Genetic Assimilation of Learned Behavior
	Recommended Citation

	Dedication
	Acknowledgements
	Introduction and Background
	Introduction
	Artificial Neural Networks
	Evolutionary Algorithms
	Evolutionary Algorithm Cycle
	Genotype and Phenotype
	Fitness Landscape

	Learning in Neural Networks
	Hebbian Learning

	The Baldwin Effect
	Computational Models
	Embodied Instances

	Embodiment

	Methods
	Overview
	Controller Design
	Neural Network
	Genome Design
	Hebbian Learning

	Morphologies
	Snake
	Quadruped
	Hexapod

	Evolutionary Algorithms
	Genetic Algorithm
	Hebbian Evolutionary Strategy

	Simulation

	Results
	Quantitative Analysis of Phenotypic Change
	Behavior of Evolved Learning Parameters

	Discussion and Future Work
	Technical Diagrams of Robot Morphology

