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Abstract 

Proper characterization of river flow is essential for the development of structural 

and non-structural measures to reduce flood damages, restore ecosystem functions, and 

manage environmental contaminants in riparian zones.  In particular, the duration of flood 

events is an important feature of floods that drives riverine processes such as erosion, 

geomorphic adjustment, habitat suitability, nutrient and water quality dynamics, and 

structural damage.  Despite this, most flood characterization methods focus solely on 

relating the magnitude of annual-maximum discharges to frequency, without addressing 

the duration of flood events.  We investigated event-specific discharge-duration dynamics 

at 33 USGS stream gages within the US state of Vermont.  Building on the method of Feng 

et al. 2017, flood events from 15-minute discharge timeseries were extracted using an 

automated threshold method, and a statistical model was fit at each gage for both frequency 

of discharge exceedance and conditional duration of discharge exceedance.  This Duration-

Over-Threshold model can estimate the arrival rate of a flowrate threshold, q, being 

exceeded for a given duration, d.  Fitted model parameters were compared to basin and 

channel physiographical characteristics to develop regional regression equations and 

examine potential watershed processes underlying the duration dynamics.  Flood duration 

and hydrograph rate of recession were found to be best predicted by drainage area, 

mainstem slope, and soil depth/type.  The regional regression equations enable design 

event estimation in ungauged catchments of the study region, which may be used to 

improve the predictive capacity of hydraulic and ecosystem models, outline a range of 

potential geomorphic trajectories, or inform emergency management plans and flood 

damage rating curves.   
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Chapter 1 | Comprehensive Literature Review 

Flood duration drives the outcomes of numerous river processes, but methods to 

characterize this component of river flow regime are underdeveloped. Geomorphic 

effectiveness studies have shown that duration above a flowrate threshold is more 

important than peak discharge in determining the type and amount of erosion during flood 

events (Costa & O'Connor, 1995; Gervasi et al., 2021; Lekach & Enzel, 2021; Magilligan 

et al., 2015; Wolman & Miller, 1960).  Flood damages to property are sensitive to flood 

duration (FEMA, 2006; Merz et al., 2013; Soetanto & Proverbs, 2004; Thieken et al., 

2005), and duration is an important consideration for emergency response plans 

(Pfurtscheller & Schwarze, 2008).  Ecologists have long noted that the amount of time a 

fluvial landform is inundated is a vital component of ecological gradient and determines 

plant distributions (Acosta & Perry, 2001; Arias et al., 2012; Bedinger, 1979; Ferreira & 

Stohlgren, 1999; Hupp & Osterkamp, 1985; Junk et al., 1989).  Increasing the length of 

time river waters are in contact with reactive floodplain surfaces can influence water 

quality and watershed nutrient retention in floodplain reconnection studies (Baustian et al., 

2019; Newcomer Johnson et al., 2016). Properly characterizing the duration component of 

a river’s flow regime could therefore significantly improve predictive modeling of these 

processes. 

Beyond advancing our ability to predict river processes, improved characterization 

of river flow duration holds promise for cutting through the complex behavior of watershed 

systems. Spatial heterogeneity, process interaction, and nonlinearity make it challenging, 

if not impossible, for physically based models such as Darcy’s law, the Richards equation, 
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or the Saint-Venant equations to predict the behavior of an entire watershed (Baker & 

Gollub, 1996; McDonnell et al., 2007; Sivapalan, 2003).  The shortcomings of this bottom-

up approach have been a stumbling block for the science of watershed hydrology, but 

progress is not doomed (Sivapalan, 2009; Sivapalan et al., 2003).  In the words of science 

historian James Gleick, “Of all the possible pathways of disorder, nature favors just a few,” 

and incorporating methods from adjacent sciences such as statistics, complex systems, or 

ecology – which were developed for discerning pattern from complexity – paves a path for 

advancing our hydrologic understanding (Hrachowitz et al., 2013; McDonnell et al., 2007; 

Ottino, 2003).   

Borrowing from ecology, the functional trait framework suggests that instead of 

interrogating large amounts of physical and process heterogeneity, examining their net 

result (traits) is sufficient (Diehl et al., 2017; Funk et al., 2017; McDonnell et al., 2007).  

Novel characterizations of river flow regime, such as the “flood timescale” of Gaál et al. 

(2012), are prime examples of such traits.  In their words, this trait “acts like a fingerprint 

of a catchment because it incorporates many aspects of runoff generation such as soils, 

geology, slope, and land use, precipitation amount and duration, timing of peak rainfall 

intensity, and antecedent precipitation.”  Once functional traits are defined and measured, 

they may be linked to both causal processes – such as climate, geomorphology, or dominant 

flow mechanism – and effective processes – such as ecology, sediment transport, or water 

chemistry – to reveal reproducible patterns and deepen our system understanding (Gaál et 

al., 2012; Hrachowitz et al., 2013; McDonnell et al., 2007; Sivapalan, 2003).  For example, 
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Gaál et al. (2012) used a comparative hydrology approach to develop the conceptual model 

of flood duration causal processes shown in Figure 1-1. 

 

Figure 1-1 Reproduction of schematic from Gaál et al. (2012) showing the coupling of process controls on the flood 

timescale based on a comparative analysis.  Plus and minus signs indicate whether coupling is positive or negative.  

 

Despite the potential benefits of characterizing flood duration, a large portion of 

hydrologic studies remain focused on a view of flow regime outlined over one hundred 

years ago – statistical Flood Frequency Analysis (FFA).   In December 1914, Weston E. 

published a paper titled Flood Flows that fully embraced the idea that watershed 

heterogeneity and process complexity were too great to be modeled discretely (Fuller, 

1914).  Instead, he suggested that the whole problem be handled with statistics (his words 

replicated in Figure 1-2).  This paper along with a 1930 paper from Fuller’s collaborator 

Allen Hazen kickstarted the science of FFA and outlined most of its paradigms and 

problems (Hazen, 1930).  Most notably, the papers presented the idea of the annual-

maximum flood and developed statistical methods to relate flood magnitude to recurrence 
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interval (although this point was hotly contested by Robert E. Horton, who, in his review 

of the article, claimed he had been relating discharges to frequency with another engineer 

since 1896). Between Hazen and Fuller’s two papers they discussed ideas ranging from the 

utility and limitations of gage data in representing future conditions, hydrologic 

nonstationarity, the physical characteristics driving flood magnitude, the potential benefits 

of probabilistic rainfall models coupled with physically-based runoff models, floodplain 

management, engineering economic analysis, and the challenge of using annual-maximum 

floods in arid regions.  While this is not a comprehensive list of the outstanding problems 

in FFA today, it is near to it.   

While FFA has been instrumental in designing infrastructure, managing flood 

hazards, and supporting scientific inquiry to river functions, its paradigm and challenges 

are now over 100 years old.  FFA methods have evolved with time, but some methods have 

become so commonplace as to be written into legislation and endorsed at the federal level 

(Benson, 1968; Dawdy et al., 2012; FEMA, 2019; Kidson & Richards, 2005).  Many 

prominent FFA researchers agree that advances in the statistical methods underlying this 

science are reaching a point of diminishing returns and that future progress will come from 

utilizing the functional traits of a rivers flood frequency curve to infer process (Dawdy et 

al., 2012).  We suggest that incorporating elements of flood duration into these traits could 

be an equally fruitful next step. 
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Figure 1-2 Text from Fuller (1914) outlining the justification for treating watersheds as stochastic instead of 

deterministic systems. 
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Of the existing duration characterizations, the flow-duration curve (Figure 1-3) is 

often used. This curve defines the average percent of time within a year that a river flowrate 

is exceeded (Olson, 2002; USACE, 2022; Ward & Moran, 2016).  The curve may be used 

to estimate sediment yields, model channel-forming processes, or assess components of 

ecosystem health (Diehl et al., 2020; Ward & Moran, 2016; Wolman & Miller, 1960).  The 

utility of flow-duration curves, however, is limited by their focus on annual cumulative 

duration instead of event-specific duration.  A parcel inundated for 24 days each year would 

favor different plant species than a parcel inundated for 24 hours every other week (Auble 

et al., 1994).  Furthermore, Magilligan et al. (2015) observed that event-specific duration, 

not cumulative duration, controlled the character of geomorphic adjustment in 

Northeastern US catchments (a short-duration high-energy flood leads to avulsion and 

sedimentological effects instead of erosive, channel-widening effects). Finally, flow-

duration curves are less useful for modeling systems such as detention basins or lakes, 

where quantity of water over periods shorter than a year control system behavior.   

 

Figure 1-3 Flow-duration curve of Licking River at Catawba, Ky., 1929-1983 reproduced from (Hirsch et al., 1993) 
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Another conceptualization of flood duration is a moving window used to resample 

the flowrate timeseries.  Various parameters may be tracked in the resampling process and 

summarized similarly to intensity-duration-frequency (IDF) curves used in rainfall 

prediction (Figure 1-4) (Frederick et al., 1977; Smith, 1993). Investigations in this vein are 

commonplace across the scientific literature under various names: flow-duration-

frequency, volume-duration-frequency, n-day flood, etc. (Cunderlik & Ouarda, 2006; 

Devulapalli, 1995; Javelle et al., 2003; Kennedy et al., 2015; Lamontagne et al., 2012; 

Sherwood, 1994).  These analyses are typically used in the design and modeling of storage-

based systems such as reservoirs, lakes, and retention basins.  Unfortunately, in the process 

of providing mean discharge over a duration, this model loses information on whether a 

specific flowrate threshold has been crossed at some point within the window.  This limits 

model utility in some applications.  For example, many geomorphic processes have critical 

flowrate thresholds that may not be accounted for in these kinds of models.  Additionally, 

non-averaged flowrates are necessary to predict the inundation extents that are useful in 

assessing property damage and floodplain connectivity.    

 

Figure 1-4 Summary of N-day flood characteristics for a watershed in Texas reproduced from Devulapalli (1995) 
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Copula methods are also used to model the frequency of flood duration, and they 

have risen in popularity sharply in the last 20 years. Copula methods involve fitting 

marginal distributions to a set of variables of interest and modeling their dependence 

structure using one or more copula functions (Genest & Favre, 2007).  These models are 

similar to multivariate distribution models, such as those used by Yue et al. (2001), in that 

they are joint distributions of any two random variables (Figure 1-5); however, they allow 

the hydrologic modeler freedom in selecting marginal distribution forms as well as 

providing several options for modeling the dependence structure of the random variables. 

 

Figure 1-5 An example of the results of a joint distribution analysis reproduced from Yue et al. (2001).  Isolines and 

their labels reflect events with the same return period but different characteristics.  This image depicts a multivariate 

distribution, but copula models would yield similar summary information. 

 

Copulas were first applied in the hydrologic sciences in the mid-2000’s by Favre et 

al. (2004), and the flexible model has been applied in a variety of hydrologic systems since.  

Bivariate copulas have been used to model pairwise combinations of peak discharge, 

duration, volume, and time to peak (Bačová Mitková & Halmová, 2014; Razmkhah et al., 
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2022; Sraj et al., 2015).  Vine copulas have allowed for the modeling of more than two 

random variables (Amini et al., 2022; Ganguli & Reddy, 2013; Tosunoglu et al., 2020).  

Copulas have even been used to derive design flood hydrographs (Drobot et al., 2021; 

Goswami, 2022).  When copulas are used to model both discharge and duration, discharge 

typically reflects the peak discharge of a flood event, and duration typically reflects the 

time between start and stop of flood quickflow.  While these two metrics provide a good 

estimate of hydrograph shape, the hydrograph ordinates between baseflow and flood peak 

must be interpolated.  A model that specifically characterizes the amount of time spent 

above intermediate thresholds could yield more accurate information for processes that are 

dependent on time spent above an intermediate threshold. 

Another class of models treats event duration as a conditional probability on 

flowrate threshold exceedance (Correia, 1987; Feng et al., 2017; USEPA, 2008).  By 

discretizing both flowrate threshold and event-specific duration, these models overcome 

the shortcomings of the three previous models. Correia (1987) developed a twist on peaks-

over-threshold modeling where instead of fitting a distribution to the series of peak 

flowrates over the truncation threshold, they fit a distribution to the series of truncation 

threshold exceedance durations.  Correia fit this kind of distribution at three truncation 

thresholds for each of 12 watersheds in Portugal.  While this approach allows for estimation 

of event-specific duration, it is only applicable at those three pre-defined flowrate 

thresholds.  Feng et al. (2017) performed an annual-maxima series (AMS) stage frequency 

analysis and then parameterized a conditional distribution of exceedance duration for any 

stage.  Their conditional distribution parameterization was comprised of an event mean 
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duration vs stage relationship and an exponential distribution around each event mean 

duration.  As compared to Correia’s three thresholds, Feng’s duration-stage relationship 

enables the modeler to estimate duration at any intermediate stages. Feng’s relationship 

was also developed to work for both riverine gages and gages influence by tidal action.  

Feng et al. (2017) fit their proposed model at one estuary gage, one tidal gage, and two 

riverine gages in the Mid-Atlantic region of the United States.   

In this thesis, I build upon the strengths of Feng’s model but suggest a few 

refinements for its use in riverine settings.  The annual-maxima approach is biased low for 

frequent events, events that we know drive the bulk of in-channel geomorphic and 

ecological processes (Karim et al., 2017; Pan et al., 2022).  Feng also used a stage 

timeseries instead of a flowrate timeseries.  While a stage-based model will give the best 

representation of that information for a given gage, discharge is more easily regionalized 

for inter-basin comparisons and can be predicted given remotely sensed basin 

characteristics.  Lastly, because they only analyzed two riverine sites it is unclear whether 

the conditional distribution formulation used by Feng can adequately describe flowrate-

duration-frequency relationships at riverine sites across a broader region.   

This thesis codifies the Duration-Over-Threshold model, a parametric hierarchical 

statistical model inspired by Feng et al. (2017) that characterizes the return period of a 

given flowrate threshold being exceeded for a given duration.  The objectives of this study 

are to 1) tailor the model of Feng et al. to frequent events (average recurrence less than 10 

years) that we expect drive the bulk of geomorphological and ecohydrological processes 

(Karim et al., 2017); 2) refine and validate the structure of this model by fitting it at 33 
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stream gages across the US state of Vermont; 3) relate the model parameters to catchment 

and reach physiographic characteristics, so that a regional model may be developed for use 

in ungauged hydrology; 4) provide tractable equations and computer software to enable the 

use of this model by river practitioners; and 5) present novel functional traits that 

summarize flood duration dynamics of flow regime in rivers of our Northeast US study 

area. In this process we hope to answer the following research questions: 

• What is the relationship between threshold discharge and duration above that 

discharge for stream gages in Vermont? 

• What is the best statistical distribution to represent flood duration over a threshold? 

• What aspects of river flow regime are reflected within the model parameters? 

• Which catchment and reach physiographic characteristics best predict model 

parameters, and can they tell us anything about some physical processes underlying 

the flow regime? 
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Chapter 2 | A Duration-Over-Threshold Model for Flood Frequency 

and Flow Regime Characterization 

2.1 Introduction 

Flood duration drives the outcomes of numerous river processes, but methods to 

characterize this component of river flow regime are underdeveloped. Geomorphic 

effectiveness studies have shown that duration above a flowrate threshold is more 

important than peak discharge in determining the type and amount of erosion during flood 

events (Costa & O'Connor, 1995; Gervasi et al., 2021; Leenman et al., 2023; Lekach & 

Enzel, 2021; Magilligan et al., 2015; Wolman & Miller, 1960).  Flood damages to property 

are sensitive to flood duration (FEMA, 2006; Merz et al., 2013; Soetanto & Proverbs, 2004; 

Thieken et al., 2005), and duration is an important consideration for emergency response 

plans (Pfurtscheller & Schwarze, 2008).  Ecologists have long noted that the amount of 

time a fluvial landform is inundated is a vital component of ecological gradient and 

determines plant distributions (Acosta & Perry, 2001; Arias et al., 2012; Bedinger, 1979; 

Ferreira & Stohlgren, 1999; Hupp & Osterkamp, 1985; Junk et al., 1989).  Increasing the 

length of time river waters are in contact with reactive floodplain surfaces can influence 

water quality and watershed nutrient retention in floodplain reconnection studies (Baustian 

et al., 2019; Newcomer Johnson et al., 2016). 

Despite the benefits of comprehensive flow regime characterization, specifically 

the apparent need to account for flood duration, data are often limited and narrowly 

focused.  Statistical Flood Frequency Analyses (FFA) have historically focused on a single 
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flood characteristic – peak discharge (Dawdy et al., 2012; England Jr et al., 2019; FEMA, 

2019; Fuller, 1914). These types of analysis are widely available on both river and regional 

levels across the United States.  Because the magnitude of discharge describes much of the 

variability in river processes, and is important for flood inundation extents, flood velocity, 

and other river dynamics, estimated discharge return periods have been an invaluable tool 

for hydrologists.  The choice of a single characteristic, however, is unnecessarily limiting, 

and there have been numerous calls to develop novel functional traits of watersheds that 

represent the culmination of many processes (McDonnell et al., 2007; Sivapalan, 2003).  

Comparative hydrology approaches may be used to link these functional traits to watershed 

function (as in the case of Gaál et al. (2012) for duration) and represent a viable path 

towards advancing our ability to more robustly represent the full flow regime in watershed 

hydrology studies (Hrachowitz et al., 2013; McDonnell et al., 2007; Sivapalan, 2009; 

Sivapalan et al., 2003). 

Various methods have been presented over the years to quantify different 

components of flow regime and flood duration.  Flow-duration curves define the average 

percent of time within a year that river flowrate exceeds a threshold discharge (Olson, 

2002; USACE, 2022; Ward & Moran, 2016), and they have been used to estimate sediment 

yields, model channel-forming processes, or assess components of ecosystem health (Diehl 

et al., 2020; Ward & Moran, 2016; Wolman & Miller, 1960).  Moving window analyses are 

commonplace in the scientific literature under different names (flow-duration-frequency, 

volume-duration-frequency, n-day flood, etc.) (Cunderlik & Ouarda, 2006; Devulapalli, 

1995; Javelle et al., 2003; Kennedy et al., 2015; Lamontagne et al., 2012; Sherwood, 1994; 
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USEPA, 2008), and this approach is well-suited to the design and modeling of storage-

based systems such as reservoirs, lakes, and retention basins.  Copulas and other 

multivariate statistical methods have been used to model river confluence joint flood 

frequency, design flood hydrographs, and droughts, and they are competent at relating the 

behavior of multiple random variables such as discharge and duration (Amini et al., 2022; 

Bačová Mitková & Halmová, 2014; Drobot et al., 2021; Favre et al., 2004; Ganguli & 

Reddy, 2013; Genest & Favre, 2007; Goswami, 2022; Razmkhah et al., 2022; Sraj et al., 

2015; Tosunoglu et al., 2020; Yue et al., 2001).  While these methods are incredibly useful 

for some applications, none sufficiently characterize – on an event basis – a river’s 

relationship between threshold flowrate and the amount of time spent over that flowrate.   

A fourth class of models treats event duration as a conditional probability on 

flowrate threshold exceedance (Correia, 1987; Feng et al., 2017).  Correia (1987) 

developed an alternative peaks-over-threshold approach where instead of fitting a 

distribution to the series of peak flowrates over the truncation threshold, they fit a 

distribution to the series of truncation threshold exceedance durations.  Feng et al. (2017) 

used a similar hierarchical model, but instead of fitting duration distributions at discrete 

flowrate thresholds, they included a regression that parameterizes the duration distribution 

as a function of river stage. By discretizing both flowrate threshold and event-specific 

duration, Feng et al. (2017)’s model is able to estimate the frequency with which a given 

stage will be exceeded for a certain duration. 

Given its many strengths, we adopt this approach and propose several modifications 

to improve its accuracy and useability in riverine settings.  Feng et al. (2017) used daily 
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mean values to fit their model, but higher-frequency data could yield better flow regime 

characterization for smaller rivers.  While their stage-based model will give the best 

representation of inundation information for a given river, discharge is more easily 

regionalized to facilitate cross-basin comparisons and can be predicted given remotely 

sensed basin characteristics.  The annual-maxima series approach used in their threshold 

exceedance frequency calculation is biased low for frequent events (Karim et al., 2017; 

Pan et al., 2022), events that we suspect drive the bulk of in-channel geomorphic and 

ecological processes. The partial-duration series approach, on the other hand, could 

perform better on shorter record lengths (such as those available from high-frequency 

timeseries or for applications where only the recent hydroclimatic regime should be 

characterized) and could be applied on a seasonal basis (Armstrong et al., 2012; Karim et 

al., 2017; Pan et al., 2022).  With only two studies on the conditional distribution of 

durations over a threshold, further exploration of the statistical distributions used by 

Correia and Feng et al. would be beneficial.  Finally, the regression used to predict 

conditional distribution parameters as a function of threshold discharge should be validated 

at more riverine sites than the two examined in Feng et al. (2017). 

This paper codifies the Duration-Over-Threshold model, a hierarchical statistical 

model inspired by Feng et al. (2017) that characterizes the return period of a given flowrate 

threshold being exceeded for a given duration.  The objectives of this study are to 1) tailor 

the model of Feng et al. to frequent events (average recurrence less than 10 years) that we 

expect drive the bulk of geomorphological and ecohydrological processes (Karim et al., 

2017); 2) refine and validate the structure of this model by fitting it at 33 stream gages 
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across the US state of Vermont; 3) relate the model parameters to catchment and reach 

physiographic characteristics, so that a regional model may be developed for use in 

ungauged hydrology; 4) present novel functional traits that summarize flood duration 

dynamics of a river’s flow regime; and 5) provide tractable equations and computer 

software to enable the use of this model by river practitioners. In this process we hope to 

answer the following research questions: 

• What is the relationship between threshold discharge and duration above that 

discharge for stream gages in Vermont? 

• What is the best statistical distribution to represent flood duration over a threshold? 

• What aspects of river flow regime are reflected within the model parameters? 

• Which catchment and reach physiographic characteristics best predict model 

parameters, and can they tell us anything about some physical processes underlying 

the flow regime? 

In Section 2.2, we introduce the model structure and necessary equations for its 

application (Section 2.2.1), describe the target study area of Vermont and how the model 

may be fit to streamflow data (Section 2.2.2), and document the steps we took to regionalize 

the model (Section 2.2.3).  Section 2.3 demonstrates the model’s competency at predicting 

frequency of low-magnitude events and characterizing flood durations (Section 2.3.1).  

Section 2.3.1 closes by describing novel watershed functional traits and briefly 

summarizing some scaling patterns.  In Section 2.3.2, we present the results of the 

regionalization analysis, which enable the application of this model in ungauged 

catchments. 
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2.2 Methods 

 

Figure 2-1. Graphical summary of flood event extraction and attribution algorithm at a single United 

States Geological Survey (USGS) gage.  For a portion of the flowrate record of an example gage (USGS 

Stn 04282795), two example thresholds are shown along with their associated flood events (b, grey 

shading) and peak and duration characteristics (c).  A dataset of flood characteristics at many thresholds 

may be used to fit the Duration-Over-Threshold model to generate a Threshold Exceedance Frequency 

relationship (d) and Mean Duration Regression (e). 

 

2.2.1 Model Formulation 

The Duration-Over-Threshold model defines a flood event as that portion of the  

hydrograph between the up-crossing and down-crossing limbs of a given flowrate threshold 

(each grey area, Figure 2-1b).  By examining the series of flood events generated from a 

single flowrate threshold, the Peaks-Over-Threshold (POT) model can be used to develop 

a relationship between flowrate and the frequency with which it is exceeded (Figure 2-1d).  

Flood events from multiple flowrate thresholds can be used to generalize the relationship 

between threshold flowrate and the resulting population of flood durations (Figure 2-1e) in 

the style of Feng et al. (2017).  These two model components can be combined to estimate 
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the return period associated with some flowrate threshold, q, being exceeded for some 

duration, d.   

The threshold used to generate the POT series adds a degree of flexibility (and 

subjectivity) to POT analyses, and a consensus on the optimal method to select a threshold 

has not been established within the hydrologic literature (Lang et al., 1999; Pan et al., 

2022).  Two common approaches to threshold suitability determination (for models using 

the Generalized Pareto distribution) are the use of mean-excess plots and threshold stability 

plots, which have been well documented in Coles (2001).  As noted by Coles, however, 

interpretation of linear/flat zones is highly subjective.  For this analysis, we selected the 

threshold that yielded mean arrival rate of 4 events per year for the POT threshold.  This is 

a relatively low threshold for FFA and was selected to better characterize the frequency 

distribution of more frequent events.  The suitability of the resulting threshold was verified 

using mean-excess, threshold stability plots, and exponential arrival Quantile-Quantile 

(QQ) plots.   

Once a POT series was generated, a statistical distribution was used to define the 

cumulative distribution function (CDF) of flood peaks, 𝑭(𝒒).  The Poisson-Pareto POT 

model was used here because it is widely documented, has useful threshold suitability 

determination methods, and has a convenient closed form of the Generalized Extreme 

Value (GEV) distribution (Coles, 2001; Stedinger & Foufoula-Georgiou, 1993).  The 

method of L-moments was used to estimate the Generalized Pareto Distribution (GPD) 

parameters because it is a deterministic method – as opposed to maximum-likelihood 

estimation – and can provide better parameter estimation for the highly skewed datasets 
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that are common in hydrology (Stedinger & Foufoula-Georgiou, 1993).  GPD fit was 

assessed visually.  We assumed a Poisson arrival process for flood peaks and fit an 

exponential distribution using a rate parameter, 𝝀𝒃, equal to the number of peaks divided 

by the years of record.   

This process was applied to multiple river gages (see Section 2.2.2).  For each river 

gages and each threshold, we examined the goodness-of-fit of five probability distributions 

on the event duration series.  We selected Pareto, gamma, exponential, two-parameter 

exponential, and GPD distributions for analysis because they are highly skewed 

distributions bounded on (0, ∞).  We used visual inspection and statistical tests to assess 

the goodness of fit at each gage and each flowrate threshold, and used these metrics to 

select the final distribution, G(d|q), for use in the model.   

To allow for the estimation of duration at flowrates between the analyzed 

thresholds, the relationship between flowrate and duration distribution must be generalized.  

Feng et al. (2017) proposed a relationship between stage and mean exceedance duration 

that was complex, involving four model coefficients.  The regression was capable of 

modeling both tidal and riverine settings; but for riverine settings, the relationship reduced 

to an exponential decay function (i.e., 𝜇 = 𝑎 ∙ 𝑒𝑥𝑝(𝑏 ∙ 𝑧) ).  We performed an exploratory 

data analysis plotting various transformations of event durations, mean event durations, 

and median event durations versus event threshold.  After observing a good visual fit 

between mean event duration and event threshold in double-log space, we compared a 

power law relationship (𝜇 = 𝐴𝑞𝐵) to the exponential decay relationship (𝜇 = 𝐴𝐵𝑞) of Feng 

et al. (2017).  We fit exponential decay functions and power law functions to the series of 
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threshold flowrate and mean event duration using the method of least squares.  We then 

calculated the root mean squared log error (RMSLE) statistic for each of the two methods.  

In the final model parameterization, a model smearing coefficient �̂� was applied to correct 

for bias introduced in the method of least squares estimation (Duan, 1983), although its 

effect is negligible. 

By extending the hierarchical peaks-over-threshold model with another conditional 

distribution representing event duration, our model defines arrival rate as: 

 𝜆(𝑞,  𝑑) = 𝜆𝑏[1 − 𝐹(𝑞)][1 − 𝐺(𝑑|𝑞)] (1) 

in which, 𝜆(𝑞, 𝑑) is the arrival rate with which flowrate q is exceeded for duration d (in 

events per year); 𝜆𝑏 is the mean arrival rate with which some base threshold (truncation 

threshold) is exceeded (in events per year); 𝐹(𝑞) is the percentile of q from the distribution 

of flow peaks above the base threshold; and 𝐺(𝑑|𝑞) is the percentile of duration d from the 

distribution of events that exceeded flowrate q.  In simpler terms, 𝜆(𝑞, 𝑑) equals the rate 

with which some base threshold is exceeded times the probability that a higher threshold q 

is also exceeded times the probability that the higher threshold is exceeded for at least 

duration d. 

Assuming the Pareto-Poisson POT model and a power-law regression, equation 1 

may be rewritten as,   

 
𝜆(𝑞,  𝑑) = [1 − 𝑘 (

𝑥 − 𝜉

𝛼
)]

1
𝑘⁄

𝑒
−𝑑

�̂�𝐴𝑞𝐵
 

 

(2) 
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(full derivation in Section 2.5.1). Figure 2-2 shows the graphical relationship between 

threshold, exceedance duration, and frequency for an example United States Geological 

Survey (USGS) gage.  Figure 2-2b shows isolines representing events with different 

characteristics but the same arrival rate.  For example, it is an equally rare event for 6,400 

cfs to be exceeded for 15 minutes as it is for 2,000 cfs to be exceeded for 1 day.  Another 

utility of the Duration-Over-Threshold model is that an event with 15-minute duration will 

have an equivalent arrival rate to the base flood frequency estimate. 

 

Figure 2-2 Fitted hierarchical model for flood frequency and duration at example gage 04282795.  Blue lines in the 

right graphic represent isolines (events with different characteristics but the same recurrence interval). 

 

It is also useful to calculate the duration from the threshold flowrate and recurrence 

interval, 

 
𝑑 = −�̂�𝐴𝑞𝐵 ∗ 𝑙𝑛 [𝜆(𝑞,  𝑑) ∗ (1 − 𝑘

𝑞 − 𝜉

𝛼
)−1/𝑘] 

 

(3) 

or to work with Annual-Exceedance Probabilities. 
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 𝐴𝐸𝑃 = 1 −  𝑒𝑥𝑝[−𝜆(𝑞,  𝑑)] (4) 

 

2.2.2 Streamflow Records and Data Processing 

We examined the mountainous US state of Vermont (VT) as a case study for 

duration dynamics across heterogeneous catchments.  The 7,100 miles of perennial streams 

within VT range in form from mountain gorges to boggy wetlands and traverse the most 

remote areas of the state to more populous urban centers (VTDEC, 2018).  Morphologic 

diversity within this relatively homogeneous humid temperate climatic region allows for 

the extraction of scaling relationships across topography and elevation without strong 

interference from climate signals.  Vermont has a strong annual freeze-thaw cycle and high 

enough mountains to develop a snowpack.  As a result, the largest volumes of water are 

passed through rivers during the winter and spring months (Scott et al., 2019).  For Vermont 

rivers, streamflow data were obtained from USGS gaging stations.  Of the 71 USGS stream 

gages listed within the state, a subset of 33 stations was selected based on their having more 

than 30 years of 15-minute instantaneous flowrate record (Figure 2-3 and Table 2-1).  
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Figure 2-3 USGS gages within the state of Vermont having more than 30 years of 15-minute flowrate record. Darker 

shaded watersheds indicate areas where gages are nested. 

Table 2-1 Summary of General Basin Characteristics 

 Drainage 

Area 

(Sq.km.) 

Gage 

Elevation 

(m) 

Basin 

Storage 

(%) 

Average Yearly 

Precipitation 

(mm) 

Analyzed 

Record Length 

(years) 

Minimum 8 30 0 970 31 

Maximum 6,870 360 11 1,420 34 

Average 820 150 3 1,200 32 (rounded) 
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From the 33 gages, we downloaded all complete water years of instantaneous (15-

minute) and daily-averaged discharge record available as of January 1st, 2023 from the 

National Water Information System.  Instantaneous flowrate records in our study area were 

prone to missing data that could potentially skew model fit.  We filled data gaps for 25% 

of the data using a combination of forward-filling (5%) and daily-averaged discharge 

scaling (20%) (as described in Section 2.5.2) for model fitting.   

To generate event populations at each flowrate threshold, we coded an algorithm 

that takes a flowrate timeseries and extracts flood events above a user-defined threshold, 

merges select events to ensure independence, and attributes each event with hydrologic 

event characteristics (Figure 2-1b).  Although a great number of characteristics could be 

recorded, for this analysis we chose to attribute each event with three characteristics:  1) 

duration, defined as the time between up-crossing and down-crossing hydrograph limbs, 

2) peak flowrate, defined as the maximum flowrate within the event, and 3) base threshold, 

defined as the threshold that generated the event.   

We ran the algorithm at 30 thresholds per gage, which maximizes accuracy in the 

mean event duration regression and minimizes computational/data storage burdens.  The 

lowest threshold was set at the flowrate that yielded the maximum number of cleaned 

events.  The highest threshold was set as the highest flowrate to generate three independent 

flood events.  The remaining 28 thresholds were evenly spaced between the maximum and 

minimum. 

To ensure event independence, we included both minimum interevent duration and 

minimum recession enforcement within the algorithm.  We defined independent flood 
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peaks to have both 1) at least five days of separation, plus the natural logarithm of the 

selected basin area and 2) a minimum interevent flowrate of at most 0.75 times the lower 

of the two adjacent peaks (Pan et al., 2022).  Events not meeting these criteria were merged 

along with the interevent period between them. 

2.2.3 Model Regionalization 

To enable the estimation of flow regime at ungauged locations within Vermont and 

explore which watershed traits influence the duration component of flow regime, we 

performed a regional regression analysis.  We fit multiple linear regressions that allow 

prediction of the five fitted parameters of the Duration-Over-Threshold model 

(𝜉, 𝛼, 𝑘, 𝐴, 𝐵) from catchment- and reach-scale physiographic attributes.  Our dataset of 92 

physiographic characteristics was sourced from  the USGS GAGES-II dataset (Falcone, 

2011) and a GIS analysis using HEC-HMS and QGIS.  We selected 66 attributes from the 

GAGES-II dataset that we believed would be potentially relevant to flood frequency and 

flood duration.  To access more attributes related to catchment shape and channel slopes, 

we conducted a GIS analysis using the Hydrologic Engineering Center Hydrologic 

Modeling System (HEC-HMS) and QGIS.  Several derived variables were also added to 

the dataset.  GIS and transformation details are fully described in Section 2.5.3 along with 

the full list of 92 characteristics. 

To balance input data requirements and predictive ability of the regional regression, 

we elected to use a maximum of three predictors for each of our model parameters.  Linear 

regression coefficients were estimated using Ordinary Least Squares (OLS).  While 

Generalized Least Squares (GLS) is generally preferred for regional hydrologic analyses 
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(Olson, 2014; Tasker & Stedinger, 1989), we had no reasonable basis to define a covariance 

matrix for this regression, and elected to use OLS instead. To find the best combination of 

three predictors, we compared regression R-Squared values from all combinations of three 

predictors.  For each of the five model parameters, this amounted to 125,580 regressions. 
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2.3 Results & Discussion 

2.3.1 Model Performance 

 

Figure 2-4 Fitting of the marginal distribution for example gage 04282795. (a-c) diagnostic plots after Coles (2001) 

illustrate the position of the select POT threshold (red circle);  (d)  QQ plots of observed interevent durations fitted to 

an exponential distribution; (e) observed flood peaks fitted to a Generalized Pareto distribution.  (f)  threshold 

exceedance frequency relationship with plotting positions of the peaks that generated it (red circled) and reference 

recurrence intervals from an annual-maxima (AM) USGS 17B analysis (Olson, 2014).  Note that the AM recurrence 

intervals were converted to arrival rate using the equation 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑅𝑎𝑡𝑒 (𝑦𝑒𝑎𝑟𝑠) =  −𝑙𝑛 (1 − 𝐴𝐸𝑃%). 
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Results from our POT modeling show that our threshold exceedance frequency 

relationships represent the frequency of events with arrival rate less than ten years very 

well.   We found interpretation of the Mean-excess and threshold stability plots (Figure 2-

4a-c) to be too subjective to determine threshold suitability. Graphical assessment of the 

QQ plots (Figure 2-4d-e) and arrival rate plots (Figure 2-4f), however, showed good 

agreement between the empirical distribution of flood peaks and the fitted parametric 

estimation of flood peaks (POT model) at all gages.  The POT model matched the flood 

peak plotting positions better than the quantiles from the Olson (2014) annual-maxima 

(AM) analysis, indicating a better characterization of flood frequency for events with 

recurrence interval less than 10 years. Unlike the AM approach, our threshold exceedance 

frequency relationship is also able to model flowrates with arrival rate less than one year.  

While modeling floods with sub-annual frequency is useful for many geomorphic and 

ecohydologic applications, a proper characterization of the frequency of low magnitude 

floods also improves the model’s ability to characterize infrequent, long duration floods at 

these low flowrates.    

Our model matched the POT series better than Olson, and while POT and AMS 

estimates should converge after a recurrence interval of about 10 years, some gages did 

not.  While it’s impossible to determine the “correct” frequency for these rarer events, the 

discrepancy may come from three sources.  First, we elected to choose a low truncation 

threshold for the PDS (4 events per year).  This was intentional to weight the frequent 

events more heavily, but it may have decreased the model fit to rarer events.  Second, the 

two analyses used different statistical distributions (curve shape) and parameter estimation 
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methods.  Third, Olson had access to longer records of annual maxima than our thirty years 

of flow record, which could lead to a better characterization in the tail of the frequency 

distribution. 

(NB: Plots in the style of Figure 2-4 were prepared on a gage by gage basis, and are 

available on CUAHSI Hydroshare) 

 

Figure 2-5 QQ plots of event duration empirical percentiles vs fitted exponential distribution percentiles at 30 

discharge thresholds for example gage 04282795.  The ratio of mean to variance is reported in the top left of each plot 

and should equal one for the exponential distribution.  Anderson Darling test statistics are reported along with their 

0.05 significance level values. 
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Visual comparison using five candidate distributions of event duration showed the 

exponential distribution to be satisfactory for the Duration-Over-Threshold model.  Visual 

inspection was carried out by examining plots in the style of Figure 2-5.  Fitting the Pareto 

distribution using the method of moments yielded distributions that were skewed low 

compared to the data and had very poor fit.  The gamma distribution, also fit using the 

method of moments, showed reasonable performance for moderate and high thresholds, 

but did not capture the upper tail of the observed durations on the lower thresholds.  While 

the exponential distribution generally fit the observed data well, it had a noticeable 

improvement in fit with increasing threshold.  The two-parameter exponential distribution 

was fit using the method of L-moments, and although it had very good performance in the 

upper thresholds, it performed poorly on lower thresholds and exhibited some instability.  

The GPD distribution using L-moments had the best fit and showed solid performance at 

all thresholds.  However, as a three-parameter distribution, developing a parameterization 

scheme as a function of flowrate would be challenging.  The exponential distribution, in 

contrast, uses a single parameter and offered acceptable performance. 

 The poor fit of the exponential distribution at lower thresholds may be reflecting a 

mixed population of both rainfall floods and spring melt floods.  Most high-duration low-

threshold events within our dataset occurred between February and May, when spring thaw 

is common in Vermont (orange dots in Figure 2-5 top panel).  Building separate spring and 

summer/fall Duration-Over-Threshold models would likely yield reasonable exponential 

distribution fits at all thresholds.  Similarly, the exponential distribution should yield better 

fits at low thresholds in regions without strong spring thaw effects.  The effect of treating 
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the mixed population as a single population, as we have done in this analysis, will be a 

systemic bias towards predicting longer durations than reality at low thresholds. 

(NB: Plots in the style of Figure 2-5 were prepared on a gage by gage basis, and are 

available on CUAHSI Hydroshare) 

 

Figure 2-6 Comparison of RMSE evaluation metrics for Power Law and exponential decay functions to summarize the 

Mean Event Duration Relationship 

 

For riverine gages, the relationship between event threshold and mean event 

duration follows a power law relationship.  Power law and exponential decay regressions 

had average RMSLE values of 2.7 and 4.9, respectively, across our 33 study gages (Figure 

2-6).  Performance was not just better on average but exceled at most gages, and the power 

law regression had a lower RMSLE value than the exponential decay at 31 of 33 gages.  

The proposed power-law relationship is different than the exponential relationship 

proposed by Feng et al. (2017) and represents a significant improvement of the Duration-

Over-Threshold model over their model for riverine sites. 
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Figure 2-7 Fitting of the power law regression at example gage 04282795.  Upper panel: the frequency of events by 

event threshold with recurrence intervals from Olson (2014). Lower panel: a power law fit to the mean of event 

duration by event threshold, with constants of slope (B) and intercept (A).  

 

Beyond providing a better fit to the observed data, we suggest that the intercept and 

slope parameters of the power law regression (A, B) may be used as functional traits of 

river flow regime.  Specifically, we interpret the A parameter as broadly representing mean 

event duration.  This metric can be used to generally compare whether events along one 

river tend to persist longer than events along another river.  We interpret the B parameter 

as representing the slope of the hydrograph between base and peak.  More negative B 

values represent hydrographs that peak and then immediately recede while less negative B 

values represent hydrographs that peak and tend to stay high for longer durations.   



33 

 

 

Figure 2-8 Duration of the 10-year exceedance of bankfull depth versus drainage area.  Bankfull depth is defined as the 

depth exceeded every two years.  Point color and size reflect the slope (in m/m) of the 10-85 flowpath (details in 

Section 2.5.3). 

 

More tangible metrics may also be extracted from the Duration-Over-Threshold 

model to reflect river flow regime and yield insight into hydrologic processes.  Figure 2-8 

offers a simple example of how the model may be used to compare hydrologic 

characteristics across a region.  The Figure shows the 10-year duration of bankfull depth 

exceedance for the study area (bankfull here defined as the 2-year event).  This relationship 

could serve as a rule of thumb for river scientists within the region, a performance envelope 

for modelers to calibrate physical model to (as suggested by Hrachowitz et al. (2013)), or 

could be compared to other regions to assess the influence of climate on flood duration.  

Other plots of this style could be used within a comparative hydrology workflow (e.g. Gaál 
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et al. (2012)) or within a functional trait framework (Diehl et al., 2017; Funk et al., 2017) 

to relate flood duration to causal and effective watershed processes. 

(NB: Plots in the style of Figure 2-7 were prepared on a gage by gage basis, and are 

available on CUAHSI Hydroshare) 

2.3.2 Model Regionalization 

The five model parameters estimated for each of the 33 gages are shown in Table 

2-2.  Some gages are located directly downstream of large dams, and the flow regulation 

from those structures caused flat threshold-duration relationships at 01151500, 04285500 

and an increasing relationship at 04289000.  Given the poor power law fits, these gages 

were not used in the regional regression.  An additional four gages (01138500, 04293000, 

04293500, and 04294000) were absent from the GAGES-II dataset and were not used in 

the regional regression.  The remaining 26 gages were used along with the 92 

physiographic characteristics to generate regional regressions for the Duration-Over-

Threshold model parameters.  A ranking of the 10 best regression models for each 

Duration-Over-Threshold parameter is shown in Table 2-3. 
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Table 2-2 Duration-Over-Threshold Model Parameters fit at 33 USGS gages within the US state of Vermont. 

USGS Site No. ξ α k A 
(minutes) 

B 
(min/cfs) 

E 

01134500 1845 723 0.1 8.52E+06 -1.14 1.02 

01135150 142 57 -0.2 3.48E+05 -1.48 1.02 

01135300 1469 703 -0.4 5.90E+05 -0.97 1.04 

01135500 6823 2429 -0.1 5.12E+08 -1.40 1.05 

01138500** 25606 8964 0.0 1.36E+10 -1.46 1.06 

01139000 1681 635 -0.1 1.39E+08 -1.59 1.03 

01139800 268 107 -0.2 9.34E+06 -1.85 1.07 

01142500 728 340 -0.4 1.33E+07 -1.43 1.02 

01144000 15471 6287 -0.1 1.92E+09 -1.49 1.02 

01150900 843 301 0.0 2.55E+06 -1.14 1.08 

01151500* 3807 606 0.5 1.56E+07 -1.09 1.04 

01153550 4525 1852 -0.1 2.13E+07 -1.28 1.02 

01334000 3004 1174 -0.1 1.34E+08 -1.54 1.04 

04280000 2644 1175 -0.3 2.85E+07 -1.22 1.02 

04282000 3972 1553 -0.1 4.22E+09 -1.71 1.02 

04282500 3082 1628 0.4 5.07E+09 -1.56 1.07 

04282525 3825 1639 -0.4 1.44E+06 -0.93 1.03 

04282650 695 272 -0.1 1.03E+06 -0.91 1.02 

04282780 1521 685 -0.2 1.28E+07 -1.28 1.01 

04282795 899 400 -0.2 1.33E+06 -1.06 1.01 

04285500* 935 90 0.4 9.19E+03 -0.06 1.02 

04286000 5408 1756 0.0 8.92E+09 -1.82 1.05 

04287000 2755 1351 -0.3 4.34E+07 -1.43 1.01 

04288000 5145 1826 -0.2 1.12E+07 -1.16 1.03 

04289000* 1438 542 -0.3 1.23E+07 -1.17 1.45 

04290500 19132 5418 0.3 4.16E+09 -1.52 1.02 

04292000 6885 2341 0.0 1.22E+08 -1.32 1.02 

04292500 11986 4119 -0.1 4.32E+08 -1.31 1.01 

04293000** 4819 1789 -0.1 5.54E+06 -1.03 1.02 

04293500** 9732 3282 0.0 3.74E+08 -1.33 1.03 

04294000** 17101 5663 -0.1 1.51E+08 -1.19 1.04 

04296000 1847 703 -0.1 3.99E+07 -1.31 1.03 

04296500 814 605 -0.2 2.70E+07 -1.09 1.02 
* Gage with severe flow regulation 
** Gage lacking physiographic characteristics 
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The final set of regional regression equations is: 

 ln(𝜉) = 3.74 + 0.414𝑆 + 1.10𝐷𝐴 − 0.205𝑊 

ln(𝛼) = 2.96 + 0.360𝑆 + 1.02𝐷𝐴 − 0.115𝑊 

𝑘 = −0.221 + 0.000169𝑒𝐷𝐴 

ln(𝐴) = 2.42 + 1.80𝐷𝐴 − 0.0838𝐻𝐺𝐶 + 2.45𝑊𝐷 

𝐵 = −0.330 + 0.0443𝑆 + 0.0154𝐻𝐺𝐶 − 0.420𝑊𝐷 

 

(5) 

(6) 

(7) 

(8) 

(9) 

Where S is the natural logarithm of the 10-85 flowpath slope in ft/ft; DA is the natural 

logarithm of the drainage area in square kilometers; W is the percentage of the watershed 

classified as open water in the NLCD 2006 dataset; HGC is the percentage of soils in HGC; 

and WD is the average depth to the seasonally high water table in feet. 

The top performing regressions for the flow frequency distribution location and 

scale parameters, ξ and α, included characteristics relating to basin size, mainstem/basin 

slope, and basin storage, which are amongst the most commonly used physiographic 

characteristics for regional hydrologic frequency analysis (Dawdy et al., 2012).  To lessen 

the input data requirements without sacrificing predictive ability, the same three predictors 

were selected for the final regressions for ξ and α shown in equations 5 and 6. 

USGS Bulleting 17B methods detail the commonly accepted practice for 

developing a regional skew coefficient (IACWD, 1982).  According to the bulletin, 

distribution skew is highly sensitive to extreme events and benefits substantially from 

space-for-time substitutions.  The preferred method for regionalization is the use of a skew 

isoline map; but after plotting a map of our frequency distribution shape parameter, k, we 
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could not trace any reasonable skew isolines (Supplementary Information 2.5.4).  The 

second method suggested by 17B for skew regionalization is a regression equation.  

Unfortunately, the regression for our skew coefficient was poor, and as shown in Table 2-

3, only achieved an R-Squared of 0.585.  It’s unclear whether poor performance stems from 

over-sensitivity in the fitting of k (as suggested by 17B), a lack of appropriate explanatory 

physiographic characteristics, basin heterogeneity across the state of Vermont, or too small 

a sample size (Bulletin 17B recommends using at least 40 stations to regionalize skew).  

The final Bulletin 17B generalized skew method uses the average station skew across all 

stations. To balance predictive regression predictive capacity and input data requirements, 

we proposed the drainage-area-only regression on k shown in equation 7 that yielded an R-

squared value of 0.402 and had a better Root Mean Square Error value than assuming an 

average skew. 

The best predictors for the power law constants corroborate the findings of Gaál et 

al. (2012) for factors that influence flood duration behavior over decadal scales.  Gaál et 

al. (2012) found that while storm type and season affected flood duration of specific events, 

the long term behavior of a catchment was influenced most by slope, geology, and soil 

permeability.  We noted that lumping floods from mixed generation processes (snowmelt, 

precipitation, etc) did have an impact on the fit of our model, which suggests that the event 

type does influence flood duration.  When averaging event durations across decadal 

timescales, Gaál et al. (2012) found that slope, geology, and soil permeability will affect 

the flood durations from a given catchment, and many of our top performing regressions 

for power law constants were related to flowpath slope, baseflow/groundwater interaction 
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(BFI_AVE and WTDEPAVE), and soil permeability (HGC).  The partitioning of rain and 

meltwater between surface and subsurface flow is largely a function of soil permeability, 

and the rapidity with which any subsurface flow reaches an adjacent channel is a function 

of the underlying geology (Dunne, 1978).  Slope acts to modulate the speed of both 

overland and subsurface transit times, which in turn, influences typical flood durations.   

Our analysis found catchment size to be one of the best predictors for the power 

law A constant, while the only impact of drainage area on event duration that Gaál et al. 

(2012) found was that while small catchments could have short and long duration events, 

large catchments tended to only have long duration events. In theory, the longer times of 

concentration typically found in larger catchments should lead to longer flood durations 

(Chow et al., 1988).  Another likely explanation is that short duration (~1-10 hour), 

convective storm systems (typical size 5-50 km2) can produce a flood in a smaller 

catchment while their influence on flowrates in a larger catchment would be small.  Larger 

(2,000-10,000 km2) synoptic-scale storms typically last longer (days) and can produce 

floods in both small catchments and large catchments (Hirschboeck et al., 2000). 

Although the performance of the power law regionalization is satisfactory for 

engineering and river management applications in ungauged basins, further analyses could 

be completed to fine-tune the performance and explore duration processes.  Soil was 

significant for determining the power law A and B coefficients, but GAGES-II derives 

these estimates from the coarse STATSGO dataset. Newer and higher resolution soils 

datasets exist and could be leveraged (Soil Survey Staff, 2023). Furthermore, none of the 

analyzed physiographic characteristics reflected the structure of the channel network in the 
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catchment, which likely plays a significant role in determining flood duration (Beven & 

Wood, 1993).  Finally, the analysis presented above may be highlighting predictors that 

have linear relationships but ignoring important predictors with nonlinear impacts, or those 

factors that have strong interactions (e.g., Boolean presence of a major dam in the 

catchment or synergistic effect of soil type and soil thickness).  A better analysis should 

leverage machine learning methods optimized to reveal nonlinear processes. 
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Table 2-3 Top performing regressions for each of the Duration-Over-Threshold model parameters.  The subset of 10 

regressions had the highest R-Squared values of the 125,580 regressions analyzed for each parameter. 

Model 
Rank Parameter 1 Parameter 2 Parameter 3 

R-
Squar

ed 

Log(ξ) 

1 wbody_index log_DRAIN_SQKM log_10-85 flowpath slope (FT/FT) 0.940 

2 WATERNLCD06 log_DRAIN_SQKM log_10-85 flowpath slope (FT/FT) 0.940 

3 log_DRAIN_SQKM log_10-85 flowpath slope (FT/FT) log_HIRES_LENTIC_MEANSIZ 0.940 

4 HIRES_LENTIC_PCT log_DRAIN_SQKM log_10-85 flowpath slope (FT/FT) 0.939 

5 HIRES_LENTIC_MEANSIZ log_DRAIN_SQKM log_10-85 flowpath slope (FT/FT) 0.939 

6 WATERNLCD06 MAINS800_FOREST log_DRAIN_SQKM 0.938 

7 RIP800_11 log_DRAIN_SQKM log_10-85 flowpath slope (FT/FT) 0.937 

8 HIRES_LENTIC_MEANSIZ MAINS800_FOREST log_DRAIN_SQKM 0.937 

9 log_DRAIN_SQKM log_Relief Ratio log_HIRES_LENTIC_MEANSIZ 0.935 

10 HIRES_LENTIC_PCT MAINS800_FOREST log_DRAIN_SQKM 0.934 

Log(α) 

1 RAW_AVG_DIS_ALL_MAJ_DAMS log_DRAIN_SQKM log_Relief Ratio 0.945 

2 RAW_DIS_NEAREST_MAJ_DAM log_DRAIN_SQKM log_Relief Ratio 0.945 

3 MAINS800_FOREST ELEV_MIN_M_BASIN log_DRAIN_SQKM 0.944 

4 log_DRAIN_SQKM log_10-85 flowpath slope (FT/FT) log_HIRES_LENTIC_MEANSIZ 0.941 

5 log_DRAIN_SQKM log_10-85 flowpath slope (FT/FT) log_HIRES_LENTIC_PCT 0.941 

6 RAW_AVG_DIS_ALL_MAJ_DAMS log_DRAIN_SQKM log_10-85 flowpath slope (FT/FT) 0.941 

7 RAW_DIS_NEAREST_MAJ_DAM log_DRAIN_SQKM log_10-85 flowpath slope (FT/FT) 0.941 

8 log_DRAIN_SQKM log_Relief Ratio log_HIRES_LENTIC_MEANSIZ 0.939 

9 log_DRAIN_SQKM log_Relief Ratio log_HIRES_LENTIC_PCT 0.937 

10 dam_index log_DRAIN_SQKM log_10-85 flowpath slope (FT/FT) 0.936 

k 

1 DRAIN_SQKM RAW_AVG_DIS_ALLDAMS ELEV_MIN_M_BASIN 0.585 

2 DRAIN_SQKM RAW_DIS_NEAREST_DAM ELEV_MIN_M_BASIN 0.584 

3 RAW_AVG_DIS_ALLDAMS ELEV_MIN_M_BASIN 10-85 flowpath length (MI) 0.577 

4 RAW_AVG_DIS_ALLDAMS ELEV_MIN_M_BASIN Longest flowpath length (MI) 0.577 

5 DRAIN_SQKM ELEV_MIN_M_BASIN RRMEDIAN 0.577 

6 RAW_DIS_NEAREST_DAM ELEV_MIN_M_BASIN 10-85 flowpath length (MI) 0.576 

7 RAW_DIS_NEAREST_DAM ELEV_MIN_M_BASIN Longest flowpath length (MI) 0.576 

8 DRAIN_SQKM ELEV_MIN_M_BASIN RRMEAN 0.575 

9 RAW_DIS_NEAREST_DAM RAW_AVG_DIS_ALLDAMS ELEV_MIN_M_BASIN 0.573 

10 PRECIP_SEAS_IND 10-85 flowpath length (MI) log_STREAMS_KM_SQ_KM 0.570 

Log(A) 

1 WTDEPAVE HGC log_DRAIN_SQKM 0.820 

2 STRAHLER_MAX BFI_AVE log_10-85 flowpath slope (FT/FT) 0.820 

3 MAINS100_DEV RIP100_PLANT log_10-85 flowpath slope (FT/FT) 0.819 

4 STRAHLER_MAX FORESTNLCD06 MAINS800_FOREST 0.814 

5 MAINS100_DEV RIP800_PLANT log_10-85 flowpath slope (FT/FT) 0.813 

6 MAINS100_DEV DAxSlope log_Relief Ratio 0.811 

7 HGC HGD log_DRAIN_SQKM 0.809 

8 STRAHLER_MAX MAINS100_DEV DAxSlope 0.809 

9 RIP100_DEV DAxSlope TWI 0.808 

10 STRAHLER_MAX MAINS800_FOREST RIP800_FOREST 0.808 

B 

1 WTDEPAVE HGC dam_index 0.696 

2 STOR_NID_2009 WTDEPAVE HGC 0.694 

3 MAINS100_FOREST WTDEPAVE HGC 0.692 

4 WTDEPAVE HGC log_Centroidal flowpath slope (ft/ft) 0.682 

5 RIP800_DEV WTDEPAVE HGC 0.678 

6 WTDEPAVE HGC TWI 0.675 

7 RAW_AVG_DIS_ALLDAMS WTDEPAVE HGC 0.675 

8 DEVNLCD06 WTDEPAVE HGC 0.675 

9 RAW_DIS_NEAREST_DAM WTDEPAVE HGC 0.674 

10 STRAHLER_MAX WTDEPAVE HGC 0.670 
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2.4 Conclusions 

We developed an extension to the Peaks-Over-Threshold modeling approach that 

relates the duration spent over a flowrate threshold to a recurrence interval.  The Duration-

Over-Threshold model is similar to that of Feng et al. (2017), but includes several notable 

changes.  By using the partial duration series instead of the annual maxima, our approach 

was able to properly model the frequency of frequent floods that drive many geomorphic 

and ecohydrological processes.  The Duration-Over-Threshold model used discharge 

instead of stage records, allowing for regionalization of the model parameters and 

comparison of flow regime parameters across gauges.  Our model was fit on higher-fidelity 

15-minute data, which allowed for a more accurate characterization of flow regime, 

especially in smaller, flashier basins.  We used a power law relationship between threshold 

flow rate and mean event duration, which was shown to be a better predictor than an 

exponential decay relationship at 31 of 33 USGS river gages within the state of Vermont.   

This work not only improved the characterization of river flow regime within the 

model but also extended its useability.  Tractable equations, open-source code, and 

documentation for the Duration-Over-Threshold model will make it more easily adopted 

by river practitioners.  Furthermore, we developed regional regression equations to link 

model parameters to catchment- and reach-scale attributes.  The regression equations 

enable model application in ungauged locations.  A preliminary analysis of functional traits 

provided by the model found that flood duration tends to increase with drainage area but 

decreases in high-gradient streams and basins with low permeability soils.   



42 

 

Several Duration-Over-Threshold improvements could be pursued in the future.  

Seasonal analyses may be completed to separate out spring thaw dynamics, which are 

overwhelming the duration dynamics at low threshold flowrates (and such seasonal 

analyses have been enabled by the switch to POT frequency).  The coefficient estimation 

within the regional regression analysis could be switched from OLS to GLS if a suitable 

covariance matrix is identified.  Higher fidelity soils and land-cover datasets will likely 

improve regression performance and aid in duration process inference.  Finally, a larger 

sample size (both number of gages and length of record) could improve regionalization of 

the frequency skew coefficient. 

Future efforts to extend the Duration-Over-Threshold model could involve deriving 

design flood hydrographs from the duration estimates.  The data and parameters could be 

modified to model power-over-threshold or volume-over-threshold for geomorphic and 

detention structure modeling, respectively.  If the threshold is set at some critical threshold 

for bed mobilization, toe scour, or bank erosion, and a damage function is constructed based 

on event duration, the frequency distribution may be used to estimate reach susceptibility 

to erosion.  Stage-Duration relationships could be used for fluvial landform delineation or 

ecological gradient mapping.  Lastly, comparative hydrology, functional trait, and 

machine-learning workflows can be used to link model parameters A and B (and other 

derived traits) to both causal and effective processes, revealing reproducible patterns in 

watershed function and deepening our understanding of watershed systems. 

  



43 

 

2.5 Supporting Information 

2.5.1 Model Derivation 

To derive the closed form of the Duration-Over-Threshold model, we begin with 

the model structure, 

𝜆(𝑞,  𝑑) = 𝜆𝑏[1 − 𝐹(𝑞)][1 − 𝐺(𝑑|𝑞)] 

in which, 𝜆(𝑞, 𝑑) is the average number of events per year in which flowrate q is exceeded 

for duration d; 𝜆𝑏 is the number of events per year in which some base threshold (truncation 

threshold) is exceeded; 𝐹(𝑞) is the Cumulative Distribution Function (CDF) of a Peaks-

Over-Threshold (POT) series at threshold b; and 𝐺(𝑑|𝑞) is the CDF of a duration over 

threshold series at duration, q. 

Assuming the Poisson-Pareto Peaks-Over-Threshold model, we can simplify the 

threshold exceedance frequency  𝜆𝑏[1 − 𝐹(𝑞)] as, 

 

𝜆(𝑞) =  𝜆𝑏[1 − 𝐹(𝑞)] 

𝜆(𝑞) =  𝜆𝑏 [1 − 𝑘
𝑞 − 𝑏

𝛼∗
]

1
𝑘⁄

 

𝜆(𝑞) = [ 𝜆𝑏
𝑘 −  𝜆𝑏

𝑘𝑘
𝑞 − 𝑏

𝛼∗
]

1
𝑘⁄

 

𝜆(𝑞) = [1 + (𝜆𝑏
𝑘 − 1) −  𝜆𝑏

𝑘𝑘
𝑞 − 𝑏

𝛼∗
]

1
𝑘⁄
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𝜆(𝑞) = [1 + 𝜆𝑏
𝑘(1 − 𝜆𝑏

−𝑘) −  𝜆𝑏
𝑘𝑘

𝑞 − 𝑏

𝛼∗
]

1
𝑘⁄

 

𝜆(𝑞) = [1 +
𝑘𝛼∗ 𝜆𝑏

𝑘(1 − 𝜆𝑏
−𝑘)

𝑘𝛼∗
−  𝜆𝑏

𝑘𝑘
𝑞 − 𝑏

𝛼∗
]

1
𝑘⁄

 

𝜆(𝑞) = [1 − 𝑘 (−
𝛼∗ 𝜆𝑏

𝑘(1 − 𝜆𝑏
−𝑘)

𝑘𝛼∗
+ 𝜆𝑏

𝑘 𝑞 − 𝑏

𝛼∗
)]

1
𝑘⁄

 

𝜆(𝑞) = [1 − 𝑘 (
𝑞 − 𝑏 −

𝛼∗(1 − 𝜆𝑏
−𝑘)

𝑘

𝛼∗𝜆𝑏
−𝑘

)]

1
𝑘⁄

 

𝜆(𝑞) = [1 − 𝑘 (
𝑞 − 𝜉

𝛼
)]

1
𝑘⁄

 

Where, 

𝜉 = 𝑏 −
𝛼∗(1 − 𝜆𝑏

−𝑘)

𝑘
 

𝛼 = 𝛼∗𝜆𝑏
−𝑘

 

b is the base threshold flowrate and Generalized Pareto Distribution (GPD) location 

parameter, 𝛼∗ is the GPD scale parameter, and k is the GPD shape parameter. 

 

To simplify the conditional distribution of event durations, [1 − 𝐺(𝑑|𝑞)], we begin with a 

power law relating threshold flowrate to mean event duration. 

𝜇 = 𝐴𝑞𝐵 
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Power laws are subject to transformation bias when they are fit using the Ordinary Least 

Squares (OLS) in log-log space.  Thus, we use the smearing estimate of Duan (1983) for 

mean duration. 

𝜇 = �̂�𝐴𝑞𝐵 

Where 

�̂� =
1

𝑛
∑ exp (ln(𝜇𝑜𝑏𝑠) − ln(𝐴𝑞𝐵))

𝑛

𝑖=1

 

Assuming the duration series is exponentially distributed, with rate parameter 𝜇, the CDF 

of durations will be  

𝐺(𝑑) = 1 − 𝑒
− 

𝑑
𝜇 

Substituting the power law for exponential rate parameter, 

𝐺(𝑑|𝑞) = 1 − 𝑒
−𝑑

�̂�𝐴𝑞𝐵
 

And out conditional distribution of event durations, [1 − 𝐺(𝑑|𝑞)], can be simplified 

[1 − (1 − 𝑒
−𝑑

�̂�𝐴𝑞𝐵)] 

𝑒
−𝑑

�̂�𝐴𝑞𝐵
 

Combining these model components, we arrive at the Poisson-Pareto-Power 

Duration-Over-Threshold model. 
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𝜆(𝑞,  𝑑) = [1 − 𝑘 (
𝑥 − 𝜉

𝛼
)]

1
𝑘⁄

𝑒
−𝑑

�̂�𝐴𝑞𝐵
 

This may be solved for duration, 

𝜆(𝑞,  𝑑) ∗ (1 − 𝑘
𝑞 − 𝜉

𝛼
)−1/𝑘 = 𝑒

−𝑑

�̂�𝐴𝑞𝐵
 

𝑙𝑛 [𝜆(𝑞,  𝑑) ∗ (1 − 𝑘
𝑞 − 𝜉

𝛼
)−1/𝑘] =

−𝑑

�̂�𝐴𝑞𝐵
 

𝑑 = −�̂�𝐴𝑞𝐵 ∗ 𝑙𝑛 [𝜆(𝑞,  𝑑) ∗ (1 − 𝑘
𝑞 − 𝜉

𝛼
)−1/𝑘] 

 

2.5.2 Missing Data Handling 

Instantaneous (15-minute) flowrate records in our study area were prone to missing 

data that can potentially skew model fit.  Short spans of missing data, which we defined as 

shorter than 24 hours in duration, occurred sporadically throughout the flowrate records.  

Large spans of missing data – which we defined as longer than 24 hours in duration –

occurred in early record years and frequently in winter months, when ice interfered with 

gaging instruments.  Large spans of missing data are problematic because they have the 

potential to exclude flood peaks from the dataset, and can lead to an underestimation of 

flood frequency, if a significant peak(s) is omitted.  If a significant peak occurs during a 

short span, the records bordering the gap will be near enough to the peak that the gap will 

be less likely to impact flood frequency estimates.  Short spans of missing data, however, 
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will cause errors in the event extraction and attribution algorithm described in Figure 1 and 

Section 2.2.2. 

To combat errors associated with missing data, we imputed data in two approaches 

to create a continuous flow series across each period of record.  For short spans, we took 

the last observed flowrate prior to the gap and forward filled that value into missing data 

entries.  We term this dataset the filled timeseries.  To fill the large spans of missing data, 

we used a linear regression that relied on the mean daily flowrate, which was consistently 

provided by USGS for those days with missing instantaneous (15-minute) records. We fit 

a linear regression to mean daily flowrate and maximum instantaneous daily flowrate at 

each gage using data from all days that had complete instantaneous and daily-averaged 

flowrate records.  Regression intercepts were fixed to zero so that a 0 cfs mean daily flow 

would map to a 0 cfs peak daily flow.  These regression coefficients were multiplied by the 

mean daily flowrate series for the entire period of record to create an estimated daily 

maximum flowrate series.  On days missing instantaneous flowrate values, we imputed the 

estimated daily maximum flowrate across the entire day.  The resulting dataset is referred 

to as the imputed timeseries. 

The filled timeseries was used to fit the mean duration regression while the imputed 

timeseries was used to fit the threshold exceedance frequency relationship.  By imputing a 

fixed value across all missing data days in the imputed timeseries, estimates of event 

duration from those would not be credible.  Furthermore, there existed enough flood events 

in the filled timeseries to confidently fit a mean duration regression.  For both these reasons, 

the mean duration regression was fit using only the filled timeseries.  Since the threshold 
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exceedance frequency relationship was sensitive to missing peaks but insensitive to having 

block-filled days, the imputed timeseries was used in its fitting. 

 

Figure 2-9 Description of time of occurrence as well as duration for short gaps (missing data periods with duration < 

24 hours) and long gaps (missing data periods with duration > 24 hours).  Long gap durations were truncated to 30 

days for this histogram. 

Short gaps in the instantaneous flowrate record, while commonplace, were 

insignificant in their duration.  Figure 2-9 shows that short gaps occurred most frequently 

in the periods 1990-2000 and 2015-2022.  This trend was consistent across all gages, but 

its source is unclear.  Despite a clear temporal trend, we have no reason to suspect that 

filling data gaps in certain periods more than others will bias results.  Figure 2-9 shows that 

many short gaps were shorter than two hours in duration.  Given such short gaps in the 
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record, we expect that forward-filling adjacent flowrates is a reasonably accurate approach 

to predict flowrates within those gaps. 

Long gaps in the instantaneous flowrate record occurred mostly in the winter 

months, when low flows tend to prevail in the Northeastern US (Scott et al., 2019).  For all 

stations, long gaps are prevalent from 1990-2015.  We suspect that in the mid 2010’s the 

USGS changed their data cleaning process to estimate flows during record gaps.  Long 

gaps show a clear seasonality, with almost all gaps occurring within the winter months (12, 

1, 2, 3).  This is likely due to the presence of river ice that can interfere with gage 

measurements.  While most large gaps were less than 5 days in duration, there was a 

significant portion with duration greater than 30 days.  For all the gages analyzed within 

this study, flood events could occur and recede within 24 hours, so any long gap has the 

potential to bias flood frequency estimates in the marginal distribution.   

The linear regressions we developed between daily mean flow and daily peak flow 

at each station had good R-Squared values (maximum 0.99, minimum 0.59, and mean 

0.89).  Since many long gaps occurred in winter months and winter months typically 

contain lower flows for this region, the imputed value series contained entirely low to 

moderate flows for each gage.  In fact, most of the imputed peak daily flow values did not 

exceed the event threshold used in the marginal frequency analysis.   

2.5.3 Catchment and Reach Physiographic Characteristics 

The 30m digital elevation models (DEMs) and stream centerlines were downloaded 

from the USGS National Map (USGS 2018, 2020).  Stream centerlines were clipped to a 

500m buffer around each USGS gage.  The upstream elevation, downstream elevation, and 
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length of these centerlines were extracted in QGIS to derive the reach slope around each 

USGS gage (parameter LocalSlope(m/m)).  Ten catchment characteristics were derived 

with HEC-HMS relating to catchment shape, mainstem slope, and mainstem length.  Those 

characteristics were Longest flowpath length (MI), Longest flowpath slope (ft/ft), 

Centroidal flowpath length (MI), Centroidal flowpath slope (ft/ft), 10-85 flowpath 

length (MI), 10-85 flowpath slope (FT/FT), Basin slope (FT/FT), Basin relief (FT), 

Relief Ratio, and Elongation Ratio.  

Several derived variables were also added to the dataset.  The five basin 

characteristics were derived from multiplying and dividing GAGES-II attributes and GIS 

attributes (parameters DAxSlope, TWI, dam_index, wbody_index, and 

spring_melt_index). We visually inspected histograms for all 81 variables and selected 

any skewed histograms for logarithmic transformation.  A total of 11 basin characteristics 

were logarithmically transformed.  Both the original 11 and transformed 11 were retained 

in the final dataset.  The final dataset is shown in Table 2-4. 
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Table 2-4 List of generated physiographic basin and reach characteristics.   

Characteristic name Description 

DRAIN_SQKM 
Watershed drainage area, sq km, as delineated in our basin 
boundary 

BAS_COMPACTNESS 
Watershed compactness ratio, = area/perimeter^2 * 100; 
higher number = more compact shape.   

PPTAVG_BASIN 
Mean annual precipitation (cm) for the watershed, from 
800m PRISM data.  30 years period of record 1971-2000.  

PRECIP_SEAS_IND 

Precipitation seasonality index (Markham, 1970; Dingman, 
2002).  Index of how much annual precipitation falls 
seasonally (high values) or spread out over the year (low 
values).  Based on monthly precipitation values from 30 year 
(1971-2000) PRISM.  Range is 0 (precipitation spread out 
exactly evenly in each month) to 1 (all precipitation falls in a 
single month). 

STREAMS_KM_SQ_KM 
Stream density, km of streams per watershed sq km, from 
NHD 100k streams 

STRAHLER_MAX Maximum Strahler stream order in watershed, from NHDPlus.   

MAINSTEM_SINUOUSITY 

Sinuosity of mainstem stream line, from our delineation of 
mainstem stream lines (see Falcone and others, 2010b).  
Defined as curvilinear length of the mainstem stream line 
divided by the straight-line distance between the end points 
of the line. 

HIRES_LENTIC_PCT 
Percent of watershed surface area covered by "Lakes/Ponds" 
+ "Reservoirs" in NHD Hi-Resolution (1:24k) data 

BFI_AVE 

Base Flow Index (BFI), The BFI is a ratio of base flow to total 
streamflow, expressed as a percentage and ranging from 0 to 
100. Base flow is the sustained, slowly varying component of 
streamflow, usually attributed to ground-water discharge to a 
stream. 

PERDUN 

Dunne overland flow, also known as saturation overland flow, 
is generated in a basin when the water table "outcrops" on 
the land surface (due to the infiltration and redistribution of 
soil moisture within the basin), thereby producing temporary 
saturated areas. These saturated areas generate Dunne 
overland flow through exfiltration of shallow ground water 
and by routing precipitation directly to the stream network. 

PERHOR 

Horton overland flow, also known as infiltration-excess 
overland flow, is generated in a basin when infiltration rates 
are exceeded by precipitation rates. 

TOPWET 

Topographic wetness index, ln(a/S); where "ln" is the natural 
log, "a" is the upslope area per unit contour length and "S" is 
the slope at that point.  See 
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http://ks.water.usgs.gov/Kansas/pubs/reports/wrir.99-
4242.html and Wolock and McCabe, 1995 for more detail. 

CONTACT 

Subsurface flow contact time index. The subsurface contact 
time index estimates the number of days that infiltrated 
water resides in the saturated subsurface zone of the basin 
before discharging into the stream.  

RUNAVE7100 

Estimated watershed annual runoff, mm/year, mean for the 
period 1971-2000.  Estimation method integrated effects of 
climate, land use, water use, regulation, etc. 

WB5100_MAR_MM 

Estimated watershed March runoff, mm/month, mean for the 
period 1951-2000.  From Wolock and McCabe (1999) water 
balance model.  Estimates the effects of precipitation and 
temperature, but not other factors (land use, water use, 
regulation, etc.) 

WB5100_APR_MM 

Estimated watershed April runoff, mm/month, mean for the 
period 1951-2000.  From Wolock and McCabe (1999) water 
balance model.  Estimates the effects of precipitation and 
temperature, but not other factors (land use, water use, 
regulation, etc.) 

PCT_1ST_ORDER 
Percent of stream lengths in the watershed which are first-
order streams (Strahler order); from NHDPlus 

PCT_2ND_ORDER 
Percent of stream lengths in the watershed which are 
second-order streams (Strahler order); from NHDPlus 

PCT_3RD_ORDER 
Percent of stream lengths in the watershed which are third-
order streams (Strahler order); from NHDPlus 

PCT_4TH_ORDER 
Percent of stream lengths in the watershed which are fourth-
order streams (Strahler order); from NHDPlus 

PCT_5TH_ORDER 
Percent of stream lengths in the watershed which are fifth-
order streams (Strahler order); from NHDPlus 

PCT_6TH_ORDER_OR_MORE 
Percent of stream lengths in the watershed which are sixth or 
greater-order streams (Strahler order); from NHDPlus 

STOR_NID_2009 

Dam storage in watershed ("NID_STORAGE"); megaliters total 
storage per sq km  (1 megaliters = 1,000,000 liters = 1,000 
cubic meters).  Also see note to the right. 

STOR_NOR_2009 

Dam storage in watershed ("NORMAL_STORAGE"); megaliters 
total storage per sq km  (1 megaliters = 1,000,000 liters = 
1,000 cubic meters) 

RAW_DIS_NEAREST_DAM 
Raw straightline distance (km) of gage location to nearest 
dam in watershed. 

RAW_AVG_DIS_ALLDAMS 
Raw average straightline distance (km) of gage location to all 
dams in watershed. 

RAW_DIS_NEAREST_MAJ_DAM 
Raw straightline distance (km) of gage location to nearest 
major dam in watershed. 

RAW_AVG_DIS_ALL_MAJ_DAMS 
Raw average straightline distance (km) of gage location to all 
major dams in watershed.   



53 

 

FRAGUN_BASIN 

Fragmentation Index of "undeveloped" land in the 
watershed.  High numbers = more disturbance by 
development and fragmentation; a very pristine basin with a 
lot of contiguous undeveloped land cover would have a low 
number 

HIRES_LENTIC_MEANSIZ 
Mean size (ha) of Lakes/Ponds + Reservoir water bodies from 
NHD Hi-Resolution (1:24k) data 

DEVNLCD06 
Watershed percent "developed" (urban), 2006 era (2001 for 
AK-HI-PR).  Sum of classes 21, 22, 23, and 24 

FORESTNLCD06 
Watershed percent "forest", 2006 era (2001 for AK-HI-PR).  
Sum of classes 41, 42, and 43 

PLANTNLCD06 
Watershed percent "planted/cultivated" (agriculture), 2006 
era (2001 for AK-HI-PR).  Sum of classes 81 and 82 

WATERNLCD06 Watershed percent Open Water (class 11) 

MAINS100_DEV 

Mainstem 100m buffer "developed" (urban), 2006 era.  Sum 
of MAINS100_21, 22, 23, and 24.  Buffer is the approximate 
area 100m each side of stream centerline 

MAINS100_FOREST 
Mainstem 100m buffer "forest", 2006 era.  Sum of 
MAINS100_41, 42, and 43 

MAINS100_PLANT 
Mainstem 100m buffer "planted/cultivated" (agriculture), 
2006 era.  Sum of MAINS100_81 and 82 

MAINS100_11 Mainstem 100m buffer percent Open Water 

MAINS800_DEV 

Mainstem 800m buffer "developed" (urban), 2006 era.  Sum 
of MAINS800_21, 22, 23, and 24.  Buffer is the approximate 
area 800m each side of stream centerline 

MAINS800_FOREST 
Mainstem 800m buffer "forest", 2006 era.  Sum of 
MAINS800_41, 42, and 43 

MAINS800_PLANT 
Mainstem 800m buffer "planted/cultivated" (agriculture), 
2006 era.  Sum of MAINS800_81 and 82 

MAINS800_11 Mainstem 800m buffer percent Open Water 

RIP100_DEV 

Riparian 100m buffer "developed" (urban), 2006 era.  Sum of 
RIP100_21, 22, 23, and 24.  Buffer is the approximate area 
100m each side of stream centerline, for all streams in 
watershed 

RIP100_FOREST 
Riparian 100m buffer "forest", 2006 era.  Sum of RIP100_41, 
42, and 43 

RIP100_PLANT 
Riparian 100m buffer "planted/cultivated" (agriculture), 2006 
era.  Sum of RIP100_81 and 82 

RIP100_11 Riparian 100m buffer percent Open Water 

RIP800_DEV 

Riparian 800m buffer "developed" (urban), 2006 era.  Sum of 
RIP800_21, 22, 23, and 24.  Buffer is the approximate area 
800m each side of stream centerline, for all streams in 
watershed 
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RIP800_FOREST 
Riparian 800m buffer "forest", 2006 era.  Sum of RIP800_41, 
42, and 43 

RIP800_PLANT 
Riparian 800m buffer "planted/cultivated" (agriculture), 2006 
era.  Sum of RIP800_81 and 82 

RIP800_11 Riparian 800m buffer percent Open Water 

PERMAVE Average permeability (inches/hour) 

WTDEPAVE Average value of depth to seasonally high-water table (feet) 

ROCKDEPAVE Average value of total soil thickness examined (inches) 

RFACT 
Rainfall and Runoff factor ("R factor" of Universal Soil Loss 
Equation); average annual value for period 1971-2000 

HGC 

Percentage of soils in hydrologic group C. Hydrologic group C 
soils have slow soil infiltration rates. The soil profiles include 
layers impeding downward movement of water and, typically, 
have moderately fine or fine texture. 

HGD 

Percentage of soils in hydrologic group D. Hydrologic group D 
soils have very slow infiltration rates. Soils are clayey, have a 
high-water table, or have a shallow impervious layer. 

HGCD 

Percentage of soils in hydrologic group C/D. Hydrologic group 
C/D soils have group C characteristics (slow infiltration rates) 
when artificially drained and have group D characteristics 
(very slow infiltration rates) when not drained. 

ELEV_MAX_M_BASIN 
Maximum watershed elevation (meters) from 100m National 
Elevation Dataset 

ELEV_MIN_M_BASIN 
Minimum watershed elevation (meters) from 100m National 
Elevation Dataset (may include sinks) 

ELEV_MEAN_M_BASIN 
Mean watershed elevation (meters) from 100m National 
Elevation Dataset 

ELEV_STD_M_BASIN 
Standard deviation of elevation (meters) across the 
watershed from 100m National Elevation Dataset 

RRMEAN 
Dimensionless elevation - relief ratio, calculated as 
(ELEV_MEAN - ELEV_MIN)/(ELEV_MAX - ELEV_MIN). 

RRMEDIAN 
Dimensionless elevation - relief ratio, calculated as 
(ELEV_MEDIAN - ELEV_MIN)/(ELEV_MAX - ELEV_MIN). 

SLOPE_PCT 

Mean watershed slope, percent. Derived from 100m 
resolution National Elevation Dataset, so slope values may 
differ from those calculated from data of other resolutions. 

ASPECT_DEGREES 

Mean watershed aspect, degrees (degrees of the compass, 0-
360). Derived from 100m resolution National Elevation Data.  
0 and 360 point to north.  Because of the national Albers 
projection actual aspect may vary. 

Longest flowpath length (MI) 

The longest flowpath extends from the subbasin outlet to the 
most hydraulically-remote point upstream. Longest flowpath 
is significant in that it is typically used to determine the time 
of concentration for a watershed. 
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Longest flowpath slope (ft/ft) Slope of longest flowpath 

Centroidal flowpath length (MI) 

The centroidal flowpath is a subset of longest flowpath. It 
begins at the subbasin outlet and extends upstream along the 
longest flowpath until it reaches the point along the longest 
flowpath that is nearest to the subbasin centroid. A 
comparison of centroidal flowpath and longest flowpath can 
be seen in the image below. 

Centroidal flowpath slope (ft/ft) slope of centroidal flowpath 

10-85 flowpath length (MI) 

The 10-85 flowpath is also a subset of longest flowpath. 
Measuring from the outlet in the upstream direction, the 10-
85 flowpath begins at a point representing ten percent of the 
total length of the longest flowpath and ends at a point 
representing eighty-five percent of the total length. Both the 
length and the slope of the 10-85 flowpath are provided in 
the subbasin statistics table, shown above. The 10-85 slope is 
often more representative of flowpath slopes as a whole 
within the watershed as it is not affected by the more 
extreme upstream elevations of the longest flowpath that are 
typically found near the watershed divide. A comparison of 
10-85 flowpath and longest flowpath can be observed in the 
image below. 

10-85 flowpath slope (FT/FT) flope of 10-85 flowpath 

Basin slope (FT/FT) 

The basin slope represents the average slope of the entire 
subbasin (rise/run). For each elevation raster value within the 
subbasin, the algorithm scans the surrounding eight 
neighbors and computes the slope using the maximum 
scanned elevation difference. The algorithm does not weigh 
north, east, south, and west neighbors more than diagonal 
neighbors; each neighbor is considered equally. The basin 
slope output is the average of all the computed slope values 
in the subbasin.    

Basin relief (FT) 

Basin relief represents the elevation difference between the 
highest point on the drainage divide and the outlet point of 
the subbasin.  

Relief Ratio 
The relief ratio is simply the basin relief divided by the length 
of the longest flowpath. 

Elongation Ratio 

The elongation ratio is a dimensionless ratio used to 
categorize the general shape of a subbasin. It is a ratio 
between the diameter of a circle with the same area as the 
subbasin and the basin length. Elongation ratio values 
typically range from ~0.2 to 1.0, with lower values 
representing elongated basins and values close to 1 
representing circular basins.  

LocalSlope(m/m) Slope of the reach within a 500-meter buffer of the gage.  

DAxSlope DRAIN_SQKM times by local slope 
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TWI DRAIN_SQKM divided by local slope 

dam_index STOR_NID_2009 divided by RUNAVE7100 

wbody_index HIRES_LENTIC_PCT divided by RUNAVE7100 

spring_melt_index 
Average of WB5100_MAR_MM and WB5100_APR_MM 
divided by RUNAVE7100 

log_power_a Natural Logarithm of power_a 

log_power_a_raw Natural Logarithm of power_a_raw 

log_xi Natural Logarithm of xi 

log_alpha Natural Logarithm of alpha 

log_DRAIN_SQKM Natural Logarithm of DRAIN_SQKM 

log_Relief Ratio Natural Logarithm of Relief Ratio 

log_Longest flowpath slope 
(ft/ft) Natural Logarithm of Longest flowpath slope (ft/ft) 

log_Centroidal flowpath slope 
(ft/ft) Natural Logarithm of Centroidal flowpath slope (ft/ft) 

log_10-85 flowpath slope 
(FT/FT) Natural Logarithm of 10-85 flowpath slope (FT/FT) 

log_DAxSlope Natural Logarithm of DAxSlope 

log_HIRES_LENTIC_PCT Natural Logarithm of HIRES_LENTIC_PCT 

log_HIRES_LENTIC_MEANSIZ Natural Logarithm of HIRES_LENTIC_MEANSIZ 

log_CONTACT Natural Logarithm of CONTACT 

log_STREAMS_KM_SQ_KM Natural Logarithm of STREAMS_KM_SQ_KM 

log_MAINSTEM_SINUOUSITY Natural Logarithm of MAINSTEM_SINUOUSITY 
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2.5.4 Station Skew Map 

 

Figure 2-10 Estimated skew coefficient, K, of the flow frequency distribution at each gage analyzed. 
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2.5.5 CUAHSI Hydroshare Link 

Many supplementary gage by gage figures are accessible on CUAHSI Hydroshare with the 

following URL,  

http://www.hydroshare.org/resource/24a49e928ada4a09b8eb5e1e984a1af8 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.hydroshare.org/resource/24a49e928ada4a09b8eb5e1e984a1af8
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Chapter 3 | Concluding Remarks 

The authors of the seminal textbook on FFA summarize the task of FFA as follows, 

“The practical issue is how to select a reasonable and simple distribution to describe the 

phenomenon of interest, to estimate that distribution’s parameters, and thus to obtain risk 

estimates of satisfactory accuracy for the problem at hand.”(Stedinger & Foufoula-

Georgiou, 1993).  That was the goal of this project, and I can only hope the preceding pages 

logged the process in as straightforward language.  In reality, the process was much more 

meandering.  The journey from first year graduate student to Master of Science involves a 

pay-as-you-go approach to learning with hours spent exploring the backwaters of scientific 

literature or deeply plunging into the mathematics of a method.  At times when I questioned 

the scientific merit of developing a new statistical method.  Did it enhance our 

understanding of the world, or was it too much of what Langbein (1958) called “tabulation, 

rearrangement, and fitting” without interpretation? 

I’ve come to understand that characterizations of flow regime such as the one we 

developed here are what many hydrologists believe will be instrumental in advancing our 

science (Hrachowitz et al., 2013; McDonnell et al., 2007; Sivapalan, 2009).  Further, I have 

hope that the method here described may be used to enable a richer coexistence of rivers 

and society, enabling a deeper understanding of river character and associated processes.  

The realization of such a project would have been in no way possible without the “course 

corrections” provided by my advisors, and to them I am deeply grateful. 

We have succeeded in developing, applying, and interpreting the Duration-Over-

Threshold model, an extension to the Peaks-Over-Threshold modeling approach that 
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relates the duration spent over a flowrate threshold to a recurrence interval.  The problems 

that this model address span hydrologic subdisciplines from geomorphology to ecology 

and engineering, and it fills a niche that no other statistical FFA methods currently fill. 

The Duration-Over-Threshold model is inspired by the model of Feng et al. (2017), 

but includes several notable changes.  By using the partial duration series instead of the 

annual maxima, our model was able to properly model the frequency of frequent floods 

that drive many geomorphic and ecohydrological processes.  The Duration-Over-

Threshold model used discharge instead of stage records, allowing for regionalization of 

the model parameters and comparison of flow regime parameters across gauges.  Our 

model was fit on higher-fidelity 15-minute data, which allowed for a more accurate 

characterization of flow regime, especially in smaller, flashier basins.  We used a power 

law relationship between threshold flow rate and mean event duration, which was shown 

to be a better predictor than an exponential decay relationship at 31 of 33 USGS river gages 

within the state of Vermont.  Tractable equations, open-source code, and documentation for 

the Duration-Over-Threshold model will make it more easily adopted by river 

practitioners. 

For 26 gages, we developed regional regression equations to link model parameters 

to catchment- and reach-scale attributes.  The regression equations enable model 

application in ungauged locations.  A preliminary analysis of functional traits provided by 

the model found that flood duration tends to increase with drainage area but decreases in 

high-gradient streams and basins with low permeability soils.   
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Several model improvements could be pursued in the future.  Seasonal analyses 

should be completed to separate out spring thaw dynamics, which are overwhelming the 

duration dynamics at low threshold flowrates (and such seasonal analyses have been 

enabled by the switch to POT frequency).  The coefficient estimation within the regional 

regression analysis could be switched from OLS to GLS if a suitable covariance matrix is 

identified.  Higher fidelity datasets on soils and land-cover could be used to improve 

regression performance and aid in duration process inference.  Finally, a larger sample size 

(both in number of gages and length of record) could enable more accurate regionalization 

of the frequency skew coefficient. 

Future efforts to extend the Duration-Over-Threshold model could involve deriving 

design flood hydrographs from the duration estimates.  The data and parameters could 

easily be modified to model power-over-threshold or volume-over-threshold for 

geomorphic and detention structure modeling, respectively.  If the threshold is set at some 

critical threshold for bed mobilization, toe scour, or bank erosion, and a damage function 

is constructed based on event duration, the frequency distribution may be used to estimate 

reach susceptibility to erosion.  Stage-Duration relationships could be used for fluvial 

landform delineation or ecological gradient mapping.  Lastly, comparative hydrology, 

functional trait, and machine-learning workflows may be used to link model parameters A 

and B (and other derived traits) to both causal and effective processes, revealing 

reproducible patterns in watershed function and deepening our understanding of watershed 

systems. 
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