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Abstract

The drag coefficient of snowflakes is an crucial particle descriptor that can quantify the
relationships with the mass, shape, size, and fall speed of snowflake particles. Previ-
ous studies has relied on estimating and improving empirical correlations for the drag
coefficient of particles, utilizing 3D images from the Multi-Angled Snowflake Cam-
era Database (MASCDB) to estimate snowflake properties such as mass, geometry,
shape classification, and rimming degree. However, predictions of the drag coefficient
with single-view 2D images of snowflakes has proven to be a challenging problem,
primarily due to the lack of data and time-consuming, expensive methods used to
estimate snowflake shape factors such as sphericity and convex hull. In this paper,
we propose a cost-effective and time-efficient approach to address the challenges in
predicting the drag coefficients from single-view 2D images of falling snowflakes. Our
method combines EfficientNetB7 for image preprocessing to remove the background
and border from snowflake images, Kernel Principal Component Analysis (KPCA)
to extract meaningful features from the snowflake images, and Machine Learning
methods, namely Random Forests, XGBoost models, Multilayer Perceptron (MLP)
models, and MLP models trained on distinct Reynolds number flow regimes, to pre-
dict drag coefficients using the Locatelli and Hobbs dataset. Through comprehensive
evaluation, our model achieved a mean squared error of 0.195, outperforming most
existing empirical correlations. Moreover, an evaluation of the feature importance us-
ing mean decrease impurity (MDI) showed that the KPCA feature extraction added
influential and meaningful data points to our machine learning models.
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Chapter 1

Introduction
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1.1 Motivation

Snowflakes are naturally formed particles with very complex shapes, occurring in a

wide variety of forms and crystal forms. Due to differences in atmospheric condi-

tions such as temperature, supersaturation, and turbulence, ice crystals will undergo

different forms of growth including vapor deposition and aggregation as they fall.

Upon reaching ground level, frozen hydrometeors have already grown by the previ-

ously mentioned processes, ergo making certain mature forms more common, such

as aggregates and rimed particles, i.e., graupel, while other habits such as hexagonal

plates and columnar crystals are less common, tending to occur mostly in the early

stages of growth in clouds. In any case, the shape and microphysical properties of ice

particles can vary widely, making them difficult to quantify and predict. One method

of approaching the prediction of their properties is by observing the drag coefficient, a

non-dimensional value that describes a shape’s resistance flowing through a fluid such

as air. With a constant shape, the drag coefficient varies with the Reynolds number

(the ratio between the inertial and viscous forces of a fluid flow) and gives a measure

of the "scale" of the flow involving an object. By establishing these non-dimensional

quantities, it is possible to quantify the relationship between the mass of a falling

particle, its fall speed, its shape, and its drag coefficient, at any scale. But, it is a

rather expensive and time-consuming process to get these snowflake features. By the

current means with snowflake data, one must record the mass and fall speed to get the

drag coefficient, which limits simple data collection of snowflakes. If a team wants to

record data and start building their own database that includes the drag coefficient,

one would need to invest in equipment to get 3D snowflake structures [1] to get the
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mass [8] or save each snowflake to melt down to get the mass [2]. Then use IR emitter-

detector pairs to estimate the fall speed [1], additional equipment like photomultiplier

tubes to record the fall speed [2], or with cameras with a frame per second above 100,

by observing the distance the particle traveled between frames. Currently, the only

simple, cost-effective, and easy-to-use methods to obtain the drag coefficient of falling

particles is with empirical correlations. There exist empirical correlations that require

us to obtain a variety of particle descriptors such as the sphericity or convex hull,

which requires additional equipment to obtain. There also exists simpler empirical

correlations to obtain drag coefficient like Heymsfield and Westbrook [3], that just

require the 2D snowflake image to obtain features such as Reynolds number and area

(see equation 2.1). In this thesis, we give an alternative method to estimating the

drag coefficient that requires just a single-view 2D snowflake image, its shape class,

and Reynolds number. We seek to accomplish this by investigating different machine

learning algorithms such as EfficientNet Convolution Neural Network (CNN) [9], ran-

dom forests [10], XGBoost models [11], and multi-layer perceptron (MLP) [12] neural

network, that use the Reynolds number, shape classes, and 2D snowflake image to

obtain the drag coefficient of snowflakes.

Drag coefficient prediction of falling snowflakes is challenging because of the lack

of data to support the problem. Several studies have collected data on the shape,

size, mass, and fall velocity of snow particles, but lack drag coefficient data. There

also exists uncertainty in this collected data that propagates and causes uncertainty

in the drag coefficient data. Locatelli and Hobbs [2] recorded the mass and fall speed,

along with high-quality snowflake images, diameter, fall velocity, air density, air vis-

cosity, shape class, and Reynolds number for each snowflake, but only contains 128
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snowflakes. These variables were then used to calculate the drag coefficient for each

snowflake (see equation 3.1). The most common snowflake image data that is col-

lected is with three cameras, called the Multi-Angle Snowflake Camera (MASC). The

MASC captures three images of the same falling snowflakes at the same time, making

it possible to recreate the snowflakes in 3D. This piece of equipment is expensive,

which makes it inaccessible to most research groups, but a dataset of around a mil-

lion multi-angle snowflake images collected from around the world exists, called the

Multi-Angle Snowflake Camera Database (MASCDB) [1], along with many snowflake

descriptors that can be used to calculate the drag coefficient. Many researchers take

advantage of the 3D structure that is possible with the MASCDB [1], such as Leinonen

et al [8] and Leinonen and Berne [13]. In general, researchers have found using 3D

snowflake structures has improved their methods, such as Köbschall et al. (2023) [14],

that gives a new estimation for the drag coefficient that uses artificially generated 3D

snowflakes using code from Leinonen et al 2013 [15], where the drag coefficient and

shape factors are known. They performed tank experiments by placing 3D printed

artificial generated snowflakes at the bottom of the tank in flow regime-glycerol mix-

tures, to control the Reynolds Number, and allowing to fall upward. The fall speed,

orientation of snowflake, and 2D projected areas were captured. They improved the

estimation of drag coefficient by creating a convex hull volume, a 3D convex polygon

with straight edges, that contain all snowflake values while minimizing area, around

the 3D snowflakes. The features sphericity, cross-wise sphericity, and length-wise

sphericity were calculated from the convex hull 3D geometry. These features were

then inserted into Hölzer and Sommerfeld [4], Ganser [5], and Haider and Leven-

spiel [7] accordingly to calculate the drag coefficient. These drag coefficients were

4



then compared to the drag coefficient calculated with sphericity values from the orig-

inal snowflake geometry. The application of the convex hull geometry was observed

to improve the accuracy of the prediction of the drag coefficient compared to the use

of the original geometry [14]. Since the convex hull and sphericity values are required,

this method is inapplicable to snowflake data captured with single-view 2D camera

setups. In this thesis, our objective is to present an approach that accurately predicts

the drag coefficient without the convex hull or sphericity values. This is achieved

by using features extracted using PCA [16] and KPCA [17] from the snowflake im-

age. These extracted features will be used with Reynolds number and shape class to

accurately predict the drag coefficient using various machine learning models [10–12].

A comprehensive classification of ice crystal habits, nearly ubiquitous in the field

of cloud microphysics, was created by Magono and Lee [18] by analyzing 30, 000

microscopic photographs and classifying the snowflakes into 80 different shape classes.

This classification scheme was also applied to the snowflakes collected by Locatelli

and Hobbs [2]. Extracting features from the snowflake image proved to be helpful

in shape classification by Leinonen and Berne [13], but has yet to be shown for the

estimation of the drag coefficient using snowflake images, but is believed to help in the

prediction from Leinonen and Berne’s analysis. We seek to show this by extracting

features from the snowflake image and estimating the drag coefficient with machine

learning methods and showing that the features are meaningful and helpful. We

can understand what features are meaningful in the prediction the drag coefficient,

by a feature importance analysis on the random forest with a process called mean

decrease impurity (MDI) [19,20]. MDI calculates the feature importance by counting

the number of times a feature is used to split a node in the tree (see Chapter 4). This
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analysis can illustrate whether the extracted features enhance the prediction accuracy,

as evidenced in the study by Leinonen and Berne 2020 [13]. Our goal is to improve

prediction by leveraging modern machine learning techniques on the snowflake image

itself with the Reynolds number and shape class from Locatelli and Hobbs [2], to

outperform empirical correlations that explore the relationships between mass, fall

speed, and shape factors [3–7].

The main objective of this thesis is to leverage single-view 2D snowflake images to

enhance the prediction of the drag coefficient of falling snowflakes. This is achieved

by applying machine learning methods on snowflake descriptors along with extracted

features from snowflake images. To the best of our knowledge, this thesis is the

first that leverages the snowflake image via dimensional reduction to predict the drag

coefficient. This method is cost-efficient, fast, and easy to use, allowing for drag

coefficient estimation to be more accessible to single-view 2D image datasets. For

this, four main steps were taken for drag coefficient estimation. Firstly, data was

sourced from Locatelli and Hobbs [2]. Every snowflake image in the dataset was

then processed by the deep learning algorithm EfficientNetB7 CNN [9] to remove the

background and border, as having extra noise in the background would negatively

affect the dimensional reduction on the images. Secondly, the drag coefficient was

calculated for each snowflake image in the Locatelli and Hobbs [2] dataset. Thirdly,

dimension reduction methods such as PCA [16] and KPCA [17] were applied to all the

processed snowflake images to further compress the image to one or more features.

Lastly, various machine learning methods such as random forests [10], XGBRegressor

models [11], Multi-Layer Perceptron (MLP) Neural Networks [12], and an ensem-

ble of MLP models trained on different Reynolds number regimes were trained to

6



predict drag coefficient on snowflakes. An analysis of the number of features ex-

tracted versus the mean square error (MSE) for the model is presented. Then, the

drag coefficient estimation is compared to drag coefficient correlations found in liter-

ature (Heymsfield and Westbrook [3], Hölzer and Sommerfeld [4], Ganser [5], Ganser

with Leith [6] shape factor, and Haider and Levenspiel [7]). Additionally, geomet-

ric features such as sphericity, cross-wise sphericity, and length-wise sphericity were

predicted by a customized Physics-Based Deep Learning model that allows our pre-

dictions to be compared against the state-of-the-art empirical correlation models that

use the different types of sphericity (Hölzer and Sommerfeld [4], Ganser [5], Ganser

with Leith [6] shape factor, and Haider and Levenspiel [7]).

1.2 Problem Statement

As stated above, this thesis is concerned with the challenges with drag coefficient

prediction on single-view 2D images. We propose a method to remove the background

and border of single-view 2D images with EfficientNetB7 [9], use KPCA [17] to extract

features from the images, to be used with the Reynolds number and shape class on

an various amount of machine learning methods to predict the drag coefficient on

the Locatelli and Hobbs dataset [2]. This method is cost-effective, as it uses purely

tabular data, and is time-efficient. Researchers can capture single-view 2D images

of falling snowflakes, where Reynolds number and shape class can be determined

from visual analysis of each snowflakes, to accurately predict the drag coefficient,

avoiding expensive equipment and methods to produce 3D images to extract convex

hull geometry and sphericity quantities.
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1.3 Contributions

The contributions of this thesis are (1) We propose to use the snowflake image as

a feature via dimensional reduction algorithms for improving the prediction of drag

coefficient by advanced machine/deep learning methods. This process reduces the cost

and time previously required to calculate the drag coefficient using different shape

factors such as sphericity or convex hull. (2) We improve and set benchmarks for

machine learning and deep learning models for the prediction of the drag coefficient

on single-view 2D image data. (3) A comprehensive study is conducted on variables

that are critical for drag coefficient prediction via feature importance analysis. It is

shown that the extracted features contribute greatly and increase the accuracy of the

prediction models compared with the existing empirical correlations mentioned above.

The first two contributions are addressed in Chapter 3 and the last contribution is

addressed in Chapter 4.

1.4 Thesis Overview

Chapter 2 contains a literature review where we provide an in-depth review of various

empirical correlations and which we are using to compare our model against, sum-

maries of the two main databases used: Locatelli and Hobbs [2] and MASCDB [1],

and previously used machine learning methods applied to snowflake image data. The

main results of this thesis are covered in Chapter 3, where we present our method

of removing the background on single-view 2D snowflake images, feature extraction

methods used, and machine learning methods used. Chapter 4 covers an in-depth

8



discussion of results and methods, containing the feature importance analysis of our

model. Finally, in Chapter 5, we summarize the thesis and present ideas for future

research.
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Chapter 2

Preliminaries
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2.1 Literature Review

2.1.1 Empirical Correlations

During the last half century, there have been many efforts to improve the prediction

and correlation of the drag coefficient of generic particles. Researchers have used

different predictors to correlate with the drag coefficient such as the Reynolds num-

bers and sphericity, which is defined as the ratio between the surface area of the

volume equivalent sphere around the snowflake and the snowflake itself; how close

the snowflake is to a sphere [4, 7]. To improve drag coefficient correlations, more

predictors have been incorporated such as using the convex hull volume geometry of

the snowflake to extract sphericity, cross-wise, and length-wise sphericity [14]. Re-

searchers have also used the Newtons/Stokes shape factor [5], min and max values

of inertia tensor [21], porosity, the measure of the void spaces in a material [22, 23],

and permeability, the measure of the ease with which fluids will flow though a porous

rock [24]. Additionally, researchers have used the combination of variables flatness,

elongation, and diameter [25], and the combination of the variables nominal diameter,

Reynolds Number, the ratio of surface-equivalent-sphere to the nominal diameters,

and circularity [26, 27] to improve estimations on drag coefficient. Most of these de-

scriptors require additional equipment and costs to be obtained, such as convex hull

geometry, different sphericity values, and most shape factors. It may make the em-

pirical correlation more accurate, but it makes empirical correlation more difficult to

use overall and researchers may not have the equipment or funding to obtain the de-

scriptors necessary to use the different empirical correlations. The aim of this thesis
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is to find and present a simple and effective way to obtain the drag coefficient using

cost-effective and time-efficient methods on a single-view 2D image. This method

doesn’t require additional equipment such as the 3D snowflakes captured with the

Multi-Angled Snowflake Camera or methods that use the 3D structure to estimate

shape factors such as the ones mentioned above. This method seeks to be budget

friendly for budget limited researchers.

The empirical correlations that our model will be comparing against are (Eq.

2.1) Heymsfield and Westbrook [3], (Eq. 2.2) Hölzer and Sommerfeld [4], (Eq. 2.3)

Ganser [5], and (Eq. 2.4) with Leith shape factor correction [6], and (Eq. 2.5) Haider

and Levenspiel [7], shown below. In the following formulas, Akr = Area
(π/4)×diameter2 ,

ψ = Sphericity, ψ∥ = Length-wise Sphericity, ψ⊥ = Cross-wise Sphericity, and

Re = Reynolds number. It is important to note that some correlations focus on

the drag coefficient of solely particles, and not snowflake particles. The Heymsfield

and Westbrook [3] correlation focuses on ice particles, including stellar and den-

dritic crystals, needles, open bullet rosettes, and low-density aggregates. The Hölzer

and Sommerfeld [4] correlation focuses on non-sphericical particles, including par-

ticle shapes such as cubes, cube-octahedrons, octahedrons, tetrahedrons, isometric

particles, and disks and plates. They do not focus on snowflake particles. For the

Ganser and Leith corretion [5, 6] correlations, the focus is also on general sphericical

and non-spherical particles, using shapes such as Hölzer and Sommerfeld. Finally,

the Haider and Levenspiel [7] focuses also on sphericical and non-spherical, including

solid particles that are not porous unlike most snowflakes.

Cd = C0(1 + δ0√
Re

)2, C∗
d = CdA

k
r , w/ C0 = 0.35, δ0 = 8.0, k = 0.5 (2.1)
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CD = 8
Re

1√
ψ∥

+ 16
Re

1√
ψ

+ 3√
Re

1
ψ

3
4

+ 0.42100.4(− logψ)0.2 1
ψ⊥

(2.2)

CD = 24 ∗ kS
Re (1 + 0.1118(Re ∗ kN

kS
)0.6567) + (0.4305 ∗ kN)

(1 + 3305
(Re∗kn)

kS

) ,

kS = 1
3 + 2

3
√
ψ,

kN = 101.8148(−logψ)0.5743

(2.3)

CD = 24 ∗ kS
Re (1 + 0.1118(Re ∗ kN

kS
)0.6567) + (0.4305 ∗ kN)

(1 + 3305
(Re∗kn)

kS

) ,

kS = 1
3

√
ψ⊥ + 2

3
√
ψ,

kN = 101.8148(−logψ)0.5743
Mul

(2.4)

CD = 24
Re(1 + C1ReC2) + C3

(1 + C4
Re)

,

C1 = exp (2.33 − 6.46ψ + 2.45ψ2),

C2 = 0.096 + 0.556ψ,

C3 = exp (4.90 − 13.89ψ + 18.42ψ2 − 10.26ψ3),

C4 = exp (1.47 + 12.26ψ − 20.73ψ2 − 15.89ψ3)

(2.5)
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Since we can convert our drag coefficient estimate to mass by the following:

Mass = ( Cd
Acceleration due to Gravity)×0.5×Air Density×Velocity2 ×Area, we can compare

our model to mass prediction methods as well. We will be comparing our mass esti-

mation to Leinonen et al 3DGAN [8], Matrosov et al [28] and Baker and Lawson [29].

2.1.2 MASCDB and Drag Calculation

The Multi-Angle Snowflake Camera (MASC) is a recent development in snow research

that uses three high-resolution, synchronized cameras at different angles to observe

falling hydrometeors. A large volume of MASC data was published in Grazioli et al

2022 [1] and has proven to be immensely valuable to the scientific community, spawn-

ing a multitude of efforts in quantifying and predicting snow properties [8,13,30–32].

The data does not contain measured mass values or drag coefficients of the falling

snowflakes. Instead, this analysis is done by Leinonen et al [8] with their 3DGAN

model, which uses Generative Adversarial Networks (GANs) [33], specifically the

Wasserstein GAN with gradient penalty (WGAN-GP) [34, 35], to estimate the mass

of snowflakes in MASC images. The 3DGAN includes a generator and discriminator.

The generator constructs a 3D structure based on the triplet snowflake images while

the discriminator checks that the constructed structure matches the triplet images,

represented by the Wasserstein distance between the generated image and the real

image. The 3DGAN researchers acknowledge that this process has drawbacks such as

the formation of the 3D structure may not be representative of real snowflake forma-

tion, the 3D structure may not be entirely accurate, and loss of textural information

by using silhouettes of the triplet MASCDB images instead of grayscale MASCDB
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images. In the MASCDB paper [1], the authors also mention that this process of

mass estimation only works if all three of the images are good quality, and are of a

larger particle size. Lastly, the 3DGAN was only validated on 3D printed snowflakes,

where mass was known, and not the MASCDB snowflakes. This can account for the

scatter in Figures 2.1, 2.2 (see Chapter 4 for additional review of the MASCDB).

Figure 2.1: Reynolds Number vs Drag Co-
efficient of Snowflakes in MASCDB [1]

Figure 2.2: Log-Log Plot of Reynolds Num-
ber vs Drag Coefficient of Snowflakes in
MASCDB [1]

Additionally, the fall velocity measurements in the MASCDB are scattered be-

cause a windshield was not used in the majority of measurements of fall velocity.

This has caused some data points to have unrealistic velocity values. Fitch et al

2021 [36] discusses the limitations of this effect and gives an interval of fall velocities

to filter out, such as if the wind speed is greater than 5 m/s and the fall velocity is

below 0.45 m/s. This is also noted in the MASCDB original paper by Grazioli et

al [1].
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2.1.3 Locatelli and Hobbs Dataset Validation

Locatelli and Hobbs [2] recorded the mass and fall speed, along with high-quality

snowflake images, diameter, fall velocity, air density, air viscosity, shape class, and

Reynolds number for each snowflake. A windshield was used in their data collection

on the fall velocity. With this being said, the fall velocity recordings are not subject to

the same uncertainty as the MASCDB, overall reducing error on our drag coefficient

calculation. They recorded the fall speed of snowflakes via photomultiplier tubes and

then caught the snowflakes on a plastic sheet, to reduce shattering or bouncing of

snowflakes. To obtain the mass, they took the snowflakes on the plastic sheet and

cooled them to below 0 degrees Celsius and microphotographs were taken to measure

the the dimensions of the snowflakes. The particles were then melted and photographs

were taken of the water droplets that were formed. The mass was then calculated

by measuring the diameter of the droplets and by using a mass-size relationship that

was made with ice spheres made of varying sizes. Specifically, the ice spheres were

melted, the diameter of their droplets was recorded, and then they were frozen again.

They were dropped in oil and melted again, recording their true spherical diameter

to get mass. A regression curve was fit for the many varying-sized ice spheres, which

were used to calculate snowflake masses of the melted snowflake diameters. Mass-size

relationships were formed for each 15 shape classes found. This method proved to

be very effective in finding the mass of each snowflake, reducing uncertainty in drag

coefficient estimate.

16



Figure 2.3: Reynolds Number vs Drag Co-
efficient of Snowflakes in Locatelli and
Hobbs (1974) [2]

Figure 2.4: Log Reynolds Number vs Log
Drag Coefficient of Snowflakes in Locatelli
and Hobbs (1974) [2]

2.1.4 Comparison of Databases

The Locatelli and Hobbs [2] and the MASCDB [1] are both good options for our

drag coefficient model, both give high quality images and have the data necessary to

calculate the drag coefficient. The Locatelli and Hobbs database gives an accurate

drag coefficient when using their mass and fall speed recordings. This can be seen in

figures 2.3, 2.4 that show the drag coefficient compared to the Reynolds number for

the Locatelli and Hobbs dataset [2]. Figure 2.3 follows a clear trend as the Reynolds

number increases, the drag coefficient decreases. There is some scatter in Figure

2.3, but the log-log plot of the drag coefficient and Reynolds number show that the

data is densely packed with no major outliers present. The major downside of using

Locatelli and Hobbs [2] is the limited data present, with only 128 data points. The

MASCDB [1] has around three million snowflakes images and data points but has

scattered nature which is troublesome for a drag coefficient prediction model. This

can be seen in figures 2.1, 2.2, which have a great amount of scatter while having
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some outliers present. Further, figure 2.1 doesn’t follow closely to known trends of

the drag coefficient of particles found in literature, such as presented in Köbschall

et al [14]. Even though the MASCDB has far more images, because of the nature

in MASCDB [1], the Locatelli and Hobbs [2] dataset is preferred and was used for

training and validation data. Refer to chapter 4 for testing on the MASCDB [1].

2.1.5 Machine Learning Approaches

Many existing studies explore and incorporate machine learning techniques for var-

ious snowflake descriptor estimation and classification. Most of this work has been

done on the MASCDB [1], using three-view 2D images or 3D images. A majority

of the of machine learning works has been on the shape classification of snowflakes.

Leinonen and Berne [13] use unsupervised shape classification, meaning shape clas-

sification with no shape labels. They were able to accomplish this task by training

a GAN that maps each MASC image into a vector of latent variables and recon-

structs the snowflake. K-medoids [37] (similar to K-means) classified the images into

many groups and hierarchical clustering reduced the number of groups found with

K-medoids into 6 or 16 different groups. The reconstructed snowflakes were then

compared to other snowflakes in its group to see if the latent variables were meaning-

ful in the K-medoids and hierarchical clustering algorithms. There have been more

approaches to snowflake shape classification. Hicks et al 2019 [30] use a supervised

learning method with a CNN model to classify snowflakes into five different shape

classes with an accuracy of 93.4%. Praz et al [31] achieved similar results with clas-

sification among 10 shape classes with an accuracy of 94.7% on MASCDB [1], with a

regularized multinomial logistic regression (MLR) model. They also used MLR mod-
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els to estimate the rimming degree of snowflakes and classification to detect melting

snow with equally good results. Leinonen et al [8] estimate mass by using a separate

neural network, trained just for mass prediction. They achieved this by using three

2D images as input. The images are downsampled, concatenated, and passed through

dense blocks, to give the mass output. They achieved a result of an NRMSE (nor-

malized root mean squared error) of 42 on 3D printed snowflakes. These methods

mainly use the MASCDB [1] and most take advantage of the 3D images within the

database. In this thesis, we seek to use single-view 2D, gray-scaled, images that would

replicate data captured without the use of Multi-Angle Snowflake Camera, such as a

single camera or GoPro. This is done by extracting features from the images, and not

using the images themselves as input in the prediction models. This method seeks

to be more cost-effective in capturing snowflake data and seeks to better analyze and

estimate the drag coefficient.

2.1.6 Reynolds Number and Flow Regimes

The Reynolds number is an important descriptor of falling particles that impacts

the drag coefficient [21, 38]. The Reynolds number is calculated using equation 2.6

and in the case of falling snowflakes, the fluid used is the atmosphere. In the tank

experiments by Köbschall et al [14], the fluid density and viscosity would change

respectively with the fluid density and viscosity of the water-glycerol.

Re = Density of Fluid × Terminal Velocity × Particle Diameter
Viscosity of Fluid (2.6)

19



In order to use equation 2.6, one would need to have measurements of the particle

diameter and velocity. Both can be obtained via simple camera setup, capturing

falling snowflakes with with a FPS above 100. This is currently being investigated

by our team with a GoPro, a macro lens, and a wooden tunnel with a wind-shielded,

snowflake capture box. With this process, one can calculate the Reynolds number,

define the shape class, and get high quality, single-view 2D snowflake images, all

necessary for our model inputs.

The Reynolds number of a particle has a great impact on how that particle falls

and flows through the atmosphere. Tagliavini et al (2022) [38] breaks up Reynolds

number into two groups, low (Reynolds number (Re) ≤ 400) and moderate/high

(Reynolds number (Re) > 400). In the low Re group, snowflakes are characterized

with a steady flow, meaning that the velocity or orientation does not change over

time, remaining in the same orientation as it falls. Then for moderate/high Reynolds

number snowflake flakes, tend to have an unsteady flow, characterized by their chaotic

falling nature, changing velocity, and unknown final orientation. Tagliavini et al

(2021) [21] ran simulations with a Delayed-Detached Eddy Simulation model on falling

snowflakes at varying Reynolds numbers. It was found that for almost all snowflakes

with low Reynolds number, characterized here as Reynolds number (Re) ≤ 250, had

steady flow. Because of the steady nature of the fall, it was relatively easy for their

model to predict, only having ±7% experimental error in predicting drag coefficient.

At moderately high Reynolds numbers (Reynolds number (Re) > 250, snowflakes

with unsteady flow, their model struggled to predict the drag coefficient, with errors
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obtained larger than 30%. It is clear from Tagliavini et al [21, 38] that the Reynolds

number has a great impact on how a snowflake falls and the drag coefficient. They

present low and moderately high Reynolds number regimes with differences in flow

that ultimately effect their drag coefficient prediction for the two regimes. The thesis

seeks to expand on this work by splitting up our model into two different Reynolds

number regimes, and training two different models to accurately predict the drag

coefficient, creating an ensemble method. With just a single model, the model will

try and understand the relationships between Reynolds number, shape, and image,

but might fall short due to the major differences in those relationships in the different

regimes. See Chapter 3 for results on single and ensemble methods.

2.1.7 Overview of Related Methods

We propose to use single-view 2D, gray-scaled images from Locatelli and Hobbs [2]

with physics methods to extract the drag coefficient from the dataset and use ma-

chine learning to perform a cost-efficient and easy-to-use snowflake drag coefficient

prediction. This is done by extracting features from the images, which has been

shown to help in Leinonen and Berne [13], and without 3D convolution models, such

as Leinonen et al [8] uses for mass predictions and Hicks et al [30] uses for shape clas-

sification. By extracting features from the single-view 2D image, we avoid extracting

additional snowflake descriptors such as the convex hull or shape factors that vari-

ous empirical correlations use, while still maintaining accuracy in the drag coefficient

prediction. Our results will be summarized and compared directly to various drag

coefficient correlations to address our model’s performance, which is summarized in

Chapter 4.
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Chapter 3

Drag Coefficient Prediction
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3.1 Preprocessing Data

3.1.1 Drag Coefficient Calculation

This thesis focuses on using the snowflake image itself to improve the prediction of

the drag coefficient. The Locatelli and Hobbs [2] dataset includes the snowflake image

(see Figure 3.1 for original snowflake image), mass, diameter, fall velocity, air density,

air viscosity, shape class, and Reynolds number for each snowflake with identifying

numbers for labeling sake. In this thesis, mass, diameter, fall velocity, air density,

and air viscosity were not used from the dataset because they have dimensional units;

only dimensionless features can be used to predict drag, as itself is dimensionless.

Therefore, we are using the Reynolds number and shape classifier from the dataset.

The drag coefficient was calculated for each snowflake by equation 3.1, with reference

area being the area of the snowflake in the 2D images.

CD = Mass × Acceleration due to Gravity
0.5 × Air Density × Velocity2 × Reference Area

(3.1)

3.1.2 Background Removal

The initial step was removing the background of the snowflakes for feature extraction.

The snowflakes given by Locatelli and Hobbs (1974) [2] had a non-black background

and a colored border around the snowflake edge. Most modern snowflake datasets

have their snowflakes against a black background, such as the MASCDB ( [1]Grazioli

et al 2022). As shown in Figure 3.1, there are multiple parts of the background that

are grey, adding extra noise to the image. Feature extraction on the original snowflake
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images would add unnecessary information from the image background and border.

To get an accurate feature reduction on the image, the only non-black pixels of the

snowflake image should be the snowflake itself. To remove the background of the

snowflakes, neural networks that specialize in object detection were used. U2-Net [39]

and EfficientNetB7 [9] were tested to remove the background of the snowflake, without

removing sections of the snowflake. In our experiment, U2-Net [39] could not catch

the subtleties of the edges of the snowflakes, resulting in some unremoved background.

EfficientNetB7 [9] found and removed the subtleties of the snowflake and succeeded

in removing the rest of the background. Therefore, EfficientNetB7 was adopted to

process the background of all the snowflakes. Both models failed to remove the blue

border Locatelli and Hobbs [2] drew around the snowflakes. Thus, a custom image

processing function was made to remove certain colors of blue from the image that

were only found on the border. This was done by inspecting the RGB quantities of

the border colors and replacing certain blue pixels with black pixels by filtering them

from the identified RGB value range. In this manner, the Locatelli and Hobbs [2]

snowflake images were just the images of the snowflake with a black background,

matching the snowflakes in MASCDB [1]. One sample processed snowflake image is

visualized in Figure 3.2. However, the images are of size 2128 × 3256, which is too

large to fit in the deep learning detection model. To improve computational run time,

while still keeping a high-quality image, the images were scaled down to 256 × 256.

Each image was inspected manually to assess the quality of the images. The images

that lacked quality were removed. Data points with missing data, or outliers, for

certain features were also removed. This lowered the data count to 128 points.
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Figure 3.1: Original Snowflake Image from
Locatelli and Hobbs (1974)

Figure 3.2: Snowflake from Fig 1. with
Background and Border Removed

3.1.3 Feature Extraction on 2D Images

For feature reduction, Principal Component Analysis (PCA) [16] and Kernel-Principal

Component Analysis (KPCA) [17] were considered. PCA uses the covariance matrix

and eigenvalues to reduce the image array to a lower dimension. Kramer (1991) [40]

demonstrated that the combination of non-linear PCAs and neural networks perform

well together. Cao et al (2003) [41] compared PCA, KPCA, and ICA (independent

component analysis), and presented that KPCA performed the best for feature ex-

traction/reduction. Cramer et al [42] found similar results to Cao et al [41], that

found that non-linear PCA (KPCA) via ’rbf’ kernel performed the best in their fea-

ture extraction comparison between KPCA and autoencoders. Both methods are

cost-effective and robust but it is clear from literature [41, 42] that KPCA is better

for our use case than PCA.

The Radial Basis Function (RBF) [43] kernel empowers PCA to capture nonlin-

ear patterns in data, whereas the original PCA only captures linear patterns in data.

Thus, the RBF kernel allows a more accurate feature reduction on images with com-
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plex structures, such as snowflakes. To get the data ready for KPCA, the images were

flattened to a single array containing all the pixel values of the image. Normalization

was then performed to standardize the pixel data to a mean of 0 and a variance of 1.

This will ensure that all the pixels of the snowflake will contribute more equally to the

KPCA analysis, preventing dominance from any particular feature due to its scale,

such as the black background. The number of features extracted from KPCA was

tested for the best results. In total, the number of features extracted was limited to

1, 3, and 5. The extracted features were merged with each data point in our dataset,

leaving us with three datasets, one for each number of features extracted.

3.2 Machine Learning Methods

To test if feature extraction is pulling meaningful features, different machine learn-

ing models were made to test the accuracy of models with the different numbers of

extracted features. These models were compared to models with no image feature

reduction feature to evaluate if the extracted features were improving the model.

The different models tested were (1) random forests [10], (2) XGBRegressor [11], (3)

Multi-Layer Perceptron (MLP) neural network [12], and (4) Ensemble of two MLP

models split at Reynolds number of 158. Sklearn [44], XGBoost [11], and PyTorch [45]

packages were used for implementation respectively. Mean Squared Error (MSE) is

adopted for evaluating the accuracy. The shape class in the Locatelli and Hobbs [2]

dataset is represented as a string, thus one hot encoding was used to transform shape

strings into classes represented by integers.
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3.2.1 Random Forests

Random Forest [10] is a type of ensemble method that combines decision trees to

create a more powerful predictive model. A set number of decision trees are made and

each tree is trained with bootstrapped samples (also known as bagging), a random

sample of training data with replacement, allowing for each tree to be trained on

different but similar samples of the data. The trees are then averaged for the final

regression prediction. Initial testing was done with a random forest model with

default hyperparameters to create a control model to test against. After, models

were trained with random search and grid search with cross-validation. Randomized

search was done on the hyperparameters: n_estimators, max_features, max_depth,

min_samples_split, min_samples_leaf, and bootstrapped samples or not. The data

was split into train and test sets by a ratio of 75% to 25% with a random state of 42.

The most optimal hyperparameters were saved and used for error calculations.

3.2.2 Extreme Gradient Boosting

XGBoost (Extreme Gradient Boosting) [11] has been known to perform very well on

tabular data. Given the feature reduction on the snowflake, our dataset is purely

tabular, making XGBoost an excellent model for drag coefficient prediction. For our

case, the XGBoostRegressor model is implemented. The great performance of XG-

BoostRegressor is because it creates an ensemble of sequential decision trees which are

added one by one to correct prediction errors made by previous decision trees. This

process is known as boosting, hence the name of the model. XGBoost differs from

random forests mainly by using boosting over bagging to create its decision trees
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and add trees sequentially rather than averaging the results of each decision tree.

Again, an initial model is created with XGBoostRegressor to be used as a control

with Reynolds number, shape class and without any KPCA features. Both were done

with the grid search of variables: learning_rate, max_depth, and n_estimators with

a KFold cross-validation of 5. The data was split into train and test sets by a ratio of

75% to 25% with a random state of 42. The best estimator for each cross-validation

and hyperparameter search was used for testing.

3.2.3 Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) [12] models are a type of neural network that is used

across the machine learning field to tackle regression and classification problems.

MLP models consist of an input layer, hidden layers, and an output layer. The input

layer takes in the data and has nodes that corresponds to a feature in our dataset.

The input layer feeds into multiple hidden layers where the learning is done. Each

node has bias and each connection between the nodes has a corresponding weight.

By training the model we are adjusting these weights and bias during a process called

forward propagation. This is done by using activation functions, in our case, ReLU

functions, that take the summed output of the hidden layers to produce an output

that is used in the next hidden layer, or output layer. The activation function, ReLu,

introduce non-linearity to our model. The output layer takes in the input from the

last hidden layer and produces a final prediction for our model. In our case, we are

predicting drag coefficient, therefore our output layer returns a single node, which

is the prediction. During the training process, the backpropagation compares our
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prediction values at each layer and adjusts weights and biases to minimize our error

(mean squared error, equation 3.2.3).

MSE = 1
N

N∑
i=1

(xi − yi)2 (3.2)

To accommodate the need that the input data has different numbers of features

because KPCA is employed for image feature extraction, we design three variant

models which take 3, 5, and 7 input features for the number of KPCA output of 1,

3, 5 respectively and the remaining is for Reynolds number and shape classifier. We

employ a general MLP architecture that consists of five hidden layers with a ReLU

activation function between every layer and dropout layers with a probability of 0.2

after the first layer and the second layer. Each layer has (n × 2) + 1 nodes more

than the previous layer for the first half (scaling) and (n−1)
2 nodes for the second half

(descaling) of the model.

3.2.4 Ensemble of MLP Models Split at Reynolds

Number

Objects and snowflakes flow differently with different Reynolds Numbers which af-

fects the type of fall of snowflakes. With a low Reynolds Number, the snowflake is in a

steady flow regime. But with moderate to high Reynolds number (Reynolds number (Re) >

400), the flow regimes turn unsteady [38]. Fully training a machine learning model

on both different types of flow regimes might have negative impacts on the results,

as physics acting on the snowflakes is different. Creating an ensemble model of the
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two different flow regimes, the MLP models can accurately learn the different flow

regimes, and not fight each other by altering weights in the original MLP model.

The MLP model was split at a Reynolds Number of 158 (splitting the dataset at 400

causes too little data in the moderate to high Reynolds number group, causing the

model to overfit the data), for a relatively even split of 65 data points below Re = 158

and 62 above Re = 158. This split still increases the prediction of the model without

overfitting the data. The same architecture as the full MLP model was used for the

lower and upper flow regimes.

3.2.5 Training the Machine Learning Models

For all the machine learning models, the Reynolds Number and the KPCA extracted

feature(s) were standardized with Min Max Scaler. standardizing input data is a

common practice in deep learning model training and can improve the convergence

of the model. A custom PyTorch [45] dataset class was created to load the data and

change the data type of features to float32. The "id" label for each snowflake was

included in the custom dataset. This proved to be necessary for combining the test

datasets with additional data for result comparisons. The data was split into 75%

and 25% denoted as the training set and testing set respectively. During training, the

batch size was set to 8 with random shuffling of the data. The Adam optimizer [46]

with a learning rate starting at 1e − 3 and Equation 3.2.3 was used in the training

process of the model. A learning rate scheduler was used with a step size of 100

and gamma of 0.5, thus halving the learning rate every 100 epoch steps. These

configurations are also applied to the ensemble MLP model. The dataset was split
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at Re = 158, each loaded with its own custom dataset and data loader. The models

were trained sequentially, each using a unique optimizer with the same setting as

training the MLP model. A custom class was built that reads in Reynolds number

of the input and predicts with the correct model, being sent to the lower model if

Re ≤ 158 or upper model if Re > 158.

3.3 Overview of Results

3.3.1 Results from Machine Learning Testing

Every model discussed in the Methodology section was evaluated on the Locatelli

and Hobbs [2] dataset. First testing was done on the random forest algorithm. A

baseline model was run and evaluated with cross-validation and a random search for

hyperparameter optimization on the Reynolds number and shape class. Shown in

Table 3.1, this model gave a baseline test Mean Squared Error (MSE) of 0.236. It

was found with the models ran with one and three features extracted from the images

via KPCA, gave slight improvements on test MSE with our best random forest model

performing with a test MSE of 0.230 on a single feature extracted from the images.

From the random forest models experiment, it concluded that the smaller number

of features extracted, the more accurate our prediction model became. Our random

forest models outperform the baseline model, showing that KPCA feature extraction

from the Locatelli and Hobbs [2] images is improving the model.

We saw a similar trend in the XGBoosterRegressor models. As shown in Table 3.2,

the baseline model was run and evaluated on Reynolds Number and shape and gave

31



a test MSE of 0.232. Running models with one, three, and five feature extraction,

the model with three features extracted outperformed the models with one and five

feature extraction, with a test MSE of 0.209. The models with one and five features

extraction did not outperform the control model.

Moving to the most complex model that was tested and evaluated, the multi-

layer perceptron. Shown in Table 3.3, a baseline model was made with just Reynolds

Number and shapes, which was the worst model performance out of all the baselines

tested and evaluated, with a test MSE of 0.591. Our results found that the more

features we had, the better the model did at prediction, the opposite of our other

models. Random Forest performed best with one feature extraction, XGBoostRe-

gressor performed best with three feature extraction, and the MLP model performed

best with five features extracted. Our best model performance resulted in a test MSE

of 0.320. The MLP model was not outperforming the random forest and XGBoost

models. The split MLP model at Reynolds number=158 started to outperform all

the models tested. Shown in Table 3.4, a baseline model was performed to get a test

MSE of 0.625. As we added the extracted features, the model started to outperform

the other methods. The best test MSE achieved was 0.195 with 5 features extracted.

This model outperformed the rest of the models and tests, becoming our best model.

Figure 3.3 shows the prediction from the best model compared to the actual drag

in the testing data. The blue line is Y = x, thus if a point is closer to the blue

line, the more accurate the prediction is. Figure 3.4 shows the error plot for Figure

3.3, showing the squared difference between the real drag and the predicted drag.

The closer a point is to line Y = 0, the more accurate the data point is. The split

MLP model proved to outperform the single MLP model, showing that the ensemble
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method benefited from learning in distinct flow regimes rather than one model trying

to capture the nature of two different flow regimes.

Using our best model, being the MLP ensemble model with five features extracted

from snowflake images, our best MSE was achieved of 0.195. To check if our model

is outperforming empirical correlations in literature [3–7], each empirical correlation

was calculated with the Locatelli and Hoobs [2] dateset. For Heymsfield and West-

brook [3], the Reynolds number and area ratio, defined as the area of the particle

projected normal to the flow divided by the area of the circumscribing disc, were

used from the test set to calculate the drag coefficient by Equation (2.1), achieved a

test MSE of 0.269, failing to beat our model. See Figure 3.5 for direct comparison

between correlation and model. The next correlations tested, Hölzer and Sommer-

feld [4], Ganser [5,6], and Haider and Levenspiel [7], all required sphericity, cross-wise

sphericity, and length-wise sphericity to calculate. A custom physics-based neural

network was made to extract these features from the image. Running this model

on the Locatelli and Hobbs [2] images gave the sphericity variables needed. Using

these, Hölzer and Sommerfeld [4] correlation, Equation (2.2), achieved a test MSE of

0.221. See Figure 3.6. Next, Ganser [5] and the Ganser with Leith shape factor [6],

Equation (2.3) and Equation (2.4), respectfully, achieved a test MSE of 0.282 and

0.286. See Figure 3.7 and 3.8, respectfully. Lastly, Haider and Levenspiel [7], Equa-

tion (2.5) achieved a test MSE 0f 0.220, the best that we have seen from the drag

correlations. See Figure 3.9. Table 3.5. summarizes the comparisons of our model

and the empirical correlations.
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Table 3.1: Regression Results on Drag Coefficient with Random Forest Cross Validation of
3 and Random Search Hyperparameter Optimization

# of Features Test MSE
0 - Baseline 0.236
1 0.230
3 0.231
5 0.242

Table 3.2: Regression Results on Drag Coefficient with XGBoostRegressor KFold of 5 with
Grid Search Hyperparameter Optimization

# of Features Test MSE
0 - Baseline 0.232
1 0.234
3 0.209
5 0.244

Table 3.3: Regression Results on Drag Coefficient with MLP Models

# of Features Test MSE
0 - Baseline 0.591
1 0.399
3 0.327
5 0.320

Table 3.4: Regression Results on Drag Coefficient with Ensemble MLP Models split at
Reynolds Number 158

# of Features Test MSE
0 - Baseline 0.625
1 0.212
3 0.211
5 0.195
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Figure 3.3: Locatelli and Hobbs [2] Dataset
Drag Coefficient Prediction vs Actual Drag
Coefficient

Figure 3.4: Error Plot for the Locatelli and
Hobbs [2] Dataset Drag Coefficient Predic-
tion vs Acutal Drag Coefficient

3.3.2 Comparison to Empirical Correlations

Using our best model, being the MLP ensemble model with five features extracted

from snowflake images, our best MSE was achieved of 0.195. To check if our model

is outperforming empirical correlations in literature [3–7], each empirical correlation

was calculated with the Locatelli and Hoobs [2] date set. For Heymsfield and West-

brook [3], the Reynolds number and area were used from the test set to calculate

the drag coefficient by Equation (2.1), achieved a test MSE of 0.269, failing to beat

our model. See Figure 3.5 for direct comparison between correlation and model. The

next correlations tested, Hölzer and Sommerfeld [4], Ganser [5, 6], and Haider and

Levenspiel [7], all required sphericity, cross-wise sphericity, and length-wise spheric-

ity to calculate. A custom physics-based neural network was made to extract these

features from the image. Running this model on the Locatelli and Hobbs [2] im-

ages gave the sphericity variables needed. Using these, Hölzer and Sommerfeld [4]

correlation, Equation (2.2), achieved a test MSE of 0.221. See Figure 3.6. Next,
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Table 3.5: Drag Coefficient Prediction Comparison versus empirical correlations

Model/Correlation Test MSE
Our Model (Split MLP) 0.195
Heymsfield and Westbrook (2010) 0.269
Hölzer and Sommerfeld (2008) 0.221
Ganser (1993) 0.282
Ganser (1993) w/ Leith Shape Factor 0.286
Haider and Levenspiel (1988) 0.220

Ganser [5] and the Ganser with Leith shape factor [6], Equation (2.3) and Equation

(2.4), respectfully, achieved a test MSE of 0.282 and 0.286. See Figure 3.7 and 3.8,

respectfully. Lastly, Haider and Levenspiel [7], Equation (2.5) achieved a test MSE

0f 0.220, the best that we have seen from the drag correlations. See Figure 3.9. Table

3.5. summarizes the comparisons of our model and the empirical correlations.
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Figure 3.5: Heymsfield and Westbrook [3] Drag Coefficient estimation compared to our
models drag prediction with the real drag coefficient present.

3.3.3 Comparison on Mass Prediction

Mass and drag coefficient can be converted back and forth, with Eq. 3.3, as we did

with Locatelli and Hobbs [2] mass recordings to obtain the drag coefficient data. Our

drag coefficient predictions can be converted back into the mass by the following

equation.
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Figure 3.6: Hölzer and Sommerfeld [4] Drag Coefficient estimation compared to our models
drag prediction with the real drag coefficient present.

Mass = CD
Acceleration Due to Gravity × 0.5 × Air Density × Velocity2 × Area (3.3)

Equation 3.3 allows us to do a mass estimation comparison with the 3DGAN

model made by Leinonen et al [8]. Unfortunately, given that their model performs

on 3D data, a direct comparison of their model on the Locatelli and Hobbs [2] is not

possible. In Leinonen et al [8] they present their mass estimations against 3D printed

38



Figure 3.7: Ganser [5] Drag Coefficient estimation compared to our models drag prediction
with the real drag coefficient present.

snowflakes giving a test NRMSE (normalized root mean squared error) of 42.000.

With our model, we achieved a mass estimation test NRMSE of 46.714. See Figure

3.10 and Figure 3.11 for a comparison of predicted mass compared to reference mass

and Reynolds number, respectfully.
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Figure 3.8: Ganser [5] with Leith shape factor [6] Drag Coefficient estimation compared to
our models drag prediction with the real drag coefficient present.
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Figure 3.9: Haider and Levenspiel [7] Drag Coefficient estimation compared to our models
drag prediction with the real drag coefficient present.
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Figure 3.10: Locatelli and Hobbs [2] Drag coefficient estimation converted to mass and
compared against mass recorded by Locatelli and Hobbs.
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Figure 3.11: Locatelli and Hobbs [2] drag coefficient to mass and mass recorded by Locatelli
and Hobbs against Reynolds Number
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Chapter 4

Discussion of Results and Meth-

ods
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It was found that combining EfficientNetB7 [9] with KPCA feature reduction [17]

on 2D snowflake images from Locatelli and Hobbs [2] to obtain extracted features

was an effective and accurate method of obtaining the drag coefficient of snowflakes.

This method is cost-effective and quick, making it very easy to format data and use

it with machine learning models. Specifically, EfficientNetB7 [9] proved to be a very

useful tool for teams to use to remove the background on their own snowflake data.

4.1 Empirical Correlations

In Figures 3.5-3.9, we show our models predictions against various empirical correla-

tions and the actual drag coefficient calculated with data from Locatelli and Hobbs [2].

As shown in Figure 3.5, Heymsfield and Westbrook [3] correlation is compared against

the model prediction and the actual drag coefficient. Heymsfield and Westbrook [3]

follows the curve where the drag coefficient decreases as Reynolds number increase,

with little spread on that curve. The actual drag data, represented as green crosses,

don’t follow tightly along this curve. Most of the correlation estimation falls in be-

tween drag coefficient values 0.5 to 1.0, only predicting two values above 1.0, thus

failing to capture a section of the testing data. The real drag is much more scattered,

but generally follows the same curve, with the drag coefficient decreasing as the

Reynolds number increases. Our model follows the same curve but has the scattered

nature that the real-world drag data captures. Moving to Hölzer and Sommerfeld [4]

correlation in Figure 3.6, their estimations of drag follow a similar curve, where the

drag coefficient decreases as the Reynolds number increases, but does not predict well

for drag coefficient values below 1.0. The curve is more shallow than the Heymsfield
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and Westbrook [3] curve, that predicts drag coefficient values below 1.0 and predicts

correctly the smaller drag coefficient values around 0.5. The correlation predicts val-

ues mostly between 0.8 to 1.5, a larger range than the Heymsfield and Westbrook [3]

correlation. More accurate drag coefficient values exist in this range, giving Hölzer

and Sommerfeld [4] a slightly better MSE value than Heymsfield and Westbrook [3].

Next, the Ganser [5] correlation in Figure 3.7 does have the scattered nature, not

noticeably following a curve, unlike Heymsfield and Westbrook [3] and Hölzer and

Sommerfeld [4]. This nature did end up negatively impacting the Ganser [5] cor-

relation’s MSE. This is because the scattered trend is mostly between drag values

of 0.6 to 1.0. Failing to capture larger and lower drag coefficient values. We see a

very similar result with Ganser with the Leith shape factor correction [6]. The only

difference between the two correlations is a small change in kS calculation, using the

square root of length-wise sphericity multiplied by the first term in the shape factor

calculation. As seen in the results in Table 3.5 and comparing Figure 3.7 and Figure

3.8, the shape factor correction did not to the estimation quality of the correlation,

in fact, it made the MSE slightly larger than without the shape correction. Lastly,

the Haider and Levenspiel [7] correlation in Figure 3.9, performed the best out of all

the empirical correlations. Figure 3.9 follows a similar downward trend curve that we

have seen in Figure 3.5 and Figure 3.6, where the drag coefficient decreases with the

increase in Reynolds number. We see a more loose fit to this curve with moderate

scatter along the curve, with most of the drag coefficient values falling between the

range 0.8 to 1.5, which results in the Haider and Levenspiel [7] correlation obtaining

the best test MSE among the empirical correlations.

Looking more specifically at our model prediction versus the real drag coefficient
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data, by looking at any Figure 3.5-3.9, we see that our model does follow a general

trend that the empirical correlations follow. As the drag coefficient decreases, the

Reynolds number increases. The model has some scatter along this curve. The model

is struggling in the prediction of snowflakes with lower Reynolds number and lower

drag coefficient (CD < 1). With the model being split at Re = 158, this can be

accounted for by the lower Reynolds number regime model. There is some crowding

between 1.0 to 1.5 that occurs in the lower regime model. The upper regime model is

performing very well, capturing the spread of the real drag coefficient. Both models

would perform better given there was more data from the Locatelli and Hobbs [2]

available, but unfortunately there is not.

4.2 Mass Estimation

We also experimented with converting the drag coefficient to mass. Compared with

the reference mass recorded by Locatelli and Hobbs [2], we achieved a MSE of

1.218 ∗ 10−14 and NRMSE of 46.714, illustrated in Figure 3.10 and 3.11. Unfor-

tunately, Leinonen et al [8] predicted mass using the multi-angled snowflake camera,

capturing three images of the falling snowflake at three different angles on artificial

snowflakes. Because of this, we are unable to test our results directly against their

3DGAN. Therefore, comparisons against NRMSE from two different datasets, both

predicting mass are the closest we can get to comparing the two models. The 3DGAN

mass estimation on artificial snowflakes obtained an NRSME of 42. There is only a

difference of 4 between the 3DGAN and our model, showing that our models are very

similar in predicting mass, but with our model having a much simpler architecture

47



over the 3DGAN [8], which uses three 2D views of the same snowflake and convo-

lutions to obtain mass, while our model uses one 2D image of the snowflake with

Reynolds number and shape class. Leinonen et al [8] presented their model against

other models predicting mass, including Matrosov et al [28] and Baker and Law-

son [29]. Both articles and methods were applied to individual 2D MASC images of

artificially created snowflakes, calculating mass for each 2D image and then averaging

the three image views to get the mass. Matrosov et al [28] obtained a NRMSE of 103

and Baker and Lawson [29] obtained a NRMSE of 68. Our model outperforms both

methods that use single 2D images to extract mass, showing that our method, to

our knowledge, is the most accurate method of extracting the mass from snowflakes

using single-view 2D snowflake images. However because they validated their results

on artificially created snowflakes and not real snowflakes, the comparison should be

taken with some caution.

4.3 Testing on MASCDB and Transfer

Learning

In machine learning, the more data you have, the better your model will be. Using

Locatelli and Hobbs [2], we were limited to only 128 data points. Snowflakes outside

of the fall speed range described by Fitch et al 2021 [36] were removed from the

database, but snowflakes in the fall speed range still have a small inherent error from

the presence of wind.

The same model architecture was used and applied to the MASCDB dataset. 1372

data points from MASCDB were pulled from the MASCDB and were trained similarly
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to the Locatelli and Hobbs [2] dataset, but without a learning rate scheduler, which

should not greatly effect the results given. In Figure 4.1, we notice two lines with a

constant slope of 0. The lower and upper Reynolds number regime models both got

stuck, resulting in both predicting the same value, of around 8 and 4. There was a

great effort to optimize the MASCDB model, with just a single MLP model, and the

ensemble of two MLP models, but there was always an issue with the models being

stuck or overfitting the data. This was another reason why we used the Locatelli and

Hobbs [2] over the MASCDB [1]. The best model trained on Locatelli and Hobbs [2]

was applied and tested on MASCDB data [1], resulting in a test MSE of 47.490.

Figures 4.2 and 4.3 show the prediction compared to the actual drag and the error

produced, respectively. The results are very scattered with a lot of error present.

Looking at Figure 4.4, it shows the actual drag coefficient compared to the predicted

drag on a graph comparing the drag coefficient and Reynolds number. It is clear in

this graph that the model does not accurately capture the nature of the MASCDB [1],

thus resulting in a lot of error. The data is very scattered, following no obvious trend

as we see in Figures 3.5-3.9, with the Locatelli and Hobbs [2]. Until we zoom out

in Figure ?? and see that there is a similar trend to Figure 2.3, but with a lot more

scatter, which could be accounted for by the 3DGAN [8] only validating their model on

artificial snowflake data. Our model was tested and validated on real snowflake data

and images, making our results on MASCDB more plausible than the drag coefficient

data converted from mass estimations with 3DGAN [8]. It is important to note

that the MASCDB [1] has a greater range of drag coefficient and Reynolds number.

Locatelli and Hobbs [2] maximum drag coefficient and Reynolds number is 2.5 and

600, respectively. While MASCDB [1] has a maximum drag coefficient and Reynolds
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number of 40 and 1000, respectively. This does make the problem of drag coefficient

prediction much harder given the larger range of values, this could account for some

of the challenges encountered in the training and testing process with MASCDB [1].

Given the issues with 3DGAN mass estimation and fall velocity measurements, which

both in turn effect our transformation from mass of the snowflake to drag coefficient,

it was concluded that using the MASCDB with mass estimations from [8] Leinonen

et al. (2021) for training and validation data would introduce a lot of noise and error

into our model. This was also found to be true when running our model with training

and validation data from MASCDB seen in Figure 4.1. Transfer learning also did not

show to be successful as shown in Figures 4.2, 4.3, and 4.4.
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Figure 4.1: MASCDB [1] Drag Coefficient estimation compared to the 3DGAN [8] predic-
tions of mass converted to drag coefficient.

4.4 Feature Importance

A feature importance analysis can be done with the extracted KPCA features with

Reynolds number and shape class via random forests by using random forest mean

decrease impurity (MDI) [19, 20]. In random forest models, all the trees are created

at once, while constructing them, the mean decrease in impurity is found for each

feature in each tree. The calculation for the decrease in impurity is done by calcu-
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Figure 4.2: Locatelli and Hobbs [2] Model
Transfer Learning on MASCDB [1]

Figure 4.3: Error Plot of Transfer Learning
on MASCDB [1]

Figure 4.4: Locatelli and Hobbs [2] prediction model tested on MASCDB data.

lating Gini Impurity [19, 20], which counts each time that feature was used to split

the tree. We can average the mean decrease in impurity for each feature in all the
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trees, just as the random forest does for its final regression prediction, to get the

average feature importance of each feature. Figure 4.5 shows this ranking. Specifi-

cally, the Reynolds number is the most important feature, followed by KPCA1, the

first extracted feature from the five extracted features, followed by KPCA4, KPCA3,

KPCA5, shapes, and KPCA2. This ranking does make sense as the Reynolds number

is extremely important in the prediction of drag coefficient, as we see in Eq. 2.1-2.5,

all use the Reynolds number. KPCA1 being the 2nd most important rank also does

make sense, since in the KPCA feature extraction, the first feature extracted is the

most important feature. It was expected that KPCA5 would be the lowest rank as

it is the least important feature extracted from the KPCA feature extraction, but we

find that KPCA2 is the lowest ranked importance. Shape classification also did not

receive a high rank, being 6th ranked for importance, behind KPCA2. This could

be because the KPCA feature extraction and MLP model are learning the shape of

the snowflake, making the actual shape classification a shallow feature, not giving as

much information as KPCA 1-5, thus making it unimportant.
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Figure 4.5: Feature importance graph of five extracted features from KPCA, with Reynolds
number and Shape class, using random forest Mean Decrease Impurity (MDI)
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Chapter 5

Conclusions
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5.1 Summary

To address the challenges with drag coefficient prediction with 2D images, we propose

a method to remove the background and border of 2D images with EfficientNetB7

[9], use KPCA [17] to extract features from the images, to be used with the Reynolds

number and shape class on an ensemble method of two MLP models, each trained on

different Reynolds number flow regimes to predict the drag coefficient on the Locatelli

and Hobbs dataset [2]. This method is cost-effective and time-efficient as it uses purely

tabular data. Researchers can capture single-view 2D images of falling snowflakes,

where Reynolds number and shape class can be determined from visual analysis of

each snowflakes, to accurately predict the drag coefficient, avoiding expensive equip-

ment and methods to produce 3D images and calculate different sphericity features.

Our method was compared directly against the following empirical correlations: (2.1)

Heymsfield and Westbrook (2010) [3], (2.2) Hölzer and Sommerfeld (2008) [4], (2.3)

Ganser (1993) [5] and (2.4) with Leith shape factor correction [6], and (2.5) Haider

and Levenspiel (1988) [7] tested on the Locatelli and Hobbs dataset [2]. It was found

that our model outperformed all empirical correlations presented, with a test MSE of

0.195, with the best empirical correlation being (2.5) Haider and Levenspiel (1988) [7]

with a test MSE of 0.220. It was shown that the KPCA extracted features added

valuable information to our model from feature importance analysis using mean de-

crease impurity (MDI), and is recommended for analysis of feature importance in

future work.
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5.2 Future Work

The architecture used in the MLP model is not deep, with only five hidden layers,

this can be accounted for by the lack of data, with only 128 data points. Presently,

deeper architecture has not been explored, past nine hidden layers, as the model

starts to overfit. In the future, with more high-quality 2D image data being captured,

this could increase the accuracy of the model by a significant amount. With more

data, deeper architectures should be explored to improve the benchmarks set by our

ensemble MLP method.
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