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Abstract

The Internet of Things (IoT) connects a vast number of smart objects for various applications,
such as home automation, industrial control, and healthcare. The rapid advancement in wireless
technologies and miniature embedded devices has enabled IoT systems to be deployed in various
environments. However, the performance of IoT devices is limited because of the imbalance of data
traffic on different router nodes. Nodes that experience high data volume will have a higher energy
depletion rate and, as a result, will reach the end of their life quicker than other routers that have
less data traffic. Genetic Algorithms are a well-known technique used to solve routing problems,
but it is essential to pay more attention to designing data routing protocols that take into account
a router’s data traffic load and position in the overall network topology.

The objectives of this thesis are two-fold. First, we propose a GA-based routing protocol for
hierarchical multi-hop IoT networks that identifies heavily congested routers and ranks them based
on their potential load. Second, we present a centralized approach to determine optimal routing
paths for IoT networks by utilizing a priori knowledge of the network topology. Additionally, we
conduct comparative analysis on the existing GA-based multi-hop routing protocols using simulation
data.

Our research has revealed that distributing the data load evenly on nodes can noticeably enhance
the network lifetime in comparison to other routing protocols. Our extensive simulations have
demonstrated that the routing approach that we have proposed, based on Genetic Algorithm (GA),
can significantly reduce energy consumption and improve network reliability.
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1 Introduction

1.1 Motivation

Internet of Things (IoT) have evolved from simple to complex scenarios due to the rapid development

of sensor technologies [1,2]. IoTs are now used to send large and complex information, which increases

the energy consumption of nodes and exacerbates the energy imbalance of the whole network [3].

The energy of the nodes is the most critical factor in the network’s lifetime, and reducing and

balancing energy consumption is a significant challenge. Dividing the network into clusters for data

transmission can help balance energy consumption and prolong network lifetime [4]. However, this

approach requires a considerable message overhead, and the energy consumption of data transmission

in this way is higher than that of plane routing. Due to its cost effectiveness, hierarchical multi-hop

routing for large-scale hybrid IoT networks has become very popular. This approach enables IoT

users to act as intermediate relaying nodes, reducing routing overhead and eliminating the need

for a fixed routing table [5]. The hierarchical routing protocol also increases network bandwidth

by transmitting data through multiple short hops, making it ideal for the hybrid IoT network

architecture.

Genetic algorithms (GAs) are widely used in modern metaheuristics, with numerous applications

in the routing problem domain, including sensor network routing [], vehicle routing problems [], and

school bus routing [23]. However, GAs have not made a significant impact on the multi-hop based

data routing for sensor networks yet. This study aims to propose a straightforward GA for the

basic centralized multihop IoT network, which is competitive with other modern heuristics in terms

of solution quality and computing time. The study also explores different operators of GA to find

optimal routing path. Computational results are presented for the proposed algorithm, along with

some of the well-known results obtained using network simulation.

1.2 Background

In this part, the outline of a few key ideas and foundation material that have been to a great extent

utilized all through this paper is given.

1.2.1 What is Internet of Things

A network of linked sensors called the Internet of Things (IoT) makes it possible for humans and

machines to communicate with each other easily [6]. It is made up of wirelessly communicating
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Figure 1.1: Representation of an IoT network in general. To be able to route data to the base
station, end nodes forward data to the nearest router.

sensors, actuators, and routers that provide real-time sensory data. The router is connected to

the inexpensive sensor nodes, sometimes referred to as end-nodes, which help in data collection

and decision-making [7]. After then, a remote server receives the sensory data for data gathering,

analysis, and real-time device control. Multiple routers and end nodes are part of the Internet of

Things architecture, as Fig. 1.1 illustrates.

The Internet of Things (IoT) aims to connect people with their surroundings through various

context-aware and reactive IoT devices [8]. This opens up a wide array of applications across multiple

disciplines. The applications of IoT are diverse, ranging from energy efficiency, such as smart

grids and household energy control systems, to automation, including industrial and automobile

control systems [9]. Additionally, there has been a recent surge in interest in IoT-based healthcare

applications for patient assistance, exercise regimens, and personal health monitoring. Thanks to

advancements in sensor technology, the Internet of Things can now be easily utilized for agricultural

and environmental purposes [10]. Some of the current IoT applications for the environment include

water quality monitoring, wildfire monitoring, and pollution monitoring.
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Figure 1.2: Example of various topologies used in IoT networks: (a) point-to-point, (b) star, (c)
mesh and (d) hybrid mesh topology.

1.2.2 IoT Architecture

IoT devices can work alone or together for practical applications and communicate via network

topology. Deployment can be random or predetermined. In predetermined topology, routes are

planned, and nodes know neighbors’ locations. In random deployment, nodes discover neighbors

during routing. IoT networks use point-to-point or multi-level configurations.

• Point-to-point topology: As shown in Fig. 2.1, this is the most fundamental architecture that

links two end devices, for instance a smartphone and a single sensor node.

• Star topology: If end nodes are close to the base station in a small IoT network, they can

communicate directly with it without the need for a repeater node. As the hub for all data

transmission, the base station serves as a central node in such networks.

• Mesh topology: IoT applications often require many devices to cover a large area, with the

base station outside the end nodes’ range. In mesh networks, nodes communicate via multiple

router nodes, acting as repeaters. Hybrid mesh networks use sparse connections to reduce

redundancy and are easier to install.

In this work, we consider a hierarchical IoT network, where nodes can function as either routers

or sensors. Sensor nodes are responsible for data collection and transmit it to a remote base sta-

tion via routers. At the base station, data from all sensors is processed, and routing decisions are

made in a centralized manner. This centralized approach provides greater control while minimizing

complexity. Hierarchical IoT networks strike a balance between resource efficiency, fault tolerance,

and scalability, making them an excellent choice for various IoT and sensor-based applications. In

contrast, mesh networks offer robustness in handling failures and adapt well to diverse scenarios.

However, they come with the trade-off of redundant paths, which can increase energy consumption

for sensor nodes with limited battery life. Despite this, hierarchical networks play a crucial role

3



in different industries. For instance: Continuous Patient Monitoring: hierarchical IoT networks

facilitate continuous monitoring of patients’ vital signs and health conditions [11]. Efficient Hospital

Resource Management: hospitals benefit from hierarchical structures for managing medical equip-

ment, patient data, and communication systems [12]. Traffic Light Control: hierarchical networks

contribute to efficient traffic light management, ensuring smooth traffic flow and safety [13]. Util-

ity Consumption Monitoring: real-time monitoring of utility consumption (e.g., electricity, water)

is achievable through hierarchical IoT networks [14]. Environmental Monitoring: hierarchical net-

works enable timely data collection and analysis for environmental parameters such as air quality,

temperature, and pollution [15]. As a result, we leveraged multi-hop hierarchical network structure

for our work to investigate the energy efficient routing of IoT networks.

1.2.3 Routing Techniques for IoT networks

IoT routing protocols are designed to be energy-efficient and non-redundant due to the limited power,

and capabilities of IoT devices [16]. While IoT network topology is mostly static, some applications

may involve mobile routers or sink nodes, which affect the network structure and require dynamic

updates to routing paths. Routing protocols can be classified into different sub-categories based on

network structure, as shown in Figure 1.

• Location based: This category routes sensory data using node positions determined by local-

ization methods or GPS. [17] describes examples of delivering data using nearby geographic

information.

• Hierarchical: Hierarchical networks have nodes designated as routers or end nodes based on

their energy levels and capabilities. Cluster-based approaches in protocols help minimize power

consumption in IoT devices.

• Flat-based: In flat-based network topology, nodes use broadcasting to deliver data to all

neighboring nodes until it reaches its destination. Enhanced versions of this architecture, such

as directed diffusion protocol and negotiation-based protocol, have been proposed to reduce

data redundancy and energy consumption.

IoT networks with fewer routers are more cost-effective but out of range for power-constrained

devices. Hierarchical multihop routing solves this by allowing users to act as relaying nodes for

their nearest neighbors [18]. This reduces routing overhead and increases network bandwidth by
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transmitting data through multiple short hops. The advantages of such networks make it an ideal

candidate for the work proposed herein.

1.2.4 Genetic Algorithm based Routing for Hierarchical IoT Networks

Cluster-based routing protocols are commonly used in hierarchical IoT networks. These proto-

cols split the network into clusters, with each cluster led by a cluster head [19]. Clusters reduce

communication overhead by aggregating data within them. The cluster heads handle intra-cluster

communication, simplifying routing. There are several examples of cluster-based routing meth-

ods. The Water-Cycle Algorithm is an algorithm that clusters dense, randomly distributed, and

heterogeneous IoT networks [20]. It combines clustering with software-defined networking (SDN)

using the Water-Cycle Algorithm (WCA) for enhanced efficiency [21]. The Hybrid Energy Efficient

Distributed clustering technique was adopted for IoT networks based on wireless sensor networks

(WSNs). It organizes nodes into clusters, with cluster heads responsible for local communication.

While cluster-based routing approaches offer benefits such as scalability, data aggregation, and opti-

mized channel utilization in hierarchical networks, they have some limitations compared to GA-based

routing approach. GA-based routing approaches have several advantages over cluster-based algo-

rithms. For example, GAs explore a wide solution space by maintaining a diverse population of

candidate solutions. This diversity allows them to discover novel and non-obvious solutions. In

contrast, cluster-based algorithms often focus on grouping data points into clusters, which may not

explore the entire solution space comprehensively [22]. Similarly, GAs adapt to changing environ-

ments by evolving solutions over generations. They can handle dynamic scenarios where the problem

landscape evolves. Cluster-based algorithms may struggle with abrupt changes or noisy data [23].

In summary, genetic algorithms offer versatility, adaptability, and global exploration, making them

advantageous for various optimization tasks beyond clustering.

The Genetic Algorithm compares a problem to an environment, where feasible solutions are

treated as individuals [24–26]. These individuals can be binary digits or symbols taken from a finite

set. Each individual is encoded and represents a solution to the problem [27]. Certain operations

are performed on these individuals to find the best optimal solution. This sections explains the

terminology and operators used in Genetic Algorithms to achieve a good solution for terminating

conditions [28].

1.2.4.1 Terminologies of GA A genetic algorithm starts with an initial population, selects

parents for mating, applies crossover and mutation operators to create new offspring, replaces existing
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individuals with offspring, and repeats the process [29]. This mimics human evolution to some extent.

In GA, the population is a subset of all possible encoded solutions to a problem. A chromosome

is a solution to the problem and consists of genes [30]. A gene represents an element position of a

chromosome, and an allele is the value a gene takes for a particular chromosome. Genetic algorithms

use genotype and phenotype populations to find solutions. The genotype population is used in the

computation space, while the phenotype population is used in the real-world space. Decoding and

encoding are used to transform solutions between the two spaces [31]. A fitness function evaluates

the suitability of the solution as output. The fitness and objective functions may be the same in

some cases, while they may differ in others.

1.2.4.2 Genetic Operators Genetic algorithms use selection, crossover, and mutation methods

to optimize solution. The selection method ensures that the highest-performing chromosomes are

used for breeding in the next generation. The crossover method involves splitting two strings at a

random point of crossover, reassembling them to form a pair of new chromosomes, and assessing

their fitness in the following generation [32]. Mutation involves flipping a random gene’s bit to help

escape potential local minima.

• Crossover: Crossover combines two parent solutions to create a child solution, improving the

quality of solutions in a population. Single-point crossover is commonly used in traditional

genetic algorithms [33]. Other crossover algorithms exist, but too many crossover points can

reduce performance by disrupting building blocks. More crossover points can help search the

problem space more thoroughly.

• Mutation: After crossover, genetic strings undergo mutation to prevent the algorithm from

becoming trapped in a local minimum. Mutation helps recover lost genetic materials and

randomly disturbs genetic information, acting as an insurance policy against the irreversible

loss of genetic material. It helps explore the entire search space while maintaining genetic

diversity in the population. Different kinds of representations require different mutation forms

[34]. However, care should be taken as this operator might reduce the population’s diversity

and cause the algorithm to converge towards local optima.

1.3 Research Objectives and Organization

The central question that this thesis aimed to answer was: how can GA-based routing techniques

improve link reliability and energy efficiency in resource-constrained IoT devices transmitting high-
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volume data in multi-hop IoT networks?

The research aimed to achieve two specific objectives. Firstly, a comparative analysis was con-

ducted between the proposed GA-based approach and the primary static following neighbor routing-

based protocol. Secondly, end-to-end network reliability and energy consumption assessments were

performed for the existing GA-based multi-hop routing techniques.

The thesis is divided into several sections. Section 2 describes the IoT network, systems model

and sensor details. In Section 3, we present the proposed GA-based routing technique that takes

advantage of the hybrid IoT network architecture and ranks router nodes based on their position in

the topology. This ranking helps distribute the load evenly, prevents data congestion, and enhances

network lifetime and reliability. In Section 4, simulation results are presented and performance of

the proposed GA approach is discussed. The results clearly demonstrated the benefits of identify-

ing potential highly-congested router nodes and showed how the proposed technique outperformed

comparable approaches. Section 5 summarizes the conclusions and provides avenues for future work.
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Figure 2.1: An IoT network with sensor nodes, routers and base station. As can be seen, some
routers are closer to the base compared to others, resulting in receiving higher data flow that will
eventually increase their energy consumption.

2 System Model

Different IoT network architectures may be of interest depending on specific applications in indoor

environments [35]. For our work, we consider a network with sensor nodes and routers that have

limited energy, insubstantial memory, and limited processing capabilities. Sensor nodes are deployed

randomly in an area to monitor and send periodically sensed data. Router nodes relay the received

data from the sensors in a multi-hop manner to a remote base station.

An example of such an application is IoT networks used for spatio-temporal analysis in indoor

environments [35]. When a node joins the network, it sends an acknowledgment message to the

nearest neighbors. Routers within the reception range of the node that sends acknowledgment

receipts are added to the neighbor list of that node. We assume that the base station has all the

topology information and leverages that information to plan data routing paths for all the sensors.

Running the algorithm centrally by the base station is advantageous as the routes can be adjusted

easily if any changes occur in the topology by newly joined or disconnected nodes compared to

decentralized routing protocols. Additionally, energy efficiency is increased by reducing computation

performed at the sensor nodes [36].
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Figure 2.1 illustrates an example IoT network where sensor nodes are randomly deployed, and

only router nodes can relay the sensed data. The base station aggregates all sensed information,

processes the data, and acts accordingly. Due to limited memory, we assume that the nodes and

router do not have any global network knowledge. Hence, our proposed algorithm is run by the base

station, where it finds near-optimal routes for each of the nodes that are present in the network.

The algorithm also identifies the routers that will have a higher energy consumption rate when the

routing paths are implemented. Once the routing paths are established, each node receives local

information only to ensure that routes determined by the algorithm are followed.

3 Proposed GA Based Routing Protocol

GA is commonly used in routing problems due to its robustness and simplicity. It guides a search by

copying and swapping partial strings, yielding promising results [37]. Unlike traditional methods that

search from a single point, genetic algorithms search in parallel from a population of points, avoiding

being trapped in local optimal solutions [38]. Random-search-oriented optimization algorithms,

including GA, do not require any information about the structure of the function being optimized

and treat it as a Black Box—in contrast to classical optimization methods. This section describes

how our proposed technique applies GA to solve data routing problems for IoT networks.

3.1 Generating the Initial Population

Genetic algorithms (GAs) are problem-solving search heuristics that simulate natural selection.

They employ biologically-inspired operators such as mutation, crossover, and selection to generate

high-quality solutions [39]. Here are the basic steps of a GA: First, generate a random population

of chromosomes that represent suitable solutions for the problem. Then, evaluate the fitness of each

chromosome. Next, create a new population by repeating the following steps until the new population

is complete. To create offspring, GAs use a genetic operator called crossover or recombination, akin

to sexual reproduction, as it combines genetic material from both parents to produce offspring [40].

For an IoT network, the number of hops required for a packet to be delivered to the base may vary

depending on the sensor node’s position (see Fig. 2.1). Therefore, our proposed GA runs the route

optimization individually for all the nodes in the network, and chromosome length varies according

to the node’s position. For example, if a data packet generated by a sensor node can be forwarded

to the base via three routers, then the chromosome length will be five, as shown below:
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Figure 3.1: An illustration of the ranking of nodes and routers in an IoT network. The ranking
represents the probability of data flow in and out of a node in the IoT network. The higher the
node’s ranking, the higher the likelihood of receiving data from other nodes.

Chromosome = [Node | R1 | R2 | R3 | Base] (1)

Here, ‘Node’ is the sensor transmitting the data packet, and R1, R2, and R3 are the routers

relaying the data to the base station. The encoding of the chromosomes for the proposed GA

consists of node or router ID instead of binary 0 or 1. Thus, each gene represents the next hop

neighbor of the previous gene in the real network. Therefore, ‘Node’ will forward the data packet

to ‘R1’, and they must be in each other’s neighbor list to be within the transmission and reception

range. Similarly, R3 has to be in the neighbor list of R2 and base to receive data packets from R2

successfully and forward them to the base.

3.2 Individual

During the creation of each individual, it is assigned an ID, rank, a neighbor list of nearest one-hop

neighbors, fitness score, and chromosome. An individual’s rank is defined based on its connectivity.

Each sensor node has a default rank of 1. A router’s rank depends on the number of neighbors and

their type. Fig. 3.1 illustrates the ranking of routers. Here, router R1 has two sensor node neighbors

from which it will receive sensed data corresponding to a rank of 3. Router R2, on the other hand,

has one sensor node and one router (R1) neighbor from which it will receive data and has a higher

rank of 5. Note that only incoming data flow is considered in the ranking of the nodes. Since the

network is hierarchical, the data will always be from bottom to top. Thus, the routers near the base

10



Figure 3.2: An illustration of 1-point crossover procedure. Crossover point is randomly selected
during reproduction except it can’t be the first or last position of the gene.

will have higher ranks and correctly represent their data congestion.

3.3 Crossover

In GA, crossover is used to produce children from parents with an expectation that the reproduction

process will create better individuals. Crossover is done in three steps. First, a pair of parents is

selected randomly from the population. Next, a cross-site is chosen randomly from the chromosome

length. We use a single-point crossover, where cross-site is randomly selected along the string length.

Consider a chromosome with length ‘L’ where (L-1) cross-sites are available. Since each chromosome

consists of a sensor node at the beginning and a base station at the end, cross-site must be greater

or less than (L-1). Finally, the position values are swapped between the two parents in the last step

based on the crossover point. This concept is illustrated in Fig. 3.2, where router R6 is familiar

to both parents. Therefore, when crossover occurs, the newly produced offspring do not have a

disconnection, as R7 and R10 are neighbors of R6.

3.4 Mutation

Mutation is a simple but very effective operation that prevents the GA from being stuck in a local

minimum. For our proposed GA, genes are randomly selected except the first and last, which are
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Figure 3.3: An illustration of mutation procedure where a gene (i.e., router) can be replaced by
another router randomly to ensure diversity of the population

the sensor node and base, respectively. However, when a router is replaced in the chromosome, and

the new router in the modified string is not in the neighbor list of the nodes before and after the

router in the string, the newly produced individual will have a disconnection in the routing path.

For example, in Fig. 3.3, the mutation is applied in the second gene where R1 replaces R2. Since R1

and R2 are in the neighbor list of N and R6, respectively, the resulting offspring is a new solution

that may be better than the earlier chromosome. To make the mutation meaningful, the proposed

algorithm randomly selects a gene, finds all the mutual neighbors of the nodes before and after the

selected node, and then swaps the selected router with another mutual router.

3.5 Fitness Function

The fitness of an individual route in the GA represents how suitable the route for data forwarding.

The objective function evaluates the fitness of its individuals and indicates how good the solution

is. In our case, we have multiple criterion - how congested the routers are and how long the route is.

In multi-criterion optimization problem like ours, there is often some solutions that are better for

one criterion but worse for another. For example, we may have a solution that is the shortest path

from a sensor node to the base but the routers in the path have higher ranking. Fig. 3.1 illustrates

a scenario, where data from N1 (sensor node) can routed via two routes as below:
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S1 = [N1 | R1 | R2 |. . . | Base] (2)

S2 = [N1 | R1 | R3 |. . . | Base] (3)

Although both solutions S1 and S2 have same route length, weights will be different since rank of

R3 is higher than R2. Therefore, S1 (Eq. 2) has lower fitness score and represents a better solution

than S2 (Eq. 3).

Our fitness function tries to find a route that includes routers will low rank while also try to find

a shorter path for data transmission. We define our objective function as below:

f =

L∑
i=0

ri ∗ L (4)

The objective function adds the rank of nodes in a chromosome and multiplies the result by

the chromosome’s length. Therefore, if the route is longer, the fitness score will be high, and if it

consists of high-ranked routers, the fitness score will be high as well. We aim to find routes with less

congested routers while routing the packets via the shortest routes. Thus, the algorithm will try to

find solutions with lower fitness scores, which implies a better solution.

3.6 Algorithm

We now describe the pseudocode used to implement the proposed GA-based routing algorithm. The

algorithm is run centrally by the base station. Since each node has a different set of neighbors and

routes to forward the sensory data to the base station, the algorithm runs GA for each node in the

network individually. Once the routes are determined, each node will update its next-hop neighbor

routers, transmitting the sensory data. We start with a network of size P and assume that a node

has N number of neighbors, which can be parsed from the network topology.

4 Simulation results

In this section, the performance of the EEGA is evaluated via simulations, and the results are

analyzed. First, we describe the simulation setup and related parameters used to study the algorithm.

Next, we describe the results obtained during the simulation.

Comparison with related work: We conducted a comparison of the performance of EEGA
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Algorithm 1: Algorithm for GA based routing
Input: Network topology including next-hop neighbor list for each node
Output: Near optimal routes for each node
Init: - Extract neighbor information of each node

- rPi ← 1 + wj , i = 1, . . . , P and j = 1, . . . , N
foreach Node i from 1 to P do

/* Find near optimal route */
for t = 1 to T do

Select parents from population
Produce children from selected parents
Mutate the children
Extend the population by adding offspring
Reduce the extended population

end
end
return The best route found

and AMRBEC [41], the current state-of-the-art GA for centralized routing in power-constrained

IoT networks. We compare our approach to AMRBEC with and without the feedback confirmation

mechanism (ACK). Previous experiments by Liu et al. [41] demonstrate the superiority of AMR-

BEC over four representative algorithms in various network scenarios, involving up to 200 nodes.

These algorithms included MR-GA, a multipath method based on the GA, a low-cost path selection

algorithm; EB-CRP, an energy-efficient and energy-balanced cluster-based routing protocol; and

IS-k-means, an improved clustering algorithm. AMRBEC outperformed all four by a significant

margin, and we therefore selected it as a benchmark to compare our proposed technique. Addition-

ally, we examined the nearest neighbor approach, where nodes forward data to the closest neighbor

regardless of their energy status, as a baseline for comparison.

Simulation setup: We generated an IoT network for simulation with 20 router nodes and 130

sensor nodes. We deployed all the nodes randomly and let each node connect to the nearest neighbor

nodes. Each node maintains two node lists: direct and indirect neighbor lists. The first is the next-

hop neighbor list, which includes the node’s routers to send a data packet. The second list collects

all nodes transmitting or receiving from the node. Fig. 3.4 demonstrates an example network used

during simulation. Each sensor node and router has multiple next-level router neighbors where it

can transmit data. As can be seen in Fig, some routers appear to be closer to base compared to other

routers. Similarly, some routers have more connections, i.e., data flow compared to other routers.

The heterogeneity of the routers can impact the network’s performance, and our algorithm tries to

adapt the routing according to that.

Ranking: Fig. 3.4 shows how the ranking of the routers can successfully address the heterogene-
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Figure 3.4: Example IoT network with 150 nodes used during simulation, where size of the routers
represent their rank. A higher ranked router will experience higher data flow compared to a lower
ranked router.

ity of the nodes. We assigned each node in the network a rank based on the number of connections

and the probability of incoming data flow. Higher-ranked nodes are likely to receive more data

packets, which will result in higher energy depletion compared to lower-ranked nodes. Therefore,

rank also represents the significance of the node in the network. Our fitness function incorporates

the rank of the nodes and tries to minimize the load on the most significant nodes by selecting low-

ranking routers. The resulting routes will consist of less congested routers and effectively balance

the data load on all the routers.

GA Operators: We ran the GA under various conditions: crossover only, mutation only and

using both crossover and mutation together. While slightly better results were obtained when only

crossover was used, the other two modes also yielded quite similar result. Since we used a small-scale

network of 150 nodes, where the largest route length from sensor node to the base station is less

than 10, chromosome length were always smaller. We experimented with different termination point

for the proposed technique by allowing the number of iterations to be dynamic. During simulation,

we monitor the fitness score of the best individual of a generation and compare the score with the

next generation. As noted, the fitness can be considered settled if it remains same approximately

for more than 10 iterations. Therefore, instead of using a fixed number of generations, adapting the
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Figure 4.1: Comparison of residual energy between EEGA, AMRBEC, and NNR in a network with
150 nodes

iteration number will reduce time and accelerate the convergence of the algorithm.

Energy Consumption. Fig. 4.1 illustrates the residual energy of 130 end nodes after running 300

rounds for different algorithms. It can be seen that remaining energy in several nodes are higher

when EEGA is used compared to other techniques. While AMRBEC uses load balancing approach

to find optimal solution, it also transmits same data over multiple paths, causing increased energy

consumption. Additionally, nodes using NNR technique consumed 12% more energy than EEGA

(see Fig. 4.2) since nodes were forwarding packet to their neighboring nodes only without being

aware of their load or energy status.

Throughput Performance. Throughput performance is crucial for IoT networks that process time-

sensitive data. Fig. 4.4 shows how our proposed EEGA approach outperforms NNR for various

numbers of data transmission and reception rounds. While for a small number of packets, both

algorithms perform similarly; as the number of packet transmissions increases, the packet drop rate

for NNR also increases (more than 10% for 300 or more data packets). Since EEGE determines the

routing path based on routers’ rank and load, the likelihood that a packet will be dropped or needs
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Figure 4.2: Comparison of energy consumption between EEGA and NNR in a network with 150
nodes

Table 4.1: Comparison of Energy consumption, Network lifetime and Packet Delivery between
EEGA, ABRBEC and NNR

Nodes Parmeters NNR AMRBEC
(w/o ACK)

AMRBEC (w
ACK)

EEGA

500 Avg. Residual Energy (%) 58.7 62.1 65.6 69.2

Dead Nodes 150 139 130 117

Packet Delivery Ratio (%) 85.4 88.3 90.2 96.6

1000 Avg. Residual Energy (%) 57.8 61.2 64.6 68.3

Dead Nodes 430 387 361 318

Packet Delivery Ratio (%) 83.7 86.5 88.4 94.4

1500 Avg. Residual Energy (%) 54.4 57.6 60.8 64.8

Dead Nodes 720 640 576 511

Packet Delivery Ratio (%) 81 83.7 85.5 91.7
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re-transmission reduces significantly compared to NNR.

Network Lifetime. Fig. 4.3 shows the network lifetime of EEGA and the other 3 approaches.

Generally, network lifetime means the number of rounds before the first node dies. When 80% of all

the nodes run out of energy, the whole network will stop working. As shown in Fig. 4.3, when the

EEGA approach is used, the network lifetime increases by 10% and 28%, compared to AMRBEC and

NNR, respectively. The approximately straight curve for EEGA also shows that many nodes in the

network have similar lifetimes. On the other hand, under the AMRBEC approach, sending the same

data over multiple paths causes faster energy depletion, which can be minimized by deactivating

acknowledgment messages after data transmission. However, EEGA is still significantly better than

the rest of the approaches.

Finally, we analyzed the performance of EEGA for various network sizes. Table 4.1 shows the

simulation performance of all 4 algorithms for different network sizes. The measurements were

collected after 5000 rounds of data transmission during simulation. It is clear that EEGA not only

reduces energy consumption but also improves throughput of the network while reducing number of

dead nodes.
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Figure 4.3: Comparison of network lifetime between EEGA, AMRBEC, and NNR in a network with
150 nodes
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Figure 4.4: Comparison of packet drop rate between EEGA and NNR after 1000 data packets
transmission with 150 sensor nodes
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5 Conclusion and Future Work

The purpose of our study was to evaluate the performance of GA-based routing strategies in Internet

of Things networks. According to the research, hierarchical Internet of Things networks may greatly

improve link reliability and energy efficiency by implementing a load-aware GA-based multi-hop

routing strategy. The section includes a summary of research findings, future work recommendations,

and final remarks. The summary highlights the research’s value and contributions, while future work

suggests enhancing IoT routing performance. We conclude by discussing how sensor networks and

IoT will play an important part in the coming years.

5.1 Summary

The Internet of Things (IoT) is a network of physical objects that are interconnected through

sensing, limited data processing, and sharing capabilities. IoT devices are expected to perform

autonomously, using standard wireless communication protocols with minimal human intervention.

IoT devices are energy-constrained due to battery power, and they are often deployed in remote

areas where replenishing energy is costly and time-consuming. To improve the performance of

IoT networks, dynamic routing techniques are needed to move data in an energy-efficient manner

through the network. This work aims to investigate the performance of a multi-hop GA-based

routing technique in an IoT network consisting of low-cost, low-powered, and small IoT devices.

By leveraging the network topology and nodes’ status, the proposed work performs better than

recent multi-hop routing techniques. A comparison with recent multi-hop routing techniques is also

provided to illustrate the superiority of the proposed work.

We introduced a multi-hop routing protocol that uses genetic algorithm (GA) to find the optimal

path for hierarchical IoT networks. GA is a suitable solution for solving multi-criteria problems and

producing various solutions. The individuals in the final population, which are part of the "Pareto

front," represent all optimization solutions that are better than any other individual in at least one

phenotype. Therefore, using a genetic algorithm to optimize values of multiple phenotypes in a

population is a wise choice. Our simulation results demonstrate that the proposed routing approach

can significantly enhance the packet delivery rate compared to existing recent multi-hop routing

techniques. Furthermore, the results indicate that considering the load on the router nodes during

routing path selection can improve network lifetime and energy consumption.
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5.2 Future Research Directions

There are various avenues for extending the work presented in this thesis, which can be outlined as

follows.

5.2.1 Improving Baseline Approach for Comparison

In this study, we conducted a thorough comparison between our proposed GA-based approach and

the Next Nearest Neighbor technique, which we used as a baseline. We found that NNR is not an ideal

approach because it simply forwards data packets to the nearest router without considering the status

of the router. Instead, we recommend using the Open Shortest Path First (OSPF) approach, which

is more realistic and efficient. OSPF involves nodes establishing relationships with routers within the

transmission range and selecting the best path based on different matrices, such as bandwidth, delay,

and reliability. Research has shown that OSPF is an effective approach for large-scale hierarchical

networks [42–44]. Despite requiring additional routing updates and potentially increasing energy

consumption, OSPF remains a better alternative to NNR as a baseline comparison approach for

future works.

5.2.2 Modifying Convergence and Selection Criteria for GA

Genetic Algorithm is a widely used optimization technique for evolving models and feature selection,

among other applications. However, it does have some limitations. To help the GA reach an optimal

or sub-optimal solution more quickly, different selection techniques can be used to choose parents for

crossing, such as roulette wheel selection [45] and random selection [46]. The final stage of breeding,

replacement, involves maintaining the population using different methods, such as generational and

steady-state updates [47]. Search termination criteria can vary, including stopping after a specified

number of generations or discontinuing the search if there is no improvement in the objective function

for a sequence of consecutive generations [48, 49]. All the techniques mentioned above need to be

experimented to understand the performance of GA in multi-hop IoT networks.

5.2.3 Evaluating Effectiveness Across Different IoT Architectures

Choosing the right routing strategy is crucial in IoT networks to ensure efficient packet delivery

while conserving energy. Various energy-efficient routing protocols have been developed for IoT-

based sensor networks [50, 51]. Different network architectures and routing protocols suit different

IoT applications. Researchers have studied centralized [52], decentralized [53], hierarchical [54],
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and clustered network [55] topologies. While hierarchical routing can be advantageous in certain

scenarios, it may not be suitable for the dynamic and decentralized nature of mesh networks. A

mesh IoT network is a local network where devices are connected directly in a non-hierarchical

manner to route data across the network [56]. Unlike traditional star network topologies, where

devices communicate through a central hub, mesh networks allow each device to participate in data

transmission. Mesh networking is an attractive choice for small-scale battery-powered IoT applica-

tions because it doesn’t require expensive hardware. The self-healing capability of mesh networks

ensures robustness, meaning that if one repeater fails, data can be rerouted through an alternative

path. Mesh networks are particularly useful for applications like industrial automation [57], smart

metering [58], and environmental monitoring [59] because they can distribute data efficiently and

enhance overall network performance. Optimizing EEGA for Mesh Network: Implementing EEGA

in a mesh network involves integrating the structured approach of hierarchical routing with the often

decentralized and flexible nature of mesh networks. To optimize EEGA for mesh network requires

several steps and considerations such as network segmentation, backbone formation, hybrid routing,

resource management, and performance optimization. Network segmentation involves dividing the

mesh network into smaller segments with local leaders or gateways [60]. Backbone formation estab-

lishes a backbone of interconnected gateways for inter-cluster communication [61]. Hybrid routing

combines proactive and reactive routing protocols [62]. Resource management reduces the overhead

of routing information dissemination. Performance optimization involves continuous monitoring and

adjustment of network parameters. Overall, a hybrid genetic-algorithm based routing protocol will

be required that combines the advantages of both hierarchical and flat architectures.

Our research has demonstrated that if routing algorithms take into account the topology of the

network as well as the data load of nearby nodes, then network performance may be enhanced. Nev-

ertheless, existing research only considers a centralized multi-hop network, which leaves performance

analysis with open questions. The network’s size is directly proportional to the packet drop rates

and energy consumption. Assessing the performance of routing protocols is essential for various

network topologies in IoT applications.

5.2.4 Real-life Implementation Combined With Testbed

Research on routing protocols for IoT has primarily focused on simulation [63, 64]. However, it

is crucial to validate their performance through hardware implementation. To enable the imple-

mentation and experimentation of other protocols, it is essential to have a large-scale experimental

platform with battery-powered sensor nodes placed in different locations. Moreover, the infrastruc-
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ture must be affordable and low-cost to ensure easy access for the broader research community

to validate different routing techniques related to IoT networks. Therefore, the next step in the

practical implementation of routing protocols is to develop the framework of the IoT testbed.

5.2.5 Adapting to Sensor Mobility

Managing node mobility in a hierarchical routing protocol can be quite challenging due to the

structured nature of hierarchical networks. However, there are several strategies to handle this issue.

One approach is to introduce logical subnets within the hierarchy to manage groups of mobile nodes

[65]. This concept is similar to the Home Agent in Mobile IP, which keeps track of mobile nodes’

locations. Another method is to implement soft state protocols like WHIRL (Wireless Hierarchical

Routing Protocol with Group Mobility), which adapt to changes in the network topology caused

by node mobility [66]. Cluster-Based Routing is another effective technique that uses a two-layer

hierarchical cluster-based routing protocol [67]. It exploits node heterogeneity and organizational

structure to mitigate the impact of rapid topology changes. Incorporating location management

techniques is yet another way to handle node mobility. It keeps updating the hierarchical partitioning

continuously as nodes move. By employing these methods, we can maintain the efficiency and

scalability of hierarchical routing while accommodating the dynamic nature of mobile nodes.

5.3 Final Comments

The work presented in this thesis demonstrates the significance of energy-efficient routing protocols

in low-powered IoT networks. It aims to bridge the gap between general and load-aware routing

techniques in multihop IoT networks. By utilizing the router’s topology position and the number

of neighbors, the work shows the potential for improving network reliability while enhancing energy

efficiency.

We hope this work will inspire researchers to develop routing techniques specifically designed for

low-cost energy-constrained IoT devices that need to transfer large volumes of data based on their

application. The decreasing costs of embedded devices enabled by semiconductor technology has

led to the deployment of new IoT applications that require high reliability and faster data rates.

Using software-defined radios, cognitive radios, and IoT devices can lead to a hybrid network, and

diverse routing techniques are necessary to adapt the routing strategy based on the dynamic network

architecture.

24



References

[1] I. H. Sarker, A. I. Khan, Y. B. Abushark, and F. Alsolami, “Internet of things (iot) security
intelligence: a comprehensive overview, machine learning solutions and research directions,”
Mobile Networks and Applications, vol. 28, no. 1, pp. 296–312, 2023.

[2] A. Balasundaram, S. Routray, A. Prabu, P. Krishnan, P. P. Malla, and M. Maiti, “Internet of
things (iot) based smart healthcare system for efficient diagnostics of health parameters of
patients in emergency care,” IEEE Internet of Things Journal, 2023.

[3] J. Lee and H. Ko, “Energy and distribution-aware cooperative clustering algorithm in internet
of things (iot)-based federated learning,” IEEE Transactions on Vehicular Technology, 2023.

[4] P. Cui, S. Han, X. Xu, J. Zhang, P. Zhang, and S. Ren, “End-to-end delay performance analysis
of industrial internet of things: A stochastic network calculus perspective,” IEEE Internet of
Things Journal, 2023.

[5] K. C. Okafor, B. Adebisi, and K. Anoh, “Lightweight multi-hop routing protocol for resource
optimisation in edge computing networks,” Internet of Things, vol. 22, p. 100758, 2023.

[6] H. Xu, J. Wu, Q. Pan, X. Guan, and M. Guizani, “A survey on digital twin for industrial internet
of things: Applications, technologies and tools,” IEEE Communications Surveys & Tutorials,
2023.

[7] N. Moustafa, N. Koroniotis, M. Keshk, A. Y. Zomaya, and Z. Tari, “Explainable intrusion de-
tection for cyber defences in the internet of things: Opportunities and solutions,” IEEE
Communications Surveys & Tutorials, 2023.

[8] A. A. Khan, S. Bourouis, M. Kamruzzaman, M. Hadjouni, Z. A. Shaikh, A. A. Laghari, H. Elman-
nai, and S. Dhahbi, “Data security in healthcare industrial internet of things with blockchain,”
IEEE Sensors Journal, 2023.

[9] S. Shamsudheen, G. Karthik, A. Anoop, and P. Gobinathan, “Internet-of-things in emergency
services: Architecture, applications, and research challenges,” in 2023 1st International Con-
ference on Advanced Innovations in Smart Cities (ICAISC). IEEE, 2023, pp. 1–6.

[10] A. Balasundaram, S. Routray, A. Prabu, P. Krishnan, P. P. Malla, and M. Maiti, “Internet of
things (iot) based smart healthcare system for efficient diagnostics of health parameters of
patients in emergency care,” IEEE Internet of Things Journal, 2023.

[11] I. Azimi, J. Takalo-Mattila, A. Anzanpour, A. M. Rahmani, J.-P. Soininen, and P. Liljeberg,
“Empowering healthcare iot systems with hierarchical edge-based deep learning,” in Pro-
ceedings of the 2018 IEEE/ACM international conference on connected health: Applications,
systems and engineering technologies, 2018, pp. 63–68.

[12] S. Debdas, C. K. Panigrahi, P. Kundu, S. Kundu, and R. Jha, “Iot application in interconnected
hospitals,” Machine Learning for Healthcare Applications, pp. 225–247, 2021.

[13] A. Soleimany, Y. Farhang, and A. Babazadeh Sangar, “Hierarchical federated learning model
for traffic light management in future smart,” International Journal of Nonlinear Analysis
and Applications, vol. 14, no. 12, pp. 175–186, 2023.

[14] A. Parsa, T. A. Najafabadi, and F. R. Salmasi, “A hierarchical smart home control system
for improving load shedding and energy consumption: design and implementation,” IEEE
Sensors Journal, vol. 19, no. 9, pp. 3383–3390, 2018.

[15] Y. Ma, S. Yang, Z. Huang, Y. Hou, L. Cui, and D. Yang, “Hierarchical air quality monitoring
system design,” in 2014 international symposium on integrated circuits (ISIC). IEEE, 2014,
pp. 284–287.

[16] J. Jiang, Q. Yan, G. Han, and H. Wang, “An opportunistic routing based on directional trans-
mission in the internet of underwater things,” IEEE Internet of Things Journal, 2023.

[17] S. Gangopadhyay and V. K. Jain, “A position-based modified olsr routing protocol for flying ad
hoc networks,” IEEE Transactions on Vehicular Technology, 2023.

25



[18] H. Rahman, A. Roy, and M. I. Hussain, “A comparative analysis of rpl-based routing protocols
for internet of things,” in 2023 4th International Conference on Computing and Communica-
tion Systems (I3CS). IEEE, 2023, pp. 1–7.

[19] R. Yarinezhad and M. Sabaei, “An optimal cluster-based routing algorithm for lifetime maxi-
mization of internet of things,” Journal of Parallel and Distributed Computing, vol. 156, pp.
7–24, 2021.

[20] I. S. Bulut and H. Ilhan, “Energy harvesting optimization of uplink-noma system for iot networks
based on channel capacity analysis using the water cycle algorithm,” IEEE Transactions on
Green Communications and Networking, vol. 5, no. 1, pp. 291–307, 2020.

[21] O. Younis and S. Fahmy, “Heed: a hybrid, energy-efficient, distributed clustering approach for
ad hoc sensor networks,” IEEE Transactions on mobile computing, vol. 3, no. 4, pp. 366–379,
2004.

[22] L. Agustı, S. Salcedo-Sanz, S. Jiménez-Fernández, L. Carro-Calvo, J. Del Ser, J. A. Portilla-
Figueras et al., “A new grouping genetic algorithm for clustering problems,” Expert Systems
with Applications, vol. 39, no. 10, pp. 9695–9703, 2012.

[23] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable clustering-based evolutionary
algorithm for large-scale many-objective optimization,” IEEE Transactions on evolutionary
Computation, vol. 22, no. 1, pp. 97–112, 2016.

[24] B. Joshi and M. K. Thakur, “Genetic algorithm-and cuckoo search algorithm-based routing
optimizations in network-on-chip,” Arabian Journal for Science and Engineering, vol. 48,
no. 8, pp. 9635–9644, 2023.

[25] ——, “Genetic algorithm-and cuckoo search algorithm-based routing optimizations in network-
on-chip,” Arabian Journal for Science and Engineering, vol. 48, no. 8, pp. 9635–9644, 2023.

[26] C. Li, Y. Zhu, and K. Y. Lee, “Route optimization of electric vehicles based on re-insertion
genetic algorithm,” IEEE Transactions on Transportation Electrification, 2023.

[27] R. Samadi, A. Nazari, and J. Seitz, “Intelligent energy-aware routing protocol in mobile iot
networks based on sdn,” IEEE Transactions on Green Communications and Networking,
2023.

[28] C.-M. Chen, S. Lv, J. Ning, and J. M.-T. Wu, “A genetic algorithm for the waitable time-varying
multi-depot green vehicle routing problem,” Symmetry, vol. 15, no. 1, p. 124, 2023.

[29] Y. Jing, Z. Yang, Y. Zhao, H. Wang, W. Wang, S. Rahman, and J. Zhang, “Energy-efficient rout-
ing based on a genetic algorithm for satellite laser communication,” Optics Express, vol. 31,
no. 5, pp. 8682–8695, 2023.

[30] S. Wang, Y. Mei, and M. Zhang, “Explaining genetic programming-evolved routing policies for
uncertain capacitated arc routing problems,” IEEE Transactions on Evolutionary Computa-
tion, 2023.

[31] A. Shinde and R. Bichkar, “Genetic algorithm based energy efficient and load balanced clustering
approach for wsn,” in 2023 International Conference on Emerging Smart Computing and
Informatics (ESCI). IEEE, 2023, pp. 1–6.

[32] V. Q. Hien, T. C. Dao, and H. T. T. Binh, “A greedy search based evolutionary algorithm for
electric vehicle routing problem,” Applied Intelligence, vol. 53, no. 3, pp. 2908–2922, 2023.

[33] F. Wang, G. Xu, and M. Wang, “An improved genetic algorithm for constrained optimization
problems,” IEEE Access, vol. 11, pp. 10 032–10 044, 2023.

[34] M. F. Dömény, M. Puskás, L. Kovács, and D. A. Drexler, “In silico chemotherapy optimization
with genetic algorithm,” in 2023 IEEE 17th International Symposium on Applied Computa-
tional Intelligence and Informatics (SACI). IEEE, 2023, pp. 000 097–000 102.

[35] J. Segura-Garcia, J. M. Navarro-Ruiz, J. J. Perez-Solano, J. Montoya-Belmonte, S. Felici-
Castell, M. Cobos, and A. M. Torres-Aranda, “Spatio-temporal Analysis of Urban Acoustic

26



Environments with Binaural Psycho-acoustical Considerations for IoT-Based Applications,”
Sensors, vol. 18, no. 3, p. 690, 2018.

[36] M. Hattori, H. Fujimoto, Y. Hori, Y. Takeda, and K. Sato, “Simple Tuning and Low-
computational-cost Controller for Enhancing Energy Efficiency of Autonomous-driving Elec-
tric Vehicles,” IEEJ Journal of Industry Applications, vol. 9, no. 4, pp. 358–365, 2020.

[37] M. D. Vose, The simple genetic algorithm: foundations and theory. MIT press, 1999.

[38] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.

[39] O. Roeva, Real-world applications of genetic algorithms. BoD–Books on Demand, 2012.

[40] C. R. Reeves, “Genetic algorithms,” Handbook of metaheuristics, pp. 109–139, 2010.

[41] J. Liu, X. Meng, S. Li, X. Cui, and H. Wu, “An adaptive multipath routing method based on
improved ga and information entropy,” IEEE Sensors Journal, vol. 22, no. 22, pp. 22 264–
22 275, 2022.

[42] N. V. Doohan, D. K. Mishra, and S. Tokekar, “Shortest path routing protocol (sprp) for highly
data centric wireless sensor networks,” in 2011 Second Asian Himalayas International Con-
ference on Internet (AH-ICI). IEEE, 2011, pp. 1–4.

[43] E. Baccelli, J. A. Cordero, and P. Jacquet, “Multi-point relaying techniques with ospf on ad
hoc networks,” in 2009 Fourth International Conference on Systems and Networks Commu-
nications. IEEE, 2009, pp. 53–62.

[44] K. Faez and M. Khanjary, “Utospf: a distributed dynamic route guidance system based on
wireless sensor networks and open shortest path first protocol,” in 2008 IEEE International
Symposium on Wireless Communication Systems. IEEE, 2008, pp. 558–562.

[45] B. Alhijawi and A. Awajan, “Genetic algorithms: Theory, genetic operators, solutions, and
applications,” Evolutionary Intelligence, pp. 1–12, 2023.

[46] R. Avvari and V. K. DM, “A novel hybrid multi-objective evolutionary algorithm for optimal
power flow in wind, pv, and pev systems,” Journal of Operation and Automation in Power
Engineering, vol. 11, no. 2, pp. 130–143, 2023.

[47] A. Eskandari, M. Aghaei, J. Milimonfared, and A. Nedaei, “A weighted ensemble learning-
based autonomous fault diagnosis method for photovoltaic systems using genetic algorithm,”
International Journal of Electrical Power & Energy Systems, vol. 144, p. 108591, 2023.

[48] S. Liu, Q. Lin, J. Li, and K. C. Tan, “A survey on learnable evolutionary algorithms for scalable
multiobjective optimization,” IEEE Transactions on Evolutionary Computation, 2023.

[49] D. Zhou, J. Du, and S. Arai, “Efficient elitist cooperative evolutionary algorithm for multi-
objective reinforcement learning,” IEEE Access, 2023.

[50] Y. Liu, W. Yu, W. Rahayu, and T. Dillon, “An evaluative study on iot ecosystem for smart pre-
dictive maintenance (iot-spm) in manufacturing: Multi-view requirements and data quality,”
IEEE Internet of Things Journal, 2023.

[51] F. Righetti, C. Vallati, D. Rasla, and G. Anastasi, “Investigating the coap congestion control
strategies for 6tisch-based iot networks,” IEEE Access, vol. 11, pp. 11 054–11 065, 2023.

[52] S. B. A. Khattak, M. M. Nasralla, H. Farman, and N. Choudhury, “Performance evaluation
of an ieee 802.15. 4-based thread network for efficient internet of things communications in
smart cities,” Applied Sciences, vol. 13, no. 13, p. 7745, 2023.

[53] J. Cai, W. Liang, X. Li, K. Li, Z. Gui, and M. K. Khan, “Gtxchain: A secure iot smart
blockchain architecture based on graph neural network,” IEEE Internet of Things Journal,
2023.

[54] S. Shamsudheen, G. Karthik, A. Anoop, and P. Gobinathan, “Internet-of-things in emergency
services: Architecture, applications, and research challenges,” in 2023 1st International Con-
ference on Advanced Innovations in Smart Cities (ICAISC). IEEE, 2023, pp. 1–6.

27



[55] M. Kaur, A. A. Alzubi, T. S. Walia, V. Yadav, N. Kumar, D. Singh, and H.-N. Lee, “Egcrypto:
A low-complexity elliptic galois cryptography model for secure data transmission in iot,”
IEEE Access, 2023.

[56] Y. Liu, K.-F. Tong, X. Qiu, Y. Liu, and X. Ding, “Wireless mesh networks in iot networks,”
in 2017 International workshop on electromagnetics: applications and student innovation
competition. IEEE, 2017, pp. 183–185.

[57] C. Garrido-Hidalgo, D. Hortelano, L. Roda-Sanchez, T. Olivares, M. C. Ruiz, and V. Lopez, “Iot
heterogeneous mesh network deployment for human-in-the-loop challenges towards a social
and sustainable industry 4.0,” Ieee Access, vol. 6, pp. 28 417–28 437, 2018.

[58] S. S. Chowdary, M. A. Abd El Ghany, and K. Hofmann, “Iot based wireless energy efficient
smart metering system using zigbee in smart cities,” in 2020 7th International Conference on
Internet of Things: Systems, Management and Security (IOTSMS). IEEE, 2020, pp. 1–4.

[59] A. Ometov, S. Bezzateev, N. Voloshina, P. Masek, and M. Komarov, “Environmental monitoring
with distributed mesh networks: An overview and practical implementation perspective for
urban scenario,” Sensors, vol. 19, no. 24, p. 5548, 2019.

[60] Z. Liqiang et al., “A hybrid routing protocol for hierarchy wireless mesh networks,” in Wire-
less Communications Networking and Mobile Computing (WiCOM), 2010 6th International
Conference on, 2010.

[61] S. Waharte, R. Boutaba, Y. Iraqi, and B. Ishibashi, “Routing protocols in wireless mesh net-
works: challenges and design considerations,” Multimedia tools and Applications, vol. 29, pp.
285–303, 2006.

[62] S. Bourduas and Z. Zilic, “A hybrid ring/mesh interconnect for network-on-chip using hier-
archical rings for global routing,” in First International Symposium on Networks-on-Chip
(NOCS’07). IEEE, 2007, pp. 195–204.

[63] R. Cerchione, P. Centobelli, and A. Angelino, “Blockchain-based iot model and experimental
platform design in the defence supply chain,” IEEE Internet of Things Journal, 2023.

[64] S. W. Turner, M. Karakus, E. Guler, and S. Uludag, “A promising integration of sdn and
blockchain for iot networks: A survey,” IEEE Access, 2023.

[65] X. Hong, K. Xu, and M. Gerla, “Scalable routing protocols for mobile ad hoc networks,” IEEE
network, vol. 16, no. 4, pp. 11–21, 2002.

[66] G. Pei, M. Gerla, X. Hong, and C.-C. Chiang, “Wireless hierarchical routing protocol with
group mobility (whirl),” in Proceedings of IEEE Wireless Communications and Networking
conference.

[67] Y. Xia, C. K. Yeo, and B. S. Lee, “Hierarchical cluster based routing for highly mobile hetero-
geneous manet,” in 2009 international conference on network and service security. IEEE,
2009, pp. 1–6.

28


	Employing Genetic Algorithms for Energy-Efficient Data Routing in Internet of Things Networks
	Recommended Citation

	tmp.1713477242.pdf.gFn7k

