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Abstract

We compute the canonical ring of some stacks. We first give a detailed account of
what this problem means including several proofs of a famous historical example.
The main body of work of this thesis expands on our article [Fra23] in describing the
geometry of Drinfeld modular forms as sections of a specified line bundle on a certain
stacky modular curve. As a consequence of that geometry, we provide a program:
one can compute the (log) canonical ring of a stacky curve to determine generators
and relations for an algebra of Drinfeld modular forms, answering a problem posed
by Gekeler in 1986.



Et si tu crois que je m’en fous
Que l’amour nous a mis à bout

J’ai encore des larmes de réserves
J’ai encore des drames

que j’préserve

Et si tu crois que je m’en fous
Que l’amour nous a mis à bout
J’ai pas vu passer nos amours

J’ai pas vu passer le jour

“Le Jour” - Al’Tarba, Mounika

Fifth grade, smarter than my parents
Grandma couldn’t help with algebra
Grandma like,“What the fuck is algebra?"
She like, “That’s a goddamn shame
them people gon’ keep makin’ up shit
tryna keep you in the same grade."
They tryna hide shit in the book

From “American Tterroristt” - RXKNephew
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Chapter 1

Overview

1.1 History

The theory of modular forms in the classical number-field case has existed since the

1800’s. It is well-understood that modular forms are sections of a particular line

bundle on some stacky modular curve. In this set up the geometry of the stacks, with

tools such as the Riemann-Roch theorem for stacky curves for example, can be used

to compute section rings which describe algebras of modular forms. The program

of [VZB22] for computing the canonical ring of log stacky curves in all genera even

gives minimal presentations for many such section rings, that is: explicit generators

and relations, which correspond to generators and relations for algebras of modular

forms.

Drinfeld introduced the study of what he called “elliptic modules,” which we now

call “Drinfeld modules” in 1974 with [Dri74] in order to address problems in the Lang-

lands program over function fields. Many objects from classical number theory such
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as modular curves and modular forms have analogs over function fields, and we refer

to the function-field side of this analogy as the “Drinfeld setting.”

In his 1986 monograph [Gek86, Page XIII] asks for a description of algebras of

Drinfeld modular forms in terms of generators and relations. The main results of

this thesis describe the geometry of those modular forms, which allows one to employ

techniques such as those in [VZB22] to find the desired generators and relations by

considering the geometry of the corresponding Drinfeld modular curve. That is, we

provide a means to address Gekeler’s problem via geometric invariants.

There is a collection of results which is similar to our work in comparing mod-

ular forms for various congruence subgroups to each other as in our second main

result Theorem 7.2.1. Pink finds isomorphisms between algebras of Drinfeld modular

forms for open compact subgroups K ď GLrp{FqrT sq, where the hat symbol denotes

the pro-finite completion {FqrT s “
ś

ppFqrT sqp, and normal subgroups K 1 � K in

e.g. [Pin12, Proposition 5.5]. Pink also describes Drinfeld modular forms as sections

of an invertible sheaf in [Pin12, Section 5] which is similar to Theorem 7.1.1. However,

Pink needs the dual of the relative Lie algebra over a line bundle, rather than the

bundle itself, to describe Drinfeld modular forms, which is a major difference with

our work.

There are some existing results which approach Gekeler’s problem, such as Cor-

nelissen’s papers [Cor97a] and [Cor97b] which handle linear level in [Cor97b, Theorem

p3.3q], i.e. the algebra of modular forms for ΓpαT ` βq, where α P Fˆq and β P Fq,
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and include some results for quadratic level in [Cor97b, Proposition p3.4q]. Another

example, [DK23, Theorem p4.4q], computes the algebra of Drinfeld modular forms for

Γ0pT q. The best known result for general level N is from e.g. [Arm08, Proposition

4.16] which demonstrates that for any level the double cusp forms of weight 2 and

type 1, which form the vector space M2
2,1pΓ0pNqq, are (analytic) holomorphic differ-

entials on a (rigid analytic) Drinfeld modular curve Γ0pNqzpΩYP1pFqpT qqq, where Ω

is the Drinfeld “upper half-plane” defined in Section 4.1.

Several ideas in [Bre16] are central to our argument, as well as being an expo-

sition on aspects of Gekeler’s problem in general. In particular, [Bre16] introduces

the subgroup Γ2 of a given congruence subgroup Γ ď GL2pFqrT sq and gives a moduli

interpretation of the corresponding Drinfeld modular curve.

Even by the date of these most recent papers, the generalization to the algebra of

modular forms for Γ0pNq for any level N, all examples of modular forms for Γ1pNq,

and higher level (i.e. degpNq ě 2) examples for ΓpNq seem to be wide open. Simi-

larly, other than some preliminary results such as formulae for geometric invariants

in [GvdP80] it is also an open problem to compute generators and relations for alge-

bras of Drinfeld modular forms for congruence subgroups of SL2pFqrT sq.

Our work differs considerably from the papers of Armana, Breuer, Cornelissen,

Dalal-Kumar, and Gerritzen-van der Put cited above in that we work with Drinfeld

moduli stacks as opposed to schemes. As early as [Gek86] and [Lau96] it was known

that moduli of Drinfeld modules of fixed rank are Deligne-Mumford stacks, but it
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is the more recent results of [VZB22] for computing log canonical rings of stacky

curves, and [PY16] which provides a crucial principle of rigid analytic GAGA (short

for “géométrie algébrique et géométrie analytique”) for stacks, that makes our work

possible.

There is some historical reason to work with rigid analytic spaces as opposed to

the more general adic or Berkovich spaces, namely the original analytic theory of the

Drinfeld setting was developed in that language in e.g. Goss’s paper [Gos80]. Though

there is for example a more general or modern theory of adic stacks (see e.g. [War17])

we will find it more convenient to phrase things in terms of rigid analytic spaces, and

there is no loss in doing so.

1.2 Organization of this Work

In Chapter 2 we define the canonical ring of a scheme. This discussion is an elemen-

tary introduction to our theory in general in the sense that we make several arguments

from first principles, carefully define many fundamental objects, and repeat some fa-

mous historical calculations.

Appendix A motivates the calculation of canonical rings. After introducing some

terminology and a brief interlude about the infinitesimal lifing property, we discuss

the construction of Proj of a graded ring and define morphisms of schemes. The point

of this material is to be able to prove that with some standard simplifying assump-

tions, as a scheme a curve is isomorphic to its image under the canonical embedding,
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and this embedded curve is Proj of the canonical ring.

Appendix B gives yet another proof of Petri’s Theorem distinct from the two we

discuss in Chapter 2. The idea with this version is to discuss Green and Lazarsfeld’s

“simple proof” of Petri [GL85] which is purely cohomological. We comment on why

such a technique is interesting in the introduction to this Appendix, and then give a

highly detailed account of Green and Lazarsfeld’s proof.

We define stacks in Chapter 3, which for experts is our true starting place. The

first part of this discussion is a development of the notion that stacks are a 2-

categorical version of a sheaf. We hope this introduces stacks by analogy with sheaves

which are more familiar, but in later Chapters we use a more practical working defini-

tion of a stack that we state after the analogy. We also define the specific invariants of

a stacky curve that we use to compute (log) canonical rings, and comment on existing

results in this direction.

Chapter 4 introduces the Drinfeld, or function-field setting. We focus on describing

the analogy between function fields and number fields, the latter being the so-called

classical setting for arithmetic geometry. We also describe Drinfeld modules, which

are a version of abelian varieties in this setting. Rather than work in the greatest

generality possible over the function field of any smooth, projective, connected curve

over some field of positive characteristic, we content ourselves with working with the

the function field of the curve P1. This makes the polynomial ring FqrT s, for q a power

of an odd prime and T an indeterminant, our “integers” so that we can simplify the
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discussion somewhat.

Our work begins in earnest in Chapter 5. We need not only a version of the clas-

sic GAGA theory for rigid analytic spaces, but also one for rigid analytic stacks. As

such, we recall the theory of rigid analytic spaces and rigid GAGA, then define rigid

analytic stacks, and finally we state the main GAGA results we use.

Chapter 6 is an introduction to Drinfeld modular curves and Drinfeld modular

forms. These are the main objects of study for this work. We discuss a (Satake)

compactification of Drinfeld moduli and some local (rigid) analysis near the points

added in this compactification. We also give moduli interpretations for some stacky

Drinfeld modular curves.

Our main results about the geometry of Drinfeld modular forms are in Chapter 7.

We find a Drinfeld modular curve and a specific line bundle on that curve whose sec-

tions are Drinfeld modular forms for congruence subgroups Γ containing the diagonal

matrices in GL2pFqrT sq and such that detpγq P pFˆq q2 for every γ P Γ in Theorem 7.1.1.

This gives us a way to answer Gekeler’s problem for modular forms for Γ so long as

Γ satisfies our hypotheses. Then we show how the algebra of Drinfeld modular forms

for some congruence subgroup Γ1 can be expressed in terms of a direct sum of com-

ponents of the algebra of Drinfeld modular forms for another congruence subgroup

Γ which contains Γ1. This comparison of algebras means we can compute generators

and relations for algebras of modular forms for congruence subgroups which may not

contain only square-determinant matrices. We illustrate this theory with a special
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case: Theorem 7.2.1. We generalize Theorem 7.2.1 with Theorem 7.3.1 which com-

pares algebras of modular forms for Γ and some of its subgroups Γ1, generalizing the

special case Γ1 “ Γ2 from Theorem 7.2.1.

Finally, in Chapter 8 we give an algorithm which solves Gekeler’s problem for

certain congruence subgroups, up to the user’s being able to compute the log canon-

ical ring of a given stacky curve. We give some examples of our application of this

technique to repeat known results. We conclude with some comments on several cases

which should be tractable and very interesting to consider in future work.

1.3 Main Results

Let Γ be a congruence subgroup of GL2pFqrT sq. Suppose that Γ contains the scalar

matrices of GL2pFqrT sq and detpγq P pFˆq q2 for every γ P Γ. First, we show that

the Drinfeld modular forms for such Γ are sections of a log canonical bundle on the

associated stacky Drinfeld modular curve XΓ. Note that this solves Gekeler’s problem

for groups satisfying our hypotheses, assuming we can compute the generators and

relations of the log canonical ring of the stacky curve.

Theorem 1.3.1 (Theorem 7.1.1 in the text). Let q be an odd prime and let Γ ď

GL2pFqrT sq be a congruence subgroup containing the scalar matrices of GL2pFqrT sq

and such that detpγq P pFˆq q2 for every γ P Γ. Let ∆ be the divisor supported at

the cusps of the modular curve XΓ with rigid analytic coarse space Xan
Γ “ ΓzpΩ Y
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P1pFqpT qqq. There is an isomorphism of graded rings

MpΓq – RpXΓ,Ω1
XΓ
p2∆qq,

where Ω1
XΓ

is the sheaf of differentials on XΓ. The isomorphism of algebras is given

by the isomorphisms of components Mk,lpΓq Ñ H0pXΓ,Ω1
XΓ
p2∆qbk{2q given by f ÞÑ

fpdzqbk{2.

To handle the more general case of congruence subgroup Γ which contains the

diagonal matrices of GL2pFqrT sq but which may not contain only square-determinant

matrices, we consider the normal subgroup Γ2 “ tγ P Γ : detpγq P pFˆq q2u of Γ.

We compare the algebras of Drinfeld modular forms for Γ and Γ2 and arrive at the

following result. Note that this reduces giving an answer to Gekeler for the congruence

subgroups Γ to computing log canonical rings of stacky Drinfeld modular curves.

Theorem 1.3.2 (Theorem 7.2.1 in the text). Let q be a power of an odd prime.

Let Γ ď GL2pFqrT sq be a congruence subgroup containing the diagonal matrices in

GL2pFqrT sq. Let Γ2 “ tγ P Γ : detpγq P pFˆq q2u. Then as rings MpΓq –MpΓ2q, with

Mk,lpΓ2q “Mk,l1pΓq ‘Mk,l2pΓq

on each graded piece, where l1, l2 are the two solutions to k ” 2l pmod q ´ 1q.

Finally, we generalize the previous comparison theorem to a larger class of sub-

groups Γ1 ď Γ, where Γ is some chosen or distinguished congruence subgroup as

above. This idea was proposed in correspondence by Gebhard Böckle, as was the

proof technique which we execute. This result is similar to classical results about
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nebentypes of modular forms.

Theorem 1.3.3 (Theorem 7.3.1 in the text). Let q be a power of an odd prime. Let

Γ ď GL2pFqrT sq be a congruence subgroup. Let Γ1 “ tγ P Γ : detpγq “ 1u. Suppose

that Γ1 is such that Γ1 ď Γ1 ď Γ. Then as algebras

MpΓq “MpΓ1q,

and each component Mk,lpΓ1q is some direct sum of components Mk,l1pΓq for some

nontrivial l1.

9



Chapter 2

What are Canonical Rings?

To introduce the theory of canonical rings we consider the following version of Petri’s

theorem. Let X be a genus g ě 4 canonical (non-hyperelliptic), smooth, irreducible,

projective, complex algebraic curve and let ωX denote the canonical bundle on X. The

assumption that we work over the complex numbers is purely for convenience as we

discuss in Remark 2.0.1. As we will see, ωX defines a closed immersion ϕ : X Ñ Pg´1.

Let R “ RpX,ωXq “ ‘dě0H
0pX,ωbdX q denote the canonical ring of X in Pg´1. Then

Petri’s theorem says R – Crx1, ¨ ¨ ¨ , xgs{I, where R is generated in degree 1, the ideal

I is generated in degree 2 (by ‘quadrics’) and when g “ 5 in particular, dimC I2 “ 3.

That is, informally, genus 5 curves are the complete intersection of 3 quadrics in P4.

The full statement of Petri’s theorem relates the geometry of a curve with genus

g ě 4 to the structure of its canonical ring RC “ RpC, ωCq and concludes that R is

generated in degree 1 with relations in degree 2 unless C is hyperelliptic, trigonal or

a plane quintic (see e.g. [ACGH85, Section 3.3]). We often focus on the case of genus

g “ 5 where we obtain a particularly nice description of the canonical ring, and can

10



illustrate many calculations explicitly while keeping the notation somewhat readable.

In this chapter we will discuss both a genus formula for complete intersections and

directly consider the ideal of relations for a genus g ě 4 curve which is canonically

embedded into Pg´1. Along the way we define many fundamental objects such as

curves and their canonical bundles, so that while the document is not entirely self-

contained, it at least proceeds from a reasonably elementary point.

Remark 2.0.1. Throughout this chapter we work over an algebraically closed field

F “ F with charpFq “ 0, typically C. As in [LRZ18b, Remark 2.1.1], the assumption

of algebraic closure is not essential at all, but merely for convenience. The graded

pieces of the canonical ring are preserved under base change from F to F since flat

base-change commutes with cohomology. Indeed, even though over an inseparable

extension of the base field, the base change of the canonical bundle may not agree

with the canonical bundle of the base change, the structure of a canonical ring does

not change when base changing from F to its algebraic closure F. That is, generators

and relations for a canonical ring are preserved under base field extension, as are

their minimal degrees.

2.1 Notation and Preliminaries

In this section, we will define a topology which we use throughout this chapter, and

state one computational Theorem. These facts are found in standard treatments such

as [Har77].
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For expert readers, we begin by specifying a Grothendieck topology for our schemes,

and for the non-expert, we define a topology that we will use on our schemes.

Definition 2.1.1 ( [Har77, pages 9 ´ 10]). Let S be a graded ring, let f P S be

a homogeneous polynomial, and denote by S` the maximal ideal S` “ ‘dą0Sd. We

define

V`pfq
def
“ tp� S : p is a homogeneous prime ideal, p ‰ S`, and f “ 0 pmod pqu,

and if a� S is any homogeneous ideal, we define the zero set of a:

Zpaq
def
“ ZpT q “ tp P S : fppq “ 0 for all f P thomogeneous elements of auu,

where T is the set of all homogeneous elements of a. Finally, we say that a subset

Y Ă PnS is an algebraic set if there exists a set T of homogeneous elements such

that Y “ ZpT q and define the Zariski topology on PnS by taking open sets to be the

complements of algebraic sets.

Example 2.1.2. The Zariski topology on PNC has a basis of the open sets of the form

D`pfq, the nonvanishing locus of the function f P Crx0, ¨ ¨ ¨ , xN s as f varies.

By means of defining as little as possible to get as much done as we can, we state

only a few things which appear in the detailed anatomy of a sheaf on a scheme.

Definition 2.1.3. Let X be a scheme over C and let F be a sheaf on X. Then for an

open U Ď X, the elements s P FpUq are called the sections of F , and in particular

are called global sections when U “ X. Write H0pX,Fq for the C-vector space of
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global sections of F , and let

h0
pX,Fq def“ dimCH

0
pX,Fq.

We need a notion of functions on our scheme for the theory which follows. In

scheme-theoretic terminology, this means defining a sheaf of rings (of functions).

Definition 2.1.4 ( [Har77, page 110]). Let A be a ring, let p � A be a prime ideal

and denote the localization of A at p by Ap. Suppose X is scheme over SpecA. The

structure sheaf OX on X is the sheaf of rings defined on each open U Ď X to be

the ring of functions s : U Ñ
Ů

pPU Ap such that for each p P U, sppq P Ap and for

each p1 P U there is some open neighborhood V of p1 contained in U and elements

a, f P A such that for each q P V, f R q and spqq “ a{f in Aq.

Finally, turning to the sheaves of modules which appear later in the document,

we introduce one last purely sheaf-theoretic idea.

Definition 2.1.5. Let X be a scheme over C. For E a locally free sheaf of rank r

on X, the determinant of E is detpEq def“
Źr E, where

Źr denotes the rth exterior

product, i.e. the rth graded component of the exterior algebra.

Later we will want to compute the determinant of a vector bundle, i.e. a sheaf

such as E in Definition 2.1.5, which we can do via the following theorem:

Theorem 2.1.6. Let X be a scheme over C and let E,F,G be locally free sheaves on

X. If 0 Ñ E Ñ F Ñ GÑ 0 is exact then

detpEq b detpGq – detpF q.
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Proof. This is [Har77, Exercise II.6.11].

2.2 Curves and Complete Intersections

The true starting point for the theory which we cover in this thesis is the definition

of a curve. We specify what kind of curve we consider by in particular the notions of

a “projective” scheme, an assumption we make about curves, and “complete intersec-

tions” which we discuss in great detail. These choices mean we do not have to make a

choice about some kind of ambient space in which our curve could live, but rather let

us inherit the geometry of a well-known space in our consideration of some subspace,

and that we use the theory of intersections in algebraic geometry, respectively.

Definition 2.2.1. A curve is an integral, smooth, projective, Noetherian, separated,

one-dimensional scheme of finite type over SpecpFq for F some (algebraically closed)

field.

In particular, by projective, we mean X is an irreducible algebraic set in PN

with the induced subset topology. With this notion, we can begin to introduce ring-

theoretic objects associated to a curve.

Definition 2.2.2 ( [Har77, page 10]). Suppose X is any subset of PNF where F is an

algebraically closed field. The homogeneous ideal of X, denoted IpXq, is the ideal

generated by

tf P Frx0, ¨ ¨ ¨ , xN s : f is homogeneous and fpP q “ 0 for all P P Xu.

Next, by using the ideal above, we begin a special case of intersection theory.
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Definition 2.2.3 ( [Har77, Exercise I.2.17]). A variety X Ă PN of dimension n is a

(strict) complete intersection if IpXq can be generated by N´n elements. We say

X is a set-theoretic complete intersection if X can be written as the intersection

of N ´ n hypersurfaces.

The next result allows us to compute the degree of a complete intersection of

hypersurfaces of known degrees.

Theorem 2.2.4 ( [EH16, Corollary 1.24]). If c hypersurfaces Z1, ¨ ¨ ¨ , Zc Ă PN meet

in a scheme X of codimension c with irreducible components C1, ¨ ¨ ¨ , Ct then

ÿ

degrCis “
ź

degrZis.

Corollary 2.2.5. The degree of a complete intersection of hypersurfaces D1, D2 and

D3 Ă PN of degrees d1, d2 and d3 respectively, which intersect in a curve, is d1d2d3.

Proof. Since a curve is 1-dimensional, it has codimension N in PN . Since a smooth

curve is irreducible, i.e. has a unique component, the degree of the complete intersec-

tion of hypersurfaces which meet in a smooth curve is the product of their degrees.

2.3 Bundles

In this section we consider certain sheaves of free modules on a scheme, which we

call vector bundles. This discussion is separated into a discussion of features of, com-

putational tools for, constructions of, and then examples of different bundles. These

topics meet in the discussion of the canonical bundle, and the canonical ring in par-

ticular, for a curve. While there are probably treatments of each of the facts in this
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section in [Har77], we cite a variey of sources instead, both for readability as well as

proximity to the overarching problem of the genus formula for complete intersections

that we aim to state.

Formally, we consider the following kinds of sheaves of modules throughout the

rest of these notes.

Definition 2.3.1. Let X be a curve over F. Then a vector bundle of rank n on

X is a locally free sheaf of rank n OX-modules. A line bundle on X is a vector

bundle of rank 1.

To make the abstract notion of a sheaf such as a line bundle more convenient

for computation, we will often use the following notion of divisors in place of line

bundles. Indeed in many situations, such as the case of a smooth curve, there is a

correspondence between line bundles and divisors. When working with line bundles

on a curve which is not smooth, only certain special divisors called Cartier divisors

correspond to line bundles. First we introduce the notion of divisors.

Definition 2.3.2. Let X be a scheme of dimension n over an algebraically closed

field F. Then a divisor on X is a formal sum of codimension 1 subschemes of X.

We have a certain uniqueness condition for divisors from the following notion of

linear equivalence between them.

Definition 2.3.3. Let X be a scheme of dimension n over an algebraically closed field

F with function field κpXq. We say that two divisors D and E on X are linearly

equivalent if there is some f P κpXq such that divpfq def“ Zpfq´P pfq “ D´E, where
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Zpfq and P pfq respectively denote the zeros and poles of f, counting multiplicities.

Write DivpXq for the free abelian group of divisors up to linear equivalence on X.

Example 2.3.4. When X Ă PN is a curve, a divisor on X is a formal sum of points

on X.

Remark 2.3.5. Since in these notes we consider the particular case when X is a

smooth curve, we will conflate line bundles and divisors on X. When the hypothesis

of smoothness is relevant, we will denote the missing assumption that the correspond-

ing divisors in question are Cartier with parenthesis.

We can naively spell out the correspondence between line bundles and divisors quite

neatly. Given L a line bundle on an integral scheme X and s a rational section of L,

the associated divisor is

divpsq “ Zpsq ´ P psq P DivpXq.

Conversely, given D “
ř

niPi a (Cartier) divisor on X, the sheaf OXpDq is a line

bundle on X, where

OXpDq “ tf P κpXq : f has a poles at worst Du,

and κpXq is the function field of X.

2.3.1 Facts about Bundles

Line bundles can define rational maps to projective space.
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Definition 2.3.6. Let X be a scheme over an algebraically closed field F and let L

be a line bundle on X. Suppose s0, . . . , sr is a basis for H0pX,Lq. Then there exists a

rational map

ϕL : X ´ ts0 “ ¨ ¨ ¨ “ sr “ 0u Ñ Pr

given by P ÞÑ psipP qq
r
i“0.

Remark 2.3.7. This is a rational map in the sense that it is defined only on a dense

open subset of X rather than the full space. In particular if L is a basepoint-free line

bundle, i.e. ts0 “ ¨ ¨ ¨ “ sn “ 0u “ H, then ϕL may define a map to Pr on all of X.

We use the following terminology to describe whether the induced maps from line

bundles somehow preserve the geometry of the scheme they are defined on.

Definition 2.3.8 ( [Sta18a]). Say a line bundle L is very ample if the map ϕL :

X Ñ Pr by global sections of L is a closed immersion as in [Sta18b, Tag 01QN]. Say

the line bundle L is ample if there is some nonnegative r P Z such that Lbr is very

ample.

Next, we do an apriori ring-theoretic construction on sheaves of modules over

Proj of a graded ring. This is an extended example of a line bundle which not only

lies on the ambient projective scheme which our (embedded) curves live in, but also

deals explicitly with hypersurfaces, which we will see cut out our curves as complete

intersections.

We start our construction with a fact about graded rings.

Definition 2.3.9. Let S “ ‘eě0Se be a graded ring. The dth Serre twist of S is

the S-module Spdq given by Spdqe
def
“ Se`d.
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Now we introduce a sheaf on Proj of a graded ring.

Definition 2.3.10. Let S be a graded ring and let M be a graded S-module. Then

there is a sheaf of modules M̃ on ProjpSq defined by (the sheafification of)

M̃pD`pfqq “M

„

1
f



0
,

where M r 1
f
s0 is the 0th graded component of M r 1

f
s.

Finally, we relate this sheaf of modules to the structure sheaf.

Definition 2.3.11. Let S be a graded ring and write PNS for ProjSrx0, ¨ ¨ ¨ , xN s for

xi indeterminates. The Serre twisting sheaf OPNS
on PNS , is OPNS

pdq
def
“ ČSPNS

pdq.

The following Theorem is instrumental computing the Picard group of PN as well

as making tensor products of line bundles on PN into a problem about elementary

addition of degrees.

Theorem 2.3.12. Let F be a field. For any d P Zě0

OPNF
pdq – OPNF

pdHq,

for H Ă PNF any hyperplane.

Proof. Let S “ Frx0, ¨ ¨ ¨ , xN s and fix d a non-negative integer. Recall that Spdq def“

Se`d by Definition 2.3.9 so Spdq “ ‘eě0Frx0, ¨ ¨ ¨ , xN se`d. Let rS be the sheaf of S-

modules on ProjS – PNF given by (sheafifying)

ĆSpdqpD`pfqq – S

„

1
f



d

“ F
„

x0, ¨ ¨ ¨ , xN ,
1
f



d

,
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where the nontrivial isomorphism of localized rings is from Example 2 on page 708

in [DF04]. Fix an affine open cover

PNF “
N
ď

i“0
Ui “

N
ď

i“0
D`pxiq,

and for each affine open Ui where 0 ď i ď N consider a map ϕi : ĆSpdqpUiq Ñ

OPNF
pdHqpUiq given by

f ÞÑ fpπpx0, ¨ ¨ ¨ , xi´1, xi`1, ¨ ¨ ¨ , xNqq

for f P Frx0, ¨ ¨ ¨ , xi´1, xi`1, ¨ ¨ ¨ , xN sd, where π P SN´1 is a permutation of indices

of coordinates. Note that we might equivalently define our map by a composi-

tion of f with a linear change of basis for homogeneous degree d polynomials in

x0, ¨ ¨ ¨ , xi´1, xi`1, ¨ ¨ ¨ , xN . In other words, each ϕi is a composition of the identity map

on Frx0, ¨ ¨ ¨ , xi´1, xi`1, ¨ ¨ ¨ , xN sd with an automorphism of Frx0, ¨ ¨ ¨ , xi´1, xi`1, ¨ ¨ ¨ , xN s0,

and therefore is a well-defined ring homomorphism. There is a well-defined injective

inverse map by composing f´1 with the inverse permutation-of-coordinates or respec-

tively the inverse of the change-of-basis automorphism, i.e. π´1 ˝ f´1, and therefore

on each affine open we have an isomorphism. This way we have isomorphisms

ϕij
def
“ ϕi|Uij “ ϕj|Uij ,

where Uij
def
“ Ui X Uj. By part 3 of the proof of Theorem II.3.3 in [Har77] these

morphisms glue.

By Theorem 2.3.12, we see line bundles on OPN are unique up to degrees. So, it
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follows that as groups

PicpPNq – Z.

2.3.2 Examples of Bundles

To develop a theory of a canonical bundle on a curve, and to compute it, we will need

four standard kinds of vector bundles which exist on many kinds of schemes. These

are the tangent and cotangent sheaves, the normal bundle, and finally the canonical

bundle itself.

The Sheaf of Differentials

As usual in this section, we begin with some facts about graded rings.

Definition 2.3.13 ( [Har77, page 172]). Let A be a commutative ring with 1, let B

be an A-algebra and let M be a B-module. An A-derivation of B into M is a map

d : B ÑM such that

1. dpb` b1q “ dpbq ` dpb1q for all b, b1 P B,

2. dpbb1q “ bdpb1q ` b1dpbq for all b, b1 P B, and

3. dpaq “ 0 for all a P A.

Now we may formally define a module of differentials in the “right” way to extend

the definition to schemes.

Definition 2.3.14 ( [Har77, page 172]). Let A be a commutative ring with 1 and let

B be an A-algebra. Define the module of relative differential forms of B over A

to be the B-module ΩB{A equipped with the A-derivation d : B Ñ ΩB{A which satisfies
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the universal property that for any B-module M and any A-derivation d1 : B Ñ M,

there exists a unique B-module homomorphism f : ΩB{A ÑM such that d1 “ f ˝ d.

Example 2.3.15 ( [Har77, Example II.8.2.1]). Let X be a scheme of dimension n over

C, and let B def
“ Crx0, ¨ ¨ ¨ , xn´1s. Then ΩB{C is the free B-module of rank n generated

by dx0, ¨ ¨ ¨ , dxn´1, and we denote by ΩX the sheaf of differential 1-forms on X,

with associated module ΩB{C.

Any actual treatment of duals of sheaves is besides the point in this discussion, so

we state a definition of a tangent sheaf so that we can connect differentials and the

normal bundle, which we turn to next.

Definition 2.3.16. Let X be a scheme over an algebraically closed field F. The tan-

gent bundle TX to X is the bundle TX
def
“ Ω_X .

Normal Bundle

At first glance, the normal bundle appears to be simply yet another sheaf of modules

on a scheme with a particularly unfriendly looking quotient definition. However, we

have carefully picked an exceptionally friendly kind of scheme: a complete intersec-

tion, to compute the normal bundle for.

Formally, we define the vector bundle of normal vectors to a subscheme as follows.

Definition 2.3.17 ( [EH16, page 50]). Suppose X Ă Y is an inclusion of schemes

over a field F. Then there is an inclusion of bundles TX Ă TY |X and the quotient

bundle

NX
def
“ TY |X{TX
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is the normal bundle to X in Y.

The connection between determinants of bundles, complete intersections of hy-

persurfaces, and curves all hinges on the following theorem.

Theorem 2.3.18. Suppose X Ă PN is a curve which is the complete intersection of

hypersurfaces D1, ¨ ¨ ¨ , Dr Ă PN . Then

NX “ OPN pD1q ‘ ¨ ¨ ¨ ‘OPN pDrq.

The Canonical Bundle

I decline to comment on why the canonical bundle is so named.

Our definition of a canonical bundle has two forms: the explicit catch-phrase

“top exterior power of the sheaf of differentials” definition for computations, and for

experts, the derived functor definition.

Definition 2.3.19 ( [Har77, page 180]). Let X Ă PN be a quasi-projective variety of

dimension n. We define the canonical bundle ω “ ωX , a line bundle on X, by

ω
def
“

n
ľ

Ω1
X

where N “ dimH0pX,ωXq ´ 1 and Ω1
X is the sheaf of regular differential one-forms

on X from Definition 2.3.14.

Definition 2.3.20 ( [Rei19, Lecture 10]). Let X Ă PN be some projective connected

variety of dimension n. The canonical bundle ωX is

ωX “ ExtN´nOPN
pOX , ωPN q,
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where Ext is the derived functor of sheaf HomOPN
p¨, ωPN q.

If the variety X from Definition 2.3.20 is also non-singular, then ωX – Ωn
X . This

line bundle is so special that the associated divisor has a distinguished name.

Definition 2.3.21. Let X Ă PN be a quasi-projective variety of dimension n. The

canonical divisor KX on X is the (Cartier) divisor associated to ωX .

We make one final restriction on the kind of curves which we consider from this

point forward.

Definition 2.3.22. Let X Ă PN be a curve and suppose that ωX is very ample. Then

we call X a canonical curve.

A feature of projective curves X is that we can compute the coordinate ring of

X by means of the coordinate ring of PNF “ ProjFrx0, ¨ ¨ ¨ , xN s. In particular, we can

map to this ring by means of the map associated to ωX given in Definition 2.3.6.

A central object in the study of curves is the following ring associated to the

canonical bundle.

Definition 2.3.23 ( [VZB22, page 1]). Let X be a scheme over an algebraically closed

field F. The canonical ring of X is the ring

R “ RpX,ωXq “
à

ně0
H0
pX,ωbnX q.

Remark 2.3.24. It is a Fields-medal winning result that the canonical ring is finitely

generated, and the proof in full generality is too involved for these notes, which are

concerned with the more classical theorem mentioned below.
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Remark 2.3.25. For L any very ample line bundle on a scheme X over an alge-

braically closed field k we can define a section ring of L analogously to the canonical

ring defined above. One particularly relevant example for these notes is the Arbarello-

Sernesi module of X and L a line bundle on X which is the graded module

à

qPZ
H0
pX,ωX b Lbqq,

which can be used, as in [GL85] with L “ ωX , to prove the theorem of Enriques,

Babbage and Petri, known as Petri’s theorem. Some other examples of explicit com-

putations of section rings are [O’D15] for divisors with Q-coefficients on P1, [CFO24]

which generalizes [O’D15] to elliptic curves, and [LRZ16] which computes (log) spin

canonical rings of curves in all genera. A comprehensive summary of canonical and

log canonical rings of curves in all genera is found in [VZB22, Chapter 2].

Now that we have a basic sense of what a canonical bundle is we turn the discussion

to computing it in the case of curves which are complete intersections of hypersurfaces.

Lemma 2.3.26 ( [Sha13, Shafarevich’s Lemma]). Let X be a purely n-dimensional,

non-singular, smooth, projective, algebraic variety over C. Locally, the canonical bun-

dle on X has form ω “ fpdx1 ^ ¨ ¨ ¨ ^ dxnq, where x1, ¨ ¨ ¨ , xn are some local parame-

ters and f is some regular function.

We first compute the canonical bundle on the scheme PN “ ProjCrx0, ¨ ¨ ¨ , xN s.

Theorem 2.3.27 ( [Vak02a]). ωPN – OPN p´N ´ 1q.

Proof. For readability this proof is restricted to the case when N “ 2.

25



Let P2 “ ProjCrx0, x1, x2s and consider some charts

U0 “ tx0 ‰ 0u coordinates pu1, u2q,

$

’

’

&

’

’

%

u1
def
“ x1

x0

u2 “
x2
x0

U1 “ tx1 ‰ 0u ´´ pv0, v2q, vi
def
“ xi

x1

U2 “ tx2 ‰ 0u ´´ pw0, w1q, wi
def
“ xi

x2
.

By Shafarevich’s Lemma 2.3.26, sections of ωP2 over U0 have form fpu1, u2qdu1^ du2

for some f P OP2 , so consider the section du1^du2 in particular. Away from U0 there

is one location in P2 where we want to make sense of our section du1 ^ du2, namely

the divisor x0 “ 0. In the coordinates of the chart U1, which contains the divisor

x0 “ 0, we observe with some elementary calculus that

du1 ^ du2 “

ˆ

´1
u2

0
du0

˙

^

ˆ

u0du2 ´ u2du0

u2
0

˙

,

and since ei ^ ei
def
“ 0 for any vector ei, we conclude

du1 ^ du2 “
´1
u3

0
du0 ^ du2.

Since ´1
u3

0
has a pole of order 3 on u0 “ 0 as desired we are done.

We will use a version of the adjunction formula to compute the canonical bundle

of our complete intersections.

Theorem 2.3.28 (Adjunction Formula). If X Ă PN is a smooth subscheme with

normal bundle NX then

ωX – ωPN |X b detpNXq.
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2.4 A Genus Formula for Complete In-

tersections of Surfaces

Now we have the tools to state and prove a genus formula for complete intersections

of hypersurfaces in a projective space. We restrict ourselves to hypersurfaces in P4

for this section to make the notation concrete and as accessible as possble.

Theorem 2.4.1. Let X Ď P4 be the complete intersection of smooth degree d1, d2, d3

hypersurfaces D1, D2 and D3 Ă P4. Then X is a curve of genus

g “
pd1 ` d2 ` d3 ´ 5qd1d2d3 ´ 2

2 .

Proof. Recall that by Exercise I.2.17.b in [Har77], X is a set-theoretic complete in-

tersection and therefore a curve since it is the intersection of 3 hypersurfaces in P4,

i.e. a variety of dimension 1 per Definition 2.2.3. By the Adjunction formula 2.3.28,

we compute

ωX “ ωP4 |X b detpNXq.

Using Theorem 2.3.18 and Theorem 2.3.27 we see

ωX “ OP4p´5q|X b det rOP4pD1q|X ‘OP4pD2q|X ‘OP4pD3q|Xs .

We can compute the determinant with Theorem 2.1.6, and since the OP4pDiq|X are line

bundles for 1 ď i ď 3, Definition 2.1.5 becomes detpOP4pDiq|Xq “
Ź1 OP4pDiq|X “
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OP4pDiq|X for each i, so we get

ωX “ OP4p´5q|X bOP4pD1q|X bOP4pD2q|X bOP4pD3q|X

by Theorem 2.1.6. Since PicpPNq – Z so line bundles are unique up to degrees, using

Serre twist notation 2.3.12 and the fact that restrictions commute with tensors since

restriction is a right adjoint functor, we rewrite

ωX “ OP4p´5q bOP4pd1q bOP4pd2q bOP4pd3q|X .

Finally, making use of the convenient notation choice above and the Picard group

again,

ωX “ OP4pd1 ` d2 ` d3 ´ 5q|X “ OXpd1 ` d2 ` d3 ´ 5q.

By Theorem 2.3.12 we have an isomorphism

OP4pd1 ` d2 ` d3 ´ 5q|X – OP4ppd1 ` d2 ` d3 ´ 5qHq|X

for H any hyperplane divisor. Being a hyperplane divisor, H will intersect X, which

has degree d1d2d3 by Corollary 2.2.5, exactly degpXq “ d1d2d3 times, so that

degpOXpd1 ` d2 ` d3 ´ 5qq “ pd1 ` d2 ` d3 ´ 5qd1d2d3.
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By Riemann-Roch and Corollary 2.2.5 we compute

degpKXq “ degpOP4pd1 ` d2 ` d3 ´ 5q|Xq “ 2g ´ 2

pd1 ` d2 ` d3 ´ 5qd1d2d3 “ 2g ´ 2,

so

g “
pd1 ` d2 ` d3 ´ 5qd1d2d3 ´ 2

2 . (2.4.1)

Corollary 2.4.2. The complete intersection of 3 distinct smooth quadrics in P4 is a

curve of genus 5.

Proof. For each i, we have di “ 2 and so by our formula 2.4.1 we compute g “ 5.

2.5 Explicit Syzygies of Homogeneous

Ideals

We also want to show that if X is a genus g ě 4 curve (over C in order to simplify,

any algebraically closed field of characteristic 0 works as well), then the canonical

ring of X has form R – Crx1, ¨ ¨ ¨ , xgs{I, where I is generated by (exactly 3 when

g “ 5) quadrics. This is the other direction of Petri’s theorem’s “if and only if”-type

statement.

As an R-ideal, I naturally has the structure of an R-module, and in fact is finitely

generated. However, more information is needed than simply the generators, say some

f1, ¨ ¨ ¨ , fn, for I. In particular there are nontrivial relations among those generators,
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which form a set called the (first) syzygies, denoted Syzpf1, ¨ ¨ ¨ , fnq following the

notation from [CLO05, chapter 6]. It turns out that Syzpf1, ¨ ¨ ¨ , fnq is itself an R-

module, say with generators g1, ¨ ¨ ¨ , gm, and there is an R-module of relations among

the gi, denoted Syzpg1, ¨ ¨ ¨ , gmq, which is the module of (second) syzygies for I.

Proceeding in this way one defines a sequence of successive syzygy modules for I

which is called a resolution. Our goal will be to explicitly write down the first syzy-

gies corresponding to the quadrics whose complete intersection is (the image under

the canonical embedding in Pg´1 of) X.

Let ϕ : X Ñ Pg´1 be the map obtained from global sections of the canonical

bundle

p ÞÑ rs1ppq, ¨ ¨ ¨ , sgppqs

and let x1, ¨ ¨ ¨ , xg P X be some closed points in general position. Then consider

a basis ϕ1, ¨ ¨ ¨ , ϕg of H0pX,ωXq such that ϕipxjq ‰ 0 if and only if i “ j. By the

uniform position theorem in [ACG11, Section 3] and the geometric Riemann-Roch

dimH0
pX,Kp´x1 ´ ¨ ¨ ¨ ´ x̂i ´ ¨ ¨ ¨ ´ xgqq “ 1,

where x̂i means that point is excluded, ϕi is taken to be the generator for each i and

K “ KX is a canonical divisor on X. As a section of K

$

’

’

&

’

’

%

ϕipxiq ‰ 0,

ϕipxjq “ 0, i ‰ j

so the ϕi form a basis for H0pX,Kq. The assumption that the points xi are in general
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position also means the divisors pϕiq are supported at 2g ´ 2 distinct points with

pairwise disjoint support. Note that for any relation

ÿ

λiϕi “ 0,

evaluating at xi gives λi “ 0. It is also worth noting that this choice of basis is not

arbitrarily restrictive in the sense of the following Lemma.

Lemma 2.5.1. Let X be a genus g ě 4 canonical, non-hyperelliptic, smooth, irre-

ducible, complex algebraic curve. Let ϕ : X Ñ Pg´1 be the map obtained from global

sections of the canonical bundle

p ÞÑ rs1ppq, ¨ ¨ ¨ , sgppqs

and let x1, ¨ ¨ ¨ , xg P X be some closed points in general position. Suppose ϕ1, ¨ ¨ ¨ , ϕg

form a basis for H0pX,ωXq such that ϕipxjq ‰ 0 if and only if i “ j. Then given any

basis η1, ¨ ¨ ¨ , ηg for H0pX,ωXq, there exist some ai,j P C such that ϕi “
řg
k“1 ai,kηk.

Proof. Let η1, ¨ ¨ ¨ , ηg be a basis for H0pX,ωXq. Since the data of H0pX,ωXq is some

cover by affine opens pUi Ñ XqiPΛ with sections si P ωXpUiq compatible over inter-

sections, for any x P X, the η’s globally generate H0pX,ωXq in the sense that

ωX,x “ spantpη1qx, ¨ ¨ ¨ , pηgqxu.

One of the rational sections pηiqx is a generator for the localization ωX,x at x. Suppose

for each of x1, ¨ ¨ ¨ , xg P X some closed points in general position, that α1, ¨ ¨ ¨ , αg
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generate ωX,x1 , ¨ ¨ ¨ , ωX,xg respectively. Then

pη1qx1 “ r1α1 pη1qx2 “ r2α2 ¨ ¨ ¨ pη1qxg “ rgαg

pη2qx1 “ s1α1 pη2qx2 “ s2α2 ¨ ¨ ¨ pη2qxg “ sgαg
... ...

pηgqx1 “ t1α1 ¨ ¨ ¨ pηgqxg “ tgαg

for some r1, s1, ¨ ¨ ¨ , t1 P OX,x1 , r2, s2, ¨ ¨ ¨ , t2 P OX,x2 , rg, sg, ¨ ¨ ¨ , tg P OX,xg and so on.

Recall that each of the local rings OX,xi is a discrete valuation ring with a unique

maximal ideal the uniformizer at xi. Since ωX,xi is generated by αi for each i,

xri, si, ¨ ¨ ¨ , tiy “ OX,xi

so one of ri, si, ¨ ¨ ¨ , ti P Oˆ
X,xi

. Suppose for some ai,1, ¨ ¨ ¨ , ai,g P C not all 0 that

pai,1η1 ` ai,2η2 ` ¨ ¨ ¨ ` ai,gηgqpxjq “ 0

for some j ‰ i. At the stalk

pai,1η1 ` ai,2η2 ` ¨ ¨ ¨ ` ai,gηgqxj “ rai,1prjpxjqq ` ai,2psjpxjqq ` ¨ ¨ ¨ ` ai,gptjpxjqqsαj

so without loss of generality if rj is the unit, since ai,1rj ` ¨ ¨ ¨ ` a1,gtj “ 0,

ai,1 “ ´r
´1
j pxjq rai,2sjpxjq ` ¨ ¨ ¨ ` ai,gtjpxjqs .

In particular the solution lies in C. Indeed rj, sj, ¨ ¨ ¨ , tj P OX,xj so the evaluations
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rjpxjq, ¨ ¨ ¨ , sjpxjq P OX,xj{M “ κpXq, where M is the uniformizer at x2 and κpXq “

κpxjq is the residue field of the curve at the stalk. So since sj, ¨ ¨ ¨ , tj vanish to

nonnegative order at xj as localizations of a global section to an affine open, and rj

by assumption of being a unit is nonvanishing at xj,

rj P Oˆ
X,xj

ñ rjpxjq P pOX,xj{Mq
ˆ
“ Cˆ

and each of sjpxjq, ¨ ¨ ¨ , tjpxjq lie in a finite extension of C. Therefore, each is a complex

number since C is algebraically closed, so there are no such nontrivial extensions of

C.

Next we consider the relations in our chosen basis tϕiu for H0pX,ωXq. Ultimately

we will give bases for each graded component of the canonical ideal I of X in Pg´1 as

in [Mum99, page 237]. Consider the maps

ψn : H0
pPg´1,OPg´1pnqq Ñ H0

pX,ωbnX q

given by restriction and let X1, ¨ ¨ ¨ , Xg be a basis for H0pPg´1,OPg´1p1qq defined by

Xi “ ψ´1
1 pϕiq,

so that the Xi act like homogeneous coordinates.

Example 2.5.2 ( [ACG11, page 125]). Given P “ P pX1, ¨ ¨ ¨ , Xgq P H
0pPg´1,OPg´1pnqq

say that P “ ψnpP q. Changing coordinates in this manner when n “ 3 we have for

example:

X2
1X3 “ ϕ2

1ϕ3.
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Let D “ x3 ` ¨ ¨ ¨ ` xg P DivpXq. The general position of the xi means

dimH0
pX,ωXp´Dqq “ 2,

where the vector space has a basis ϕ1 and ϕ2. Since the support of the pϕiq are

pairwise disjoint, the pencil |ωXp´Dq| is base-point free. Each vector space in the

filtration

H0
pX,ωnXq Ą H0

pX,ωnXp´Dqq Ą ¨ ¨ ¨ Ą H0
pX,ωnXpp´n` 1qDqq

has codimension g ´ 2 in the previous, where n´ 1 ě s ě 1 since by Riemann-Roch,

for each s we have

h0
pX,ωnXp´sDqq “ p2n´ 1qpg ´ 1q ´ spg ´ 2q.

To actually write Petri’s equations for each s there must be n-canonical forms in

H0pX,ωnXp´sDqq which are linearly independent modulo H0pX,ωnXpp´s ´ 1qDqq as

this allows us to form a basis for the canonical ring.

Lemma 2.5.3 ( [ACG11, Base-point free pencil trick]). Let C be a smooth curve, let

L be an invertible sheaf on C and let F be a free OC-module. Suppose s1 and s2 are

linearly independent sections of L and denote the subspace of H0pC,Lq which they

generate V. Then the map

φ2,2 : V bH0
pC,Fq Ñ H0

pC,F b Lq
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given by

s1 b t2 ´ s2 b t1 ÞÑ s1t2 ´ s2t1

has kernel

kerφ2,2 – H0
pC,F b L´1

pBqq,

where B is the base locus of the pencil spanned by s1 and s2.

The application the Base-point free pencil trick 2.5.3 relevant to the Petri equa-

tions is our computation of

kerφn,s – H0
pC, ωn´2

C pp´s` 2qDqq

in the case when C is our smooth genus g ě 4 curve and φn,s for n´ 1 ě s ě 1 is the

cup-product map

φn,s : H0
pC, ωn´1

C pp´s` 1qDqq bH0
pC, ωCp´Dqq Ñ H0

pC, ωnCp´sDqq

from [ACGH85, 3.3].

We start with an inductive desciption of bases for the vector spaces H0pX,ωnXq

for each n as follows. The map

φ2,1 : H0
pX,ωXq bH

0
pX,ωXp´Dqq Ñ H0

pX,ω2
Xp´Dqq
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is surjective by Lemma 2.5.3 so

ϕ2
1, ϕ1ϕ2, ϕ

2
2, ϕ1ϕi, ϕ2ϕi,

where 3 ď i ď g, form a basis for H0pX,ω2
Xp´Dqq. At the top of the tower

H0
pX,ω2

Xq Ą H0
pX,ω2

Xp´Dqq,

the ϕ2
3, ¨ ¨ ¨ , ϕ

2
g are differentials in H0pX,ω2

Xq which are linearly independent modulo

H0pX,ω2
Xp´Dqq and since codimpH0pX,ω2

Xp´Dqq in H0pX,ω2
Xqq “ g ´ 2 the basis

for H0pX,ω2
Xq is

ϕ2
1, ϕ1ϕ2, ϕ

2
2 | |

ϕ1ϕi | | basis of H0pX,ω2
Xp´Dqq

ϕ2ϕi | |

ϕ2
3, ¨ ¨ ¨ , ϕ

2
g | basis of H0pX,ω2

Xq.

Writing down all of the differentials in each homogeneous order n, some nontrivial

relations begin to arise between them. For example, for all 3 ď i, k ď g where i ‰ k,

ϕiϕk P H
0pX,ω2

Xp´Dqq and in particular vanishes at x1 and x2. In [Mum99, page

240] Mumford concisely describes these relations

ϕiϕj “
g
ÿ

k“3
αijkpϕ1, ϕ2qϕk ` νijϕ1ϕ2,

36



and in H0pX,ω3
Xq in particular

ηi ´ ηj “
g
ÿ

k“3
α1ijkpϕ1, ϕ2qϕk ` ν

1
ijϕ

2
1ϕ2 ` ν

2
ijϕ1ϕ

2
2,

where the α are linear, α1 are quadratic and ν’s are scalars repectively. In particular

the homogeneous degree 2 equations

fij “ xixj ´
g
ÿ

k“3
αijkpx1, x2qxk ´ νijx1x2,

and the degree 3 equations

gij “ pµix1 ´ λix2qx
2
i ´ pµjx1 ´ λjx2qx

2
j ´

g
ÿ

k“3
α1ijkpx1, x2qxk ´ ν

1
ijx

2
1x2 ´ ν

2
ijx1x

2
2,

where the 3 ď i, j ď g, and i ‰ j are generators of the ideal of X in Pg´1. In other

words the fij all vanish onX in Pg´1 and are exactly the subvariety-defining equations

guaranteed by Petri’s theorem. To be rigorous, these

pg ´ 2qpg ´ 3q
2

linearly independent elements of I2 match the dimension of I2 which we expect from

Max Noether’s theorem, so indeed the fij form a basis.

Example 2.5.4. The full list of these equations when g “ 5 is

f34, f35, f43, f45, f53, f54

g34, g35, g43, g45, g53, g54
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but there are some relations among them.

We describe relations among our generators in the next Lemma.

Lemma 2.5.5 ( [Mum99, page 240]). Let X be a genus g ě 4 canonical, non-

hyperelliptic, smooth, irreducible, complex algebraic curve. There are syzygies

1. fij “ fji

2. gij ` gjk “ gik.

3. xkfij ´ xjfik `
g
ř

l“3
l‰k

αijlfkl ´
g
ř

l“3
l‰k

αiklfjl “ ρijkgjk,

where 3 ď i, j, k ď g, i, j, k are distinct, and the ρijk are scalars symmetric in

i, j and k,

which generate the components of the homogeneous ideal of X in its canonical embed-

ding IX{Pg´1,2 and IX{Pg´1,3 respectively.

Proof. This is a proof of only the second syzygy. The first is trivial and the third

requires more discussion.

gij ` gjk “ pµix1 ´ λix2qx
2
i ´ pµjx1 ´ λjx2qx

2
j ´

řg
k“3 α

1
ijkpx1, x2qxk ´ ν

1
ijx

2
1x2 ´ ν

2
ijx1x

2
2

`pµjx1 ´ λjx2qx
2
j ´ pµkx1 ´ λkx2qx

2
k ´

řg
k“3 α

1
ijkpx1, x2qxk ´ ν

1
jkx

2
1x2 ´ ν

2
jkx1x

2
2

“ pµix1 ´ λix2qx
2
i ´ pµkx1 ´ λkx2qx

2
k ´

řg
k“3 α

1
ijkpx1, x2qxk ´ ν

1
ikx

2
1x2 ´ ν

2
ikx1x

2
2

“ gik,

where ν 1ik “ ν 1ij ` ν
1
jk and ν2ik “ ν2ij ` ν

2
jk.

In order to spare writing longer lists and make the notation more readable, we

suppose gpXq “ 5 as this suffices to illustrate the point. The first two kinds of syzygy
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in Lemma 2.5.5 reduces the number of relations per the following table when g “ 5:

type p1q type p2q

f34 “ f43 g34 ` g45 “ g35

f35 “ f53 g35 ` g54 “ g34

f45 “ f54 g45 ` g53 “ g43

g43 ` g35 “ g45

g53 ` g34 “ g54

g54 ` g43 “ g53

which leaves only the following generators for the ideal

f34, f35, f45, g34, g35, g45

subject to the relations

ρ354g34 “ x4f35 ´ x5f34 `
ÿ

l“3
l‰4

α35lf4l ´
ÿ

l“3
l‰4

α34lf5l,

ρ345g35 “ x5f34 ´ x4f35 `
ÿ

l“3
l‰5

α34lf5l ´
ÿ

l“3
l‰5

α35lf4l,

and

ρ435g45 “ x5f43 ´ x3f45 `
ÿ

l“3
l‰5

α43lf5l ´
ÿ

l“3
l‰5

α45lf3l.

Now that we have illustrated explicit relations, we return to the consideration of

general genus g ě 4 curves. There are several cases with different minimal sets of

relations. Either ρijk “ αijk “ 0 whenever i, j, k are distinct, in which case our curve
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X is either trigonal or in the genus 6 case may be a nonsingular plane quintic; or

t3, ¨ ¨ ¨ , gu “ I1 Y I2, where for all j P I1 and k P I2 there exists an i with ρijk ‰ 0

and αijk ‰ 0 and such that the ideal of X is generated by the fij alone. Finally, we

can state and prove our version of Petri’s result about the canonical ideal of a genus

5 curve.

Theorem 2.5.6. Let X be a genus 5 canonical, non-hyperelliptic, smooth, irreducible,

complex algebraic curve. The syzygies f34, f35 and f45 generate the canonical ideal of

X its canonical embedding in P4.

Proof. Consider any partition of t3, 4, 5u which includes at least one nonempty subset

and the set-theoretic complement of that the first component. If at least some ρijk ‰ 0

then gik is determined by the fij. If every g were to be 0 the result also follows.
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Chapter 3

Stacks and How we Compute their

Canonical Rings

In this chapter we consider the problem of doing a calculation of the canonical ring

in the spirit of Petri’s theorem but for a stack rather than a scheme. As we will see,

in the case of tamely ramified Deligne-Mumford stacky curves that we are interested

in, our stacks behave just like schemes with some finite number of fractional points.

This makes the combinatorics of the canonical ring slightly more complicated than in

Petri’s theorem, but is a quite well understood question with lots of existing theory.

We first describe carefully what a stack is and then provide some references to existing

techniques and results for computing canonical rings stacky curves.

3.1 Why do we use Stacks?

We preview our working theory of stacks with some motivation for this addition level

of technicality. In doing so, we will mention several facts that we return to in later
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Sections and Chapters, and some that are not explicitly covered elsewhere in this

document. Without further ado, the reason that we use stacks is because of how

uniquely suited they are for describing the geometry of modular forms.

Modular forms as in [DS05, Definition 1.2.3] and Definition 6.1.5 can always

be made (in the non-Drinfeld and Drinfeld case respectively) as global sections of

line bundles. However, the dimension formulas (see e.g. [DS05, Chapter 3]) do not

agree with the dimensions of the global sections of these line bundles, i.e. we do

not get MkpΓq “ H0pXpΓq, Lbkq. Modular forms (including Drinfeld ones) can al-

ways be treated as sections of line bundles without referring to the stacky structure

of the modular curves where the modular form lives. However, it is not true that

H0pX,Lkq “Mk where

pX “ moduli space, L “ appropriate line bundle, M “ vector space of modular formsq

without either modifying L, taking a subspace of H0 or replacing X with a stack

whose coarse space is X.

This problem is more than just the dimension counts, it is the full graded ring.

Modular forms *are* sections of line bundles, the point is that just computing

the graded ring of sections of powers of a single line bundle does not give the correct

ring of modular forms, at least without modification. On the other hand, treating

this canonical ring as a stacky canonical ring - meaning computing global sections

of powers of a line bundle *on a stack* - does recover the correct graded ring structure.
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The difference between H0pX,Lq and H0pX ,L q for a scheme and a stack respec-

tively is subtle, but we can phrase things in terms of divisors. If L “ OpDq for a

divisor on X (see Section 3.3), then H0pX , Dq “ H0pX, tDuq, where tDu denotes

the floor of D. Explicitly, D is a sum of irreducible divisors, some of which may be

stacky. For such an irreducible divisor Z, tZu “ t1{#GuZ, where G is the automor-

phism group along Z.

There are floors in the formulas for (dimensions of algebras of) modular forms,

so it looks like something jumpy and discontinuous is happening. We know modular

forms are functions on the j-line (see [DS05, page 7] or [Gek86, Example V.3.6]),

so what is going on? Certain isomorphism classes (of say elliptic curves or Drinfeld

modules of rank 2 respectively) are “fatter” than the rest. For example, elliptic curves

with j “ 0 (respectively j “ 1728) have 6 automorphisms (respectively 4) instead of

just the usual hyperelliptic involution. Here is our “jumpiness.” Counting properly,

i.e. treating those j values as 1{3 and 1{2 we get a continuous looking formula.

3.2 What is a Stack

Thanks to Yoneda’s lemma we may introduce stacks in terms of a familiar language

to a geometer. A stack is a category fibered over some other category all of whose

morphisms are isomorphisms (a groupoid), and which satisfies a descent condition,

an analog of the ordinary sheaf condition. A useful practical reference for doing work

with stacks is [Alp23], where Alper uses this perspective to introduce stacks via a
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“pre-stack” much like a presheaf. We first state this analogy between sheaves and

stacks as a means to organize this chapter, and then we will make it precise.

1-category 2-category

functor/pre-sheaf fibered category

separated pre-sheaf pre-stack

sheaf stack

algebraic space / scheme algebraic stack

variety algebraic stack of finite type over a field

We take the functor of points perspective when working with stacks as this allows

us to make very explicit calculations and deal with the coming category theory in a

way which resembles how we learn about sheaves.

3.2.1 Functor of Points, Yoneda, Sites, Groupoids

Let C be a category, and let Ĉ
def
“ FunpC op, Setq denote the category of functors

whose objects are functors and whose morphisms are natural transformations. Then

we say the functor h : C Ñ Ĉ sending an object X P C to the functor hX P Ĉ defined

by hXpY q
def
“ HomC pY,Xq and mapping morphisms as in the following diagram:

Y 1 HompY,Xq Q f

Y X HompY 1, Xq Q f ˝ g,

g

f
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is the functor of points on C . We say a functor F P Ĉ is representable if

there is some X P C and an isomorphism hX
„
Ñ F, i.e. for each Y P C there is an

isomorphism hXpY q
„
Ñ F pY q compatible with compositions. A map F 1 Ñ F P Ĉ is

(relatively) representable if for each X P C we have F 2 def
“ F 1 ˆF hX – hX 1 for

some X 1 P C .

Lemma 3.2.1. Let F P Ĉ . The diagonal ∆ : F Ñ F ˆ F is representable if and

only if each f : X Ñ F is representable.

Proof. If ∆ is representable, then for any Z P C we have an isomorphism of functors

∆1 def“ F ˆ∆ hZ – hZ1 for some Z 1 P C . So, if f : X Ñ F then X 1 def“ X ˆF Z
1 has

X ˆF hZ1 – hX 1 , i.e. the following commutes

X 1 Z 1 Z

X F F ˆ F.
f ∆

Conversely, if each f : X Ñ F is representable, then for any Y P C there is

an isomorphism of functors F 1 def“ X ˆF hY – hY 1 for some Y 1 P C . Then for any

Z Ñ F ˆ F since F ˆ∆ hZ – hY , i.e. the following commutes

Y 1 Y Z

X F F ˆ F,
f ∆

45



we see that ∆ is representable.

Theorem 3.2.2. (Yoneda’s Lemma/The Fundamental Theorem of Category Theory)

The functor of points C Ñ Ĉ is fully faithful, i.e. it induces isomorphisms of sets as

follows. For each X, Y P C there is a natural HomC pX, Y q
„
Ñ HomphX , hY q, such that

given T g
Ñ X

f
Ñ Y there is hX

f
Ñ hY where hXpT q Ñ hY pT q is given by g ÞÑ f ˝ g.

Thanks to this fact we are able to phrase much of our discussion of stacks explic-

itly and in particular we may discuss a fundamental phenomenon: descent, in familiar

language. We conclude this section by stating a few definitions for our coming discus-

sion of fibered categories and the analog of the sheaf condition for 2-categories. We

say that a given category C is a groupoid if all of the maps in C are isomorphisms.

Let C be a category. A Grothendieck topology on C is specified by the following

data. For each X P C there is a collection CovpXq, the coverings of X (containing

tXi Ñ Xu) such that

1. if V Ñ X is an isomorphism then tV Ñ Xu P CovpXq,

2. for each tXi Ñ Xu P CovpXq and for all Y Ñ X P C ,

(a) the fiber-product Xi ˆX Y exists, and

(b) tXi ˆX Y Ñ Y u P CovpY q,

3. if tXi Ñ Xu P CovpXq and tVij Ñ Xiu P CovpXiq then tVij Ñ Xu P CovpXq.

We say that the pair pC , τq for C a category and τ some Grothendieck topology

on C is a site. However, for our reference later on while discussing rigid analytic

geometry, we offer a more formal definition of a site.
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Definition 3.2.3 ( [Sta18c]). A site is a pair of C a category and a set CovpC q of

families of morphisms with fixed target tUi Ñ UuiPI called coverings of C satisfying

the axioms

1. If V Ñ U is an isomorphism, then tV Ñ Uu P CovpC q.

2. If tUi Ñ UuiPI P CovpC q and for each i tVij Ñ UiujPJ P CovpC q, then tVij Ñ

UuiPI,jPJ P CovpC q.

3. If tUi Ñ UuiPI P CovpC q and V Ñ U is a morphism in C , then Ui ˆU V exists

for all i and tUi ˆU V Ñ V uiPI P CovpC q.

3.2.2 Descent and Fibered Categories

Let C π
Ñ D be a functor. An arrow X Ñ Y P C is Cartesian if for all Z P C and all

morphisms πpZq Ñ πpXq and Z Ñ Y, there exists a unique morphism Z Ñ X such

that the following commutes

Z

X Y

πpZq πpXq πpY q

@1

D4!

@3

@2

We call X a pullback of Y along πpXq Ñ πpY q. We say C π
Ñ D is a fibered

category if for all T 1 f
Ñ T P D and all Y P C such that Y ÞÑ T there is some

X P C and X g
Ñ Y P C such that g is Cartesian (i.e. πpgq “ f). In other words, the
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following commutes

D3X @2Y P C

@1T
1 T P D

g

f

and in this case we have

C Q C pT q Ñ C pT 1q

Ó

D Q T 1 Ñ T

where C pT q Ñ C pT 1q is defined by Y ÞÑ X “

¨

˚

˝

any choice of

Cartesian arrow

˛

‹

‚

.

Now we have a notion of the kind of categories (2-categories) from the first part of

our informal definition of stacks as “fibered categories.” We turn to the 2-categorical

descent condition, the analog of the sheaf condition for 1-categories.

Suppose that X 1 ρ
Ñ X is an étale cover in some site. That is, if X “

ď

iPI

Xi is some

open cover of X then X 1
“
ğ

iPI

Xi. Let

rX “ rXZar
def
“

$

’

&

’

%

sheaves of sets on X

in the Zariski topology

,

/

.

/

-

{pisomorphism of sheavesq.
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LetX2
“ X 1

ˆX X
1
“

ğ

i,jPI

Xij and letX3
“ X 1

ˆX X
1
ˆX X

1
“

ğ

i,j,kPI

Xijk. Then there

is an equivalence of categories between the such fibered covers and sheaves:

\Xijk – X3
rX

\Xij – X2 –
Ø ĂX 1

\Xi – X 1
ĂX2

X ĂX3

ρ´1

ρ1ρ2 ρ´1
2 ρ´1

1

ρ

Keeping our notation from above, we define the category of descent data
Č

X 1 ρ
Ñ X via the following data. The objects are pairs pF 1 P X̃ 1, iq where i : ρ´1

1 F 1 „Ñ

ρ´1
2 F 1 are canonical isomorphisms such that given F P rX, if we write Fi

def
“ F |Xi ,

the following commutes

Figure 3.1: The 2-categorical cocycle condition

pFi|Xijq|Xijk pFj|Xijq|Xijk

pFi|Xikq|Xijk pFj|Xjkq|Xijk

pFk|Xkiq|Xijk pFk|Xjkq|Xijk

ϕij

„

„

i

„

i

ϕjk

„

ϕik

„

„
i

i.e. ϕjk|Xijk ˝ϕij|Xijk “ ϕik|ijk. The morphisms in the category of descent data are

maps pF 1, iq Ñ pG 1, νq with F 1 ψ
Ñ G 1 such that the following commutes
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ρ´1
1 F 1 ρ´1

1 G 1

ρ´1
2 F 1 ρ´1

2 G 1

ρ´1
1 ψ

i ν

ρ´1
2 ψ

Now we can state formally the 2-categorical “sheaf” condition.

Theorem 3.2.4. (Strong form of Descent)

The functor rX Ñ
Č

X 1 ρ
Ñ X defined by F ÞÑ pρ´1F , iq with i a canonical system of

isomorphisms as above in Figure 3.1 and ρ a cover of X in some site, is an equivalence

of categories.

3.2.3 Defining a Stack

Finally we are able to move on to formal definitions of a stack and some special kinds

of stacks which we will work with later in the document.

Definition 3.2.5. Let pC , τq be a site. A stack over C is a category X Ñ C fibered

in groupoids satisfying descent, i.e. for each T 1 ρ
Ñ T P CovpT q there are morphisms

X pT q X pT 1q X pT 2q X pT 2q
ρ˚

ρ˚1

ρ˚2

ρ˚ij

and descent implies there is an equivalence of categories X pT q
„
Ñ DescpT 1 Ñ T q

where

DescpT 1 Ñ T q
def
“ lim

Ð

´

X pT 1q Ñ X pT 2q
Ñ
Ñ X pT3q

¯

50



is the 2-limit which contains pairs px P X pT 1q, σq with σ : ρ˚1pxq
„
Ñ ρ˚2pxq satisfying

the 2-cocycle condition 3.1.

In particular we consider the following kinds of stacks exclusively.

Definition 3.2.6. A stack X on a site pC , τq is algebraic or an Artin stack if

1. there exists some X P C and a smooth cover X Ñ X , and

2. the diagonal X ∆
Ñ X ˆX is representable.

Another relevant hypothesis for computing canonical rings especially is the fol-

lowing.

Definition 3.2.7. An algebraic stack X over a category C is a Deligne-Mumford

stack if

1. there is some X P C and an étale cover X Ñ X , and

2. the diagonal X ∆
Ñ X ˆX is representable, quasi-compact and separated.

In practice however, when working with stacks rather than proving a given moduli

sapce is a stack for example, the following definition of a stack from [LRZ16] suffices

for our work in this document.

Definition 3.2.8 ( [LRZ16, Definition 2.1]). A stacky curve X over an alge-

braically closed field K is a smooth proper integral scheme X/K of dimension 1,

together with closed points P1, ¨ ¨ ¨ , Pr of X with stabilizer orders e1, ¨ ¨ ¨ , er P Zě2

called stacky points of X .
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Remark 3.2.9. It is worth noting one crucial generalization which we have made

in our assumptions when adopting the notion of a stacky curve from Definition 3.2.8

compared with the schemes of Chapter 2. Here we have made no restrictions on the

characteristic of the ground field K and hence use different notation from Chapter 2

where the assumption of characteristic 0 is essential. Indeed, as we proceed to do, one

can compute canonical rings and find Petri-style generators and relations for stacky

curves even in positive characteristic.

Suppose then that charpKq “ p. Let X be any smooth, projective curve over K.

Let G ď AutpXq be a finite group. Then the stack quotient rX{Gs has the structure

of a stacky curve. Furthermore, if gcdp#G, charpKqq “ 1 then we say that rX{Gs

is tame in the sense of [VZB22, Definition 5.2.4]; otherwise, we say X is wild.

For the remainder of this work, our stacky curves in positive characteristic are tame.

This is a necessary but not sufficient hypothesis for our positive-characteristic version

of Petri-style calculations to behave similarly to the classical work in Chapter 2 and

Appendices A and B in characteristic 0. See [VZB22, Chapter 5] for a more detailed

treatement of this necessary but not sufficient condition.

It is possible to work on wild stacky curves (see e.g. [VZB22, Remark 5.2.5]),

but beyond the scope of what we need now. Note that [VZB22, Remark 5.2.5] also

explains the “similar behavior” we mention holds when considering canonical rings

of tame stacky curves and schemes in characteristic 0. Finally, note that we discuss

tameness of the stacks which are our main focus in Remark 6.2.9.
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3.3 How we use Stacks

See [Alp23] for a general stacks reference; see [VZB22] for an excellent and compre-

hensive reference on computing canonical rings of stacky curves and [O’D15] for a

useful generalization of [VZB22] that we need for the Drinfeld setting. We are most

interested in Deligne-Mumford stacks for this work, so some facts and examples will

be specialized to that case, but we indicate when this occurs. We also discuss rigid

analytic stacks and GAGA for rigid analytic and algebraic stacks, but leave that the-

ory for a later section.

It is shown in e.g. [Lau96, Corollary 1.4.3] that the moduli space of rank r Drin-

feld modules over the category of schemes of characteristic p is representable by a

Deligne-Mumford algebraic stack of finite type over Fp. One is able to compute the

graded rings of global sections of line bundles on stacks which represent the Drinfeld

moduli problems by means of geometric invariants with results that are slight variants

on the theory in [VZB22]. We will follow [VZB22] in describing this computation,

stating only select facts that we will need.

Recall from [VZB22, Definition 5.2.1], a stacky curve X over a field K is a

smooth, proper, geometrically connected Deligne-Mumford stack of dimension 1 over

K that contains a dense open subscheme. Every stacky curve X over a field K has

a unique coarse space morphism π : X Ñ X with X a smooth proper integral

scheme over K (called the coarse space) from Definition 3.2.8. Here π is universal

for morphisms from X to schemes, and the set of isomorphism classes of F -points
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on X and X are in bijection for any algebraically closed field F containing K. Note

that étale locally on the coarse space X, a stacky curve X is the quotient of an

affine scheme by a finite (constant) group G ď AutpXq. For x P X some point, let

Gx denote the stabilizer of x under the action by G. Only finitely many points of a

stacky curve X have nontrivial stabilizers in the sense that a dense open subscheme

of points all have isomorphic stabilizers, while some finitely many, the stacky points

of Definition 3.2.8, have strictly larger stabilizer groups.

Continuing the notation in the last paragraph, let π : X Ñ X be a coarse space

morphism. A Weil divisor is a finite formal sum of irreducible closed substacks of

codimension 1 over K. On a smooth Deligne-Mumford stack, every Weil divisor is

Cartier. Any line bundle L on X is isomorphic to OX pDq for some Cartier divisor

D. Finally, there is an isomorphism of sheaves on the Zariski site of X :

OXptDuq
„
Ñ π˚OX pDq,

where

tDu “

Y

ÿ

i

aiPi

]

def
“

ÿ

i

Y ai
#GPi

]

πpPiq.

Example 3.3.1. Let f : X Ñ Y be a morphism of stacky curves with coarse spaces

X and Y “ Spec k for k some field respectively. Then the sheaf of differentials

Ω1
X “ Ω1

X {Spec k is the sheafification (see [Alp23, Section 2.2.9] for sheafification) of

the presheaf on Xét given by

pU Ñ X q ÞÑ Ω1
OX pUq{f´1OY pUq

,
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where OX and OY denote the structure sheaves on X and Y respectively (see e.g.

[Alp23, Example 4.1.2] for more details on structure sheaves for Deligne-Mumford

stacks).

Every smooth, projective curve X may be treated as a stacky curve with nothing

stacky about it. On the other hand, as we have seen in Remark 3.2.9 the stack quo-

tient rX{Gs for a finite group G ď AutpXq is a stacky curve, as in Definition 3.2.8. We

know from e.g. [VZB22, Remark 5.2.8] that Zariski locally every stacky curve is the

quotient of a smooth, affine curve by a finite group, so in some sense “most” stacky

curves have a quotient description rX{Gs as above. Recall from [VZB22, Lemma

5.3.10.pbq] that the stabilizer groups of a tame stacky curve are isomorphic to the

group of roots of unity µn for some n. In order to discuss Drinfeld moduli stacks, we

introduce two more stacky notions.

We say a gerbe over a stacky curve is a smooth, proper, geometrically connected

Deligne-Mumford stack of dimension 1 over its base field. Note that a gerbe is almost

a stacky curve, except that it does not contain a dense open subscheme. Let X

denote a geometrically integral Deligne-Mumford stack of relative dimension 1 over

a base scheme S whose generic point has stabilizer µn for some n. Then there exists

a stack, denoted X {{µn, called the rigidification of X , and a factorization

X π
Ñ X {{µn Ñ S

such that π is a µn-gerbe and the stabilizer of any point in X {{µn is the quotient of

the stabilizer of the corresponding point in X by µn.
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Remark 3.3.2. In the factorization above, since π is a gerbe and furthermore is

étale, the sheaf of relative differentials X Ñ X {{µn is 0, i.e. the gerbe does not

affect sections of relative differentials (over the base scheme), nor the canonical ring

which we define for stacks below. In particular, we can identify canonical divisors

KX „ π˚KX {{µn , and the corresponding canonical rings are isomorphic.

In particular, we treat seriously the stackiness of moduli spaces when we compute

the following homogeneous coordinate rings on modular curves such as our consider-

ation of Drinfeld modular curves.

Definition 3.3.3. Let X be a stacky curve over a field k and let L be an invertble

sheaf on X . Then the section ring of L on X is the ring

RpX ,L q “
à

dě0
H0
pX ,L bd

q.

If L – OX pDq for some Cartier divisor D in particular, we can equivalently write

RD “
à

dě0
H0
pX , dDq.

Recall from [VZB22, Chapter 5.1] that a point of a stack X is a map SpecF Ñ X

for F some field, and to a point x, we associate its stabilizer Gx
def
“ Isompx, xq, a func-

tor which is a representable by an algebraic space. If Gx is a finite group scheme, say

that X is tame if degGx is not divisible by charpF q for any x P X . We say a point

x with Gx ‰ t1u is a stacky point as in Definition 3.2.8.

Finally, for readability of our main results, we introduce some terminology inspired

by [VZB22, Definition 5.6.2] and [VZB22, Proposition 5.5.6]. Let X be a tame stacky
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curve over an algebraically closed field K with coarse space X. A Weil divisor ∆ on

X is a log divisor if ∆ “
ř

i Pi is an effective divisor given as a sum of distinct

points (stacky or otherwise) on X . By [VZB22, Proposition 5.5.6] if KX and KX

are canonical divisors on X and X respectively, then there is a linear equivalence of

divisors

KX „ KX `R “ KX `
ÿ

x

ˆ

1´ 1
degGx

˙

x,

where Gx is the stabilizer of a closed substack x P X , and the sum above is taken

over closed substacks of X .

Our main object of interest is defined in [VZB22, Defintions 5.6.1 and 5.6.2] which

we generalize slightly to allow for stacky points in a log divisor: the canonical ring of

a log stacky curve is the ring

RD “
à

dě0
H0
pX , dDq,

where D “ KX `∆, for ∆ a log divisor on X .

Recall from [VZB22, Definition 5.6.6] that the signature of a log stacky curve

pX ,∆q is the tuple pg; e1, . . . , er; δq where g is the genus of the coarse space X, the

integers e1, . . . , er are the orders of the stabilizers of geometric points of X with

non-trivial stabilizers ordered such that ei ď ei`1 for all i, and δ “ deg ∆. The main

results of [VZB22] are organized around their inductive Theorem [VZB22, 8.3.1] which

succesively computes RpX ,∆q for pX ,∆q with signature pg; e1, . . . , er; δq in terms

of canonical rings of log stacky curves pX 1,∆q with signature pg; e1, . . . , er´1; δq. We
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summarize the way that their result splits into various base cases with the following

figure.

Figure 3.2: A Map of the Inductive Result in [VZB22]

[VZB22, Theorem 8.3.1]
g ě 2;

g “ 1 and r ` 2δ ě 2;
g “ 0 and δ ě 2.

[VZB22, Theorem 9.3.1]

[VZB22, Section 4.2]

[VZB22, Lemma 9.1.2]

[VZB22, Theorem 4.1.3]

[VZB22, Section 5.7]

[VZB22, Section 4.4] - g “ 2; δ “ 1

[VZB22, Section 4.5] - non-hyerpellitic;
δ “ 1

[VZB22, Section 4.6] - exceptional cases

g “ 0

r “ 0

r ě 1

g ě 1 r “ 0
r ě 1

g ě 2

We also note some generalizations of [VZB22] to section rings of Q-divisors. Such

divisors are, as in [VZB22, Remark 5.6.4], often useful for log canonical rings in more

pathological situations than our current context, such as the case of “wild” ramifi-

cation of stacky points, for example. See [O’D15] for general Q-divisors on genus 0

curves, see [CFO24] for Q-divisors on elliptic curves, and thanks to [LRZ16] one is

able to at least tightly bound the degrees of generators and relations for spin canon-

ical rings of log stacky curves in all genera.

We remark, as in the Introduction to [CFO24], that [CFO24] more or less concludes
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the line of inquiry in computing explicit minimal presentations of general section

rings. The results of both [O’D15] and [CFO24] are sufficiently complicated and

combinatorial in nature so as to appear to John Voight “as much some kind of additive

number theory as algebraic geometry,” and in neither work is the notion of a stacky

curve as such relevant for proofs. Somehow it is too arbitrary to ask for general

Q-divisors, especially since for divisors of low degree or ineffective divisors, even on

elliptic curves, the section ring has a rather complicated presentation. There is no

reason to believe that for curves in higher genus, where ampleness of divisors requries

greater degree, that a description of such section rings will have any kind of uniform

principle to it. Furthermore, this is a rather algorithmic problem, where Magma and

the existing theory is enough to bootstrap some kind of presentation for a section

ring in a given example, whereas it is quite challenging and likely not aesthetically

interesting to describe some general theory. Finally, it should not be dismissed how

high of a bar is set by [VZB22]. This work covers curves in all genera with great detail

and is more often than not sufficient for the number-theory motivated calculations

we are concerned with in this thesis.
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Chapter 4

Drinfeld Setting

In this chapter we discuss the arithmetic of function fields and introduce the Drinfeld

setting. Because of the well-established analogy between number fields and function

fields many results from class field theory such as Kronecker-Weber have a corre-

sponding theorem for function fields. However, as we are interested in arithmetic

geometry more than class field theory in particular, our description of this analogy

will be focused more on Drinfeld modules - the analogs of abelian varieties over a

number field, and their moduli. As we will later see, certain moduli spaces of Drin-

feld modules with level structure behave quite like moduli of elliptic curves, which

provides us a template for our theory of Drinfeld modular curves. This is foundational

material for our main results which describe the geometry of Drinfeld modular forms

in a manner quite like the more familiar case of modular forms over C or number

fields.
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4.1 Notation and the “Setting”

References for Drinfeld modular curves are [Gek86], [Gek01] and [MS15]; for Drin-

feld modular forms see the survey [Gek99] and the papers [GR96], [Gek88], [Bre16],

[Cor97a] and [DK23]. For the theory of Drinfeld modules themselves the best ref-

erence is [Pap23]. Before we discuss these objects, we quickly recall some basics of

function fields.

Let Fq be the finite field of order q a power of an odd prime. As function-

field analogs of Z, Q, R and C define the rings A “ FqrT s, K “ FracpAq “ FqpT q,

K8 “ Fq
ˆ̂

1
T

˙̇

, the completion of K at the place 8, and let C “yK8 be the com-

pletion of the algebraic closure of K8 respectively. Then C is an algebraically closed,

complete, and non-archimedean field.

We might just as well have taken K to be the function field of any smooth, con-

nected, projective curve over a field of characteristic q rather than our particular

choice of K as the function field of P1. Our specification of this function field in par-

ticular is only for ease with notation.

We have the usual discrete valuation v : Kˆ Ñ Z given by

v

ˆřn
1 aiT

i

řm
1 biT

i

˙

“ m´ n
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which we extend to the Laurent series K8 by

v

˜

ÿ

iěn

aiT
i

¸

“ ´n and vp0q “ 8.

The corresponding metric, which we extend to C, is the non-archimedean norm de-

fined by |f | “ q´vpfq.

The Drinfeld-setting version of the upper half-plane H Ă C is Ω def
“ C ´K8. We

will discuss this is more detail in the next section.

Note that the group GL2pAq acts on Ω by Möbius transformations as SL2 acts on

H, but detpγq P Fˆq for γ P GL2pAq. Let N P A be a non-constant, monic polynomial

and let ΓpNq be the subgroup of GL2pAq with matrices congruent to p 1 0
0 1 q modulo N.

A subgroup Γ of GL2pAq such that ΓpNq Ď Γ for some N is a congruence subgroup

and we call such an N of the least degree the conductor of Γ.

Some important examples of congruence subgroups are the following:

Γ1pNq “ tp 1 ˚
0 ˚ q pmod Nqu and Γ0pNq “ tp

˚ ˚
0 ˚ q pmod Nqu .

We establish an important assumption for this work: throughout, Γ ď GL2pAq

is some congruence subgroup such that for every α, α1 P Fˆq , Γ contains the matri-

ces of form p α 0
0 α1 q, that is, the diagonal matrices in GL2pAq. This means we have

det Γ “ tdetpγq : γ P Γu “ Fˆq . In general det Γ is a subgroup of Fˆq .
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Let pdet Γq2 be the set of squares of elements in det Γ : pdet Γq2 “ tx2 : x P det Γu.

Let

Γ2
def
“ tγ P Γ : detpγq P pdet Γq2u.

When we write Γ ď GL2pAq, we mean Γ satisfying the conditions above, so det Γ2 “

pFˆq q2.

The condition that Γ has all possible determinants is simply for ease of notation,

as it is more pleasant to compute congruences modulo q´ 1 rather than # det Γ. Our

emphasis on the case when q is odd is essential as we make repeated use of the fact

that q ´ 1 is even.

We will make use of a kind of “parity” for congruence subgroups for which we

introduce the following terminology:

Definition 4.1.1. We say that a congruence subgroup Γ is square if there is some z P

Ω such that the stabilizer Γz “ tγ P Γ : γz “ zu strictly contains Fˆq –
 

p α 0
0 α q : α P Fˆq

(

and every γ P ΓzzFˆq has det γ a square in Fˆq . Likewise, Γ is non-square if it

contains a stabilizer Γz for some z P Ω strictly larger than Fˆq and some γ with

det γ P Fˆq zpFˆq q2.

In our application stabilizers are all GL2pAq-conjugate subgroups of Fˆq2 so that

one only needs to check for a single point z P Ω with a stabilizer Γz Ľ Fˆq whether Γz

contains some matrix with a non-square determinant.
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4.2 The Burhat-Tits Tree

We can describe a fundamental domain for the Drinfeld “upper half plane” Ω follow-

ing [Gek86, Chapter V.1]. Thanks to Tristan Phillips we can even include a cartoon.

Along the way we introduce an important tool used to study the geometry of the

Drinfeld setting that we return to in Section 8.3.

Let T be the Bruhat-Tits tree of PGL2pK8q defined in [Ser80, Section 2.1].

Though we do not offer an exhaustive definition, we discuss many properties of T .

The Burhat-Tits tree is a connected tree, i.e. a simply connected simplicial complex.

The vertices of T are similarity classes of O8-lattices in K8, where O8 is the ring of

integers in K8. We say two vertices L1 ‰ L2 are adjacent if we can choose L1 and

L2 in their similiarity classes such that L1 Ă L2 of index qδ where δ “ degp8q is the

degree of the residue field of K at 8 over Fq. Each vertex has qδ ` 1 neighbors. We

can assign a metric dpx, yq to the realization T pRq which gives distance 1 to adjacent

vertices and is linear on edges.

Consider a building map λ : Ω Ñ T pRq given by z ÞÑ similarity class of | |z,

where for px, yq P K2
8 we say

|px, yq|z “ |zx` y|.

We can give a topological picture of the “buidling” which λ does with the construction:

64



• for each vertex of T , take a copy of

P1
pCq ´

¨

˚

˝

a union of qδ ` 1 open balls

with disjoint closures

˛

‹

‚

and

• for each edge of T , take an annulus P1pCq ´ pa union of 2 disjoint open ballsq,

• then glue these according to incidence in T .

The result is a 2-dimensional manifold which is the boundary of a tubular neigh-

borhood of T pRq. Then λ is no more than a projection onto T pRq. When q “ 2,

degp8q “ 1 so qδ ` 1 “ 3, and Tristan Phillips sketched (by hand) the following

cartoon:

Ω

λ

T pRq

Figure 4.1: The Bruhat-Tits tree T pRq and a Fundamental Domain for the Drinfeld “upper
half-plane” Ω
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4.3 Drinfeld modules

The theory of Drinfeld modules is rich in both algebraic and analytic structure. Both

interpretations and their equivalence are important in understanding the moduli

spaces of Drinfeld modules of a given rank. We state only what we need for our

computation of the canonical ring of certain log-stacky moduli spaces and the corre-

sponding algebras of Drinfeld modular forms. A concise and accessible introduction

to this material is the article [Poo22] and much more detail is covered in [Pap23].

Analytic Approach

We give a quick description of Drinfeld modules as lattice quotients. Following Breuer

[Bre16], we say an A-submodule of C of form Λ “ ω1A`¨ ¨ ¨`ωrA, for ω1, ¨ ¨ ¨ , ωr P C

some K8-linearly independent elements, is an A-lattice of rank r. Then we define

an exponential function as follows.

Definition 4.3.1. Let Λ Ă C be an A-lattice of rank r. The exponential function

of Λ, denoted eΛ : C Ñ C, is defined by

eΛpzq
def
“ z

ź

0‰λPΛ

´

1´ z

λ

¯

.

For any A-lattice, the exponential eΛ is holomorphic in the rigid analytic sense

(see e.g. [FvdP04, Definition 2.2.1]), surjective, Fq-linear, Λ-periodic and has simple

zeros on Λ. By an Fq-linear function we mean the following.

Lemma 4.3.2. Let K be a field of characteristic p containing Fq. Then fpxq P Krxs

is Fq-linear (i.e. fpαxq “ αfpxq for all α P Fq) if and only if fpxq “
n
ÿ

i“0
aix

qi .
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Let CtXqu
def
“ ta0X`a1X

q`¨ ¨ ¨`anX
qn : a0, ¨ ¨ ¨ , an P C, n ě 0u denote the non-

commutative polynomial ring of Fq-linear polynomials over C, with the operation of

multiplication given by composition. Note we can use any A-algebra B in place of C

to define a similar polynomial ring BtXqu to CtXqu. For each a P A the exponential

satisfies the functional equation

eΛpazq “ ϕΛ
a peΛpzqq,

where ϕΛ
a pXq P CtX

qu is some element of degree qr deg a. Then we say a ring homo-

morphism ϕ : AÑ CtXqu given by

a ÞÑ ϕΛ
a
def
“ a0paqX ` ¨ ¨ ¨ ` ar deg apaqX

qr deg a
,

(an Fq-algebra monomorphism) is a Drinfeld module of rank r if the coefficient

with largest index is non-zero.

Algebraic Approach

We recall, without any proofs, some facts concerning the algebraic theory which cor-

responds to the definition above. A more complete discussion of these next facts is

found in [Pap23, Definition 3.1.4] and [Pap23, Lemma 3.1.4]. We are mostly inter-

ested in the notation.

We state the following result so that when we define a moduli space of Drin-

feld modules, we can make sense of Drinfeld modules over an arbitrary base scheme

and therefore eventually have a well-defined category fibered in groupoids when we
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consider moduli stacks later.

Theorem 4.3.3 ( [Wat79, Page 65]). Let B be an A-algebra, and let Ga,B de-

note the affine additive group scheme over B represented by SpecBrts. Then the set

EndFqpGa,Bq of Fq-linear endomorphisms of Ga,B, is EndFqpGa,Bq – BtXqu.

Proof. Let A “ kxxy. Then A represents the group scheme Ga, i.e. there is a ring

homorphism AÑ EndFqpGaq since affine group schemes correspond to Höpf algebras.

Suppose that g, h : AÑ R are A-algebra maps with gpxq “ r and hpxq “ s. Then we

need a ∆ : A Ñ A b A such that the composite pg, hq ˝∆ : A Ñ A b A Ñ R sends

x ÞÑ r ` s. The map ∆ given by x ÞÑ xb 1` 1b x does this and is the unique map

we want since the Yoneda correspondence is a bijection.

Endomorphisms of Ga correspond to Qpxq P kxxy with ∆Q “ Qb1`1bQpxq. In

particular, if Qpxq “
ř

arx
r then arpxb1`1bxqr “ arpx

rb1`1bxrq so a0 “ 0. If r “

pns for some s ą 1 which is coprime to p, then pxb 1` 1b xqr “ pxpn b 1` 1b xpnqs

has a term spxp
n
b xps´1qpnq and ar “ 0. Then Qpxq “

ř

bjx
pj .

Then since Qpxq “ xp corresponds to τpxq “ xp P EndpGaq, the composite map

scaling by some b after τn gives a map x ÞÑ bxp
n
. Therefore any ϕ P EndpGaq is

uniquely expressed by some
ř

bix
qi . We also have xqb “ bpxq.

Finally, we can introduce algebraic Drinfeld modules over any scheme.

Definition 4.3.4. A Drinfeld module of rank r over an A-scheme S is a pair

pE,ϕq consisting of:
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• a Ga-bundle E (e.g. an additive group scheme) over S such that for all U “

SpecB an affine open subset of S for B an A-algebra in the Zariski topology on

S, there is an isomorphism ψ : E|U „
Ñ Ga,B of group schemes over U

• a ring homomorphism ϕ : AÑ EndpEq

such that for a family of pairs pUi, ψiq which form a trivializing cover of E (i.e. Ui “

SpecBi are an affine open cover and ψi : Eπ´1pUiq
„
Ñ Ga,Bi are local isomorphisms of

additive group schemes), the morphism ϕ restricts to give maps ϕi : AÑ EndpGa,Biq

of form ϕipT q “ TX ` b1,iX
q ` ¨ ¨ ¨ ` br,iX

qr , compatible with the transition functions

ψji “ ψi ˝ ψ
´1
j , i.e. ϕj ˝ ψij “ ψij ˝ ϕi on all intersections Uij “ Ui X Uj.

Remark 4.3.5. In the special case when we consider Drinfeld modules over a field,

the algebraic definition of a Drinfeld module is simpler. In particular, we have E “

Ga, and we do not need any of the trivializations of our bundle as we are working

over a single affine scheme. Therefore, it suffices to provide a ring homomorphism

ϕ : A Ñ EndpGaq. We do not make further explicit use of the algebraic definition of

Drinfeld modules in this article beyond the following examples.

Recall from [Pap23, Definition 3.3.1] that a morphism of Drinfeld modules

u : ϕ Ñ ψ over a field K of characteristic p is some polynomial u P KtXqu such

that uϕa “ ψau for all a P A, where X is an indeterminant. A non-zero morphism

u : ϕÑ ψ is called an isogeny, and we define the group

EndKpϕq
def
“ HomKpϕ, ϕq.

Under composition EndKpϕq is a subring of KtXqu which we call the endomorphism

69



ring of ϕ. The automorphisms of a Drinfeld module ϕ are the invertible elements

of its endomorphism ring.

The determinant of a rank 2 Drinfeld module ϕz2pT q “ TX` gXq`∆Xq2 is the

rank 1 Drinfeld module

ψzpT q
def
“ TX ´∆Xq.

Example 4.3.6 ( [Car38]). The Carlitz module is the rank 1 Drinfeld module

defined by

ϕpT q “ TX `Xq,

and corresponds to the lattice πA Ă Ω. Here, π P K8p q´1
?
´T q is the Carlitz period,

defined up to a pq ´ 1qst root of unity. We fix one such π once and for all.

As an algebraic Drinfeld module, the Carlitz module is the image of the ring ho-

momorphism

ϕ :AÑ CtXq
u

T ÞÑ TX `Xq

which is a rank 1 module since degϕ “ q “ |T |1, over the A-scheme SpecC. Here,

| ¨ | is the extension of the 8-adic absolute value to C.

Example 4.3.7. Let z P Ω, and consider the rank 2 lattice Λz “ πpzA ` Aq. The

associated Drinfeld module of rank 2 is

ϕzpT q “ TX ` gpzqXq
`∆pzqXq2

,
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where g and ∆ are Drinfeld modular forms of type 0 and weights q ´ 1 and q2 ´ 1

respectively. We will define Drinfeld modular forms in the next section. This is anal-

ogous to defining an elliptic curve by a short Weierstrass equation whose coefficients

are values of Eisenstein series. Once again this is an algebraic Drinfeld module over

an affine A-scheme. We have written down in particular the image of a degree 2

ring homomorphism ϕ : A Ñ CtXqu. The Carlitz period π serves to normalize the

coefficients of the series expansion of g and ∆ at the cusps of GL2pAq so that those

coefficients are elements of A.

For our intuition, we offer some further descriptions of algebraic Drinfeld modules.

Globally, the data of a Drinfeld module is a pair pϕ,Gq with ϕ : AÑ EndpGq. Locally,

the data of a Drinfeld module is

• a family of pairs pUi, ψiq, where the Ui “ SpecpBiq are affine opens which form

a trivializing cover for G, i.e. we have isomorphisms of group schemes ψi :

G|π´1pUiq
„
Ñ Ga,Bi and “restricted” Drinfeld modules for the Zariski topology;

• some ring homomorphisms ϕi : A Ñ EndpGa,Biq such that pGa,Bi , ϕiq are “re-

stricted” Drinfeld modules,

such that ψji “ ψi ˝ ψ
´1
j is an isomorphism of “restricted” Drinfeld modules on in-

tersections of affines. In other words, Ga-bundles are automatically line bundles. We

sketch the argument as follows.
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Consider the diagram

Bijrxs Bijrxs

Bijrxs Bijrxs

ψ#
ij

ϕ#
i pT q ϕ#

j pT q

ψ#
ij

We want to show that the transition maps ψ#
ij : Bijrxs Ñ Bijrxs are forced to

have form x ÞÑ mijx for some mij P B
ˆ
ij . We chase x around the diagram and ensure

that the endomorphisms ϕi descend, i.e. satisfy the cocyle condition. That is, our

endomorphisms respect or commute with the transition maps ψij. Note that we are

working on the corresponding algebras rather than directly on the group schemes,

that is on the functor of points, because this makes the computations algebraic and

familiar. Recall that we have x
ψ#
ij
ÞÑ mijx and

x
ϕ#
i
ÞÑ Tx` b1,ix

q
` b2,ix

q2
` ¨ ¨ ¨ ` bd,ix

qd .

So, we compute

m´1
ij ϕ

#
j pT qmij “ m´1

ij pTx` b1,jx
q ` b2,jx

q2
` ¨ ¨ ¨ ` bd,jx

qdqmij

“ Tx`mq´1
ij b1,jx

q ` ¨ ¨ ¨ `mqd´1
ij bd,jx

qd

“ Tx` b1,ix
q ` b2,ix

q2
` ¨ ¨ ¨ ` bd,ix

qd

“ ϕ#
i pT q,

or in other words mijϕipT q “ ϕjpT qmij.

Example 4.3.8. An automorphism of the rank 2 Drinfeld module ϕT “ TX`gXq`
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∆Xq2 over C where g ‰ 0 is given by α´1ϕTα for some α P Cˆ. We have

α´1ϕTα “ α´1
´

TX ` gXq
`∆Xq2

¯

α

“ TX ` αq´1gXq
` αq

2´1∆Xq2

“ ϕT , if α P Fˆq .
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Chapter 5

Rigid Analytic Stacks; Rigid Stacky

GAGA

We fix once and for all some π P K8p q´1
?
´T q, a Carlitz period, defined up to a

pq ´ 1qst root of unity. We define a parameter at infinity

upzq
def
“

1
eπApπ̄zq

“
1

π̄eApzq
“ π̄´1

ÿ

aPA

1
z ` a

.

We discuss the parameter u in more detail in coming chapters.

If we are discussing a stack, we may sometimes write “DM” as shorthand for

“Deligne-Mumford.” There should be no confusion with the phrase Drinfeld module

in particular as we will not be thinking about Drinfeld modules explicitly.
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5.1 Rigid Analytic Spaces

We briefly recall some definitions we need to discuss rigid anaytic spaces, which are

the natural means to discuss quotients of the Drinfeld “upper half-plane” Ω by con-

gruence subgroups. A more thorough treatment and good reference for rigid analytic

geometry in general is [FvdP04]. We will specialize to rigid analytic spaces over C

for readability.

We need the following two intermediate definitions to define a rigid analytic space.

Definition 5.1.1 ( [FvdP04, Page 46]). Let z1, ¨ ¨ ¨ , zn denote some variables. Let

Tn “ Cxz1, ¨ ¨ ¨ , zny be the n-dimensional C-algebra which is the subring of the ring

of formal power series Crrz1, ¨ ¨ ¨ , znss

Tn “

#

ÿ

α

cαz
α1
1 ¨ ¨ ¨ zαnn P Crrz1, ¨ ¨ ¨ , znss : lim cα “ 0

+

,

where α “ pα1, ¨ ¨ ¨ , αnq. An affinoid algebra A over C is a C-algebra which is a

finite extension of Tn for some n ě 0.

Definition 5.1.2 ( [FvdP04, Definition 2.4.1]). Let X be a set. A G-topology on

X consists of the data:

1. a family F of subsets of X such that H, X P F and if U, V P F , then U XV P

F ; &

2. for each U P F , a set CovpUq of coverings of U by elements of F (We say

the U P F are admissible sets and the elements of CovpUq are admissible
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coverings);

such that admissible coverings satisfy the axioms of a site Definition 3.2.3.

To recall the site axioms, we say that in the site specified by this “admissible

topology” the following conditions are met:

• tUu P CovpUq;

• for each U, V P F with V Ă U and U P CovpUq, the covering U X V def
“ tU 1 X V : U 1 P Uu

belongs to CovpUq;

• let U P F , let tUiuiPI P CovpUq and let Ui P CovpUiq. Then

ď

iPI

Ui
def
“ tU 1 : U 1 belongs to some Uiu

is an element of CovpUq.

Remark 5.1.3. G-topology is an abbreviation of Groethendieck topology, so we do

not type the “G” in math-mode.

Example 5.1.4 ( [FvdP04, Definition 4.2.1](Weak G-topology)). Let X “ SppAq be

an affinoid space over C, i.e. A is a C-affinoid algebra. Any surjective map of C-

affinoid algebras Tn Ñ A induces an embedding of X in the standard polydisk SppTnq.

The topology on C induces a topology on this polydisk SppTnq and so on X as well,

and this topology is canonical in the sense that it does not depend on the choice of

embedding.
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The admissible subsets of X for the very weak G-topology on X are the rational

subsets (see [FvdP04, Definition 4.1.1]) - R Ă X “ SppAq is rational if there exists

f0, ¨ ¨ ¨ , fs P A generating the unit ideal in A such that

R “ tx P X : |fipxq| ď |f0pxq| for i “ 1, ¨ ¨ ¨ , su.

A covering tRiuiPI of a rational subset R by rational subsets Ri is admissible for the

very weak G-topology of there exists a finite J Ă I with R “ YiPJRi.

The weak G-topology on X consists of the admissible sets which are finite unions

of rational subsets, and an admissible covering tRiuiPI of an admissible R has the

features that: all Ri are admissible and there exists a finite J Ă I with R “ YiPJRi.

The weak topology is slightly finer than the very weak.

Finally, we come to the point:

Definition 5.1.5 ( [FvdP04, Definition 4.3.1]). A rigid analytic space is a triple

pX,TX ,OXq consisting of a set X, a G-topology TX on X and a structure sheaf of

C-algebras OX on X for which there exists an admissible open covering tXiu of X

such that each pXi, TXi ,OXiq is an affinoid over C and U Ă X belongs to TX if and

only if U XXi belongs to TX for each i.

Example 5.1.6. Consider the Drinfeld “upper half-plane” Ω “ P1pCq´P1pK8q. We

know P1pK8q is compact in the rigid analytic topology, so we know from [GR96, Sec-

tion 1.2] that Ω is a rigid analytic space. The action by Γ ď GL2pAq a congruence

subgroup on Ω by Möbius transformations has finite stabilizer for each z P Ω, and as

in [GR96, Sections p2.5q and p2.6q], ΓzΩ is a rigid analytic space.
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Now we will follow [Vin12, Section 3.1.1.] for an explicit admissible open (pure)

cover of Ω:

We have a valuation v8pxq
def
“ ´ degpxq for K with local parameter T, which gives

rise to an absolute value normalized so that |x| “ qdegpxq. For n P Z let

Dn
def
“

$

’

&

’

%

z P C :
q´n´1 ď |z| ď q´n, and

|z ´ cT´n| ě q´n, |z ´ cT´n´1| ě q´n´1 for all c P Fˆq

,

/

.

/

-

.

Then Dn Ă Ω is an affinoid space over K8. For x P K8, let Dpn,xq
def
“ x ` Dn and

define a set of indices

I “ tpn, xq : for n P Z, x runs through representatives of K8{T´n´1O8u,

where O8 is the ring of integers in K8. Then tDpn,xqu is a pure covering of Ω, i.e.

Ω “
ď

pn,xqPI

Dpn,xq.

5.2 Separatedness and Properness of Rigid

Analytic Spaces

We wish to recognize rigid spaces over C as the analytification of some smooth ir-

reducible projecive variety over C. For a smooth irreducible projective curve X over
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any field k with a discrete valuation in particular,

tanalytic reductions of Xu 1´1
Ø

$

’

&

’

%

projective schemes X {k0 : X flat over k0

& generic fiber X ˆk0 k – X

,

/

.

/

-

.

Definition 5.2.1 ( [FvdP04, 4.10.1]). A morphism f : Z Ñ X of rigid spaces over

C is a closed immersion if there exists a coherent sheaf of ideals I on X defining

a closed analytic subspace Y of X such that f factors as Z g
Ñ Y Ñ X with g an

isomorphism. A rigid space X over C is called separated if the diagonal morphism

∆ : X Ñ X ˆC X is a closed immersion.

We characterize separatedness with the following theory.

Theorem 5.2.2 ( [FvdP04, Page 111](Criterion for Separatedness)). A rigid space

X over C is separated if and only if X has an admissible affinoid covering tXiu such

that for all i ‰ j with Xi X Xj ‰ H, the intersection Xi X Xj is affinoid and the

canonical map

OXpXiqb̂COXpXjq Ñ OXpXi XXjq

is surjective.

Definition 5.2.3 ( [FvdP04, 4.10.2]). An affinoid subset Y1 of an affinoid space Y2

is said to lie in the interior of Y2, denoted Y1 ĂĂ Y2, if Y2 “ SppAq where A has a

presentation for form

A “ Cxz1, ¨ ¨ ¨ , zny “ CxZ1, ¨ ¨ ¨ , Zny{pf1, ¨ ¨ ¨ , fsq

and there is some ρ ă 1 such that Y1 Ă ty P Y2 : |zipyq| ď ρ for all iu. Equivalently,
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Y1 is mapped to a single point under the canonical reduction Y2 Ñ Y2
c
.

A separated rigid space X is proper if there exist two finite admissible affinoid

covers tXiui“1,¨¨¨ ,n and tX 1
iui“1,¨¨¨ ,n with Xi ĂĂ X 1

i for all i.

We can think of a relative notion of proper rigid morphisms between rigid spaces:

A separated morphism f : X Ñ Y is proper if Y has an admisisble affinoid covering

tYju such that for each j there exist two affinoid coverings tXiui“1,¨¨¨ ,n and tX 1
iui“1,¨¨¨ ,n

of f´1Yj such that Xi ĂĂYj X
1
i for all i. We mean by this that if Yj “ SppBq and

X 1
i “ SppA1q, then A1 has a presentation

A1 “ Bxt1, ¨ ¨ ¨ , tαy “ BxT1, ¨ ¨ ¨ , Tαy{pf1, ¨ ¨ ¨ , fbq

such that Xi is contained in tx P X 1
i : |tspxq| ď ρ for all su for some ρ ă 1.

Some observations from [FvdP04, Pages 111´ 112]:

• A rigid space X is proper if and only if the canonical morphism X Ñ SppCq is

proper.

• If the rigid space X is proper, then all morphisms f : X Ñ Y are proper.

• Any finite morphism of separated rigid spaces is proper.

A major idea we will use:

Theorem 5.2.4 ( [FvdP04, Theorem 4.10.3](Kiehl)).

1. Let X be a proper rigid space over C. Then the cohomology groups H ipX,Fq of

any coherent sheaf F on X are finite dimensional C-vector spaces.
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2. Let f : X Ñ Y be a proper morphism of rigid spaces, suppose that Y is separated

and let S be any coherent sheaf on X. Then the direct image f˚S and all higher

direct images Rif˚S are coherent sheaves on Y. In particular the image fpXq is

a closed analytic subspace of Y.

Now we come to the point of this discussion.

Theorem 5.2.5 ( [FvdP04, Theorem 4.10.6](Recognizing projective varieties)). Sup-

pose X is a rigid space over C such that:

• X is reduced, separated and proper over C

• There is a C-vector space V of finite dimension n ě 1 consisting of meromorphic

functions on X such that

1. The coherent subsheaf L of the sheaf of meromorphic functions M gen-

erated over OX by V is a line bundle. This condition means there exists

a morphism φ : X Ñ Pn,an
C of rigid spaces, where if f0, ¨ ¨ ¨ , fn is a basis

for V then φ is given by x ÞÑ pf0pxq : ¨ ¨ ¨ : fnpxqq. Note that since C is

complete and algebraically closed we do not need to extend φ to the base

change of X to some completed closure.

We ask only that

2. φ is injective and

3. the tangent map pdφqx is injective for every x P X.

Then X is the analytification of some projective variety over C.
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Example 5.2.6. We have seen that the action by Γ ď GL2pAq a congruence subgroup

on Ω by Möbius transformations has finite stabilizer for each z P Ω, and ΓzΩ is a

rigid analytic space.

In particular this is the analytification of the smooth, irreducible, algebraic, affine

curve YΓ, with smooth projective model XΓ whose C-points are ΓzpΩ Y P1pKqq by

[GR96, Theorem 2.2.1].

5.3 Points on a Rigid Analytic Space

Why do we consider the points on a rigid analytic space? It turns out that G-topology

is not local enough in the sense that there are nonzero abelian sheaves F on a rigid

space X such that the stalks Fx “ 0 for every x P X. Evidently, the set of ordinary

points on X is too small. What then should the points be?

We consider the case of an affinoid space and note there are sufficient glueing the-

orems that one can recover rigid spaces in general from this discussion with enough

moxy.

Let X “ SppAq be a C-affinoid space. For any abelian sheaf F on X and any

point x P X we can form the stalk Fx, and for the category of coherent sheaves on X

this set is satisfactory in that:

• the functor F ÞÑ Fx is exact,

• a coherent sheaf F “ 0 if the stalks Fx “ 0 for all x P X, and
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• for any x P X there exists some coherent sheaf F on X such that Fy “ 0 if and

only if y ‰ x.

Definition 5.3.1 ( [FvdP04, 7.1.1]). Consider X “ SppAq with the weak G-topology.

A filter p on X is a collection of admissible subsets such that

1. H, X P p

2. If U1, U2 P p then U1 X U2 P p

3. If U P p and U Ă V, then V P p

and we say the filter p is a prime filter if

4. If U P p and tUiuiPI is an admissible covering of U, there is some i P I such

that Ui P p.

Remark 5.3.2. The last condition is equivalent to: if U1, U2 are admissible and

U1 Y U2 P p then either U1 P p or U2 P p

The set of filters is ordered by inclusion, so by Zorn’s lemma every filter is con-

tained in some maximal filter. Maximal filters are prime, and we write

PpXq def:“ tprime filtersu Ą tmaximal filtersu def“: MpXq.

An essential idea for this section is the following:

Any point x P X induces a maximal filter tU Ă X : U admissible & x P Uu.
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Let F be any abelian sheaf and p any prime filter. We can define the stalk Fp to

be the direct limit of the FpUq with U P p. Then we have the following:

Lemma 5.3.3 ( [FvdP04, Page 193]).

1. For admissible U Ă X, there is a natural inclusion PpUq Ă PpXq.

2. If U, V, tUiuiPI are admissible then

(a) PpUq Ă PpV q ðñ U Ă V

(b) If YiPIPpUiq “ PpXq then YiPIUi “ X (note the converse is typically false)

Definition 5.3.4. A topology on PpXq has a basis tPpUq : U admissibleu of open

sets.

We consider the categories of abelian sheaves next.,

Theorem 5.3.5 ( [FvdP04, Theorem 7.1.2]). Let AbX and AbPpX be the abelian

categories of abelian sheaves on X and PpXq respectively.

1. PpXq is a quasi-compact topological space and is not Hausdorff if dimX ě 1,

2. For every abelian sheaf F on PpXq, the presheaf σ˚F defined by pσ˚FqpUq “

FpPpUqq for admissible U is a sheaf, and

for every prime filter p P PpXq the canonical map pσ˚Fqp Ñ Fp is an isomor-

phism,

3. σ˚ : AbPpXq Ñ AbX is an equivalence of categories.

With all of this theory, we can finally come to the correct formulation of points

on a rigid analytic space.
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Note that the mapX Ñ PpXq which associates to a point x P X the maximal filter

tU : U admissible & U Q xu does not make perfect sense topologically. We consider

instead X as a rigid site Xrigid. The objects of this site are admissible subsets of X,

and

MorpU, V q “

$

’

’

&

’

’

%

H, U Ć V

tU ãÑ V u, o{w,

i.e. morphisms are at most the single inclusion of U into V. This means the G-topology

on X is also a G-topology on Xrigid. It is not hard to verify the axioms of a site Defini-

tion 3.2.3 for these covers since isomorphisms are inclusions, composition of inclusions

are inclusions and fiber-products are well-behaved with respect to injective maps.

Similarly, we can consider the topological space PpXq as a site PpXqtop. Then we

have a morphism of sites σ : PpXqtop Ñ Xrigid and σ˚ is an induced functor between

the categories of abelian sheaves on these sites.

With this framework, we have the following consequences of Theorem 5.3.5:

Corollary 5.3.6 ( [FvdP04, Page 194]).

• If p is a prime filter, then the associated functor from abelian sheaves on X to

abelian groups given by F ÞÑ Fp is exact.

• An abelian sheaf F on X is 0 if the stalks Fp “ 0 for all prime filters p.

• For a given prime filter p there exists an abelian sheaf F on X such that the

stalk Fq1 at the prime filter q1 is 0 if and only if q1 “ p.

85



That is:

The prime filters PpXq are the “correct” collection of points

for the rigid analytic space X.

Example 5.3.7. On a given Drinfeld modular curve XΓ, elliptic points, which are

no more than points z P Ω with stabilizers

Γz “
"

γ “ p a bc d q : az ` b
cz ` d

“ z, ad´ bc P Fˆq
*

strictly larger than Fˆq –
 

p α 0
0 α q : α P Fˆq

(

are ordinary C-points, as these points are

well-defined “ordinary” points on the rigid analytic space Y an
Γ “ YΓpCq “ ΓzΩ. On

the log stacky moduli curve XΓp∆q, where ∆ is the Q-coefficient Weil divisor of cusps

for Γ (the points of ΓzP1pKq are cusps), elliptic points are stacky points.

The other stacky points are the cusps of a Drinfeld modular curve XΓ.

algebraically analytically

XΓ ´ YΓ the orbits ΓzP1pKq

so these are points strictly on the smooth projective model of the affine algebraic curve

and correspond to a compactification of ΓzΩ. See [Pin21] for more details about the

compactification of Drifneld moduli schemes algebraically, and see [BN05] for more

algebraic details for stacky curves.
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5.4 Rigid GAGA

We begin with a special case.

Theorem 5.4.1 ( [FvdP04, Theorem 4.10.5](GAGA for rigid Pn,an
C )). There is a

functor F ÞÑ Fan from the category of coherent sheaves on PnC to the category of

coherent sheaves on the rigid space Pn,an
C . This is an equivalence of abelian categories

and commutes with the formation of cohomology groups. In particular every closed

analytic subspace of Pn,an
C is the analytification of some closed subspace of PnC .

Example 5.4.2. The rigid analytic quotient spaces ΓzpΩ Y P1pKqq are known to be

one-dimensional and finite covers of GL2pAqzpΩ Y P1pKqq – P1,an
C by [Gek01, Page

170]. As such, there is some embedding of these spaces by a line bundle (some mul-

tiple of the canonical bundle according to the classification of the curve, e.g. Petri’s

theorem) and so the embedded curve is a closed analytic subspace of an analytic pro-

jective space. Then such quotient spaces are the analytification of embedded projective

Drinfeld modular curves XΓ.

With this rather crude argument we at least motivate the idea that Drinfeld mod-

ular curves (the stacky curves XΓ which we consider in Chapter 6) have a coarse

space XΓ whose analytification is a familiar rigid analytic space ΓzpΩ Y P1pKqq. We

consider further both the mechanics of rigid GAGA itself, and the theory of covers of

P1,an.

Let M be a coherent sheaf on the algebraic curve P1
C over C. Then there is an

associated coherent sheaf Man on P def
“ P1,an

C given as follows:
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1. for an affinoid X, choose a Zariski open S with X Ă S ‰ P1
C

2. ManpXq
def
“ OpXq bOalgpSq MpSq, where OalgpSq Ă Cpzq denotes the ring of

regular functions on S. Further, ManpPq def“ MpP1
Cq.

A morphism f : M1 ÑM2 of coherent sheaves on P1
C induces a morphism f an between

coherent sheaves Man
1 and Man

2 on P.

At a point a P P1
C , consider the local parameter t “ z ´ a or t “ z´1. There are

three important local rings:

1. the algebraic local ring Crtsptq

2. the analytic local ring Cttu consisting of convergent power series, &

3. Crrtss the ring of formal power series

and

Crtsptq Ă Cttu Ă Crrtss,

where the final local ring is the completion of the first two. Therefore the inclusion

Crtsptq Ă Cttu is faithfully flat.

5.5 Rigid Stacky GAGA

Now we consider promoting the basic rigid GAGA from Theorem 5.4.1 to stacks.
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5.5.1 Context

In this section we explain a version of GAGA for Deligne-Mumford rigid analytic, and

algebraic Deligne-Mumford stacks. We begin by collecting some intermediate theory

from the literature for context.

First, we recall that DM stacks are Artin stacks. See [Art74] for the first dis-

cussion of what we now call Artin stacks and the papers [AOV07] and [AOV10] for a

more complete discussion of such stacks. Second, we recall that

rigid analytic spaces are adic spaces or Berkovich spaces

where adic and Berkovich spaces are each generalizations of rigid analytic spaces.

We remark that because of the enhanced levels of generality for these sites over

non-archimedean fields it is a fair question to ask, “why do we still work on rigid

analytic spaces?” Indeed, though sometimes this more classical theory gives us more

intuitive notions, say of points e.g. we still need to deal with G-topologies for rigid

spaces, so pedagogically a rigid analytic space is about as hard to think about as

the more general adic and Berkovich spaces. Our reason is this: we do not want to

reinvent the wheel. The theory of stacks for these sites is sufficiently well developed

for us to use it for our program of computing algebras of Drinfeld modular forms via

geometric invariants of Drinfeld modular curves as in [VZB22]. That is, our principle

is conservation of pain: we aim to state as little as possible to do as much as is

necessary.
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5.5.2 Rigid Stacks

We need a precise notion of a rigid analytic stack for rigid stacky GAGA. Let us

compare Definition 6.3.4 to some formulations in the literature to begin. One of the

first times the phrase “rigid analytic stack” appears is [Iwa06]. After a conjecture

on [Iwa06, Page 21], there is the following remark: “roughly speaking, this conjec-

ture says that in rigid geometry, the existence of local deformation theory implies the

global moduli stack which is represented by a rigid analytic stack.” Then in 2017 the

Ph.D. thesis [War17] develops a theory of Artin stacks on adic spaces. However, we

follow the more recent [EGH23, Section 5.1.7] for expedience.

Fix L some finite extension of Qp. Let RigL denote the category of rigid ana-

lytic spaces over L. Equp RigL with the Tate-fpqc topology (see [CT07, 2.1]). The

covers in this topology are generated by the admissible Tate coverings and the mor-

phisms SppAq Ñ SppBq for faithfully flat morphisms of affinoid algebras B Ñ A.

By [Con06, Theorem 4.2.8] all representable functors in this topology are sheaves and

coherent sheaves satisfy descent.

A stack on RigL is a category fibered in groupoids which satisfies descent for the

Tate-fpqc topology. We use one last intermediate definition before we can rigorously

define the kind of rigid analytic stacks which are our focus.

Definition 5.5.1 ( [EGH23, 5.1.8]). A quasi-analytic space is a sheaf F on RigL

such that the diagonal ∆F : F Ñ F ˆL F is representable and there exists an étale

surjection U Ñ F for a representable sheaf U.
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As in [EGH23, Remark 5.1.9.piq] we do not need this level of generality since by

[CT07, Theorem 1.2.2] every quasi-analytic space is representable by a rigid analytic

space.

Definition 5.5.2 ( [EGH23, 5.1.10]). A rigid analytic Artin stack is a stack X

on RigL such that the diagonal ∆X : X Ñ X ˆL X is representable by a quasi-

analytic space, and there exists some rigid analytic space U and a smooth surjective

map U Ñ X .

We define rigid analytic Deligne-Mumford stacks now, but return to this matter

in Definition 6.3.4.

Definition 5.5.3. A rigid analytic Deligne-Mumford stack is a rigid analytic

Artin stack X such that the diagonal ∆X : X Ñ X ˆL X is representable by a

rigid analytic space, quasi-compact and separated for the Tate-fpqc topology.

5.5.3 GAGA Theorem

Now we can make sense of a well-defined rigid and stacky GAGA following the theory

of [PY16]. The next two results are analogs of [Ser56, Theorems 2 and 3]. First, we

describe analytification with the following Lemma.

Lemma 5.5.4 ( [PY16, Lemma 7.2]). Let A be a k-affinoid algebra, for k some

non-achimedean field. Let X be an algebraic stack locally of finite presentation over

SpecpAq. Suppose that for F P OX ´Mod we have F – lim
τě´n

F . Then the analytifi-

cation functor p´qan commutes with this limit.

We have an equivalence of categories between algebraic and rigid analytic coherent

sheaves which we describe with the following two results.
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Proposition 5.5.5 ( [PY16, Proposition 7.3]). Let A be a k-affinoid algebra, for k

some non-achimedean field. Let X be an algebraic stack locally of finite presentation

over SpecpAq. Suppose that F ,G P CohpX q are coherent sheaves on X . Then there

is an equivalence of categories given by the natural map

MapCohpX qpF ,Gq
–
Ñ MapCohpX anqpFan,Gan

q.

Finally, the main result we need is the following.

Theorem 5.5.6 (Theorems [PY16, 7.4 and 7.5]). Let A be a k-affinoid algebra, for

k some non-achimedean field. Let X be a proper algebraic stack over SpecpAq. The

analytification functor on coherent sheaves induces an equivalence of categories

CohpX q
–
Ñ CohpX an

q.

Remark 5.5.7. In particular the Theorems of Porta-Yu apply to both 1-categories

and 8-categories. We can use the slightly weaker statement given above to avoid

defining 8-categories, which do not show up for us.
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Chapter 6

Drinfeld Modular Curves and Forms

This chapter describes moduli spaces of Drinfeld modules and Drinfeld modular forms.

In the next chapter we state and prove our main results about the connections between

the geometry of these two kinds of objects, and so our task now is to provide all of

the tools we will need in our coming arguments. We have finally established all of

the terminology we will need in preceeding chapters, so that with the puzzle pieces

we describe in this chapter, in the next we can fit together a complete description.

6.1 Drinfeld Modular Forms

In this section we introduce Drinfeld modular forms. The technical conditions of the

rigid analytic space in which we work makes it necessary to introduce some facts

about the projective line P1pCq before we begin in earnest on a study of modular

forms. We discuss rigid analytic spaces in more detail in the following sections.

Definition 6.1.1. Let π P K8p q´1
?
´T q be a fixed choice of the Carlitz period (recall
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Example 4.3.6). Then we define a parameter at infinity

upzq
def
“

1
eπApπ̄zq

“
1

π̄eApzq
“ π̄´1

ÿ

aPA

1
z ` a

.

Remark 6.1.2. In the Drinfeld setting, π plays the role of the constant 2πi P C in the

parameter q “ e2πiz at infinity from the classical setting. That is, it is a normalization

factor so that the series expansion coefficients for modular forms at cusps are elements

of A.

One fact about this parameter which we will use later in our consideration of

modular forms is the following.

Lemma 6.1.3 ( [Gek99, Page 10]). Let α P Fˆq . Then u pαzq “ α´1upzq.

Proof. For any α P Fˆq , the lattices Λ “ Aω1 ` Aω2 Ă C and α ¨ Λ are similar.

Furthermore, Λ is similar to pω1{ω2qA`A, where z “ ω1{ω2 P Ω. So the exponential

functions eπ̄αApπ̄αzq and eApzq for z P Ω differ by a factor of π̄α´1.

We mention some terminology which is part of the definition of a Drinfeld modular

form.

Definition 6.1.4. We say a function f : Ω Ñ C such that fpγzq “ detpγq´lpcz `

dqkfpzq for all γ “ p a bc b q P Γ, where k P Zě0, l P Z{pq ´ 1qZ and Γ ď GL2pAq is a

congruence subgroup, is weakly modular of weight k and type l for Γ.

Now we are able to define a fundamental object of study for this thesis.

Definition 6.1.5 ( [Gek86, Definition p3.1q]). Let Γ ď GL2pAq be a congruence

subgroup. A modular form of weight k P Zě0 and type l P Z{ppq ´ 1qZq is a

holomorphic function f : Ω Ñ C such that
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1. fpγzq “ detpγq´lpcz ` dqkfpzq for all γ “ p a bc b q P Γ, and

2. f is holomorphic at the cusps of Γ, i.e. at the representatives for the orbits of

P1pKq under the action of Γ.

Remark 6.1.6. We have gotten somewhat ahead of ourselves by describing cusps of

Γ, a topic which we return to in more detail in Definition 6.2.5. For now we make the

simplifying assumption that, like GL2pAq itself, Γ acts transitively on P1pKq. We pick

8 to be a representative for this orbit. That is, for now we say the unique cusp of Γ

is 8, which is enough to make some comments on the role of cusps in the definition

of a Drinfeld modular form.

There are several interpretations of the second condition about holomorphy at 8,

two of which are particularly helpful for intuition and for the proof the main theorem

respectively:

1. [Gek01, p2.2.iiiq] The condition is equivalent to f being bounded on tz P Ω :

|z|8 ě 1u, where | ¨ |8 is the 8-adic absolute value, in any case when Γ has a

single cusp;

2. [Gek99, Definition 3.5.piiiq] f has a series expansion at cusps:

fpzq “
ÿ

nPZ
anupzq

n, an P C,

where u is the parameter at 8, with a positive radius of convergence. The second

condition means that an “ 0 for all n ă 0.

Remark 6.1.7. The observation from [Gek88, Definition p5.7q] that if f is Drinfeld
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modular form, then fpz ` bq “ fpzq for b P A means that although not literally a

Fourier series, the series expansion of a modular form at the cusps of some congruence

subgroup is “morally” the Drinfeld setting equivalent to a Fourier series.

We introduce some terminology and notation respectively in the next definition.

Definition 6.1.8. WriteMk,lpΓq for the finite-dimensional C-vector space of Drinfeld

modular forms for Γ ď GL2pAq with weight k and type l. The algebra MpΓq of

modular forms for Γ is

MpΓq “
à

kě0
l pmod q´1q

Mk,lpΓq

since Mk,l ¨Mk1,l1 ĂMk`k1,l`l1 .

Now we can introduce some non-trivial facts about Drinfeld modular forms.

Lemma 6.1.9 ( [Gek88, Remark 5.8.iii]). Suppose fpzq P Mk,lpΓq has a u-series

expansion fpzq “
ÿ

ně0
anu

n. Then the coefficients ai uniquely determine f.

Proof. Although the u-series may not converge on all of Ω and only for |upzq| small,

since Ω is connected in the rigid analytic sense, the result follows from having a unique

u-series anywhere within Ω.

The weight and type of Drinfeld modular forms are not independent quantities in

the sense of the following fact.

Lemma 6.1.10 ( [Gek88, Remark p5.8.iq]). If Mk,lpΓq ‰ 0, then k ” 2l pmod q´ 1q.

Proof. Let γ “ p α 0
0 α q for some α P Fˆq . By assumption Γ contains the matrices of

form p α 0
0 α1 q for all α, α1 P Fˆq , therefore γ P Γ. If f is a non-zero modular form for Γ
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of weight k and type l then

fpγzq “ f
´αz

α

¯

“ fpzq “ αkα´2lfpzq,

so αk “ α2l in Fˆq and we conclude k ” 2l pmod q ´ 1q.

Example 6.1.11. Some famous Drinfeld modular forms are the GL2pAq-forms: g of

weight q´ 1 and type 0, ∆ of weight q2´ 1 and type 0, and h of weight q` 1 and type

1. We know from Goss and Gekeler respectively, see for example [Gek99, Theorem

p3.12q], that

à

kě0
Mk,0pGL2pAqq “ Crg,∆s and

à

kě0
l pmod q´1q

Mk,lpGL2pAqq “ Crg, hs.

Example 6.1.12 ( [Gek88]). The function

Epzq
def
“ π´1

ÿ

aPA
monic

˜

ÿ

bPA

a

az ` b

¸

is an analog to an Eisenstein series of weight 2 over Q, and we can define a Drinfeld

modular form

ET pzq
def
“ Epzq ´ TEpTzq

of weight 2 and type 1 for Γ0pT q, the congruence subgroup of GL2pAq containing

matrices p a bc d q with c ” 0 pmod T q.

As in [Gek99, Definition p3.5q], for f some Drinfeld modular form, we let vzpfq

denote the vanishing order of f at z P Ω and v8pfq denote the vanishing order of f
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at 8. Then from [Gek99, Equation p3.10q]:

ÿ˚

zPGL2pAqzΩ
vzpfq `

vepfq

q ` 1 `
v8pfq

q ´ 1 “
k

q2 ´ 1 ,

where
ř˚ denotes a sum over non-elliptic classes of GL2pAqzΩ. By a non-elliptic class

we mean some point in the quotient whose stabilizer under GL2pAq is strictly larger

than Fˆq , which we discuss further in Definition 6.2.7.

6.2 Drinfeld Modular Curves

Let us consider some moduli spaces of rank 2 Drinfeld modules (possibly with some

extra torsion information), first as rigid analytic spaces, then as moduli schemes, and

finally as log stacky curves.

For the well-definedness of Drinfeld modular curves, we consider some analytic

properties of Ω. Since Ω “ P1pCq ´ P1pK8q, and P1pK8q is compact in the rigid

analytic topology, we know from [GR96, Section 1.2] that Ω is a rigid analytic space.

The action by Γ ď GL2pAq a congruence subgroup on Ω by Möbius transformations

has finite stabilizer for each z P Ω, and as in [GR96, Sections p2.5q and p2.6q], ΓzΩ is

a rigid analytic space.

Recall that for any scheme S of locally finite type over a complete, non-archimedian

field of finite characteristic p, there is a rigid analytic space San whose points coincide

with those of S as sets. In fact, there is an analytification functor from the cate-

gory of schemes over C to the category of rigid analytic spaces, so if X is a smooth
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algebraic curve over C, then there is a rigid analytic space Xan whose points are in

bijection with the C-points of X.

For example, we have the following description.

Theorem 6.2.1 ( [Dri74]). Let Γ ď GL2pAq be a congruence subgroup. There exists a

smooth, irreducible, affine algebraic curve YΓ over C such that ΓzΩ and the underlying

(rigid) analytic space Y an
Γ of YΓ are canonically isomorphic as rigid analytic spaces

over C.

Remark 6.2.2. This underlying rigid analytic space is the analytification of YΓ as

in [FvdP04, Example 4.3.3].

Definition 6.2.3. We call the affine curves YΓ with analytification Y an
Γ – ΓzΩ as

rigid analytic spaces over C affine Drinfeld modular curves. Since YΓ is smooth

and affine, it admits a smooth projective model which XΓ which is a projective

Drinfeld modular curve.

Remark 6.2.4. In the spirit of [VZB22, Section 6.2], we say a projective Drinfeld

modular curve XΓ is the algebraization of some rigid analytic space ΓzpΩYP1pKqq “

Xan
Γ , whose points are in bijection with the C-points of the projective Drinfeld modular

curve XΓ.

Let Xan
Γ

def
“ ΓzpΩ Y P1pKqq denote a rigid analytic, projective Drinfeld modu-

lar curve for some congruence subgroup Γ ď GL2pAq. Let XΓ “ pXan
Γ q

alg denote

the corresponding algebraic Drinfeld modular curve whose C-points are in bijection

with Xan
Γ . This modular curve is not a stacky curve since there is a uniform µq´1

stabilizer which we know from the moduli interpretation - each point is fixed by
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ZpGL2pAqq “ tp α 0
0 α q : α P Fˆq u – Fˆq . However, as a scheme, XΓ is the coarse space of

a stacky curve XΓ given by the stack quotient rXΓ{ZpGL2pAqqs. Furthermore, if M2
Γ

denotes (Laumon’s) Deligne-Mumford stack representing the corresponding moduli

problem, then every point of M2
Γ has a stabilizer containing (at least) Fˆq . Then M2

Γ

is a µq´1-gerbe over XΓ, i.e. XΓ “ M2
Γ{{µq´1 is a rigidification of M2

Γ:

M2
Γ Ñ XΓ Ñ XΓ.

When we discuss stacky Drinfeld modular curves we mean a curve XΓ as in this

paragraph, that is the rigidification of some moduli problem (i.e. of one of Laumon’s

gerbes).

Next we consider some special points on Drinfeld modular curves.

Definition 6.2.5. Let Γ ď GL2pAq be a congruence subgroup, let Y an
Γ “ ΓzΩ and let

Xan
Γ “ ΓzpΩY P1pKqq. A cusp of Xan

Γ is a point of Xan
Γ ´ Y an

Γ .

Remark 6.2.6. As sets, Xan
Γ “ ΓzpΩYP1pKqq, so since GL2pAq acts transitively on

P1pKq we have

CΓ
def
“ tcusps of Xan

Γ u
def
“ ΓzP1

pKq “ ΓzGL2pAq{GL2pAq8,

where GL2pAq8 “ tγ P GL2pAq : γp8q “ 8u “ tp ˚ ˚0 ˚ qu. On a Deligne-Mumford stacky

curve, the stabilizer of each point is a finite cyclic group, so evidently there are too

many stabilizing matrices here. We will discuss this in more detail in Section 6.4.3.

Definition 6.2.7.

1. If e P Ω has pGL2pAqqe “ tγ P GL2pAq : γpeq “ eu strictly larger than Fˆq –
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tp α 0
0 α qu then e is an elliptic point on Ω. In this case, GL2pAqe – Fˆq2 .

2. Let Γ ď GL2pAq be a congruence subgroup. A point e P ΓzpΩ Y P1pKqq is an

elliptic point for Γ if the stabilizer Γe is strictly larger than the center of

GL2pFqq: Fˆq –
 

p α 0
0 α q : α P Fˆq

(

.

Remark 6.2.8. An elliptic point e on Ω is a point which is GL2pAq-conjugate to

some element of Fq2zFq ãÑ Ω. Fix once and for all an elliptic point e P Fq2zFq on Ω.

We write

EllpΓq def“ telliptic points of Xan
Γ u.

Remark 6.2.9. Note that Drinfeld modular curves XΓ, for Γ ď GL2pAq any congru-

ence subgroup, are tame over C in the sense of [VZB22, Example 5.2.7]. We may de-

scribe XΓ by the stack quotient rXΓ{ZpGL2pAqqs, and since gcdpcharpCq,#ZpGL2pAqqq “

1 the quotient is tame.

Example 6.2.10 (The j-line). Let Xp1q “ GL2pAqzpΩYP1pKqq be the “usual” j-line.

Let M2
A be (Laumon’s) Deligne-Mumford stack representing the moduli corresponding

problem. Then M2
A is a µq´1 gerbe over X p1q “ rXp1q{ZpGL2pAqqs. In other words,

X p1q is a rigidification M2
A{{µq´1:

M2
A

π
Ñ X p1q Ñ Xp1q

P1ppq ´ 1q2, q2 ´ 1q π
Ñ P1pq ´ 1, q ` 1q Ñ P1pCq.
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6.3 Compactification of Drinfeld Mod-

uli Schemes and Uniformization of

Drinfeld Moduli Stacks

6.3.1 Schemes

We start with facts, mostly for the notation, about Drinfeld modules. Let A “ FqrT s

and let K “ FracpAq. For any scheme S over K and E a line bundle on S, write

EndFqpEq for the ring of Fq-linear endomorphisms of the commutative group scheme

underlying E. Any trivialization

Ga,U
„
Ñ E|U

over an affine subscheme U “ SpecpRq Ă S induces an isomorphism

RtXq
u
„
Ñ EndFqpE|Uq

as in Definition 4.3.4. Let pE,ϕq be a Drinfeld A-module and let N be an ideal of A.

Then

ϕrN s
def
“

č

aPN

kerpϕaq

102



is an A-module subscheme of E which is finite étale over S. Its sections over any

geometric point of S form a free A{N -module of rank r. Further, the A-module

V r
N

def
“ pN´1

{Aq‘r,

where N´1 Ă K is the inverse fractional ideal of N, is also a free A{N -module of rank

r. A level N-structure on ϕ is an A-module homomorphism

λ : V r
N Ñ ϕrN spSq

which induces isomorphisms in every fiber.

Now we can describe the moduli spaces of Drinfeld modules of rank r.

Theorem 6.3.1 ( [Pin21, 2.1.1]). There exists a scheme M r
A,N over K and a triple

pEuniv, ϕuniv, λunivq such that

1. for any K-scheme S and pE,ϕ, λq there exists a unique morphism f : S ÑM r
A,N

such that pE,ϕ, λq – f˚pEuniv, ϕuniv, λunivq, and

2. M r
A,N is an irreducible, smooth affine algebraic variety of finite type and dimen-

sion r ´ 1 over K.

Example 6.3.2. M2
A,N – YΓ the (coarse space of the) Drinfeld modular curve whose

C-points are the rigid analytic space ΓzΩ, where Γ ď GL2pAq is a congruence subgroup

with conductor N.

Note that for any two ideals N Ă N 1 Ă A there is a natural inclusion V r
N 1 Ă V r

N ,

so any level N -structure restricts to a level N 1-structure. We may apply this when
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N 1 “ paq for any nonzero a P A: let V r
a
def
“ pa´1A{Aq‘r. Let R be any K-algebra and

let RA,V rN
denote the quotient ring RV rN

bFq K modulo the ideal

˜#

1
av
b a´

ÿ

v1PV ra

1
v ´ v1

b 1 : a P DivpNq and v P V r
N ´ V

r
a

+¸

.

The inherent grading of RV rN
as a K-algebra induces a grading on RV rN

bFq K and

each generator for this ideal is homogeneous of degree 1. For any f P RV rN
bFq K let

rf s denote its image in RA,V rN
and let RSA,V rN be the localization of RA,V rN

obtained

by inverting the elements r 1
v
b 1s for all v P

˝

V r
N

def
“ V r

N ´ t0u.

Now that we have the notation we need, we can deal with the problem of com-

pactifying the Drinfeld moduli schemes YΓ “ M2
A,N , so we restrict our notation to

this case from now on.

Consider QA,V 2
N

def
“ ProjpRA,V 2

N
q, a projective scheme over K with a natural very

ample line bundle Op1q and natural ring homomorphisms RA,V 2
N ,n

Ñ OpnqpQA,V 2
N
q for

each n P Z. Together, these mean we have a closed embedding

QA,V 2
N

ãÑ QV 2
N
ˆSpecFq SpecpKq.

Let

ΩA,V 2
N

def
“ ProjpRSA,V 2

N
q – SpecpRSA,V 2

N ,0q.

Then since RSA,V 2
N

is the localization of RA,V 2
N

obtained by inverting a non-empty,

finite set of elements of degree 1 we see that ΩA,V 2
N

is an affine open subscheme of
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QA,V 2
N
. In fact, by [Pin21, Theorem 2.7.6], ΩA,V 2

N
is a dense open subscheme of QA,V 2

N
.

What is more, we have encountered this subscheme before, in another guise. By

[Pin21, 2.6.5], we knowM2
A,N – Ω2

A,N is the affine Drinfeld modular curve YΓ. Finally,

from [Pin21, Section 2.9], we know the schemeQnorm
A,V 2

N
is the Satake compactification

M2
A,N of M2

A,N , where we denote by Rnorm
A,V 2

N
the integral closure of RA,V 2

N
in RSA,V 2

N

and

Qnorm
A,V 2

N

def
“ ProjpRnorm

A,V 2
N
q.

We have seen this projective curve as well, it is the projective model XΓ from Defini-

tion 6.2.3.

6.3.2 Stacks

Let us compare this with the theory of uniformization of Deligne-Mumford curves.

For this discussion, all stacks are assumed to be smooth and separated. We say

an orbifold is a smooth, DM, (topological, algebraic or rigid analytic) stack which

is generically a (topological, algebraic or rigid analytic) space. On any stack, we say

an orbifold point is some point at which the intertia group jumps. Denote the

coarse space of a (topological, algebraic, or rigid analytic) stack X by X. To avoid

2-isomorphisms, all such morphisms are declared equalities. We will consider the

property of stacks which we now introduce.

Definition 6.3.3 ( [BN05, Page 4]). A topological stack X is uniformizable if its

universal cover is a (genuine) topological space.

Let Top be the category of topological spaces with the usual Groethendieck topol-
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ogy where covers are simply topological open covers. A morphism f : Y Ñ X of

stacks over Top is representable if for any map X Ñ X with X a topological

space, Y “ X ˆX Y is isomorphic to some topological space. A pre-DM topolog-

ical stack is a stack for which there exists some epimorphism p : X Ñ X from a

topological space such that p is representable by a local homeomorphism. A pre-DM

topological stack is a DM topological stack if ∆ : X Ñ X ˆX is representable

by a closed map with discrete finite fibers. For any topological stack X there is a

genuine topological space, X, the coarse space of X .

Let Rigid be the category of rigid analytic spaces, endowed with some G-topology

which is at least as fine as the very weak G-topology (recall Example 5.1.4). The 2-

category of stacks over Rigid contains the category of rigid analytic spaces as a full

subcategory. We say a morphism of stacks f : Y Ñ X over Rigid is representable

by local homeomorphisms if for any map X Ñ X from a rigid analytic space X

to X , the fiber-product Y “ X ˆX Y is isomorphic to a rigid analytic space and

the induced map Y Ñ X is a local homeomorphism of rigid analytic spaces. A stack

X over Rigid is a pre-DM rigid analytic stack if there exists an epimorphism

p : X Ñ X with X a rigid analytic space, such that p is representable by local

homeomorphisms. A morphism of pre-DM rigid analytic stacks is representable

if for any map X Ñ X from a rigid analytic space that is representable by local

homeomorphisms, the fiber product Y “ X ˆX Y is isomorphic to a rigid analytic

space.

Definition 6.3.4. A pre-DM rigid analytic stack X over a non-achimedean field k

is a DM rigid analytic stack if the diagonal X Ñ X ˆk X is representable by
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closed map with finite fibers.

Remark 6.3.5. We earlier defined such a stack in Definition 5.5.3. The condition

here that the diagonal is a closed map with finite fibers is equivalent to the separated-

ness and quasi-compactness from Definition 5.5.3.

Example 6.3.6. The Drinfeld moduli spaces, M2
N in the notation of [Lau96, Section

p1.4q] are known to be Deligne-Mumford algebraic stacks of finite type over Fp by

[Lau96, Corollary 1.4.3].

Remark 6.3.7. Inspired by [BN05, Proposition 3.5], we can state a “conjecture” of

similar content and form:

Let X be a DM rigid analytic stack. Then there is a covering tUiu of X by open

substacks such that each Ui is a quotient stack rX{Gs, where X is a rigid analytic

space and G a finite group acting rigid-analytically on X.

This statement is only meant to indicate the question: “what does it mean and

take for a statement of this form to be proven?”

Note that there is a well-defined coarse space X for a rigid analytic DM stack X ,

where by well-defined we mean that X is a rigid analytic space of dimension 1.

Where are the groupoids?

Let X be a smooth, DM algebraic stack of finite type over C, with X1 Ñ X0ˆX0

an étale groupoid representing it. We define X an to be the quotient of the groupoid

Xan
1 Ñ Xan

0 ˆ Xan
0 . The same thing allows us to get a topological stack from a

rigid analytic stack. The homotopy groups of a rigid analytic DM stack X are
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defined to be those of X top. So it seems likely that there is some natural functor

AlgDMÑ RigidÑ Top, which is well-defined in the sense of respecting the coarse

space constructions. Naively, we also expect the statements of [BN05, Lemma 4.1,

Theorem 4.2 and Theorem 4.3] hold verbatim when we replace “analytic” stacks by

“rigid analytic.”

Likewise, we might hope for a theory of uniformization of rigid analytic stacks

similar to the corresponding theory for analytic stacks in the sense of the following

statement. Note that homotopy groups of analytic and algebraic stacks X are defined

to be those of X top. The fundamental group of a topological stack X top classifies the

connected covering spaces of X top because the pointed connected covering spaces of

X top are in bijection with subgroups of π1pX top, xq. Recall that a covering space

of X top is a representable map of stacks Y Ñ X top that is stable under base change.

In particular X top has a unique universal cover X̃ up to equivalence. Accordingly,

we say that a rigid analytic stack X is simply connected if π1pX top, xq is trivial,

where X top is the topological stack associated with X .

Remark 6.3.8. Since we have a theory of uniformization of analytic stacky curves,

it seems worth considering whether something like the following statement can be

proven:

Every rigid analytic Deligne-Mumford stacky curve has a universal cover which is a

simply connected rigid analytic DM stacky curve. All simply connected rigid analytic

DM stacky curves have form similar to C ´ K8: generally C with some compact

subspace removed. That is, we can classify these rigid stacky curves according to

their simply connected universal covers.
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Remark 6.3.9. If some statement like Remark 6.3.8 is true, or can be shown to be

true, then it seems likely that something like the following statement will be true:

Every uniformizable DM rigid analytic stacky curve X is the stack quotient rX{Gs

of a rigid analytic space X by a finite group G.

Remark 6.3.10. All of the “conjectures” stated in this section are versions of Theo-

rems in [BN05] which hold for “ordinary” analytic stacks. It seems possible then that

similar proofs, but using rigid analytic notions of convergence for example, would

prove these statements. In particular though, we do not rely on any of these ideas

in our proofs and want to emphasize these questions to indicate directions for fu-

ture study. It is even fair to call these questions ill-defined, but taken together all

we mean to do by including these statements is ask: “Can we do [BN05] for rigid

analytic stacks?”

6.4 Cusps of Drinfeld Modular Curves

In this section we consider the Drinfeld setting version of [DS05, Chapter 2, Sections

2 and 4]. Before we begin thinking about cusps, let us consider charts on the affine

Drinfeld modular curve YGL2pAq with YGL2pAqpCq “ Y an
GL2pAq

“ GL2pAqzΩ.

6.4.1 Basics of Charts on Drinfeld Modular Curves

Let π : Ω Ñ Y an
GL2pAq

be the quotient map, and let τ P Ω. First we will define

some coordinates. Let δτ
def
“

` 1 ´τ
1 ´τ

˘

P GL2pCq, where by τ we denote our version

of “complex conjugate” in C. That is, if τ “
ř

iPZ aiT
i P Ω, then recall that τ is

“convergent” in the sense that limi |ai|||T
i|| “ 0, where for a ‰ 0 P A we have
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|a|
def
“ qdeg a, so |ai| “ q0 for ai P Fq and ||T i|| “ qi. Fix ε ą 0 and let N P Ză0 be such

that for n ă N we have |anT n| ă ε. Then τ “
ř

iPZ biT
i P Ω is the unique element

such that
ÿ

i`j“m

aibj “ 0

for all m ă N and for all m P ZěN the remaining coefficients in the series τ have

bm
def
“ am. Define the period of τ by the integer

hτ
def
“ # pZpGL2pAqq StabΓpτq{ZpGL2pAqqq “

$

’

’

&

’

’

%

#pStabΓpτqq
2 , ´ Id P StabΓpτq

# StabΓpτq, ´ Id R StabΓpτq.

The δτ maps τ ÞÑ 0 and τ ÞÑ 8. The isotropy subgroup of 0 is

StabδτZpGL2pAqqΓδ´1
τ
p0q{ZpGL2pAqq “

`

δτZpGL2pAqqΓδ´1
τ

˘

0 {ZpGL2pAqq,

which is conjugate to the isotropy subgroup of τ :

δτ pZpGL2pAqq StabΓpτq{ZpGL2pAqqq δ
´1
τ ,

so is cyclic and of order hτ . This group fixes 0 and8, and it consists of maps z ÞÑ az, so

those maps must be rotations through multiples of π{hτ about the origin because the

group is finite cyclic. That is, δτ “straightens” neighborhoods of τ to neighborhoods

of the origin since GL2pAq-equivalent points will be spaced apart by fixed angles. The

coordinate neighborhood of πpτq in Y an
GL2pAq

is the π-image of an the intersection of

1. a circular sector through π{hτ about τ in Ω, and
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2. admissible opens sets in a pure cover of Ω (see Example 5.1.6).

So the identifying action of π is basically an “unwrapping” action of the hτ power

map taking a sector to the disk. We mention one last point for our intuition and

notation before making the discussion above precise.

Corollary 6.4.1 ( [DS05, 2.2.3]). Let Γ ď SL2pZq be a congruence subgroup. Each

τ P H has a neighborhood U Ă H such that for all γ P Γ, if γpUq X U ‰ H then

γ P Γτ . Such neighborhoods have no elliptic points except possibly τ.

In the Drinfeld setting, we expect cusps of a Drinfeld modular curve are stacky

points, so they are elliptic points by Definition 6.2.7 which we use in [Fra23]. Now

let us make things more precise.

Given πpτq P YGL2pAq and let U be some neighborhood in Ω the intersection of

some neighborhood as in Corollary 6.4.1 and some admissible open from Example

5.1.6. Let ψ : U Ñ C be the composite ψ “ ρ ˝ δ, where δ “ δτ and ρpzq “ zhτ .

Then ψpτ 1q “ pδpτ 1qqhτ is the straightening δτ followed by the hτ -fold wrapping.

See [DS05, Figure 2.2] for a sketch of the corresponding maps in C.

Let V “ ψpUq Ă C. We know V is open by the open mapping theorem, indeed

open sets for the rigid analytic topology are both open and closed in the metric

topology. Since the projection π and the map ψ identify the same points of U, there

should be an equivalence between πpUq and ψpUq, which we verify next. For any
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τ1, τ2 P U we have

πpτ1q “ πpτ2q ðñ τ1 P GL2pAqτ2

ðñ τ1 P GL2pAqττ2

ðñ δpτ1q P pδGL2pAqτδ
´1
qpδpτ2qq

ðñ δpτ1q “ µdhτ pδpτ2qq,

for some d P Z and µhτ “ eApz{hτ q, where eA is the exponential function from the

definition of our parameter upzq at 8 in Section 4.3, since δGL2pAqτδ
´1 is a cyclic

hτ -rotation group. So

πpτ1q “ πpτ2q ðñ δpτ1q
hτ “ δpτ2q

hτ

ðñ ψpτ1q “ ψpτ2q.

This means there is an injective map ϕ : πpUq Ñ V such that the following com-

mutes:

U

πpUq V

π
ψ

ϕ

and in fact since ψ is surjective by definition, we know ϕ is too.

It remains to check whether transition maps between coordinate charts are holo-

morphic (in the sense of [FvdP04, Definition 2.2.1]). Let V12
def
“ ϕ1pπpU1q X πpU2qq
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and let V21
def
“ ϕ2pπpU1q X πpU2qq. Then consider the diagram

πpU1q X πpU2q

V12 V21

ϕ2ϕ´1
1

ϕ12

For x P πpU1q X πpU2q it suffices to check holomorphy in some neighborhood of

ϕ1pxq P V12. Suppose x “ πpτ1q “ πpτ2q for some τ1 P U2 and τ2 P U2 with τ2 “ γτ1

for some γ P GL2pAq. Let U12
def
“ U1 X γ´1pU2q. Then πpU12q is a neighborhood of x

in πpU1q X πpU2q and ϕ1pπpU12qq is a neighborhood of ϕ1pxq in V12.

If ϕ1pxq “ 0 then an input u “ ϕ1px
1q to ϕ21 in this neighborhood has form

u “ ϕ1pπpτ
1
qq “ ψ1pτ

1
q “ δ1pτ

1
q
h1

for some τ 1 P U12 and h1 the width of τ1. Let τ̃2 P U2 be such that ψ2pτ̃2q “ 0 and the

width is h2. The corresponding output is

ϕ2px
1
q “ ϕ2pπpγpτ

1
qqq

“ ψ2pγpτ
1
qq

“ δ2pγpτ
1
qq
h2

“ pδ2γδ
´1
1 qpδ1pτ

1
qq
h2

“ pδ2γδ
´1
1 qpu

1{h1q
h2 .

Then the only case where a transition map might not be holomorphic is when
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h1 ą 1, and hence τ1 and τ2 are elliptic points. By construction U2 contains at most

one elliptic point and the local coordinate maps it to 0. If h1 ą 1 then τ2 is the point

τ̃2 P U2 and the second straightening map is δ2 “ δτ2 and h2 “ h1. That is, we have

maps
0 δ´1

1
ÞÑ τ1

γ
ÞÑ τ2

δ2
ÞÑ 0,

and

8
δ´1
1
ÞÑ τ1

γ
ÞÑ τ2

δ2
ÞÑ 8,

so δ2γδ
´1
1 “

`

α 0
0 β

˘

for some α, β P Cˆ. Then ϕ21 is the map

u ÞÑ
``

α 0
0 β

˘

u1{h˘h
“ pα{βqhu,

which is holomorphic on Y an
GL2pAq

“ GL2pAqzΩ since u has only a double pole at 8.

6.4.2 Charts at Cusps

Now we will turn to Xan
Γ “ ΓzpΩ Y P1pKqq for Γ ď GL2pAq a congruence subgroup

containing the diagonal matrices in GL2pAq. For each s P P1pKq, there is some

δ “ δs P GL2pAq which maps sÑ 8. As in [Gek86, V.2.p2.5q], the stabilizer StabΓpsq

contains a maximal subgroup of form tp 1 b
0 1 q : b P Bu for B some fractional ideal of A.

Since the exponential from Definition 4.3.1 is invariant under translations z ÞÑ z`b for

b P A, there is some B-stable, admissible subset Ω1 of Ω such that u (from Definition

6.1.1) identifies BzΩ1 with a pointed neighborhood of 0 in C. For “sufficiently large”

r we may use Ω1 “ tz P Ω : |z|i ě ru, where | ¨ |i is the imaginary absolute value
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from [Gek86, V.1.p1.1q]. In general StabΓpsq has form

 

p a b0 d q : b P B, and certain a, d P Fˆq
(

which contains transformations of form z ÞÑ αz. Let w denote the order of the cyclic

group of these transformations. Then uw is a local parameter at s.

We define the width of a cusp s P P1pKq to be

hs “ #
`

StabGL2pAqp8q{ StabδZpGL2pAqqΓδ´1p8q
˘

.

See [DS05, Figure 2.6] for a sketch of the corresponding discussion for C. At a cusp,

infinitely many sectors in a given admissible open come together and the width of

the cusp is the number of distinct strips up to isotropy. This is dual to the period of

τ P Ω in that it is inversely proportional to the size of the isotropy subgroup. Since

GL2pAq8 is the set of all upper-triangular matrices, with the maximal subgroup

GL2pAq
u
8 “ tp

1 a
0 1 q : a P Au

and the subgroup of cyclic transformations p a 0
0 d q for a, d P Fˆq , the group is infinite

and cyclic, so width is characterized by

ZpGL2pAqqpδΓδ´1
q8 “ ZpGL2pAqqxp 1 h

0 1 qy,
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with h ą 0, which is finite. We claim it is independent of choice of δ. Indeed

hs “ # pGL2pAqs{ZpGL2pAqqΓsq

so width is well-defined on Xan
GL2pAq

and is independent of δ. If s P P1pK8q and

γ P GL2pAq then

¨

˚

˝

width of γpsq under

γΓγ´1

˛

‹

‚

“

¨

˚

˝

width of s under

Γ

˛

‹

‚

.

If Γ is normal in GL2pAq then all cusps have the same wdith.

Let U “ Us
def
“ δ´1pN Y t8uq, where N

def
“

Ť

pn,xPIqDn,x, where Dn,x are the

affinoid spaces from Example 5.1.6 and I is the index set from the same Example.

Let ψ def
“ ρ ˝ δ, where ρpzq “ upz{hq, where upzq is the parameter at 8. Let V Ă C

be the image of ψ, i.e. ψ : U Ñ V is the map τ ÞÑ upδpτq{hq.

We see the same way as before that ψ and π do the same identifications about s.

Once again, it remains to check that transition maps are holomorphic. Let U1 Ă Ω

correspond to δτ1 P GL2pCq, where τ1 has width h1 and let U2 “ δ´1
2 pN Y t8uq. For

each x P πpU1qXπpU2q, we have x “ πpτ̃1q “ πpτ2q for some τ̃1 P U1 and τ2 “ γpτ̃1q for

some γ P Γ. Let U12 “ U1 X γ´1pU2q be a neighborhood of τ̃1 in Ω. Then ϕ1pπpU12qq

is a neighborhood of ϕ1pxq in V12 “ ϕ1 pπpU1q X πpU2qq . If h1 ą 1 then τ1 R U12,

otherwise δ2pγpτ1qq P N is an elliptic point for Γ. In the classical proof, for N2 as

in [DS05, Proof of Lemma 2.4.1], we know N2 does not contain any elliptic points for
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SL2pZq. However, N contains elliptic points for GL2pAq. So, if h1 ą 1 then we do

not necessarily have that 0 R ϕ1pπpU12qq.

An input point ϕ1px
1q to ϕ21 in V12 has form q “ pδ1pτ

1qqh1 and output

ϕ2px
1
q “ ϕ2pπpγpτ

1
qqq

“ ψ2pγpτ
1
qq

“ upπδ2γpτ
1
q{hq

“ upπδ2γδ
´1
1 pu

1{h1q{h2q.

Then as before the only case where a transition map might not be holomorphic is

h1 ą 1 and 0 P ϕ1pπpU12qq.

Let U1
def
“ δ´1

1 pN Yt8uq, where δ1 : s1 ÞÑ 8 and let U2
def
“ δ´1

2 pN Yt8uq, where

δ2 : s2 ÞÑ 8. If πpU1q X πpU2q ‰ H, then for some γ P Γ we have

γδ´1
1 pN Y t8uq X δ´1

2 pN Y t8uq ‰ 8,

i.e. δ2γδ
´1
1 moves some point in N Yt8u to another, so is a translation ˘p a b0 d q. Then

γps1q “ γδ´1
1 p8q “ ˘δ

´1
2 p a b0 d q p8q “ s2,

so h1 “ h2 and the transition map moves a point in ϕ1pπpU12qq, some u “ ψ1pτq “
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upπδ1pτq{hq, to the point

ψ2pγpτqq “ upπδ2γδ
´1
1 pδ1pτqq{hq

“ upπppa{dqδ1pτq ` b{dq{hq

“ upπpb{dhqqu,

which is holomorphic.

6.4.3 Isotropy Groups of Cusps

As usual let Γ ď GL2pAq be a congruence subgroup containing the diagonal matrices

of GL2pAq. We have seen that for any s P P1pKq, the stabilizer StabΓpsq consists of

some upper-triangular matrices

tp a b0 d q : a, d P Fˆq , b P Au.

This group is infinite, but we know that the stabilizer of any point on a tame Deligne-

Mumford stack is a finite cyclic group. To each s we associate a finite integer hs its

width, defined by

hs “ #
`

StabGL2pAqpsq{pZpGL2pAqq StabΓpsqq
˘

.

The order w of the cyclic group of transformations z ÞÑ αz induced by some γ P

StabΓpsq is hs when Γ ď GL2pAq is a normal subgroup so that all cusps of Xan
Γ have

the same width.
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We need to think of some subgroup of the isotropy group of a cusp as the “right”

automorphisms of that cusp to have a well-defined Deligne-Mumford stacky curve as

our stacky Drinfeld modular curve, and the width gives us a natural-looking order of

this group. The question becomes: “why can we ignore the infinite group of transla-

tions p 1 m
0 1 q in the isotropy group?”

Recall from [Gek86, V.2.p2.4q] that the cusps of Γ, the orbits ΓzP1pKq, are also

described by tclasses of ends in ΓzT u where T is the Bruhat-Tits tree of PGL2pK8q

(from Section 4.2). These classes of ends are infinite graphs of the form within some

1 2 3 ¨ ¨ ¨

quotient graph ΓzT . The translations p 1 m
0 1 q are clearly automorphisms of such ends

in the sense of picking some point or another along the end to be the representative

for a cusp. However, these automorphisms do not distinguish one class of an end

from another, instead they describe the class of the end itself. That is, translations

identify an entire half-line in ΓzT with a single cusp Γs for some s P P1pKq.

The key to this confusion comes from thinking of a given compact rigid analytic

Drinfeld modular curve Xan
Γ “ ΓzpΩ Y P1pKqq as a compactification of Y an

Γ “ ΓzF ,

where F denotes the fundamental domain for Ω that we sketched an example of in

Section 4.2. So far we have written Y an
Γ “ ΓzΩ, but every point in Ω is GL2pAq-

equivalent to some point in F , and we find it more convenient to phrase our com-

pactification in terms of the quotient of this fundamental domain rather than the full

Ω since then the translations have “already disappeared.”
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To make sure we have a well-defined compactification which leaves the “right” size

isotropy groups of cusps we will adopt the notation of [Vin12, Section 3.1.4]. Let

Ωc “ tz P Ω : inf
xPK8

|z ´ x| ě cu

denote a neighborhood of 8 in Ω. Then the u function (recall 6.1.1) identifies AzΩc

with a pointed ball Brzt0u for some small radius r. There exists some constant c0

such that for all c ě c0 and γ P GL2pAq, if ΩcXγpΩcq ‰ H then in fact γ P StabΓp8q.

Then for such a c we have an open immersion of rigid analytic spaces

StabΓp8qzΩc ãÑ GL2pAqzΩ

given by the identification

StabΓp8qzΩc
„
Ñ Brwzt0u

z ÞÑ uwpzq,

where w is the order of the finite cyclic group of transformations z ÞÑ αz contained

in StabΓpsq, i.e. w is the width hs of s. Note that when Γ “ GL2pAq itself, w “ q ´ 1

as in [Vin12, Section 3.1.4] or [Gek86, V.2.p2.5q].

The upshot of compactifying Y an
Γ according to this specification of a chart at 8

is that thinking of compactifying a quotient of the fundamental domain F for Ω, as

opposed to compactifying Ω and then taking a quotient, is we have already removed

translations from the isotropy groups of cusps. Then for any given cusp s P ΓzP1pKq

120



we say

Autpsq “ tp a 0
0 d q : a, d P Fˆq u.

6.5 Moduli Interpretation

In this section we discuss moduli interpretations of Drinfeld modular curves for sev-

eral kinds of congruence subgroup. We begin by recalling some analogies from the

classical setting and some results from [Bre16] about the group GL2pAq2 in particular.

We can state moduli interpretations for several distinguished congruence subgroups

Γ and their square-determinant subgroups Γ2. Thanks to Mihran Papikian we also

discuss some moduli interpretations for SL2pAq and extend our ideas to its congruence

subgroups.

First we recall the arithmetic congruence subgroups ΓpNq ď Γ1pNq ď Γ0pNq of

GL2pAq containing the matrices

p 1 0
0 1 q , p 1 ˚

0 ˚ q , and p ˚ ˚0 ˚ q pmod Nq

respectively. In order to not go too far afield describing the degeneration of rank

2 Drinfeld modules in a moduli stack which is similar to the singular elliptic curves

appearing as cusps of a classical modular curve, we content ourselves to consider rigid

analytic affine coarse spaces. An excellent discussion of the elliptic curve version of

the problem we are avoiding with this simplification is covered by [Alp23, Exercise

2.4.12.pbq] and [Alp23, Exercise 3.1.17]. As in the classical case, we have the following
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moduli interpretations

Y an
ΓpNq ´ pthe moduli of rank 2 Drinfeld modules with a basis for N torsionq ,

Y an
Γ1pNq ´ pthe moduli of rank 2 Drinfeld modules with an N -torsion pointq , and

Y an
Γ0pNq ´ pthe moduli of rank 2 Drinfeld modules with an N -torsion groupq .

We next recall (Section 4.3) that the determinant of a rank 2 Drinfeld module

ϕzpT q “ TX ` gpzqXq `∆pzqXq2 is the rank 1 Drinfeld module

ψzpT q
def
“ TX ´∆pzqXq.

There is a Weil pairing

wT : ϕrT s ˆ ϕrT s Ñ ψrT s

sending px, yq ÞÑ xyq´xqy, the Moore determinant. From Gekeler we know hpzqq´1 “

´∆pzq and from [Bre16, p4.2q] we have

ψzpT qpλThpzq
´1
q “ 0,

where λT “ πeApT
´1q P ρrT s, for ρ “ TX ` Xq the Carlitz module. Then the

determinant of ϕz is isomorphic to the Carlitz module via

ψz “ hpzq´1ρhpzq

and is associated to the lattice Lz
def
“ πhpzq´1A. The N -torsion module of ψz is gen-

erated by πeAp 1
a
qhpzq´1. Recall that the lattice πA associated to the Carlitz module ρ
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relies on the choice π P C, which is defined up to a factor of Fˆq and is transcendental

over K. If we compare with this situation with elliptic curves, a given elliptic curve

E defined by the lattice quotient C{pzZ` Zq has

wN
`

N´1
pu1z ` u2q, N

´1
pv1z ` v2q

˘

“ e2πiN´1pu1v2´u2v1q,

where the right hand side does not depend on z. There is only one multiplicative

group scheme Gm here, whereas there are many rank 1 Drinfeld modules, so hpzq´1

serves to pick out the correct one ψz.

Breuer explains in [Bre16, Section 5] the following moduli intepretation:

Y an
GL2pAq2 ´

¨

˚

˚

˚

˚

˝

the moduli of rank 2 Drinfeld modules

with pFˆq q2-classes of T -torsion

on their determinant modules

˛

‹

‹

‹

‹

‚

.

Now we are in a position to discuss some new results. Let Γ ď GL2pAq be a

congruence subgroup and let Γ2 “ tγ P Γ : detpγq P pFˆq q2u. Then it is clear that

Γ2 “ ΓXGL2pAq2, so we state the folowing.

Proposition 6.5.1. As stacky curves XΓ2 “ XΓ ˆXGL2pAq
XGL2pAq2 .

Proof. As Γ and GL2pAq2 are subgroups of GL2pAq there are covers

XGL2pAq2

XΓ XGL2pAq

so that by the universal property of fiber-products we have
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XΓ2

XΓ ˆXGL2pAq
XGL2pAq2 XGL2pAq2

XΓ XGL2pAq

and in particular we claim the dotted arrow is an isomorphism. Consider all of the

stacky curves as closed subspaces of some rigid analytic projective space, each having

been canonically embedded so that the embedded curves are isomorphic to the stacky

modular curves. Then as sets and in particular closed subspaces of a rigid analytic

projective space we have

X an
Γ2 “ X an

Γ ˆX an
GL2pAq

X an
GL2pAq2

since

Γ2zpΩY P1
pKqq “ ΓzpΩY P1

pKqq ˆGL2pAqzpΩYP1pKqq GL2pAq2zpΩY P1
pKqq.

By Rigid GAGA for stacks Lemma 5.5.4 the result follows for algebraic stacks.

Now we can give some new moduli interpretations as an easy consequence. Once

again though, we consider only the coarse space when doing so.
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Y an
ΓpNq2 ´

¨

˚

˝

the moduli of rank 2 Drinfeld modules with a basis for N torsion,

with pFˆq q2-classes of T -torsion on their determinant,

˛

‹

‚

Y an
Γ1pNq2 ´

¨

˚

˝

the moduli of rank 2 Drinfeld modules with an N -torsion point

with pFˆq q2-classes of T -torsion on their determinant, and

˛

‹

‚

Y an
Γ0pNq2 ´

¨

˚

˝

the moduli of rank 2 Drinfeld modules with an N -torsion group

with pFˆq q2-classes of T -torsion on their determinant module.

˛

‹

‚

Next we consider the moduli interpretation for SL2pAq itself, and for congruence

subgroups of SL2pAq, the “Schottky groups,” from [GvdP80]. Thanks to Mihran Pa-

pikian we have the following elegant formulation.

Let the pair pϕ, αq denote a rank 2 Drinfeld module ϕ and α P Fˆq “ Autpϕq.

(Recall [Pap23, Definition 3.3.1] or Section 4.3 for automorphisms of a Drinfeld mod-

ule). We say pϕ, αq is positively oriented if α P pFˆq q2 and negatively oriented

otherwise. Furthermore, we define pϕ, αq – pψ, βq if there exists some isomorphism of

Drinfeld modules u : ϕ Ñ ψ which preserves the sign of the orientation, i.e. uα “ β

with both of α, β P pFˆq q or neither α nor β a square. Then SL2pAqzΩ classifies pairs

pϕ, αq{ – (up to the isomorphism specified). That is,

Y an
SL2pAq ´

ˆ

the moduli of rank 2 oriented Drinfeld modules.
˙

It should not be difficult to extend this moduli interpretation to the distinguished

congruence subgroups Γ1pNq, Γ1
1pNq and Γ1

0pNq of SL2pAq, where the superscript
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denotes the subgroups of the arithmetic congruence subgroups (from the beginning

of this section) consisting of matrices with determinant 1. It is interesting to consider

similar moduli interpretations for congruence subgroups Γ1 containing Γ1 “ tγ P Γ :

det γ “ 1u. Clearly each of these will be some moduli of rank 2 Drinfeld modules with

pFˆq q2-classes of T -torsion on their determinant in addition to some further torsion on

their determinant.

126



Chapter 7

Geometry of Drinfeld Modular Forms

In this chapter we state and prove our main results about Drinfeld modular forms.

We will see that like modular forms over C or a number field, Drinfeld modular forms

are sections of some line bundle on a particular Drinfeld modular curve. We can

compare Drinfeld modular curves for certain related pairs of subgroups of GL2pAq

and therefore compare their respective algebras of Drinfeld modular forms. Our first

main result however is the most important, since with it we now have a technique

to describe every algebra of Drinfeld modular forms currently in the literature and

hopefully soon many more such algebras, by computing canonical rings of log stacky

curves.

7.1 Drinfeld Modular Forms as Differ-

entials

We prove our first main result:
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Theorem 7.1.1 ( [Fra23, Theorem 6.1]). Let q be an odd prime and let Γ ď GL2pAq

be a congruence subgroup containing the scalar matrices of GL2pAq and such that

detpγq P pFˆq q2 for every γ P Γ. Let ∆ be the divisor supported at the cusps of the

modular curve XΓ with rigid analytic coarse space Xan
Γ “ ΓzpΩ Y P1pKqq. There is

an isomorphism of graded rings

MpΓq – RpXΓ,Ω1
XΓ
p2∆qq,

where Ω1
XΓ

is the sheaf of differentials on XΓ. The isomorphism of algebras is given

by the isomorphisms of components Mk,lpΓq Ñ H0pXΓ,Ω1
XΓ
p2∆qbk{2q given by f ÞÑ

fpdzqbk{2.

Proof. Suppose f PMk,lpΓq. For any γ “ p a bc d q P Γ we have

fpγzqdpγzqbk{2 “ pcz ` dqkpdet γq´l det γk{2
pcz ` dqk

fpzqdzbk{2,

where k ” 2l pmod q´1
2 q. All of the factors of automorphy cancel and

fpγzqdpγzqbk{2 “ fpzqdzbk{2,

so the differential form fpdzqbk{2 P H0pΩ,Ωbk{2Ω q on the upper half-plane Ω is Γ-

invariant. As in [GR96, Section p2.10q], we know fpdzqbk{2 is holomorphic on ΓzΩ.

Since deApzq
dz

“ 1, we have du
u2 “ ´πdz, so the differential dz in this case has a double

pole at 8. Then since f is holomorphic at the cusps of Γ,

divpfpdzqbk{2q ` k∆ ě 0,
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and therefore fpdzqbk{2 is a global section of the twist by 2∆ of sheaf of holomor-

phic differentials on the rigid analytic space Xan
Γ “ ΓzpΩYP1pKqq. We claim this is a

global section of (a twist by 2∆ of) the sheaf of differentials on the algebraic stack X .

By rigid analytic GAGA, [FvdP04, Theorem 4.10.5], we know that the categories

of coherent sheaves on the rigid space Pn,an
C and coherent sheaves on PnC are equiva-

lent and every closed analytic subspace of Pn,an
C is the analytification of some closed

subspace of PnC . So, the sheaf Ω1
Xan

Γ
p2∆q corresponds to the sheaf Ω1

XΓ
p2∆q on the

algebraic curve XΓ which is the coarse space of X . Finally, by [PY16, Theorem 7.4],

we know the sheaves Ω1
X an

Γ
p2∆q and Ω1

XΓ
p2∆q on the rigid analytic stacky curve and

algebraic stacky curves X an
Γ and XΓ respectively are equivalent.

7.2 Algebras of Drinfeld Modular Forms

7.2.1 A Special Case

When we compare the algebras of Drinfeld modular forms for Γ a congruence subgroup

and Γ2 ď Γ we arrive at the following conclusion.

Theorem 7.2.1 ( [Fra23, Theorem 6.2]). Let q be a power of an odd prime. Let

Γ ď GL2pAq be a congruence subgroup containing the diagonal matrices in GL2pAq.

Let Γ2 “ tγ P Γ : detpγq P pFˆq q2u. Then MpΓq –MpΓ2q, with

Mk,lpΓ2q “Mk,l1pΓq ‘Mk,l2pΓq

on each graded piece, where l1, l2 are the two solutions to k ” 2l pmod q ´ 1q.
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Remark 7.2.2. Let XΓ and XΓ2 be the (stacky) Drinfeld modular curves whose

coarse spaces are the algebraizations of ΓzpΩYP1pFqpT qqq and Γ2zpΩYP1pFqpT qqq re-

spectively. Let D “ KXΓ `∆ „ KXΓ `R `∆ and D2 “ KXΓ2
`∆2 „ KXΓ2

`R2 `∆2

be log canonical divisors on XΓ2 and XΓ2 , where KXΓ and KXΓ2
are canonical divisors

for the coarse spaces of XΓ and XΓ2 respectively, and ∆ and ∆2 are the log divisors

of XΓ and XΓ2 respectively.

1. Suppose Γ is “square.” Then MpΓ2q “MpΓq, and KXΓ2
`∆2 “ KXΓ `∆.

2. Suppose Γ is “non-square.” Then each s2 P suppp∆2q has #pΓ2qs2 “
1
2p#Γsq for

any s P suppp∆q. If one could show that the cusps of XΓ are in bijection with

the cusps of XΓ2 then the log canonical ring RpXΓ2 ; ∆2q is the spin canonical

ring of the log curve pXΓ; ∆q as in [LRZ18a, Definition 2.9]. In the following

proof we do not need such a bijection between cusps, and merely comment on

this *hopefully* “easy” way to strengthen our result in future work.

Remark 7.2.3. Since there are many intermediate lemmata involved we break the

proof of Theorem 7.2.1 up into the next few parts of this section. We state and prove

the generalization afterwards.

7.2.2 Properties of Γ2

We begin with some group theory and elementary number theory which inspired our

second main result and is instrumental in its proof.

Lemma 7.2.4. Let Γ ď GL2pAq be a congruence subgroup containing the diagonal

matrices in GL2pAq. Let Γ2 “ tγ P Γ : pdet γq P pFˆq q2u. Then Γ2 is a normal subgroup
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of Γ with rΓ : Γ2s “ 2, and for any α P Fˆq zpFˆq q2, the matrix p α 0
0 1 q is a representative

for the unique non-trivial left coset of Γ2 in Γ.

Proof. Let ϕ : Γ Ñ Fˆq be the map γ ÞÑ pdet γqpq´1q{2. Then since pdet γqq´1 “ 1 for

all γ P Γ, we see kerϕ “ Γ2. If γ P ΓzΓ2 then pdet γqpq´1q{2 ” ´1 pmod q ´ 1q so

ϕpΓq – Z{2Z as multiplicative groups and rΓ : Γ2s “ 2.

If γ P ΓzΓ2, i.e. detpγq P Fˆq zpFˆq q2, then for any α P Fˆq zpFˆq q2 there is some

γ2 P Γ2 with

γ “ p α 0
0 1 q γ2.

We recall from elementary number theory the following.

Lemma 7.2.5. Suppose q is odd. For a fixed k, l is such that k ” 2l pmod q´ 1q, if

and only if

l ”

$

’

’

&

’

’

%

k
2 pmod q ´ 1q, or

k
2 `

q´1
2 pmod q ´ 1q.

Proof. We know that 2l ” k pmod q ´ 1q if and only if 2l ´mpq ´ 1q “ k for some

integer m. If gcdp2, q´ 1q does not divide k then there are no solutions, and if it does

then there are exactly gcdp2, q ´ 1q “ 2 distinct solutions modulo q ´ 1.

To be explicit, we illustrate this Lemma with computations:

pñq Suppose that k “ mpq ´ 1q ` 2l for some integer m. Since q ´ 1 is even, k is

even and l “ ´mp q´1
2 q `

k
2 so l ” k

2 pmod q´1
2 q. If m is even, m

2 is an integer,
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and otherwise m´1
2 is, so we have

l “

$

’

’

&

’

’

%

l1 ”
k
2 pmod q ´ 1q, m even

l2 ”
k
2 `

q´1
2 pmod q ´ 1q, m odd.

pðq Suppose l “ l1 ”
k
2 pmod q ´ 1q. Then l1 “ n1pq ´ 1q ` k

2 for some n1, so

k “ ´2n1pq´1q`2l1. If l “ l2 ”
k
2`

q´1
2 pmod q´1q then l2 “ n2pq´1q` k

2`
q´1

2

for some n2 and we have k “ ´p2n2` 1qpq´ 1q` 2l2. In either case we conclude

that k ” 2l pmod q ´ 1q.

7.2.3 Cusps and Elliptic Points

We wish to compare the cusps and elliptic points on the Drinfeld modular curves

for Γ and Γ2. Our notion of elliptic point is slightly different from Gekeler’s so that

it adapts to the notion of a stacky Drinfeld modular curve more naturally. So, we

discuss some of the properties of our elliptic points with the next two group-theoretic

results.

Lemma 7.2.6. Let q be a power of an odd prime, let Γ ď GL2pAq be a congruence

subgroup containing the diagonal matrices in GL2pAq. Suppose e1 and e2 are distinct

elliptic points for Γ. Then the stabilizers Γe1 and Γe2 are GL2pAq-conjugate.

Proof. Since both Γe1 and Γe2 stricty contain Fˆq by definition of an elliptic point, and

each stabilizer is a subgroup of GL2pAqei , where i “ 1 or 2, both elliptic points for Γ

are also elliptic points on Ω. Then e1 and e2 are GL2pAq-equivalent to each other. If
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γe1 “ e2 for γ P GL2pAq and γ1 P Γe1 , then

γγ1γ´1e2 “ γγ1γ´1pγe1q

“ γe1

“ e2.

Lemma 7.2.7. Let q be a power of an odd prime, let Γ ď GL2pAq be a congruence

subgroup containing the diagonal matrices of GL2pAq. Let Γ2 “ tγ P Γ : detpγq P

pdet Γq2u. Let e P EllpΓ2q. Then

rΓe : pΓ2qes “

$

’

’

&

’

’

%

1, if Γ is “square”

2, if Γ is “non-square.”

Proof. By definition, the stabilizer Γe strictly contains Fˆq and as this is a subgroup

of the stabilizer GL2pAqe, we see that e is an elliptic point for GL2pAq, i.e. an elliptic

point on Ω, so we know GL2pAqe – Fˆq2 . This means pΓ2qe � Γe � GL2pAqe – Fˆq2 and

in particular since

pΓ2qe “ kerppdetq
q´1

2 : Γe Ñ Fˆq q,

the result is immediate according to whether pdetq
q´1

2 is surjective onto t˘1u. By

Lemma 7.2.6, we need only check whether Γe contains some γ with det γ P Fˆq zpFˆq q2

to determine the index of the stabilizer pΓ2qe for all elliptic points e.

The main idea for this step of the proof of Theorem 7.2.1 is the following compar-

ison between elliptic points and cusps for Γ and Γ2.
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Proposition 7.2.8. Let q be a power of an odd prime, let Γ ď GL2pAq be a congruence

subgroup containing the diagonal matrices of GL2pAq. Let Γ2 “ tγ P Γ : detpγq P

pdet Γq2u.

1. EllpΓq “ EllpΓ2q,

2. CΓ Ď CΓ2

Proof. Suppose e2 P EllpΓ2q, so by definition the stabilizer pΓ2qe2 is strictly larger than

Fˆq . Since pΓ2qe2 is a subgroup of Γe2 , it must be that Γe2 strictly contains ZpFqq, so

e2 P EllpΓq.

For the same reason, if e P EllpΓq, then e is an elliptic point on Ω, and we know

GL2pAqe – Fˆq2 . In particular, as Fˆq2 and Fˆq are cyclic groups, we know pΓ2qe and Γe

are cyclic and we have 1 � ZpFqq � pΓ2qe � Γe � GL2pAqe – Fˆq2 . Since q ´ 1 | #Γe,

there is some 1 ă n ď q ` 1 such that n | q ´ 1 and #Γe “ npq ´ 1q. Suppose that

xγy “ Γe. Then the left cosets of Fˆq in Γe have representatives

γj
ˆ

1
αi

0

0 1
αi

˙

for 1 ď j ď npq ´ 1q and αi P Fˆq , so we can write

Γe{Fˆq – Fˆq ‘
γ

α0
Fˆq ‘ ¨ ¨ ¨ ‘

γ

αq´1
Fˆq ‘

γ2

α0
Fˆq ‘ ¨ ¨ ¨ ‘

γpn´1qpq´1q

αq´1
Fˆq .

We claim that if Γ is “non-square,” the cosets with representatives γj{αi with j

even form a subgroup isomorphic to pΓ2qe{Fˆq . If Γ is “non-square” then by Lemma

7.2.7 we know that Γe contains some γ1 with det γ1 a non-square, so det γ is non-
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square. Otherwise we would have γn “ γ1 for some n, and so with det γ P pFˆq q2, we

would have det γ1 a square, which is a clear contradiction. Then for any even j we

have

det
ˆ

γj

α

˙

“
det γj
α2

is a quotient of squares so is a square. For odd j, since det γj P Fˆq zpFˆq q2 then for any

α1 P Fˆq non-square, there is some γ2 P Γ2 such that γ “ p α 0
0 1 q γ2. However, whether

a given αi is a square or not,

detpγj{αiq “
α1 det γ2

α2
i

,

which is not a square. Otherwise if Γ is “square,” by Lemma 7.2.7 we have Γe “ pΓ2qe.

Whether Γ is square or not, pΓeq{Fˆq has a nontrivial subgroup isomorphic to

pΓ2qe{Fˆq , so the stabilizer of e in Γ2 strictly contains Fˆq and e P EllpΓ2q.

Now we consider cusps. Let s P P1pKq. Then Γs Ě Γ2s, i.e. the action of Γ2

partitions P1pKq more finely than the action of Γ. If s1, ¨ ¨ ¨ , sn are cusps of Γ, we

write ΓzP1pKq “ Γs1 \ ¨ ¨ ¨ \ Γsn, and then

Γsi “ Γ2si \ pΓzΓ2qsi.

If the points of P1pKq in the orbits pΓzΓ2qsi, under the action by Γ2 have orbit

representatives t1, ¨ ¨ ¨ , tm then we can write

Γ2zP1
pKq “ Γ2s1 \ ¨ ¨ ¨ \ Γ2sn \ Γ2t1 \ ¨ ¨ ¨ \ Γ2tm,
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so the cusps of Γ2 are CΓ2 “ ts1, ¨ ¨ ¨ , sn, t1, ¨ ¨ ¨ , tmu, which contains CΓ.

Corollary 7.2.9. Let q be a power of an odd prime. Let Γ ď GL2pAq be a congruence

subgroup. Let Γ1 “ tγ P Γ : detpγq “ 1u. Suppose that Γ1 ď Γ1 ď Γ for some

congruence subgroup Γ1. Then CΓ Ď CΓ1 , i.e. the cusps of Γ are some subset of the

cusps of Γ1

Proof. The proof of the second part of Proposition 7.2.8 about the cusps did not

make any particular use of the special choice of Γ1 “ Γ2, and so holds in this more

general situation.

7.2.4 Modularity and Series Expansions at Cusps

Our next steps in the proof of Theorem 7.2.1 deal with the u-series expansions of

modular forms.

Proposition 7.2.10. Let f be holomorphic on Ω and at the cusps of Γ2, and let

β “ α2 P Fˆq , where α generates Fˆq . Suppose that fpγzq “ pdet γq´lpcz ` dqkfpzq for

γ “ p a bc d q P Γ2. Then

f
``

β 0
0 1

˘

z
˘

“ fpβzq “ β´k{2fpzq.

Proof. Since p α 0
0 α q P Γ2 we have f

´αz

α

¯

“ fpzq “ α´2lαkfpzq, so αk´2l “ 1.

Suppose that x generates the cyclic group Fˆq , so α “ xn for some n. If gcdpn, q´

1q “ 1, i.e. α is a generator, then we claim k ” 2l pmod q ´ 1q. The order of α is

#xαy “ q ´ 1
gcdpn, q ´ 1q “ q ´ 1,
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and we can write k ” 2l pmod #xαyq so

gcdpn, q ´ 1qpk ´ 2lq ” 0 pmod q ´ 1q.

But gcdpn, q ´ 1q is coprime to q ´ 1, from which the claim follows.

Since β “ α2, we have β2pk´2lq “ 1, so

2k “ 4l pmod q ´ 1q.

Then we have k ” 2l pmod q´1
2 q, since if 2k “ mpq´1q`4l for some m, we can write

k “ m

ˆ

q ´ 1
2

˙

` 2l.

Then l ” k

2 pmod q ´ 1
2 q, so

f
``

β 0
0 1

˘

z
˘

“ fpβzq “ β´k{2fpzq,

since
`

β 0
0 1

˘

P Γ2. This matrix has square determinant by assumption and is in Γ by

our assumption that Γ contains all matrices of form p α 0
0 α1 q, for any α, α1 P Fˆq .

We complete the proof of Theorem 7.2.1 with the following result.

Proposition 7.2.11. Suppose Γ is “non-square.” Let f be a modular form of weight

k and type l for Γ2. Then there are two modular forms f1 and f2 for Γ of weight k

and types l1 ” k{2 pmod q ´ 1q and l2 ” k{2 ` pq ´ 1q{2 pmod q ´ 1q respectively,

such that f “ f1 ` f2.
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Proof. Suppose that fpγ2zq “ pdet γ2q
´lpcz ` dqkfpzq for γ2 “ p

a b
c d q P Γ2. Write the

u-series fpzq “
ř

ně0 anu
n. Let β “ α2 P Fˆq , where α generates Fˆq . By Proposition

7.2.10, fpβzq “ β´k{2fpzq. Using this relationship, we have from Lemma 6.1.3

fpβzq “
ÿ

ně0
anβ

´nun “ β´k{2

˜

ÿ

ně0
anu

n

¸

,

so for each non-zero an we have β´n “ β´k{2 or α´2n “ α´k. Then k ” 2n pmod q´1q,

so by removing the zero summands from the u-series, we may write

fpzq “
ÿ

n”k{2 pmod q´1q
anu

n
`

ÿ

n”k{2`pq´1q{2 pmod q´1q
anu

n.

Let α P Fˆq be some non-square, so by Lemma 6.1.3 we have upαzq “ α´1upzq. Let

f1 “
ÿ

n”k{2 pmod q´1q
anu

n

and

f2 “
ÿ

n”k{2`pq´1q{2 pmod q´1q
anu

n

be the modular forms for Γ2 uniquely determined by their u-series by Lemma 6.1.9.

Then

f1pαzq “
ÿ

n”k{2 pmod q´1q
anα

´nun “ α´l1
ÿ

n”k{2 pmod q´1q
anu

n,

where l1 ”
k

2 pmod q ´ 1q. Let γ P ΓzΓ2. For any α P Fˆq zpFˆq q2 there is some

γ2 “ p
a b
c d q P Γ2 such that

γ “ p α 0
0 1 q γ2,
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so

f1pγzq “ f1pαγ2zq “ α´lf1pγ2zq “ α´l detpγ2q
´l
pcz`dqkf1pzq “ detpγq´lpcz`dqkf1pzq

and f1 is a modular form for Γ. Likewise we have

f2pαzq “
ÿ

n”k{2`pq´1q{2 pmod q´1q
anα

´nun “ α´l2
ÿ

n”k{2`pq´1q{2 pmod q´1q
anu

n,

where now l2 ”
k ` q ´ 1

2 pmod q ´ 1q, so for γ, α and γ2 as above,

f2pγzq “ α´l detpγ2q
´l
pcz ` dqkf2pzq

and f2 is a modular form for Γ.

7.3 A Generalization

Gebhard Böckle suggested the following generalization of Theorem 7.2.1.

Theorem 7.3.1 ( [Fra23, Theorem 6.12]). Let q be a power of an odd prime. Let

Γ ď GL2pAq be a congruence subgroup. Let Γ1 “ tγ P Γ : detpγq “ 1u. Suppose that

Γ1 is such that Γ1 ď Γ1 ď Γ. Then as algebras

MpΓq “MpΓ1q,

and each component Mk,lpΓ1q is some direct sum of components Mk,l1pΓq for some

nontrivial l1.
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Remark 7.3.2. The subgroups Γ1 which appear in the statement of Theorem 7.3.1

may be thought of as the inverse image under det : Γ Ñ Fˆq of some subgroup of Fˆq .

Proof. (Theorem 7.3.1) Write f |γ for the (Peterson) slash operator of weight k and

type l for γ “ p a bc d q P GL2pKq defined by

f |γ
def
“ detpγqlpcz ` dq´kfpγzq.

If f P Mk,lpΓ1q, by normality Γ1 � Γ we have that f |γ is weakly modular of weight k

and type l for any γ P Γ. Since the cusps of Γ are some subset of the cusps of Γ1 we

see that f |γ is holomorphic at the cusps of Γ since f is holomorphic at the cusps of

Γ1, indeed the u-series of expansions of f |γ and f agree at the cusps of Γ1.

The action of Γ1 is trivial, so we have an action of the finite group

Γ{Γ1 “ detpΓq{ detpΓ1q,

which has order some divisor of q ´ 1 since 1 ď det Γ1 ď det Γ ď Fˆq . Then we may

describe the group ring FqrΓ{Γ1s via idempotents as follows. Let n1 def“ #pdet Γ1q and

let n def
“ #pdet Γq. Then

FqrΓ{Γ1s “
n{n1´1
à

i“0
Fqei,

where Γ acts on the ei via maps γ ÞÑ pdet γqin1 . So as Γ-modules, we have

Mk,lpΓ1q “
à

i

Mk,lpΓ1qei,
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where

Mk,lpΓ1qei “Mk,l`in1pΓq.

Finally, since modular forms for Γ1 are holomorphic at the cusps of Γ1, and since the

cusps of Γ are a subset of the cusps of Γ1, we know Γ1-modular forms are holomorphic

at the cusps of Γ.

Remark 7.3.3. One can verify that the slash operators f |γ are holomorphic at the

cusps of Γ directly by considering their u-series expansions at small neighborhoods of

the cusps of Γ.

7.3.1 Slash Operators at Cusps

Write f |γ for the (Peterson) slash operator of weight k and type l for γ “ p a bc d q P GL2pKq

defined by

f |γ
def
“ detpγqlpcz ` dq´kfpγzq.

If f PMk,lpΓq and γ P Γ, then

f |γ “ f.

Let Γ1 “ tγ P Γ : detpγq “ 1u. Suppose that Γ1 ď Γ1 ď Γ for some congruence

subgroup Γ1, i.e. Γ1 is the inverse image of some subgroup G1 ď Fˆq . We call such a Γ1

a Böckle subgroup. Note that Böckle subgroups Γ1 are all normal in Γ and in any

Γ2 such that Γ1 ď Γ2 ď Γ.

Proposition 7.3.4. Fix some Böckle subgroup Γ1 of a congruence subgroup Γ ď

GL2pAq. For any f P Mk,lpΓ1q the slash operator f |γ is weakly modular of weight k
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and type l for all γ P Γ. Furthermore, f |γ is holomorphic at the cusps of Γ.

Proof. The first part of the claim follows since Γ1 � Γ. We will verify explicitly the

second part about holomorphy by considering u-series expansions of f |γ at the cusps

of Γ1, since as sets

tcusps of Γu Ď tcusps of Γ1u.

Let s “ γp8q for some γ P Γ. The local map ψ : U Ñ V around s has form

ψ “ ρ ˝ δ of form τ ÞÑ z ÞÑ u, where δ “ γ´1, ρpzq “ upz{hq and h is the width of

s. Let ω denote some holomorphic differential on XΓ1 . Since ω is holomorphic at the

cusps of XΓ1 the local differential ω|V has the form gpuqupduqn for some n, where g

is holomorphic at 0. So on U ´ tsu, the form f is the pullback under ψ of ω|V´t0u

to fpτqpdτqn. Whereas in the classical case (see [DS05, Page 80]) we have f “ f̃ |δ

of weight 2n, where f̃pzq “ p2πih´1qnqngpqqn, for q “ expp2πiz{hq, in the Drinfeld

setting we have f “ f̃δ of weight k, where

f̃pzq “

ˆ

π

h

˙

ungpuq,

with u “ pπeApz{hqq´1. Then f |γ “ f̃ is holomorphic at the cusp 8.

Now let πpT q P A be some monic polynomial and let p denote the ideal it generates.

Let

Wp
def
“ p 0 ´1

π 0 q P GL2pKq

be the matrix interchanging 8 and 0. By composing the map Wp with γ P Γ and

taking u-series expansions in small neighborhoods of each of the cusps of Γ1 we see

that f |γ is holomorphic at the cusps of Γ1 in much the same way we verified at 8.
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Chapter 8

Computing Algebras of Drinfeld

Modular Forms

In this chapter we discuss some applications and sample calculations using the theory

of chapter 7. We also indicate how we intend to strengthen this theory in coming

work and some open problems for further investgation.

8.1 An Algorithm

The program of this manuscript enables us to write an algorithm that takes on input

some congruence subgroup of GL2pAq and returns the algebra of Drinfeld modular

forms for that subgroup.

0. Set Up

• Fix q a power of an odd prime;
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• Pick a congruence subgroup Γ (e.g. ΓpNq, Γ1pNq or Γ0pNq, some Γ2 within

one of the previous, or some Γ1 as in Theorem 7.3.1);

1. Geometric Invariants

• Genus - Determine gpXΓq e.g. with [Gek01], [GvdP80] (for subgroups of

SL2pAq when N has odd degree) or Riemann-Hurwitz;

• Stacky Points

– Elliptic points - Determine whether Γ contains non-trivial stabilizers

for the unique elliptic point of GL2pAq in Ω;

– Cusps - Consider the actions of Γ and Γ2 ď Γ on pA{Nq2prim, the

vectors in pA{Nq ˆ pA{Nq which span a non-zero direct summand in

a Chinese Remainder Theorem decomposition (up to Fˆq -scalars); or

compare the quotient graphs ΓzT and Γ2zT , where T is the Burhat-

Tits tree of PGL2pK8q using the algorithm of [GN95]

(Note: in practice this is often difficult. We say more in Section 8.3.)

2. Computing the Log Canonical Ring - by either [VZB22] (see e.g. Figure

3.2), [O’D15], [CFO24], [LRZ16], or directly with e.g. Magma, compute as ex-

plicitly as possible the log canonical ring RpXΓ2 , 2∆q using the invariants you

have computed above;

3. Recovering the Algebra - by either Theorem 7.2.1 or Theorem 7.3.1, compare

the algebra of modular forms for square determinant matrices Γ2 with the chosen

Γ to determine which generators are actually Γ-forms (as opposed to Γ2-forms)
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and pare down the relations from the previous step into those among these

Γ-generators.

8.2 Known Examples

We consider several examples from the literature which we can now treat using the

geometry introduced in Chapter 7.

8.2.1 Drinfeld modular forms for GL2pAq

Example 8.2.1. Let X be the Drinfeld modular curve with coarse space X whose

analytification is Xan “ GL2pAq2zpΩ Y P1pKqq. Then X is a stacky P1 with two

stacky points:

• a point Pe with a stabilizer of order q ` 1
2 corresponding to the unique elliptic

point of Ω (note that GL2pAq is “non-square”)

• a cusp, denoted 8, with a stabilizer of order q ´ 1
2 .

Let

D “ KX ` 2∆ „ KP1 `

ˆ

1´ 1
q`1

2

˙

Pe `

ˆ

1` 1
q´1

2

˙

8` 28

be a log stacky canonical divisor on X . Then by [O’D15, Theorem 6] we have

RD – Crg, hs –MpGL2pAq2q.
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8.2.2 Drinfeld modular forms for Γ0pT q

We know from [Gek01, Theorem 8.1] genus formulae for the Drinfeld modular curves

associated to ΓpNq,Γ1pNq and Γ0pNq. If degN ą 1, then gpXpNqq ą 0.

ConsiderMpΓ1pαT`βqq andMpΓ0pαT`βqq.We know from [DK23, Theorem 4.4]

that for R any ring such that A Ă R Ă C, the R-algebra of Drinfeld modular forms

MpΓ0pT qqR is generated by ET pzq (from Example 6.1.12), and the Drinfeld modular

forms

∆T pzq
def
“

gpTzq ´ gpzq

T q ´ T
and ∆W pzq

def
“

T qgpTzq ´ Tgpzq

T q ´ T

for Γ0pT q (from [DK23, Equation p4.1q]). Furthermore, [DK23, Theorem 4.4] tell us

that the surjective map RrU, V, Zs ÑMpΓ0pT qqR defined by U Ñ ∆W , V Ñ ∆T and

Z Ñ ET induces an isomorphism

RrU, V, Zs{pUV ´ Zq´1
q –MpΓ0pT qqR.

Note that from [DK23, Proposition 4.3p3q] we know that Mk,lpΓ0pT qq has an integral

basis, i.e. a basis consisting of modular forms with coefficients in A.

Recall that from [DK23, Section 4] we know the only two cusps of Γ0pT q, which

we write 0 and 8, are exchanged by the matrix

WT
def
“ p 0 ´1

T 0 q .

We will use MpΓ0pT qq “ CrU, V, Zs{pUV ´ Z2q from [DK23, Theorem 4.4] to make
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sure that the log stacky canonical ring of the corresponding Drinfeld modular curve

XΓ0pT q2 does in fact compute this algebra of Drinfeld modular forms for Γ0pT q2.

Example 8.2.2. Since UV´Z2 describes a conic, we know that the curve CrU, V, Zs{pUV´

Z2q Ă P2
C is rational, and all rational curves have genus 0. There are 2 cusps, say 0

and 8 for XΓ0pT q so there are at least the same cusps on XΓ0pT q2 and hence there are

2 elliptic points.

Let Γ0pT q2 denote the image of Γ0pT q2 in GL2pA{T q – GL2pFqq. As in [Gek01,

Section 3], let pA{T q2prim denote the primitive vectors in A{T ˆA{T, i.e. those vectors

which span a non-zero direct summand. Then from [Gek01, Section 3] we know

tcusps of XΓ0pT q2u – Γ0pT q2zpA{T q
2
prim{Fˆq ,

so the cusps of XΓ0pT q2 are precisely the Γ0pT q2-orbits of 0 and 8 which correspond

to the primitve vectors p1, 0q and p0, 1q. So, there are exactly these two cusps and no

further elliptic points. Let α P Q be such that

2k ´ 2l ´ kq
kpq ´ 1q ď α ă

2k ´ 2l ´ kq
kpq ´ 1q ` 1

and the number r of best lower approximations to α with denominator strictly greater

than 1 is r “ 2. Then let

D
def
“ KXΓ0pT q2

` 2∆ „ KP1 ` αp0q ` αp8q ` 2p0`8q

“ αp8q ` pα ` 2qp0q,
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since KP1 “ ´28. We see that

h0
ˆ

k

2D
˙

“ 2
Yk

2 pαq
]

` k ` 1

“ k

ˆ

2k ´ 2l ´ kq
kpq ´ 1q

˙

` k ` 1

“ 1` k ´ 2l
q ´ 1

“ dimCpMk,lpΓ0pT qqq,

where we know this dimension from [DK23, Proposition 4.1].

Finally, we see from [O’D15, Theorem 6] that the canonical ring RD, i.e. the log

stacky canonical ring for XΓ0pT q2 , is generated by 3 functions, ∆T , ∆W and ET cor-

responding to U, V and Z respectively, and has a single relation UV ´Z2. We include

a rough sketch of the monoid M def
“ tpd, cq P Z2 : ´dpα` 2q ď c ď dαu from [O’D15],

where generators for RD correspond to shaded-in lattice points in degrees 2 and q´ 1:

q ´ 1

Figure 8.1: Monoid Sketch
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8.3 Congruence Subgroups of SL2pAq and

Other Open Problems

There are two major limiting factors in computing examples of algebras of Drinfeld

modular forms for congruence subgroups. The first is that the signature (recall Sec-

tion 3.3) of many Drinfeld modular curves may not be compatible with existing results

for log canonical rings of stacky curves. Worse yet, we may not even be able to get so

far, as we need to strongly compare cusps of a congruence subgroup Γ ď GL2pAq with

its square-determinant subgroup Γ2 ď Γ to even determine the necessary signature.

Thanks to Mihran Papikian for pointing out the following. The comparison we

need between cusps and the genus computation for a Drinfeld modular curve can both

be accomplished combinatorially with an examination of the Bruhat-Tits tree T of

PGL2pK8q. We adopt the philosophy of Serre, described by Gekeler and Nonnen-

gardt [GN95, Introduction], that to study group theoretic properties of a congruence

subgroup Γ is similar to considering the action of Γ on T as a way to comment on

what the Bruhat-Tits tree “does” for our algorithm in Section 8.1.

We know from Mumford a genus formula for the modular curves which arise as

quotients of ΩY P1pKq by a discrete subgroup Γ ď PGL2pK8q with finite covalence:

genuspΓzpΩY P1
pKqqq “ genuspΓzT q

“ dimpH1pΓzT ,Zqq.
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This dimension in turn be computed using the theory of [GN95] discussed below.

It is well-known that GL2pAqzT is a half-line, and we know from [Ser80] that so is

SL2pAqzT .

1 2 3 ¨ ¨ ¨

Figure 8.2: The half-line GL2pAqzT (or SL2pAqzT )

The technique of [GN95] is to consider ramified coverings πΓ : ΓzT Ñ GL2pAqzT .

This allows the authors to derive genus formulae [GN95, Theorem 2.17] for Γ0pNzT q,

[GN95, Corollary 5.3] for Γ1pNzT q (note the difference in naming convention for sub-

groups between our Section 4.1 and [GN95, Section 0]) and [GN95, Corollary 5.8] for

ΓpNqzT .

We end this section by discussing how to approach the comparison of cusps via

the Bruhat-Tits tree. Mihran Papikian kindly sketched the following example.

Example 8.3.1. Let x and y P A have deg x “ deg y “ 1. Then one computes

from [GN95]

1 2 3 ¨ ¨ ¨

0

4 5 6 ¨ ¨ ¨

8 8 8 8 ¨ ¨ ¨

8 8 8 ¨ ¨ ¨

Figure 8.3: [GN95] computes Γ0pxyqzT “layer by layer”

So, by collapsing half-lines into arrows, we have

where in Figure 8.3 half-lines, and in Figure 8.4 arrows, indicate the cusps of

Γ0pxyq.
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1 2

Figure 8.4: Γ0pxyqzT

We can extend the main results of this thesis or [Fra23] by comparing graph

quotients Γ2zT and ΓzT with the constructive algorithm [GN95, p3.8q] to form the

necessary comparison between cusps of these congruence subgroups. We hope this

enables us to compute further examples of algebras of Drinfeld modular forms for

at least the arithmetic subgroups Γ ď GL2pAq. In joint work with Mihran Papikian

and Kevin Ho, we hope to extend this theory to graph quotients Γ1zT for arithmetic

congruence subgroups Γ1 ď SL2pAq. It will be interesting to see whether we will

be able to compute algebras of Drinfeld modular forms for congruence subgroups of

SL2pAq eventually.
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Appendix A

Appendix - Why are Canonical Rings?

In this Appendix we discuss the localization of rings, the infinitesimal lifting criterion

and morphisms of schemes. No topic in this chapter is strictly necessary for the proofs

of our main results. These are ideas which appear in the literature often enough to

merit some treatment here, but the main point we focus on is showing that a curve

is isomorphic to its image under a canonical embedding into projective space.

A.1 Localization

Localization is perhaps one of the most important tools for doing calculations in alge-

braic geometry. The remainder of this chapter relies heavily on the theory we describe

in this section. Though arguably elementary, it is nevertheless worth having a notes

on this topic on hand at all times. These notes come from [AM21] who provide a

more thorough treatment.

Let A be a ring. A multiplicatively closed subset is some S Ď A such that
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1 P S and ab P S if a and b P S. If S is some multiplicatively closed subset, we define

a relation „ on Aˆ S by

pa, sq „ pb, tq ðñ pat´ bsqv “ 0

for some v P S. By definition this relation is reflexive and symmetric, so we verify

that it is transitive to be sure we have a well-defined equivalence relation.

Proof. Suppose pa, sq „ pb, tq and pb, tq „ pc, uq. There are some v, w P S such that

pat´ bsqv “ 0 and pbu´ ctqw “ 0, so

atvuw ´ bsvuw “ 0 and buwsv ´ ctwsv “ 0;

by adding these together we have pau ´ csqtvw “ 0. Since S is closed under multi-

plication tvw P S and we conclude pa, sq „ pc, uq, i.e. „ is a well-defined equivalence

relation.

Let a{s def
“ rpa, sqs “ tpb, tq P A ˆ S : pa, sq „ pb, tqu denote the equivalence class

of pa, sq. Let S´1A denote the set of these equivalence classes. Then S´1A is a ring

under the operations
$

’

’

&

’

’

%

a{s` b{t
def
“ pat` bsq{st

a{spb{tq
def
“ ab{st.

The ring S´1A is a commutative ring with 1, and we have a ring homomorphism

AÑ S´1A given by x ÞÑ x{1. We enumerate several facts about this ring.

• For each s P S we know s{1 P pS´1Aqˆ.
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• If a{1 “ 0 then as “ 0 for some s P S.

• Every element of S´1A has form pa{1qps{1q´1 “ a{s for some a P A and s P S.

• We can determine S´1A up to isomorphism by the former three facts.

We conclude this section with two examples.

Example A.1.1 ( [DF04, Example 4; page 708]). Let V ‰ H be some set. Let k be a

field. Let R be any ring of k-valued functions on V containing the constant funcions.

For any a P V, let Ma denote the ideal of functions in R that vanish at a. Then Ma is

the kernel of the evaluate-at-a ring homomorphism R Ñ k given by f ÞÑ fpaq. Since

R contains the constant functions the evaluation is surjective, so Ma is a maximal

ideal. The localization of R at Ma is

RMa “ tf{g : f, g P R and gpaq ‰ 0u.

Each function in RMa can be evaluated at a by pf{gqpaq “ fpaq{gpaq, i.e. RMa is the

ring of k-valued rational functions defined at a.

Example A.1.2 ( [Har77, Page 76]). Let S be a graded ring. Let S` denote the ideal

S`
def
“ ‘dą0Sd

of S. Let ProjpSq be the set

ProjpSq “

$

’

&

’

%

p� S :
p is a homogeneous prime ideal of S

which does not contain all of S`

,

/

.

/

-

.
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For each p P ProjpSq, let T be the multiplicative semigroup of homogeneous elements

of S which are not in p. Then we have a localized ring Sp
def
“ T´1S and a subring Sppq

of degree 0 elements of Sp.

A.2 The Infinitesimal Lifting Property

A strong result in the spirit of claims like “genus g ě 4 curves are the intersections

of quadrics” or “there are 27 lines on a cubic surface” in algebraic geometry is the

fact that “the tangent space of a smooth variety of dimension n has dimension 2n.”

In this section we will discuss the infinitesimal lifting property, one of the tools used

to prove that fact about tangent spaces.

First, we define a formal derivation B as follows:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Bpxni q
def
“ nxn´1

i 9xi

Bpcfq
def
“ cBpfq, c constant

Bpf ` gq
def
“ Bpfq ` Bpgq

Bpxixjq
def
“ xi 9xj ` xj 9xi.

When we equip a polynomial ring with this formal derivation we will be able to

describe the tangent bundle of the associated affine variety explicitly. We first define

an intermediate object that we use to describe the tangent bundle of a differential

ring, i.e. a ring with a formal derivation.

Definition A.2.1. Let A “ Rrx1 ¨ ¨ ¨ , xns{xf1, ¨ ¨ ¨ , fey. The first jet space A1 of A
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is the ring

A1 def
“ Ar 9x1, ¨ ¨ ¨ , 9xns{xBpf1q, ¨ ¨ ¨ , Bpfeqy,

where B is our formal derivation.

Let A “ Rrx1 ¨ ¨ ¨ , xns{xf1, ¨ ¨ ¨ , fey. Let Y “ SpecA. The tangent bundle TY {R

on Y is TY {R
def
“ SpecpSympΩ1

Y {Rqq. Now we may reap the benefit of of defining a jet

space with the following result.

Lemma A.2.2. In the terminology above, we have

TY {R “ SpecpSympΩ1
Y {Rqq “ SpecpA1

q.

Proof. We argue that SympΩ1
Y {Rq “ A1. By definition

Ω1
Y {R “

n
à

i“1
Rrx1, ¨ ¨ ¨ , xnsdxi – Rrx1, ¨ ¨ ¨ , xns

‘n,

and for V a finite dimensional free R-module with basis v1, ¨ ¨ ¨ , vm

SympV q def“ Rrx1, ¨ ¨ ¨ , xms,

where xi is identified with vi. In other words

SympA‘nq – Arx1, ¨ ¨ ¨ , xns

so

SympΩ1
X{Rq – Rrx1, ¨ ¨ ¨ , xnsrdx1, ¨ ¨ ¨ , dxns – A1.
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Note that in the case of no relations in the definition of A1, i.e. when A1 def
“

Ar 9x1, ¨ ¨ ¨ , 9xns “ Rrx1, ¨ ¨ ¨ , xn, 9x1, ¨ ¨ ¨ , 9xns, we see that dimpA1q “ dimppAnq2q “

2 dimpAnq.

Now that we understand the tangent bundle to an affine variety, we consider

schemes next. There is one trick which is very motivational and useful, but most

importantly can be illustrated with a cartoon.

etale

xx

y

x

∇f

X ⊆ R[x, y]/(f)

∂f
∂y = 0

Figure A.1: An Infinitesimals Trick Cartoon

To define an étale morphism from X Ă A2 to A1, one of the charts, we need to lo-

calize at Bf
By

and use the infinitesimal lifting property. Let U “ D`p
Bf
By
q be the Zariski

open nonvanishing locus of Bf
By
. Then U “ SpecpA Bf

By
q, and we get our étale map by

lifting. Recall from considering the relative cotangent sequence (as in [Har77, Page

182]) that if AÑ B is an étale morphism of R-algebras, then ΩB{R – ΩA{R bA B.
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Now we define the lifting property which is our main focus.

Definition A.2.3. A morphism B Ñ A of R-algebras has the infinitesimal lifting

property (resp. is formally smooth) if and only if for all R-algebras C Ě I, for I

and ideal such that I2 “ 0, the following commutes

B A

C C{I
D

Figure A.2: Infinitesimal Lifting Property

and there is a lift AÑ C of AÑ C{I, indicated by the dashed arrow.

That is the “what” of the infinitesimal lifting property, but “why” is it so named?

The motivation is that we regard elements of I as infinitesimals ε such that ε2 “ 0.

Now our strategy will be to cover a smooth scheme X over a ring R by affine

opens Ui “ SpecpAiq such that there exist étale maps εi : Ui Ñ AdimX
R .We begin with

an easy exercise.

Lemma A.2.4. Rrxs Ñ Rrx, ys{pfq 1
rBf{Bys

has the infinitesimal lifting property.

Proof. Let B “ RrXs and let A “ Rrx, ys{pfq 1
rBf{Bys

and consider the diagram

where βpxq “ c, αpxq “ c and αpyq “ d are such that fpc, dq “ 0. Then α̃pxq “

c1 ` c2 for some c2 P I and α̃pyq “ d1 ` d2 for some d2 P I so that d2
2 “ 0. Note

the same is true for c2 by definition of I but we can say something even stronger.
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Rrxs Rrx, ys{pfq 1
rBf{Bys

C C{I

β α
α̃

By definition of β and the commutativity of the diagram, c2 “ 0. Therefore we need

fpc, d1 ` d2q “ 0. Consider the Taylor series

fpc, d1q `
Bf

By
pc, d1qd2 `Opd

2
2q “ 0.

Then if Bf
By

is invertible, we can solve for d2, so consider C{I to be the localization of

A at Bf
By
, namely C{I “ A Bf

By
. Then

d2 “
´f
Bf
By

pc, d1q,

so α̃ is well-defined.

Now we generalize little-by-little.

Lemma A.2.5. Suppose X Ď An
R “ SpecRrx1, ¨ ¨ ¨ , xns{pfq. Then the maps Rrxis Ñ

Rrx1, ¨ ¨ ¨ , xns{pfq
1

rBf{Bxis
have the infinitesimal lifting property for all 1 ď i ď n.

Proof. This is the same setup as Lemma A.2.4 but with worse notation. Fix some i

and consider the diagram

Rrxis Rrx1, ¨ ¨ ¨ , xns{pfq
1

rBf{Bxis

C C{I

β α
α̃
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where βpxiq “ ci and αpxiq “ ci for some ci P C{I such that fpc1, ¨ ¨ ¨ , cnq “ 0. As

before we have

ci “ βpxiq “ α̃pxiq “ ci ` c̃i

for some c̃i P I so c̃i “ 0. Likewise α̃pxjq “ cj ` c̃j for c̃j2 “ 0 since it is a member of

I, and the vanishing condition fpc1, ¨ ¨ ¨ , cnq “ 0 means in the Taylor series we have

fpc1 ` c̃1, ¨ ¨ ¨ , ci, ¨ ¨ ¨ , cj, ¨ ¨ ¨ , cn ` c̃nq

`
Bf

Bxi
pc1 ` c̃1, ¨ ¨ ¨ , ci, ¨ ¨ ¨ , cj˚ , ¨ ¨ ¨ , cn ` c̃nqcj `Opc

2
jq “ 0, (A.2.1)

where cj˚ means cj is removed. As before since we are in the localization at Bf
Bxi

we

can solve for cj and α̃ is well-defined.

We content ourselves with stating one more partial result, as this is sufficient to

illustrate how to use this theory while not going overboard with the rather heinous

notation.

Lemma A.2.6. The maps Rrxis Ñ rRrx0, x1s{pf0, f1qsJacpf0;f1q
, for 0 ď i, j ď 1 all

have infinitesimal lifting.

Proof. Now since there are two functions, we need to localize at their Jacobian, de-

noted Jacpf0; f1q. Fix an i either 0 and 1. Consider the diagram

Rrxis Rrx0, x1s{pf0, f1q
1

rJacpf0;f1qs

C C{I

β α
α̃
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where

ci “ βpxiq “ α̃pxiq “ ci ` c̃i, c̃i P I ñ c̃i “ 0

and α̃pxjq “ cj ` c̃j for j ‰ i, p̃cjq P I so c̃j2 “ 0 and now we have fkpc0, c1q “ 0

for both k “ 0 and k “ 1. As always we make use of the localization to compute the

infinitesimals c̃j for j ‰ i (remember i is the coordinate fixed at the beginning). We

have
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

f0pc0, c1q ` det

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bf0
Bx0

Bf1
Bx0

Bf0
Bx1

Bf1
Bx1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pc0, c1qc̃j `Opc̃j
2q “ 0

f1pc0, c1q ` det

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bf0
Bx0

Bf1
Bx0

Bf0
Bx1

Bf1
Bx1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pc0, c1qc̃j `Opc̃j
2q “ 0

so

c̃j “
´rf ` gs

2 Jacpf0; f1q
pc0, c1q

and α̃ is well-defined.

A.3 Morphisms of Schemes

We conclude this chapter by discussing how one shows that a curve is isomorphic to

its image under a canonical embedding. To start we collect some background material

to follow this discussion as it proceeds in [Har77].

Definition A.3.1 ( [Har77]). A morphism of locally ringed spaces pX,OXq Ñ

pY,OY q is a map pf, f#q with f : X Ñ Y a continuous map of spaces and f# :

OY Ñ OX of sheaves of rings, such that for each point P P X the induced map

f#
P : OY,fpP q Ñ f˚OX,P on stalks is a local isomorphism of local rings.
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We describe a local homomorphism of local rings as follows. Given a point P P

X, the morphism of sheaves f# from Definition A.3.1 induces ring homomorphisms

OY pV q Ñ OXpf
´1V q for each open V Ă Y. As V ranges over all open neighborhoods

of fpP q, the preimages f´1pV q range over a subset of all neighborhoods of P. We get

a map

OY,fpP q “ lim
Ñ
V

OY pV q Ñ lim
Ñ
V

OXpf
´1
pV qq Ñ OX,P

which induces a local homomorphism f#
P : OY,fpP q Ñ OX,P . So, if mfpP q � OY,fpP q

and mP � OX,P are the unique maximal ideals of their respective local rings, then

pf#
P q

´1pmP q “ mfpP q.

We can now properly consider how to construct a scheme from a graded ring. Let

S be a graded ring. Let S` denote the ideal S`
def
“ ‘dą0Sdof S. Let ProjpSq be the

set

ProjpSq “

$

’

&

’

%

p� S :
p is a homogeneous prime ideal of S

which does not contain all of S`

,

/

.

/

-

.

First we describe a topological space. If a is an ideal of S then let V paq “ tp P

ProjS : p Ě au. We can define a topology on ProjpSq by defining tclosed setsu “

tV paq : a some homogeneous ideal of Su. Next, we need a sheaf of rings on ProjpSq.

Let T be the multiplicative semigroup of homogeneous elements of S which are not in

p. Then we have a localized ring Sp
def
“ T´1S and a subring Sppq of degree 0 elements
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of Sp. For any open subset U Ď ProjpSq define the structure sheaf by

OpUq def“

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

s : U Ñ
ğ

pPU

Sppq :

for each p P U, sppq P Sppq

and there is some neighborhood V of p in U

and some homogeneous a, f P S

(of the same degree) such that for all q P V

f ‰ q and spqq “ a{f P Spqq

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

.

We can now formally define the scheme associated to a graded ring.

Proposition A.3.2 ( [Har77, II.2.5]). Let S be a graded ring.

1. For any P P ProjpSq the stalk OP is isomorphic to the local ring SpP q.

2. For any homogeneous f P S`, let D`pfq
def
“ tP P ProjpSq : f R P u. Then D`pfq

is an open subset of ProjpSq, these open sets cover ProjpSq, and for each D`pfq

we have isomorphisms

pD`pfq,O|D`pfqq – SpecpSpfqq

as locally ringed spaces, where Spfq Ă Sf is the subring of degree 0 elements.

3. ProjpSq is a scheme.

With the tools we defined in this chapter it is an exercise to argue that if X is

any scheme whose canonical bundle KX is very ample, then as schemes

ϕKX pXq – X – ProjpRpX,KXqq,
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i.e. a scheme is isomorphic to its image under a canonical embedding, which is Proj

of its canonical ring. One need only show that for each point P in the image ϕKX pXq

the stalk OϕKX pXq,P
is isomorphic to a local ring, and that there is a compatible cover

of the image ϕKX pXq by affine open subschemes, as in Proposition A.3.2.

Example A.3.3. Suppose X is a genus g ě 4 canonical curve over C. We will verify

that ϕωX pXq Ă Pg´1
C , the image of X under the canonical embedding, is a well-defined

scheme, that it is isomorphic as a scheme to X and that it is isomorphic as a scheme

to ProjRpXq.

First we discuss well-definedness. To show that ϕωX pXq is scheme we need to show

it is a locally ringed space with a cover by open affine subschemes. As a set, ϕωX pXq Ă

Pg´1
C is the collection of points of form ps0pP q, ¨ ¨ ¨ , sg´1pP qq P ProjCrx0, ¨ ¨ ¨ , xg´1s,

where P P X is a point. We equip ϕωX pXq with the induced subspace topology from

Pg´1
C , where the topology on Pg´1

C is defined by closed sets of the form V paq “ tp P

Pg´1
C : p Ě au for a a homogeneous ideal of Crx0, ¨ ¨ ¨ , xg´1s.

The more delicate matter is constructing a sheaf of local rings on ϕωX pXq and

we proceed as follows. For each p P ϕωX pXq let T be the multiplicative semigroup

of homogeneous elements of Crx0, ¨ ¨ ¨ , xg´1s not in p. For this to be well-defined,

we need to think of p as a homogeneous prime ideal which does not contain all

of ‘dą0Crx0, ¨ ¨ ¨ , xg´1sd, but since ϕωX pXq Ă ProjCrx0, ¨ ¨ ¨ , xg´1s is a subset, p P

Pg´1
C so is indeed such a point. Likewise for each p we define Crx0, ¨ ¨ ¨ , xg´1sppq

def
“

pT´1Crx0, ¨ ¨ ¨ , xg´1sq0 to be the subring of the localized ring T´1Crx0, ¨ ¨ ¨ , xg´1s “

Crx0, ¨ ¨ ¨ , xg´1sp consisting of elements of degree 0. Then for U Ď ϕωX pXq any open
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set, we define

OϕωX pXq
pUq

def
“

$

&

%

s : U Ñ
ğ

pPϕωX pXq

Crx0, ¨ ¨ ¨ , xg´1sppq

,

.

-

to be the collection of those s such that for p P U, sppq P Crx0, ¨ ¨ ¨ , xg´1sppq, and there

exists some neighborhood V of p in U and homogeneous a, f P Crx0, ¨ ¨ ¨ , xg´1s of the

same degree such that for all q P V, f R q and spqq “ a{f in Crx0, ¨ ¨ ¨ , xg´1spqq.

To verify that ϕωX pXq is a locally ringed space, we need to show that for each

p P ϕωX pXq, the stalk OϕωX pXq,p
is isomorphic to some local ring, and in particu-

lar the local ring we will use as the target is Crx0, ¨ ¨ ¨ , xg´1sppq. Consider the map

φ : OϕωX pXq,p
Ñ Crx0, ¨ ¨ ¨ , xg´1sppq defined by sending any local section s in a neigh-

borhood of p to its value sppq.

Given any a{f P Crx0, ¨ ¨ ¨ , xg´1sppq, for a, f homogeneous of the same degree and

f R p, since Dpfq is an open neighborhood of p with the section a{f of OϕωX pXq
over

Dpfq whose value at p is a{f, φ is surjective.

Given some neighborhood U of p in ϕωX pXq and s, t P OϕωX pXq
pUq with the same

value at p, there is some open neighborhood V Ď U containing p such that s “ a{f

and b “ t{g for a, b, f, g P Crx0, ¨ ¨ ¨ , xg´1s with deg a “ deg f, deg b “ deg g and

f, g R p. By “the same value at p” we mean that s ” t in the local ring, so by defini-

tion of the localization Crx0, ¨ ¨ ¨ , xg´1sp there is some h R p such that hpga´ fbq “ 0

in Crx0, ¨ ¨ ¨ , xg´1s so that a{f “ b{g in every local ring Crx0, ¨ ¨ ¨ , xg´1spqq such that
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f, g, h R q. The set of such q is the intersection Dpfq XDpgq XDphq which is a finite

intersection of open sets containing p, so is an open set containing p. Since s “ t

in this neighborhood of p, we conclude that s and t have the same stalk at p, so φ is

injective.

Now we verify that the cover by open affine subschemes of Pg´1
C restricts to such

a cover of ϕωX pXq. Once again this is a three part computation where we argue for

well-definedness of the restricted cover as a cover, a homeomorphism of spaces from

the cover to the embedded curve, and finally an isomorphism of sheaves of local rings.

From the proof of part p2q of Proposition [Har77, II.2.5], we have a cover of Pg´1
C

by the open sets indexed by homogeneous f P ‘dą0Crx0, ¨ ¨ ¨ , xg´1sd of form D`pfq
def
“

tp P ProjCrx0, ¨ ¨ ¨ , xg´1s : f R pu “ ProjCrx0, ¨ ¨ ¨ , xg´1s ´ V pfq. Further, for each

D`pfq there is an isomorphism of locally ringed spaces

pD`pfq,OPg´1 |D`pfqq – SpecCrx0, ¨ ¨ ¨ , xg´1spfq

where Crx0, ¨ ¨ ¨ , xg´1spfq is the subring of Crx0, ¨ ¨ ¨ , xg´1sf consisting of degree 0 ele-

ments in the local ring.

Since X is a canonical curve, ϕωX is a closed immersion, so by version 2 of

[Sta18a, Lemma 29.2.1] for each affine open D`pfq Ă Pg´1
C , there exists some ideal I

of Crx0, ¨ ¨ ¨ , xg´1spfq such that ϕ´1
ωX
pD`pfqq – SpecpCrx0, ¨ ¨ ¨ , xg´1spfq{Iq as schemes

over D`pfq – SpecCrx0, ¨ ¨ ¨ , xg´1spfq. We finally conclude that ϕωX pXq is a well-

defined scheme.
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Now we can work out isomorphisms between the embedded curve, the original

curve, and Proj of the canonical ring. We begin by defining the maps from which we

get isomorphisms of schemes X – ϕωX pXq – ProjRpXq. We have the usual canonical

embedding ϕωX : X Ñ ϕωX pXq which is base-point free and a closed immersion. For

the other isomorphism of schemes, we need a map from Pg´1
C Ñ ProjRpXq which

restricts to an isomorphism on the embedded curve. The isomorphisms

RpXq bC pCrx0, ¨ ¨ ¨ , xg´1s{Iq – Rrx0, ¨ ¨ ¨ , xg´1s{IRrx0, ¨ ¨ ¨ , xg´1s

given by r pmod Iq b n ÞÑ rn pmod Iq are well-behaved with respect to localization,

so we have a map of affine open subschemes

ϕ´1
ωX
D`pfq

„
Ñ Spec pRpXq{IRpXqq

pfq ,

and since those affine opens cover ϕωX pXq and ProjRpXq respectively, we get a map

of schemes ν : ϕωX pXq Ñ ProjRpXq given by the map on points P ÞÑ 1 b P corre-

sponding to the base change Pg´1
C Ñ ProjRpXq restricted to ϕωX pXq.

Consider the diagrams

Ů

ϕ´1
ωX
pD`pfqq

Ů

D`pfq
Ů

D`paq

X ϕωX pXq ProjRpXq
ϕωX ν
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and

OX OϕωX pXq
OProjRpXq

Ů

OX |ϕ´1
ωX
pD`pfqq

Ů

OϕωX pXq
|D`pfq

Ů

OProjRpXq|D`paq

ϕ#
ωX

ν#

We want to argue that the pairs pϕωX , ϕ#
ωX
q and pν, ν#q are isomorphisms of

schemes, so the maps on spaces are homeomorphisms and the maps on sheaves of

local rings are homomorphisms of sheaves of local rings such that the induced maps

on stalks are local isomorphisms of local rings.

By definition of a closed immersion, X is homeomorphic to a closed subset in Pg´1
C ,

and ϕωX pXq the embedded curve is the only possible choice. From the M bR R{I –

M{IM-style isomorphisms of affine opens in the covers of ϕωX pXq and ProjRpXq

we can glue together these homeomorphisms between affine schemes D`pfq|ϕωX pXq for

f P Crx0, ¨ ¨ ¨ , xg´1s homogeneous of strictly positive degree and D`paq for homoge-

neous a P RpXq` into a homeomorphism ν, thanks to the scheme structures on the

affine opens, i.e. the descent data of the covers.

Finally we have the induced maps of sheaves of local rings ϕ#
ωX

: OϕωX pXq
Ñ

pϕωX q˚OX and ν# : OProjRpXq Ñ ν˚OϕωX pXq
such that for each point of X and ϕωX pXq

respectively, the induced maps on stalks are local homomorphisms of local rings. Since

ϕωX and ν are homeomorphisms, we can strengthen the local homomorphisms on stalks

to local isomorphisms since we have set bijections between the affine open covering
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schemes. This means that given P P X and ϕωX pP q P ϕωX pXq as U and V vary over

all open neighborhoods of ϕωX pP q and νpϕωX pP qq respectively, ϕ´1
ωX
pUq and ν´1pV q

vary of the entire set of neighborhoods of P and ϕωX pP q respectively, so we get maps

OϕωX pXq,ϕωX pP q
“ lim

Ñ
U

OϕωX pXq
pUq Ø lim

Ñ
U

OXpϕ
´1
ωX
pUqq “ OX,P

and

OProjRpXq,νpϕωX pP qq “ lim
Ñ
V

OProjRpXqpV q Ø lim
Ñ
V

OϕωX pXq
pν´1

pV qq “ OϕωX pXq,ϕωX pP q
.

This means the local homomorphisms of local rings are local isomorphisms, so we are

finished.
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Appendix B

Appendix - Syzygies and Cohomol-

ogy

As in [GL85] and [Gre84] we can describe the homogenous canonical ideal of a curve

via calculation of certain Koszul cohomology groups, giving another means to prove

Petri’s theorem. We develop some tools like the Koszul complex and discuss how

Green and Lazarsfeld use them to prove the that the image of a general curve of

genus g ě 4 under a canonical embedding is cut out by quadrics. The point of doing

a purely cohomological version of Petri’s theorem, as Green and Lazarsfeld put it,

is that when explicitly computing all possible syzygies for an embedded curve as

in [Mum99, page 237] or Section 2.5, paring down relations to some minimal set is

“unavoidably a bit messy.” By using the theory of Green and Lazarsfeld we at least

avoid this “messiness.”
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B.1 Euler Sequence

In this section, some relations between different sheaves are introduced. Eventually,

by forming the long exact sequences in sheaf cohomology from different short exact

sequences given here, one can use the Koszul cohomology to inductively demonstrate

that all syzygies for the canonical ideal of a curve with g ě 4 are generated in degree

2.

A fundamental exact sequence we use many times in this section is the following.

Definition B.1.1. The Euler sequence on Pn is the following exact sequence of

sheaves on Pn

0 Ñ ΩPnA Ñ OPnp´1q‘n`1
Ñ OPn Ñ 0

which relates the sheaf of holomorphic differentials Ω to the structure sheaf on OPn .

For rigor, it is worth checking exactness.

Lemma B.1.2 ( [Vak02b]). The Euler sequence is exact.

Proof. Let ϕ : Op´1q‘pn`1q Ñ O be the degree 1 map

ps0, ¨ ¨ ¨ , snq ÞÑ x0s0 ` ¨ ¨ ¨ ` xnsn.

Identifying the kernel of this map with differentials can be done locally since injectivity

and surjectivity are local properties. Consider U0 where x0 ‰ 0 some open set.

Consider some coordinates xj{0 “ xj
x0

for 1 ă j ď n. To each differential

f1px1{0, x2{0, ¨ ¨ ¨ , xn{0qdx1{0 ` ¨ ¨ ¨ ` fnpx1{0, ¨ ¨ ¨ , xn{0qdxn{0 P ΩPn
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there are n`1 sections of Op´1q since by treating the projective coordinates naively,

f1dx1{0 “ f1dp
x1
x0
q

“ f1
x0dx1´x1dx0

x2
0

“
f1
x0
dx1 `

´x1
x2

0
f1dx0.

Note x0

´

´x1
x2

0
f1

¯

`x1

´

f1
x0

¯

“ 0 and that both ´x1
x2

0
f1 and f1

x0
are homogeneous of degree

´1.

Let ß : ΩPnA Ñ Op´1q‘pn`1q be given by

f1dx1{0 ` ¨ ¨ ¨ ` fndxn{0 ÞÑ

ˆ

´
x1

x2
0
f1 ´ ¨ ¨ ¨ ´

xn
x2

0
fn,

f1

x0
,
f2

x0
, ¨ ¨ ¨ ,

fn
x0

˙

.

First of all ß|U0pΩPnq Ď kerϕ since

x0

ˆ

´
x1

x2
0
f1 ´ ¨ ¨ ¨ ´

xn
x2

0
fn

˙

` x1

ˆ

f1

x0

˙

` ¨ ¨ ¨ ` xn

ˆ

fn
x0

˙

“ 0

Then ß|U0 is one-to-one since ker ß|U0 “ t0u as ßpf1dx1{0`¨ ¨ ¨`fndxn{0q “ p0, ¨ ¨ ¨ , 0q if

and only if fi “ 0 for 1 ď i ď n. Also ß is surjective onto the kernel of Op´1q‘pn`1q Ñ

OX since for

pg0, ¨ ¨ ¨ , gnq P kerpOp´1q‘pn`1q
Ñ OXq,

let fi “ x0gi for each 1 ď i ď n. To verify this construction consider the map on two

different coordinate patches at once, say U0XU1, where in particular there should be
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a compatible solution. Note that

f1dx1{0 ` ¨ ¨ ¨ ` fndxn{0 “ f1d
1

x0{1
` f2d

x2{1
x0{1

` ¨ ¨ ¨ ` fnd
xn{1
x0{1

“
´f1
x2

0{1
dx0{1 `

x0{1dx2{1´x2{1dx0{1
x2

0{1
f2 ` ¨ ¨ ¨ `

x0{1dxn{1´xn{1dx0{1
x2

0{1
fn

“
´f1
x2

0{1
dx0{1 `

f2
x0{1

dx2{1 ´
f2x2{1
x2

0{1
dx0{1 ` ¨ ¨ ¨ `

fn
x0{1

dxn{1 ´
fnxn{1
x2

0{1
dx0{1

“ ´
f1`f2x2{1`¨¨¨`fnxn{1

x2
0{1

dx0{1 `
f2
x0{1

dx2{1 ` ¨ ¨ ¨ `
fn
x0{1

dxn{1

“ ´
f1`f2x2{1`¨¨¨`fnxn{1

x2
0{1

dx0{1 `
f2x1
x0
dx2{1 ` ¨ ¨ ¨ `

fnx1
x0
dxn{1.

In particular the dx2{1 term maps to the second factor in Op´1q‘pn`1q and gives f2
x0

as desired and likewise for each dxj{1 term for j ą 2, indexing factors of Op´1q‘pn`1q

from 0 to n. Also, the dx0{1 term goes to the “zero factor”

´

řn
j“1 fi

pxi{x1q
px0{x1q2

¯

x1
“ f1

xi
x2

0

as desired. The first factor must be corrected because the
ř

i xipith factorq “ 0.

Since the Euler sequence is exact then the following “twist” is exact

0 Ñ ΩPnp1q Ñ O‘n`1
Pn Ñ OPnp1q Ñ 0, (B.1.1)

Let L “ OPnp1q bOX
OX , let r “ h0pLq ´ 1 and say ML “ ϕ˚LΩPrp1q. Then the

following pullback by ϕL of the sequence B.1.1 above is exact

0 ÑML Ñ H0
pLq bF OX Ñ LÑ 0. (B.1.2)
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It is not hard to show that the following is exact

0 ÑML b L
k´1

Ñ H0
pLq bF L

k´1
Ñ Lb Lk´1

Ñ 0.

This next Lemma is just another twist, but this time with some wedge products.

Lemma B.1.3. The following is exact.

0 Ñ
2
ľ

ML b L
k´1

Ñ

2
ľ

H0
pLq bF L

k´1
ÑML b L

k
Ñ 0. (B.1.3)

Proof. Taking wedge products in B.1.2 and twisting by Lk´1 also preserves exactness

so to obtain the sequence in the statement, first consider the dual sequence

0 Ñ L_ Ñ H0
pLq_ bF OX ÑM_

L Ñ 0.

By [Sta18b, Tag 00DM] the following is exact

L_ bH0
pLq_ bOX Ñ

2
ľ

H0
pLq_ bOX Ñ

2
ľ

M_
L Ñ 0.

Take the dual again, note thatML – LbOX
H0pLqbF OX by B.1.2, and the following

is exact

0 Ñ
2
ľ

ML Ñ

2
ľ

H0
pLq bF OX ÑML

and twisting by Lk´1 finally gives

0 Ñ
2
ľ

ML b L
k´1

Ñ

2
ľ

H0
pLq bF L

k´1
ÑML b L

k.
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The rightmost map is given by

ps1 ^ s2q b f ÞÑ s1 b s2f ´ s2 b s1f

and is surjective since this is a Koszul map d2,k´1 (see Definition B.2.2) composed of

pIdbmk´1q and pψid b Idq, where ψid is dual to an injective map and is surjective,

and mk´1 is surjective by definition of the multiplication map in ‘kPNLk. This makes

the sequence right exact.

B.2 The Koszul Complex

Before we describe a cohomology that allows us to compute a canonical ideal, we

recall the following.

Lemma B.2.1. Let R be a ring and let M be a free R-module with basis y0, ¨ ¨ ¨ , yn.

The homogeneous coordinate ring of PnR is SympMq – Rry0, ¨ ¨ ¨ , yns.

Proof. Both the symmetric algebra SympMq and the polynomial ring Rry0, ¨ ¨ ¨ , yns,

where the yi are a basis are free objects in their respective categories. The homoge-

neous polynomials of degree 1 are a free R-module which can be identified with M

itself and in particular satisfies the following universal property of the symmetric al-

gebra: for every linear f : M Ñ A a morphism of algebras, there is a unique algebra

homomorphism g : SympMq Ñ A such that f “ g ˝ i, for i : M Ñ SympMq the

inclusion map. Suppose that f 1 : Rry0, ¨ ¨ ¨ , yns1 Ñ A is a linear algebra morphism

for some R-algebra A. Then since Rry0, ¨ ¨ ¨ , yns is the free object in the category

of R-algebras there is the unique g1 : Rry0, ¨ ¨ ¨ , yns Ñ A such that f 1 “ g1 ˝ i1 for
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i1 : Rry0, ¨ ¨ ¨ , yns1 ãÑ Rry0, ¨ ¨ ¨ , yns.

Now we may define the Koszul cohomology.

Definition B.2.2 ( [Gre84, 1.a.2]). Let F be a field, let V be an n-dimensional F-

vector space and let B “
À

qPZBq be a graded SympV q-module. TheKoszul complex

is the long exact sequence

¨ ¨ ¨ Ñ

p`1
ľ

V bBq´1
dp`1,q´1
Ñ

p
ľ

V bBq
dp,q
Ñ

p´1
ľ

V bBq`1
dp´1,q`1
Ñ

p´2
ľ

V bBq`2
dp´2,q`2
Ñ ¨ ¨ ¨

where the maps dp,q are defined to be the composite maps

dp,q “ pIdbmqq ˝ p∆1
b Idq,

where

$

’

’

&

’

’

%

∆1 :
Źp V Ñ

Źp´1 V b V, is dual to the exterior product map

mq : V bBq Ñ Bq`1, is multiplication in B.

The following diagram illustrates the composite boundary maps in the complex

from Defintion B.2.2.
Źp V bBq

Źp´1 V b V bBq

Źp´1 V bBq`1

∆1bId

dp,q
Idbmq

Figure B.1: Maps in the Koszul Complex

We begin by working out each of these maps and verifying that the differentials

satisfy d2 “ 0 to ensure that we have a well-defined complex. In order to do so we
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will first introduce a map between wedge products which we can define for any pair

of N a free R-module and ϕ : N Ñ R a morphism.

Consider a diagonalization ∆ :
Ź

N Ñ
Ź

N bR
Ź

N, the unique map of algebras

defined by

m ÞÑ mb 1` 1bm

for m P
Ź1N “ N and mb 1` 1bm P

Ź

N b
Ź0N ‘

Ź0N b
Ź

N Ă
Ź

N b
Ź

N.

In particular the component ∆1 of ∆ which maps
ŹiN Ñ N b

Źi´1N by

∆1
pm1 ^ ¨ ¨ ¨ ^miq “

i
ÿ

j“1
p´1qj´1mj bm1 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^mi,

where m̂j means that mj is left out of the product, gives a description of the differ-

entials

δϕ :
i

ľ

N Ñ

i´1
ľ

N

in the long exact sequence of wedge products of N. Define δϕ to be the composite

δϕ :
i

ľ

N
∆1
Ñ N bR

˜

i´1
ľ

N

¸

ϕb1
Ñ R bR

i´1
ľ

N “

i´1
ľ

N.

Note when i “ 1 the composite is just ϕ.

Let us verify that we have a well-defined complex of wedge products with the

differentials δϕ above.

Lemma B.2.3. Let V {F be a finite dimensional vector space over the field F and

SympV q be the symmetric algebra over V. Then the differentials δϕ :
Źp V Ñ

Źp´1 V
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for ϕ P V _ satisfy δ2
ϕ “ 0.

Proof. Let ∆ :
Ź

V Ñ
Ź

V be the map x ÞÑ x b 1 ` 1 b x. Consider ∆1 :
Źp V Ñ

V b
Źp´1 V given on the basis by

∆1
pm1 ^ ¨ ¨ ¨ ^mpq “

p
ÿ

j“1
p´1qj´1mj bm1 ^m2 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^mp.

Let ϕ P V _ “ HomFpV,Fq and let δϕ :“ pϕb 1q ˝∆1 be the composite map

p
ľ

V
∆1
Ñ V b

˜

p´1
ľ

V

¸

ϕb1
Ñ

p´1
ľ

V.

Then

δϕpm1 ^ ¨ ¨ ¨ ^mpq “ pϕb 1qp
řp
j“1p´1qj´1mj bm1 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^mpq

“ ϕp
řp
j“1p´1qj´1mjq bm1 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^mp

“
řp
j“1p´1qj´1ϕpmjq bm1 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^mp

and extend by linearity, so

δ2
ϕpm1 ^ ¨ ¨ ¨ ^mpq “ δϕp

řp
j“1p´1qj´1ϕpmjq bm1 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^mpq

“ pϕb 1qp
řp
k“1p´1qk´1mk b

řp
j“1p´1qj´1ϕpmjq

bm1 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^ m̂k ^ ¨ ¨ ¨ ^mpq

“
řp
k“1p´1qk´1ϕpmkq b

řp
j“1p´1qj´1ϕpmjq

bm1 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^ m̂k ^ ¨ ¨ ¨ ^mpq.
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A basis for
Źp´2 V as a free F-module of rank

ˆ

dimFpV q

p´ 2

˙

is

tvi1 , ¨ ¨ ¨ , vip´2 : 1 ď i1 ă ¨ ¨ ¨ ă ip´2 ď dimFpV qu

corresponding to all pp´ 2q-subsets of t1, ¨ ¨ ¨ , dimFpV qu. So, we can write

δ2
ϕpm1 ^ ¨ ¨ ¨ ^mpq “

pdimFpV q
p´2 q
ÿ

l“0
alpvl1 ^ ¨ ¨ ¨ ^ vlp´2q

where the al of the term m1 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^ m̂k ^ ¨ ¨ ¨ ^mpq is

p´1qk´2
p´1qj´1ϕpmkqϕpmjq ` p´1qk´1

p´1qj´1ϕpmkqϕpmjq “ 0,

because for each interchange of mi and mj in the wedge to bring mj out in front, a

factor of ´1 is added. We conclude that δ2
ϕ “ 0.

The next Lemma in this series is a characterization of the map ∆1 which appears

in the Koszul complex.

Lemma B.2.4. Let V {F be a finite dimensional vector space with basis v1, ¨ ¨ ¨ , vn.

Then the dual to the exterior product map

V _ ^
p´1
ľ

V _ Ñ
p
ľ

V _

given by

v_ b α ÞÑ v_ ^ α

is the component ∆1 of the diagonal map on the pth graded piece
ŹP V of the exterior
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algebra
Ź

V given by

∆1
pv1 ^ ¨ ¨ ¨ ^ vpq “

p
ÿ

j“1
p´1qj´1vj b v1 ^ ¨ ¨ ¨ ^ v̂j ^ ¨ ¨ ¨ ^ vp.

Proof. Consider the following diagram

α ^ v_
Źp V _

Źp V v1 ^ ¨ ¨ ¨ ^ vp

α b v_
Źp´1 V _ b V _

Źp´1 V b V ∆1pv1 ^ ¨ ¨ ¨ ^ vpq

P
_

Q

P
_

Q

Since p
Źp V q_ “

Źp V _, for v_1 ^ ¨ ¨ ¨ ^ v_p P
Źp V _ we have pv_1 ^ ¨ ¨ ¨ ^ v_p q

_ “

v1 ^ ¨ ¨ ¨ ^ vp, which is abbreviated v. So by definition of ∆1

p∆1
pvqq_ “

p
ÿ

j“1
p´1qj´1

pvjbv1^¨ ¨ ¨^v̂j^¨ ¨ ¨^vpq
_
“

p
ÿ

j“1
p´1qj´1v_j bv

_
1 ^¨ ¨ ¨^v̂j^¨ ¨ ¨^v

_
p

and applying the exterior product map v_ b α ÞÑ α ^ v_ to ∆1_ therefore yields

p
ÿ

j“1
p´1qj´1v_j ^ v

_
1 ^ ¨ ¨ ¨ ^

ypv_j q ^ ¨ ¨ ¨ ^ v
_
p “ v_1 ^ ¨ ¨ ¨ ^ v

_
p .

The exterior product map on duals of V is given by

pα b v_ ÞÑ α ^ v_q,

which is the dual of ∆1.

Finally, to conclude our laborious well-definedness checks, it is not hard to check

that d2 “ 0 in the Koszul complex since we observe that δ2
ϕ “ 0 from Lemma B.2.3.
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Now we may reap the fruits the Koszul cohomology bears. We define the Koszul

cohomology groups as follows.

Definition B.2.5 ( [Gre84, 1.a.7]). Let F be a field, let V be an n-dimensional

F-vector space and let B “
À

qPZBq be a graded SympV q-module. The Koszul co-

homology groups of B are the groups

Kp,qpB, V q “
ker dp,q

im dp`1,q´1

where the maps d come from Definition B.2.2.

Our convention will be that Kp,qpB, V q “ 0 when p ă 0 or p ą dim V.

The reason we have introduced the Koszul cohomology is to give a proof of Petri’s

theorem. Now we have the tools to consider how Koszul cohomology groups are re-

lated to generators and relations for a graded SympV q-module. With the appropriate

vector space V in mind, it turns out that this calculation will tell us about generators

and relations for the canonical ring from Petri’s theorem.

To this end, let B “
À

qPZBq be a graded SympV q-module for V {F some vector

space. If x1, x2, ¨ ¨ ¨ are generators for B with deg xi “ ei then a weight q relation

among the generators has form

ÿ

i

uixi, for some ui P Symq´eipV q.

We say such a relation is primitive if it is not a SympV q-linear combination of

relations of lower weight. In the terminology of Section 2.5, a primitive relation of
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weight q is a (first) syzygy of weight q. We saw in Section 2.5 that syzygies form

groups. These groups have a natural action of the symmetric algebra, and so form a

graded SympV q-module. We denote the (pth) syzygies of weight q by Mp,qpB, V q

to agree with [Gre84, Definition 1.b.3]. For example:

M0,q is the module of degree q generators for B as a SympV q-module;

M1,q is the module of primitive relations in weight q forB, i.e. the (first) syzygies;

M2,q is the module of (first) syzygies of weight q among relations for B, i.e. the

(second) syzygies of B;

and so on. . .

By [Gre84, Theorem 1.b.4], we know

Kp,vpB, V q –Mp,p`qpB, V q

as F-vector spaces, i.e. the Koszul complex computes syzygies.

B.3 Computing Syzygies with Koszul Co-

homology

This section is devoted to the proof of a theorem that Koszul cohomology computes

an upper bound for the degree of relations for the ideal of an embedded curve. Let X

be a curve over some algebraically closed field F. Suppose L is some very ample line
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bundle on X with associated embedding ϕL : X Ñ Pr, where r “ h0pX,Lq. We say

that L is normally generated if the natural maps ρk : SymkH0pX,Lq Ñ H0pX,Lkq

given by

s1 b s2 b ¨ ¨ ¨ b sk ÞÑ s1 ¨ ¨ ¨ sk

are surjective for all k ě 0. On the other hand, we say some subvariety V Ă PrF is

projectively normal if the canonical maps H0pPrF,OPrFpdqq Ñ H0pV,OV pdqq, where

OV – OPr{IV is the structure sheaf on V, are surjective for all d ą 0. In fact, a

line bundle L on a curve X is normally generated if and only if the embedded curve

ϕLpXq Ă Pr is projectively normal. Indeed, we have H0pX,ϕ˚LOPrFpdqq “ H0pX,Lbdq,

so since H0pPrF,OPrFpdqq “ Frx0, . . . , xrsd and

Symk
pH0

pX,Lqq “ Symk
pBs0 ‘ ¨ ¨ ¨ ‘Bsrq “ Rrs0, . . . , srsk,

whereR “ RpX,Lq is the section ringRpX,Lq “
À

kě0H
0pX,Lbkq, as SympH0pX,Lqq-

modules Symk
pH0pX,Lqq – H0pPrF,OPrFpkqq and the equivalence follows.

Recall from the sequence B.1.2 that we define a certain pullback of differentials

ML “ ϕ˚LΩPrp1q. Consider the map σk :
Ź2H0pX,Lq bH0pX,Lk´1q Ñ H0pX,ML b

Lkq given by

pv1 ^ v2q b α ÞÑ v1 b v2α ´ v2 b v1α.

Then we can state Green’s theorem which bounds the degrees of relations which

generate the canonical ideal of X.

Theorem B.3.1 ( [GL85, 1.3]). Suppose L is a normally generated line bundle on

a curve X over F an algebraically closed field. Suppose k0 P Z is such that the maps
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σk :
Ź2H0pLq Ñ H0pML b Lkq are surjective for all k ě k0. Then every minimal

generator for the canonical ideal of X (i.e. every primitive syzygy) in Pg´1 has degree

at most k0.

The idea of the proof will be to show commutativity of the diagram below.

190



Ź2H0pLq bH0pLk´1q

Ź2H0pLq b Symk´1H0pLq 0 0

0 ker νk H0pLq bH0pLkq H0pLk`1q 0

0 kerµk H0pLq b SymkH0pLq Symk`1H0pLq 0

H0pLq b Ik Ik`1

0 0

σk

βk

1bρk´1

νk

αk

µk

1bρk ρk`1

Figure B.2: Koszul Cohomology Bounds Syzygies

To show Theorem B.3.1 we rely on another “visual” theorem from topology.

Lemma B.3.2 (snake lemma). If the following commutes

A B C 0

0 A1 B1 C 1

f

a

g

b c

f 1 g1

the sequence

kerpaq Ñ kerpbq Ñ kerpcq d
Ñ cokerpaq Ñ cokerpbq Ñ cokerpcq

is exact, where d denotes a connecting homomorphism.

Proof. See [DF04, page 792].

We also use the following Lemma to prove Theorem B.3.1.

Lemma B.3.3 (Symmetric-Tensor-Exterior algebra sequence). Let M be a free R-

module of rank n, where R contains 1
2 . Then the following sequence is exact

0 Ñ Sym2M ÑM bM Ñ

2
ľ

M Ñ 0.
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Proof. Let ^ : Mb2 Ñ
Ź2M be the map abb ÞÑ a^b. To make this explicit, suppose

a “
řn
i“1 aixi and b “

ř

j“1 bjxj. Then the exterior algebra relation xb x “ 0 forces

px` yq b py ` xq “ 0 and pxb yq ` py b xq “ 0, which means

a^ b “ p
řn
i“1 aixiq ^ p

řn
j“1 bjxjq

“ ab b´
řn
i“1 aixi b bixi.

The exterior algebra
Ź

M is a well known quotient of ‘nPNMbn and the map ^ is

surjective. Let s : Sym2M Ñ Mb2 be the map m1m2 ÞÑ
1
2
ř

σPS2
mσp1q b mσp2q “

1
2 rm1 bm2 `m2 bm1s .

Since ab´ p´1qdeg adeg bba “ 0 in Sym2
pMq,

m1 bm2 `m2 bm1 “ 0

ðñ m1m2 “ p´1qdeg adeg bm2m1

ðñ

$

’

’

&

’

’

%

m1m2 “ 0, or

m1 “ m2 with degm1 odd,

and in the latter case m2
1 “ 0 P Sym2M. So kerpsq “ 0 and s is injective. Then

impsq Ă kerp^q since

m1 ^m2 `m2 ^m1 “ m1 ^m2 ´m1 ^m2 “ 0

and finally kerp^q Ă impsq since

pxb yq ` py b xq “ 2spxyq
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and

px` yq b py ` xq “ sppx` yqpy ` xqq ´ sppy ` xqpx` yqq.

Proof of Theorem B.3.1. Every minimal generator for the canonical ideal of X in Pr

has degree at most k0 if and only if the maps H0pLq b Ik Ñ Ik`1 are surjective

for all k ě k0. This statement means that Ik0 generates I as a graded ring. Let

ρk : SymkH0pLq Ñ H0pLkq be the surjective maps from the definition of a normally

generated line bundle. Then ker ρk “ Ik and the following commutes.

0 0

kerpµkq kerpνkq

0 H0pLq b Ik H0pLq b Symk
pH0pLqq H0pLq bH0pLkq 0

0 Ik`1 Symk`1
pH0pLqq H0pLk`1q 0

0 0

αk

1bρk

µk νk

ρk`1

where the vertical maps are multiplication in their respective graded rings. The lower

horiztonal short exact sequence is the exact sequence induced by the assumption that

ρk`1 is surjective and the likewise the upper short exact sequence is induced by ρk but

with the tensor preserving exactness. It is nontrival that the tensor preserves exact-

ness but this follows from right exactness of the ρ-sequences per [Sta18d, Tag 00CW].

By the snake lemma B.3.2, H0pLq b Ik Ñ Ik`1 is surjective if αk : kerµk Ñ ker νk

is surjective. There are two Koszul complexes with maps that takes values in kerµk
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and ker νk respectively and the normal generation of the line bundle relates these

complexes so it is possible to show that αk is surjective with a computation in Koszul

cohomology.

Let βk “ d
pSymH0pLqq
2,k´1 :

Ź2H0pLq b Symk´1H0pLq Ñ H0pLq b SymkH0pLq be the

maps

pv1 ^ v2q b α ÞÑ v1 b pv2 ¨ αq ´ v2 b pv1 ¨ αq.

Then βk is realized in kerµk as the symmetric relation xb y ´ y b x “ 0 forces

v1 b pv2 ¨ αq ´ v2 b pv1 ¨ αq ÞÑ α b pv1 b v2q ´ α b pv2 b v1q “ 0.

By definition B.2.2 βk “ pIdH0pLqbµk´1q ˝ p∆1b IdSymk-1 H0pLqq, ψid is dual to the exte-

rior product which is injective, and µk´1 is surjective so βk is surjective onto kerµk.

Turning to ker νk, recall the pullback of the Euler sequence on Pr from B.1.2. Twist

the sequence by Lk and take global sections so that the following is exact

H0
pML b L

k
q

f
Ñ H0

pLq bH0
pLkq

νk
Ñ H0

pLk`1
q

and ker νk “ f˚H
0pML b Lkq. To make it more clear how Koszul cohomology will

compute these global sections, the pushfoward will be abusively written as just

H0pML b Lkq, but keep in mind that this is H0pML b Lkq Ă H0pLq b H0pLkq. The

global sections of the sequence from Lemma B.1.3 form the exact sequence

2
ľ

H0
pMLq bH

0
pLk´1

q Ñ

2
ľ

H0
pLq bH0

pLkq
σk
Ñ H0

pML b L
k
q
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where σk “ d
p‘kPNH

0pLkqq
2,k´1 is a Koszul map with exact the same form at βk but the

Koszul complex is with respect to a different graded algebra over H0pLq. Just as with

βk, im σk Ď ker νk but this time the matter is subtler, since there is apparently no

symmetric relation to fall back on. But

νkpσpps1 ^ s2q b fqq “ νkps1 b s2f ´ s2 b s1fq

“ s1s2f ´ s2s1f

“ 0,

since ρk´1 is surjective so s1 and s2 are the image of some symmetric tensors and

s1s2 “ s2s1. Then the following commutes

Ź2H0pLq b Symk´1H0pLq kerµk

Ź2H0pLq bH0pLk´1q ker νk

βk

1bρk´1 αk

σk

and if σk is surjective then so is αk.

B.4 Noether’s theorem

In this section, Noether’s theorem is proved as a consequence of Theorem B.3.1. This

is another tool we use in Petri’s theorem.

Theorem B.4.1 ( [GL85, Noether]). A canonically embedded nonhyperelliptic curve

X Ď Pg´1 with genus g is projectively normal. That is to say the maps

H0
pPg´1,OPg´1pkqq Ñ H0

pX,Ωk
Xq
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are surjective for all k ě 0.

One useful fact to have on hand for the proof of Noether’s theorem is the example

of the wedged pulled back Euler sequence B.1.3. Let MΩ “ ϕ˚ΩΩPrp1q and let QΩ “

M_
Ω be the OX-dual. The following is exact.

0 Ñ QΩ b Ω´l´1
Ñ

˜

2
ľ

H0
pΩq_

¸

bF Ω´l Ñ
˜

2
ľ

QΩ

¸

b Ω´l Ñ 0. (B.4.1)

This next Lemma introduces an exact sequence which is derived under the as-

sumption that the line bundle being studied is very ample.

Lemma B.4.2 ( [GL85, page 7]). Let X be a non-hyperelliptic genus g ě 4 canonical,

smooth, irreducible, complex algebraic curve and let ϕ : X Ñ Pg´1 be the map obtained

from global sections of the canonical bundle. Let D “ x1`¨ ¨ ¨`xg´2 P DivpXq, where

the xi are points in X of general position which are distinct and linearly independent

in Pg´1. Let ΛD be the pg ´ 3q-plane in Pg´1 spanned by the points supporting D. Let

L “ Ωp´Dq and suppose that L is very ample. Then

1. ΛD is the subspace PpWDq Ă PpH0pΩqq where WD “ H0pΩq{H0pΩp´Dqq.

2. There is a surjection of sheaves on X, uD : WD bC OX Ñ ΩbOD.

3. ΛD XX “ D as schemes.

4. h0pΩp´Dqq “ 2.

5. MΩp´Dq “ Ω_pDq.

6. Let ΣD “ keruD. Then ΣD – ‘
g´2
i“1 OXp´xiq.

Proof.
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1. The line bundle L “ Ωp´Dq is very ample if the induced map ϕL is a closed

immersion. In other words L separates points and tangent vectors and hence

there is a hyperplane, some global section si P H0pX,Lq, which passes through

each xi and not the others. So, the image of D under the immersion are those

global sections ofH0pΩq which correspond to hyperplanes intersecting in exactly

x1, ¨ ¨ ¨ , xg´2, i.e. the set

WD “ ts P H
0
pΩq : div s`D “ 0u “ H0

pΩq{H0
pΩp´Dqq.

2. Recall from B.1.2 the sequence

0 ÑMΩ Ñ H0
pΩq bC OX Ñ Ω Ñ 0.

The map uD corresponds to the map H0pΩq bC OX Ñ Ω given by the pullback

by ϕL of

ps0, ¨ ¨ ¨ , sg´2q ÞÑ x0s0 ` ¨ ¨ ¨ ` xg´2sg´2

and therefore is given by a map of the same form. The correspondence is in the

sense of the diagram [GL85, 2.1] abbreviated below uD is surjective since the

H0pΩq bC OX Ω

WD ΩbOD
uD

Euler sequence is exact.

3. D is naturally a subscheme of PpWDq so since by assumption D spans ΛD

this step follows from the dinstinctness and independence of points in general
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position.

4. By Riemann-Roch, since degD “ pg ´ 3q ă 2g ´ 1,

h0pX,Lq ´ h0pX,KX b L
´1q “ degL` 1´ g

h0pX,Lq ´ p2g ´ 2´ 2g ´ 2q “ g ´ 3` 1´ g

h0pX,Lq ´ 4 “ ´2

so h0pΩp´Dqq “ 2.

5. Recall thatMΩp´Dq is defined by ϕ˚Ωp´DqΩPg´1p1q. To identify this with Ω_pDq “

TXpDq consider another version of B.1.2

0 ÑMΩp´Dq Ñ H0
pΩp´Dqq bC OX Ñ Ωp´Dq Ñ 0

which is exact since L “ Ωp´Dq is very ample by assumption. The original

version of the Euler sequence Definition B.1.1 twisted byD is the exact sequence

0 Ñ ΩPg´1pDq Ñ OPg´1pD ´ 1q‘g Ñ OPg´1pDq Ñ 0

so since by the previous part of the lemma h0pΩp´Dqq “ 2, taking the OX-duals

the pullbacks of the Euler sequences must give the same exact sequences.

6. This is a decomposition of the maps with form ps0, ¨ ¨ ¨ , sg´2q Ñ x0s0 ` ¨ ¨ ¨ `

xg´2sg´2 into the components si ÞÑ xisi.

Next we consider another sequence of vector bundles.
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Lemma B.4.3 ( [GL85, 2.3]). Let X be a non-hyperelliptic genus g ě 4 canonical,

smooth, irreducible, complex algebraic curve and let ϕ : X Ñ Pg´1 be the map obtained

from global sections of the canonical bundle. Write Ω “ ωX , let MΩ “ ϕ˚ΩΩPg´1p1q

and let QΩ “M_
Ω be the OX-dual.

1. The following is exact

0 ÑMΩp´Dq ÑMΩ Ñ ΣD Ñ 0,

2. By Lemma B.4.2 the following is exact

0 Ñ Ω_pDq ÑMΩ Ñ ‘
g´2
i“1 OXp´xiq Ñ 0.

Proof.

1. Recall the definitions MΩp´Dq “ ϕ˚Ωp´DqΩPg´1p1q and MΩ “ ϕ˚ΩΩPg´1p1q. Let

i : D ãÑ X be the inclusion of the divisor. Since D is effective and very ample

by assumption and X is projective the map is a closed immersion so there is an

exact sequence

0 Ñ OXp´Dq Ñ OX Ñ i˚OD Ñ 0

where the maps are respectively the inclusion of regular functions which van-

ish at ´D and the quotient map by that inclusion. Taking Euler sequences

(vertically, on each term) gives the following exact sequence

0 Ñ ΩXp´Dq Ñ ΩX Ñ ΩX bOD Ñ 0.
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This is just inclusion of holomorphic differentials with fixed zeros followed by the

quotient by the inclusion. The pullbacks need to commute with this sequence

which makes

0 ÑMΩp´Dq ÑMΩ Ñ ΣD Ñ 0

exact, so now the inclusion is happening on the curve itself rather than in the

projective space containing the embeddings.

2. In this proof let g “ 5 for ease of notation, so that D “ x1 ` x2 ` x3 and ΛD

is the 2-plane in P4 spanned by these points. Consider the flag of linear spaces

Λ0 Ă Λ1 Ă ΛD corresponding to the divisors D0 “ x1, D1 “ x1 ` x2 and D

itself respectively. Let E0 “ D0 “ x1, let E1 “ x2 and let E2 “ x3. Then there

is filtration of ΣD by vector bundles

ΣD Ą F1 Ą F2 Ą 0

such that Fi{Fi`1 “ OXp´Eiq by [Sta18e, Tag 0120].

This next result about global sections allows for a proof of a ‘dual version’ of

Noether’s theorem.

Lemma B.4.4 ( [GL85, Corollary 2.4]).

Let X be a non-hyperelliptic genus g ě 4 canonical, smooth, irreducible, complex

algebraic curve and let ϕ : X Ñ Pg´1 be the map obtained from global sections of

the canonical bundle. Write Ω “ ωX , let MΩ “ ϕ˚ΩΩPg´1p1q and let QΩ “ M_
Ω be the
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OX-dual. Then for each l ě 1,

H0
pQΩ b Ω´lq “ 0 and H0

˜

2
ľ

QΩ b Ω´l
¸

“ 0.

Proof. Consider QΩ “M_
Ω , where

MΩ “ φ˚LΩPg´1p1q “ φ˚LΩPg´1 b L.

Taking the dual of the exact sequence Lemma B.4.3, and then tensoring by Ω´l gives

the sequence

0 Ñ p‘
g´2
i“1 OXpxiqq b Ω´l Ñ QΩ b Ω´l Ñ Ωp´Dq b Ω´l Ñ 0.

The induced long exact sequence is

H0
pp‘

g´2
i“1 OXpxiqq b Ω´lq Ñ H0

pQΩ b Ω´lq Ñ H0
pΩXp´Dq b Ω´lq Ñ ¨ ¨ ¨

where

H0
pp‘

g´2
i“1 OXpxiqq b Ω´lq “ H0

p‘
g´2
i“1 Ω´lpxiqq “ ‘g´2

i“1H
0
p´lKX ` xiq,

for KX a canonical divisor, and where

H0
pΩp´Dq b Ω´lq “ H0

pKX ´D ´ lKXq “ H0
p´pl ´ 1qKX ´Dq.

Since degp´lKX ` xiq ă 0, H0p´lKX ` xiq “ 0 and likewise since deg´pl´ 1qKX ´
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Dq ă 0 for all l ě 1, both of the H0’s surrounding H0pQΩbΩ´lq are 0 and H0pQΩb

Ω´lq “ 0. Taking the induced long exact sequence from (B.4.1),

H0
pQΩ b Ω´l´1

q Ñ

2
ľ

H0
pΩq_ bH0

pΩ´lq Ñ H0

˜

2
ľ

QΩ b Ω´l
¸

Ñ ¨ ¨ ¨ ,

by the argument above

2
ľ

H0
pΩq_ bH0

pΩ´lq – H0

˜

2
ľ

QΩ b Ω´l
¸

and again by the argument above the right hand side vanishes by degree considera-

tions.

This next lemma is equivalent to Theorem B.3.1 if Lemma B.4.4 and Noether’s

theorem hold. It is a purely cohomological version of Petri’s theorem.

Lemma B.4.5 ( [GL85, Corollary 1.7]). Let X be a non-hyperelliptic genus g ě 4

canonical, smooth, irreducible, complex algebraic curve and let ϕ : X Ñ Pg´1 be

the map obtained from global sections of the canonical bundle. Write Ω “ ωX , let

MΩ “ ϕ˚ΩΩPg´1p1q and let QΩ “M_
Ω be the OX-dual. Suppose H0p

Ź2QΩ b Ω´lq “ 0

for all l ě 1 and the map

2
ľ

H0
pΩq_ Ñ H0

˜

2
ľ

QΩ

¸

from the sequence (B.4.1) is surjective. Then the homogeneous ideal of X in its

canonical embedding is generated by quadrics.

Proof. By Lemma B.4.4H0p
Ź2QΩbΩ´lq “ 0 and the map

Ź2H0pΩq_ Ñ H0p
Ź2QΩq

is injective. Therefore it is enough to show that dimH0p
Ź2QΩq “ dim

Ź2H0pΩq_ “
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`

g
2

˘

to conclude that the map in the statement is surjective. By Noether’s theorem, Ω

is normally generated since it is projectively normal in its embedding and nonhyper-

elliptic, so the maps ρk from Theorem B.3.1 are surjective for k ě 0. The punchline

of this lemma is a specific version of Theorem B.3.1 so the game is to show the maps

σk from B.3.1 are surjective for k ě 2. Let l “ k ´ 2 and let ψk be the maps in the

long exact sequence induced by the sequence (B.4.1)

H0
pQΩ b Ω´l´1

q Ñ

2
ľ

H0
pΩq_ bH0

pΩ´lq ψl`2
Ñ H0

˜

2
ľ

QΩ b Ω´l
¸

Ñ ¨ ¨ ¨ .

Note that ψk is surjective for k ě 2 by the hypotheses, but in practice the important

feature of these maps is their transpose. Recall the sequence Lemma B.1.3 where

wedge products of a pullback of Euler are twisted by Lk´1, and write down the long

exact sequence

¨ ¨ ¨ Ñ H0
pML b L

k
q Ñ H1

˜

2
ľ

ML b L
k´1

¸

τk
Ñ

2
ľ

H0
pLq bH1

pΩk´1
q Ñ ¨ ¨ ¨ .

By duality τk is the transpose ψTk , so since ψk is surjective, τk is injective, but τk is

injective if and only if σk is surjective. By Theorem B.3.1 the homogeneous ideal of

X in its embedding is generated by quadrics. H0p
Ź2QΩ b Ω´lq “ 0,

Finally, with the tools used to prove Lemma B.4.5 in mind, Noether’s theorem

can be proved.

Proof of Theorem B.4.1. Recall that Ω is normally generated if and only if the maps

H1pMΩbΩ´kq Ñ H0pΩq bH1pΩkq, from the twist of the pulled-back Euler sequence

B.1.2, are injective by Lemma B.4.4. But given Lemma B.4.5, those maps are injective
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if and only if the injective maps H0pΩq_ Ñ H0pQΩq are surjective. Let MΩp´Dq “

Ω_pDq Recall that Ω is very ample by assumption, and the following sequence, a

filtration of MΩ, is exact

0 ÑMΩp´Dq ÑMΩ Ñ ‘
g´2
i“1 OXp´xiq Ñ 0.

Therefore
h0pQΩq ď h0pΩp´Dqq `

řg´2
i“1 h

0pOXpxiqq

“ 2 `pg ´ 2q

“ h0pΩq.

B.5 Koszul Cohomological Proof of Petri’s

Theorem

In this section, the Koszul cohomology will be used to prove Petri’s theorem for

the case of a genus g ě 4, non-exceptional curve. Let X be a non-hyperelliptic,

smooth, irreducible, projective complex curve of genus g ě 4. To prove Petri’s result

that IX{Pg´1 is generated by quadrics, [GL85] use Lemma B.4.5. The essence of the

argument is to demonstrate that

h0

˜

2
ľ

QΩ

¸

ď

ˆ

g

2

˙
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since this condition is sufficient for the Lemma B.4.5 to apply by [GL85, Remark 1.9].

We know from Lemma B.4.4 that H0p
Ź2QΩ b Ω´lq “ 0 for all l ě 1, and that

the map
Ź2H0pΩq_ Ñ H0p

Ź2QΩq induced from Lemma B.4.1 is injective. We will

use the following version of the uniform position theorem of [ACG11, page 112].

Lemma B.5.1 ( [GL85, page 10]). An effective divisor E of degree k spans a pk ´

r ´ 1q-plane in Pg´1 if and only if it moves in a linear system of dimension r.

Let X be a non-hyperelliptic, smooth, irreducible, projective, complex curve of

genus g ě 4. Let A P W 1
4 pXq be a degree 4 line bundle on X with h0pX,Aq “ 2

such that A and ωX b A_ are generated by global sections. Let D “ pdiv fq for

some f P H0pX,Aq. Since A is generated by global sections and all of the spaces in

consideration lie over C which has characteristic 0

D “ x1 ` ¨ ¨ ¨ ` xg´1,

for some distinct xi. Then no effective divisor contained in D can move in a nontrivial

linear series. Indeed, suppose such a divisor existed. Then |D| either has a base-point

or dimension at least 2, both of which contradict global generation and uniform posi-

tion per Lemma B.5.1. In Pg´1 “ ProjpH0pX,ωqq this means D spans a pg´ 3q-plane

ΛD, and by Lemma B.5.1 any proper subset of the xi are linearly independent.

Let ϕ : X Ñ Pg´1 be the map obtained from global sections of the canonical

bundle. Let D “ x1`¨ ¨ ¨`xg´1 for some distinct closed points xi in general position.

Write Ω “ ωX , let MΩ “ ϕ˚ΩΩPg´1p1q and let QΩ “ M_
Ω be the OX-dual. Let
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MΩp´Dq “ Ω_pDq. Finally, let ΣD be as in Lemma B.4.2. Then it is not hard to show

that the following is exact

0 ÑMΩp´Dq ÑMΩ Ñ ΣD Ñ 0. (B.5.1)

We will use one last Lemma to prove Petri’s theorem.

Lemma B.5.2 ( [GL85, 3.2]). Let X be a non-hyperelliptic genus g ě 4 canonical,

smooth, irreducible, complex algebraic curve and let ϕ : X Ñ Pg´1 be the map obtained

from global sections of the canonical bundle. Let D “ x1`¨ ¨ ¨`xg´1 for some distinct

closed points xi in general position. Write Ω “ ωX , let MΩ “ ϕ˚ΩΩPg´1p1q and let

QΩ “ M_
Ω be the OX-dual. Let ΣD “ keruD be as in Lemma B.4.2. Then the

sequence

0 Ñ OXp´xg´2 ´ xg´1q Ñ ΣD Ñ ‘
g´3
i“1 OXp´xiq Ñ 0

is exact.

Proof. Let D1 “ x1`x2 and let E “ xg´2`xg´1. Then Ωp´D1q is generated by global

sections since the only possible base points are xg´2 and xg´1 but if either were a base

point then some pg´ 2q of the txiu would lie in the pg´ 4q-plane ΛD1 spanned by D1.

Let V “ H0pΩp´D1qq{H0pΩp´Dqq and let ĂvE : H0pΩp´D1qqbC OX Ñ ΩbOE be the

natural map defined by evaluating sections of Ωp´D1q on E. Let vE : V bC OX Ñ

Ω b OE be the induced map. As effective divisors D and D1 span hyperplanes λD

and λD1 Ă Pg´1 which in particular are the subspaces

ΛD “ PpWDq, ΛD1 “ PpWD1q Ă PpH0
pΩqq.
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Then the following commutes.

0 0

V bC OX ΩbOE

0 ΣD WD bC OX ΩbOD 0

0 ΣD1 WD1 bC OX ΩbOD1 0

0 0

vE

uD

If s P H0pΩp´D1qq is some section which does not vanish on D then s cannot

vanish at xg´2 or xg´1. So ĂvE and therefore vE are surjective. Since dimC V “ 1

implies that ker vE – OXp´Eq the following is exact

0 Ñ OXp´xg´2 ´ xg´1q Ñ ΣD Ñ ΣD1 Ñ 0.

Finally since D1 is composed of a pair of linearly independent points spanning a line

ΛD1

ΣD1 “ OXp´x1q ‘OXp´x2q.

Now the proof of Petri’s theorem can proceed as in [GL85].

Theorem B.5.3 ( [GL85, page 2]). Let X be a non-hyperelliptic, smooth, irreducible,

projective complex curve of genus g ě 4. Suppose A is a degree 4 line bundle on X

with h0pAq “ 2 such that A and ωX b A_ are generated by global sections. The the
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homogeneous ideal of X in its canonical embedding IX{Pg´1 is generated by forms of

degree 2.

Proof. By the exactness of B.5.1 the following is exact

0 Ñ
2
ľ

pΣ_Dq Ñ
2
ľ

QΩ Ñ Σ_D b Ωp´Dq Ñ 0.

The exactness of Lemma B.5.2 implies that

0 Ñ
2
ľ

pOXpx1q ‘OXpx2qq Ñ

2
ľ

Σ_D Ñ OXpx1`xg´2`xg´1q‘OXpx2`xg´2`xg´1q Ñ 0

and

0 Ñ Ωp´D ` x1q ‘ Ωp´D ` x2q Ñ Σ_D b Ωp´Dq Ñ Ωp´D ` xg´2 ` xg´1q Ñ 0

are exact. Finally since g ě 4 all of the divisors in two previous exact sequences

above are properly contained in D so each has a unique section and

h0

˜

2
ľ

Σ_D

¸

ď

ˆ

2
2

˙

` pg ´ 3q.

Then since h0pΩp´D`xiqq “ 2 for each i but h0pΩp´D`xg´2`xg´1qq “ h0pΩp´D1qq “

3 it follows that

h0
pΣ_D b Ωp´Dqq ď 2pg ´ 3q ` 3.

By the exactness of

0 Ñ
2
ľ

Σ_D Ñ
2
ľ

QΩ Ñ Σ_D b Ωp´Dq Ñ 0,
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conclude that

h0

˜

2
ľ

QΩ

¸

ď

ˆ

2
2

˙

` 3pg ´ 3q ` 3 “
ˆ

g

2

˙

.

With the bound we have just obtained we see that Lemma B.4.5 applies, and we

conclude that the canonical ideal IX{Pg´1 is generated by quadrics.

209


	Computing the Canonical Ring of Certain Stacks
	Recommended Citation

	Dedication
	Acknowledgements
	List of Figures
	Overview
	History
	Organization of this Work
	Main Results

	What are Canonical Rings?
	Notation and Preliminaries
	Curves and Complete Intersections
	Bundles
	Facts about Bundles
	Examples of Bundles

	A Genus Formula for Complete Intersections of Surfaces
	Explicit Syzygies of Homogeneous Ideals

	Stacks and How we Compute their Canonical Rings
	Why do we use Stacks?
	What is a Stack
	Functor of Points, Yoneda, Sites, Groupoids
	Descent and Fibered Categories
	Defining a Stack

	How we use Stacks

	Drinfeld Setting
	Notation and the ``Setting''
	The Burhat-Tits Tree
	Drinfeld modules

	Rigid Analytic Stacks; Rigid Stacky GAGA
	Rigid Analytic Spaces
	Separatedness and Properness of Rigid Analytic Spaces
	Points on a Rigid Analytic Space
	Rigid GAGA
	Rigid Stacky GAGA
	Context
	Rigid Stacks
	GAGA Theorem


	Drinfeld Modular Curves and Forms
	Drinfeld Modular Forms
	Drinfeld Modular Curves
	Compactification of Drinfeld Moduli Schemes and Uniformization of Drinfeld Moduli Stacks
	Schemes
	Stacks

	Cusps of Drinfeld Modular Curves
	Basics of Charts on Drinfeld Modular Curves
	Charts at Cusps
	Isotropy Groups of Cusps

	Moduli Interpretation

	Geometry of Drinfeld Modular Forms
	Drinfeld Modular Forms as Differentials
	Algebras of Drinfeld Modular Forms
	A Special Case
	Properties of 2
	Cusps and Elliptic Points
	Modularity and Series Expansions at Cusps

	A Generalization
	Slash Operators at Cusps


	Computing Algebras of Drinfeld Modular Forms
	An Algorithm
	Known Examples
	Drinfeld modular forms for GL2(A)
	Drinfeld modular forms for 0(T)

	Congruence Subgroups of SL2(A) and Other Open Problems

	Bibliography
	Appendix - Why are Canonical Rings?
	Localization
	The Infinitesimal Lifting Property
	Morphisms of Schemes

	Appendix - Syzygies and Cohomology
	Euler Sequence
	The Koszul Complex
	Computing Syzygies with Koszul Cohomology
	Noether's theorem
	Koszul Cohomological Proof of Petri's Theorem


