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Abstract

Electromagnetic transient waves are pulsed events that occur when there is an abrupt
change in the typical steady-state conditions on a transmission line. Digital pulses on
integrated circuits and a lightning strike on overhead power lines are some examples of
transient voltage pulses. Although transients occur within a very short time duration,
they can propagate over long distances; much farther than a slowly-varying envelope
signal can propagate. Lingering effects of transients can be damaging to electrical
equipment if they are not properly mitigated.

Despite the negative effects of transients, certain designed transient pulses may
be used to an advantage in remote sensing applications, such as that found in Time
Domain Reflectometry (TDR). TDR analysis is a method that makes use of pulse
propagation on transmission lines in order to identify and locate any abrupt changes
to the line characteristics. Applications include identifying moisture content in soil
and detecting damage on printed circuit boards. Accurate identification of damage
and other material changes is complicated by transmission line losses, such as at-
tenuation, dispersion, and frequency-dependent circuit parameters. Dispersion and
frequency-dependent losses result in different frequency components of the wave prop-
agating at different velocities, which introduces a spreading effect on the wave as it
propagates down the line. The effective dielectric constant of the transmission line
and surrounding media influences the losses that create the distortion. Material prop-
erties and line geometry determine the value of the effective dielectric constant, and
they may be identified through a detailed analysis of the reflected pulse.

A detailed study of the behavior of pulse propagation on dispersive attenuative
transmission lines is presented in this dissertation. Models of three different types of
transmission lines are extended in order to compare the effects of material properties
and line geometry on transmission properties. These include the coaxial cable, single
microstrip, and coupled microstrip models. A numerical model is developed in order
to calculate the effects of voltage propagation on a particular transmission line that
contains impedance changes. A trapezoidal envelope pulse is considered because of
its typical use in digital applications. TDR techniques are then performed with the
trapezoidal envelope pulse in order to identify the locations of a change in medium
properties. Historically, the group velocity of the pulse is used to perform TDR anal-
ysis, but it does not accurately account for the distortion of the pulse in a dispersive
and attenuative media. The energy centrovelocity is used here as an alternative to the
group velocity. The accuracy of the use of energy centrovelocity in TDR is analyzed.
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Chapter 1

Background

1.1 Introduction

Transmission of telecommunication signals and electrical power is vital to the func-

tion and operation of modern society. The power grid, the internet, computers, and

cell phones are all common examples of systems that depend on signal performance

and effective power transmission. Some more uncommon, but still widely used ex-

amples are found in underground power lines and time domain reflectometry (TDR)

probes. Transmission line grids have grown significantly since the mid-1800s, begin-

ning with the developments of the telegraph and electrical power grid [1]. Over time,

telecommunications equipment has developed beyond hard-wired telephone lines and

moved towards cellular and wireless devices. It is clear that our world would not be

as connected without the used of the transmission of signals and power, either on a

wire or wirelessly.

Electrical signals travel along transmission lines to deliver information or power

from a source to a receiver. The transmitters and receivers for cellular and wireless
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devices are comprised of integrated circuits (ICs). Transmission lines are built into

integrated circuits as a means of delivering voltage and current throughout the circuit

[2]. The ability to communicate and deliver power efficiently is highly dependent on

the integrity of the signal being transmitted. Maintaining signal integrity within a

transmission network or an integrated circuit is crucial for safety and quality of the

signals. If a signal is corrupted and does not maintain integrity, it could lead to faulty

data transmission or, even worse, an equipment failure that may lead to a blackout.

Poor signal integrity is often a result of damaged or degraded transmission lines be

caused by, for example, an event such as switching, a lightning strike on a power

line, or a disruption of power in an IC [2, 3]. In some instances, an electromagnetic

transient wave can be produced at the location or event that caused the degradation

of the signal integrity.

Electromagnetic transient waves are ultra-wideband (UWB) pulses that occur

when there is an abrupt change in the typical steady-state conditions on a transmis-

sion line [4], caused for example, by switching, a lightning strike on a power line, or a

disruption of power in an integrated circuit [2,3]. The American National Standards

Institute (ANSI) defines a transient as, “a single electromagnetic event, or single-shot

voltage, current, electric, or magnetic field impulse or pulse, such as generated by

lighting, electromagnetic pulse (EMP), or switching action... pertaining to or desig-

nating a phenomenon or a quantity that varies between two consecutive steady states

during a time interval that is short when compared to the time-scale of interest” [5].

At a fixed position along a transmission line, a transient wave may only last for a

short period of time. However, it may only propagate long distances in a dispersive

absorptive medium due to its unique properties. Accurate modeling and simulation of
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transient behavior is then necessary in order to identify either potential line damage

so that protection schemes can be appropriately designed for the system [6] or any

changes in the medium of the material surrounding the transmission line.

Time domain reflectometry (TDR) is one of the methods used in identifying either

line damage or media changes. This is accomplished by remotely determining the

location of an impedance mismatch along the transmission line, if possible. Because

this is an inverse problem, the uniqueness of the solution is not always guaranteed

[7–11]. The TDR method relies upon the intentional propagation of a specifically

designed transient pulse along a transmission line whose reflection can then be used

to determine the location of any changes in the material properties of or surrounding

the cable. This is accomplished by calculating the time difference between the start

time of the initial transient and the return time of the reflected transient.

Transient signals can occur on any type of transmission line geometry, including,

but not limited to, coaxial cables, single microstrips, coupled microstrips, and TE-

planar mode waveguides. Typical Time Domain Reflectometry (TDR) applications

make use of either a coaxial cable or a simple strip line comprised of two parallel

wires separated by a fixed distance. The geometry and length of a coaxial transmis-

sion line allows for an initial pulse with low frequency. The choice of this type of

pulse and line is best for underground power line applications or the identification

of soil composition. Microstrip lines, either single or coupled, work best with a high

frequency initial pulse. They are most commonly used in microwave circuits and the

TDR response can serve to identify any potential causes of signal distortion. In this

regard, line geometry and material dispersion are important parameters to consider

in any analysis of these systems, as they may impact the propagation effects of a

3



given transient signal. The influence of the transmission line geometry and material

dispersion together with its potential application to TDR analysis are central topics

that are discussed in this dissertation.

The work presented in this dissertation departs from the typical literature through

the complexity of the transmission line models considered here in material, attenu-

ation and dispersion, as well as frequency-dependent circuit parameters, which are

often either simplified or completely ignored. This dissertation aims to include all

line characteristics in order to improve the accuracy of the ensuing model. These

results are then applied to the inverse problem of detecting material changes along

the transmission line through its estimated dispersive properties.

1.2 Motivation

Electromagnetic transients are rapidly changing waveforms in time that may propa-

gate over long distances in space with material attenuation. A transient event may

result in a voltage signal where its frequency spectrum changes rapidly, resulting in

a transient wave that may propagate near the speed of light in vacuum along the

transmission line [12]. As a consequence, lingering effects of theses transients can

be damaging to electrical equipment and electronic devices if they are not properly

mitigated. That is, transients can produce extremely high voltage and current values

that can easily damage the electrical equipment and device [6].

Depending on the type of transmission line, the causes and impact of transient

wave damage can differ. For example, in the power grid, transients are often de-

scribed as singular fault events that could potentially lead to widespread blackouts.
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This is particularly concerning as power gird infrastructure in the United States is

aging and large scale renewable generation is being incorporated into the grid. On

microwave or IC circuits, such as a computer motherboard, transients are typically

caused by either signal switching or power surges. High frequency transient effects

can lead to electromagnetic interference within ICs, resulting in poor signal integrity

and potential safety concerns to the user of the device.

In the case of the power grid, transients have been a concern with the increase of

renewable energy power generation. Because wind turbines and solar panels have a

much smaller capacity for power generation than traditional fossil fuels, more renew-

able generators must be connected and distributed throughout the grid in order to

meet consumer demand. As a consequence, more conductors are required to connect

the variety of renewables to the rest of the grid. These conductors are designed to

have a lower impedance in order to reduce the power loss [13]. However, this low

impedance serves to enable the propagation of high frequency signals, such as tran-

sients, throughout the transmission network. It is not uncommon for solar panels,

for example, to be connected directly to the location of power consumption. In that

situation, a home could now be directly susceptible to damage produced by a tran-

sient [13]. Because of this, it is essential to monitor the behavior of any such transient

fields as they propagate through the grid and more accurately identify the locations of

any potential failures or media changes that could increase the impact of the damage

caused by a transient field.

Another example where transients can be problematic are within integrated cir-

cuits (ICs), such as those found in electronic devices including filters, couplers, [14]

and communications devices [15], which are typically designed with a microstrip as the
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main type of transmission line [2]. Because switching can often result in a transient

field on such a microstrip line, it is essential to properly understand the dispersive

properties of the microstrip transmission line in order to design the circuit in such at

way that a given transient is minimally damaging to the device. Microstrip lines are

unique in comparison to other types of transmission line systems in that there are two

different dielectric materials surrounding the line, typically the substrate and air [16].

Signal interaction with the substrate and air layers results in dispersive frequency

effects, which can distort both voltage and current pulses that are propagating along

the transmission line [2].

In any one of these applications discussed, physical changes along a transmission

line, such as a change in the substrate material or damage within the line itself, can

amplify the undesirable effects that can be caused by a transient field. An accurate

determination of the location of the line failure allows for its repair or, in an extreme

case, a redesign of the transmission line itself in order to prevent the transient behavior

from even occurring. This dissertation aims to investigate the inverse problem in order

to identify problematic areas that may occur on a given transmission line.

Inverse problems have long been studied in physics as a means of using the results

of observations to make conclusions regarding the parameters or characteristics of

the system of interest. Several applications of inverse problems have been reported,

such as determining the moisture content in soil [8, 10], measuring the length of an

acoustic horn, [17,18], identifying damages within a wiring network [11,19], as well as

determining the location of any physical cracks on a printed circuit board (PCB) [20].

The inverse problem of interest here is that of time-domain reflectometry (TDR).

TDR is a measurement technique with a wide range of applications from measuring
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moisture content in soil [8,21] to detecting faults in complex wiring networks such as

that found in aircraft and nuclear power plants [11,22] to tracking chemical spills and

oil leaks [23]. Acoustic pulses have also been utilized in a similar manner in order

to determine the area and length of an acoustic waveguide, as in, for example, the

human vocal tract [17,18].

Time domain reflectometry (TDR) is based on principles that are similar to those

found in RADAR [11] where one detects and identified an unknown object from

its reflected pulsed electromagnetic field [21]. In TDR, an electromagnetic pulse

that is sent down a uniform transmission line will reflect off any type of impedance

discontinuity that occurs on the line [11], such as that from a fault in the line itself

or a change in the material properties surrounding the line. The location of the

impedance discontinuity may then be determined from either the time delay or phase

shift between the incident and reflected signals [11, 22]. The use of transient pulses

is ideal for this purpose because the method relies on the response due to real time

measurements, rather than the steady-state response. Since transient pulses can

occur in a very short time duration, the real time measurements allow for increased

accuracy when identifying the location of the interface. If there are multiple discrete

changes along the line, each at a different distance from the input, then multiple

pulse reflections will occur resulting in a complicated return signal that must then be

properly unraveled in order to determine the location of each discontinuity.
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1.3 Objective

The objective of this dissertation is two-fold. The forward problem is considered

first in which the propagation of a transient signal on a general transmission line

model is considered. The model analyzed here considers three different types of

transmission lines: a coaxial cable, a single microstrip, and a coupled microstrip

line. In particular, the microstrip lines will be comprised of a Debye-type dielectric

substrate. This choice of the Debye-type substrate allows for a frequency dependent

dispersion relation that results in a unique spreading effect of the voltage pulse. Pulse

dispersion is a naturally occurring phenomenon that can distort the shape of the pulse,

making it difficult to accurately measure the exact temporal width of the propagated

pulse and consequently its propagation velocity.

The propagation of a transient pulse is modeled here based upon traditional trans-

mission line models. Beginning with a single transmission line and a single inter-

connect, the transmission and reflection of an ultra-wideband pulse is computed.

Each transmission line model includes all appropriate attenuative, dispersive, and

frequency-dependent material properties, with special attention given to the inherent

frequency dispersion of the dielectric permittivity and its effect on the propagation

factor for the specific transmission line. This analysis is then extended to a trans-

mission line model that includes multiple layered material changes. In that situation,

pulse dispersion is further exaggerated through each successive transmission and re-

flection at a given interface between each material layer. The ultimate goal is to

be able to determine the location along the transmission line where the surrounding

material properties have changed in a discrete manner.
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The sceonf part of this research involves the inverse problem of determining the

dispersive properties of the surrounding material itself, and hence the identification

of the material, is considered by using time-domain reflectometry (TDR) techniques.

Observation of the changes in structure of the return signal from a pulsed input

signal are used to determine any change in the dielectric properties of the material

surrounding the transmission line. Changes in the transmission line characteristics

can also be caused by damages along the transmission line. Following traditional

TDR techniques, the time difference between the initial pulse and the reflected pulse

may be used to identify the location of either damages along the line, or a significant

change of the line material or its surrounding media. These changes are modeled

here for the case of a layered dielectric when there are several discrete changes in the

surrounding media. As an example, material changes could represent the changes in

moisture content in the adjacent soil layers. In the situation where there are more

than one discrete dielectric interfaces, multiple pulse reflections will be returned to the

point of pulse insertion. Each successive reflected pulse will then have to be unraveled

in time in order to identify the location of each media change. Notice that dispersion

of the pulse makes it difficult to measure either the start of the rise or the end of

the fall of a given pulse, which then will reduce the accuracy of the TDR method.

The research presented in this dissertation aims to utilize a detection method, such

as that based upon the pulse centroid that does not rely upon either the rise or fall

time of the input pulse envelope.

The research focus of this dissertation departs from that featured in the published

literature by incorporating all loss characteristics into the transmission line model

including dispersive attenuation, pulse velocity dispersion, and frequency-dependent
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circuit parameters. Additionally, the shape of the initial pulse in this model will

differ from that used in the literature by utilizing a single-cycle sine wave of fixed

frequency with a trapezoidal envelope. Much of the previous work considers the

behavior of either a square pulse with a carrier entirely within the rise and and

fall times or a Gaussian pulse envelope without an underlying carrier wave. The

trapezoidal envelope pulse considered here is much more representative of the types

of pulses that are typically used in digital circuitry. The centroid of the input and

return voltage pulses is determined in order to accurately measure the time at which

the return pulse arrives back to the source. From there, TDR is applied to determine

the location of the change in media that results in pulse reflection and transmission.

1.4 Review of the Published Literature

An historical review of transient voltage propagation problems is now considered.

Some landmark studies, in the areas of transients due to lightning on electric power

lines [6,24,25], microstrip transmission line models [2,14,26], and soil measurements

using TDR [7, 8, 10, 27] are discussed in detail throughout this section. An emphasis

is placed upon inverse problems associated with both transmission lines and TDR

applications.

1.4.1 Computational Methods

The computation of transient voltage pulse propagation on transmission lines dates

back to the late 1920s. Graphical methods were used in early attemptsn in order to

visualize wave propagation along a transmission line [24, 25]. A common motivator
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at the time was to model the effect of lighting strikes on a given transmission line.

Cathode-ray oscillographs, (more commonly known as oscilloscopes) were invented

in the 1920s [28, 29] and were designed to empirically measure wave propagation on

the transmission line. Bewley’s development of Lattice Diagrams in 1931 allowed

for a simple and algorithmic approach to pulse propagation over an interface [25].

Lattice Diagrams were introduced and used to capture the reflection and transmission

coefficients of the pulse as it propagated through consecutive interfaces along the

transmission line. In these early attempts, linear attenuation and dispersion are

represented visually and can then be computed analytically through the summation

of the attenuation and dispersion coefficients, assuming that they are known.

Another widely-used graphical method are so-called Bergeron diagrams, which

were a visual representation of the classic differential equation solution method called

the method of characteristics. Bergeron diagrams were initially developed in 1928 to

plot the behavior of a water hammer in hydraulic systems [30,31]. In 1967, Branin [24]

first applied Bergeron Diagrams and the method of characteristics to the analysis of

overhead power transmission lines as a means of graphically determining the relation-

ship between the voltage and current along the line. The method of characteristics

is a classical mathematical technique that maps a partial differential equation (PDE)

to one or more ordinary differential equation (ODE) in order to obtain an exact solu-

tion [32]. It can be applied to the lumped element transmission line equations in order

to determine the voltage and current at each end of the transmission line [24]. The

ordinary differential equation describing the relationship between the voltage and the

reactive elements can then easily be solved numerically with the trapezoidal rule [31]

or a similar method of integration. At the time of it’s conception, the method of
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characteristics appeared to only be viable for ideal lossless lines [24] as the result-

ing ODEs could not be integrated directly. One advantage of a Bergeron diagram

is that the reflection and transmission coefficients need not be known. However, it

can only provide an accurate solution for lossless and distortionless lines [6]. Recent

work [33,34] still makes use of the method of characteristics successfully included the

loss terms as well as the frequency-dependence of the circuit parameters.

With the advent of analog computers in the late 1930s, numerical simulations of

transient wave propagation in electrical power networks were made possible [6,35,36].

One such analog computer specifically designed for this purpose was known as a

Transient Network Analyzer, an analog instrument which provided insight into the

expected shape of the transient waveform at various points within a power network. In

such a case, an initial pulse is applied and the general shape of the succeeding transient

pulses are observed as a traveling wave combined with effects of the transient responses

of the circuit parameters comprising the transmission line. Similar to some graphical

methods, limitations in the computational resources of Transient Network Analyzers

prevented the influence of loss and distortion on the pulse from being determined.

Although Transient Network Analyzers could model transients in real-time and were

numerically stable, they were extremely expensive to operate and could only simulate

a small number of power system busses. Despite these limitations, Transient Network

Analyzers continued to be used on occasion into the early 1980s [37].

By the 1970s, Transient Network Analyzers were almost entirely replaced by dig-

ital computers [4, 38]. Not only were digital computers more economically feasible,

they were also superior in speed, flexibility, and could be used to solve other types

of physics and mathematics problems beyond transient analysis. Digital comput-
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ers allowed for the development of discretized numerical simulations to the transient

problem. In particular, the Fast Fourier Transform (FFT) algorithm [39] provided an

efficiency in computation by reducing the number of calculations required to perform

Fourier analysis [40] on the voltage or current waveform.

In 1974, Dommel and Meyer [6] first identified the potential use of the FFT to

calculate the response of a transmission line system. The FFT was noted to be partic-

ularly effective for use in transmission lines modeled with distributed circuit param-

eters, where Bergeron’s diagrams were not considered an effective solution method.

The FFT algorithm allowed one to efficiently transform the second-order partial dif-

ferential equations that arise from the time-varying voltage and current relationship

into first-order ordinary differential equations in the frequency domain. In doing so,

the analysis of the transmission line is simplified significantly and the required com-

putation time is dramatically reduced. Because of this, the FFT is still used widely

today and continues to improve in efficiency as processing capabilities of computers

improve. As a recent example, in 2004, Grivet-Talocia et. al. [33] used the method

of characteristics to analyze a lossy transmission line that included the frequency-

dependence of the circuit parameters. The FFT was employed there in order to

develop a frequency-domain solution so as to capture the physics of the frequency-

dependence.

1.4.2 Transmission Line Models

The most common method of modeling transmission lines is through the use of a

distributed circuit model. The electric and magnetic properties of the transmission

line are described through the resistance, inductance, conductance, and capacitance
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per unit length along the transmission line. Circuit models conventionally relate the

voltage, current, and impedance of the transmission line and can easily be solved in

the frequency domain. The use of circuit models for transmission line analysis was

initially developed by Lord Kelvin in 1855 and later completed by Oliver Heaviside

in 1885 [41].

Perhaps one of the oldest and simplest types of transmission line models with a

corresponding circuit model is the coaxial cable, which was patented by Oliver Heav-

iside in 1880 with the stated intention of eliminating coupling between two parallel

wires [42]. Heaviside placed an insulating material in between the two wires, which

then allowed the wires to act independently of each other. Coaxial cables continue to

be one of the most commonly used transmission lines to this day due to their ease of

construction and ability to carry high frequency signals over very long distances with

minimal loss [41]. Specific details on coaxial cable models are provided in Chapter 3.

As the technological needs of our society advanced, so did the types of transmission

lines being used. Telephone transmission lines typically include twisted pair and star

quad cables. Aluminium conductor steel reinforced cables were designed to support

high electrical power transmission over long distances. Since the invention of the

transistor [43], printed circuit boards (PCBs) soon became the primary technology

for computing and telecommunication purposes. Microstrip and coupled microstrip

transmission lines then became the primary types of transmission lines that one may

find on a PCB [2,14]. The microstrip line differs significantly from the aforementioned

cables because it is considered an open-air structure [2], whereas cables, such as those

used in telephone and power systems, are fully enclosed [41]. The combination of

the air and substrate of the PCB results in dispersive effects on the voltage signal of
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a microstrip transmission line. This dispersive behavior is of fundamental research

interest.

Analytic solutions have been developed for arrays of multiple conductors [3] and

coupled transmission lines [14], as well as single microstrip lines [16] throughout the

1970s. Garg and Bahl’s [14] coupled microstrip line analysis introduced the effects

of dispersion influenced by coupling between the lines. Getsinger’s [16] single mi-

crostrip transmission line model subsequently provided a closed form solution for the

dispersion relation.

In 1986, Veghte and Balanis’s [2] seminal paper sought to accurately character-

ize the effects of distortion on transient pulses propagating along lossless microstrip

lines in integrated circuits (ICs). Transients often arise in ICs during high-frequency

switching operations. The microstrip waveguide is bounded above in air and below a

dielectric substrate, and consequently it is highly dispersive. Because of this, the wave

can never be in a pure TEM-mode and field theory methods can be difficult to employ.

A closed-form solution was developed for the voltage pulse influenced by dispersion on

a lossless strip line using the Fourier Transform approach. Special attention was also

paid to the dielectric constant as it varied with frequency and its relationship to the

propagation factor of the pulse. The results indicated how dispersion influenced and

distorted the shape of the input waveform. Dispersion was observed in the transient

pulses that were considered, and it was found that the dispersive effects were most

prominent in the square DC pulse due to its high spectral content.
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1.4.3 Applications of Time Domain Reflectome-

try

Time Domain Reflectometry (TDR) has been used in such diverse fields as electrical

power, electronics, and geotechnical sensing. Some specific applications within these

fields include the phenomena of partial discharges, and the determination of moisture

content measurements in soil. The following subsections focus on these aforemen-

tioned applications and the role that TDR plays in each case.

Partial Discharges

One common problem in the area of power systems is the identification of partial

discharges (PDs) in underground cables. PDs are a characteristic of the early stages

of deterioration of the dielectric insulator in power cables [44]. The outer dielectric

material has been found to degrade over time when it has been exposed to such

environmental factors, as moisture, mechanical vibration, or pressure changes. These

environmental factors can eventually lead to the failure of the cable [45]. In turn,

this degradation of the cable can cause a discharge of fast, high-frequency current

pulses or transients [46]. One method of finding the location of PDs is through TDR

measurements, which has been investigated with varying degrees of success [44–47].

A TDR measurement is very accurate at identifying the location of of a given PD in

certain cases, but fails in a other scenarios, particularly when the PD occurs at a large

distance away along the transmission line from the TDR detector. If the transmission

line is long and the PD pulse needs to propagate a long distance to reach the TDR

detector, there is a high likelihood that the transmission line attenuation effects will

16



significantly reduce the amplitude of the PD pulse, making it difficult to be identified

by the TDR detector. In 2020, Papadopoulus et al [48] included the influence of the

dispersion, dielectric constant, and frequency-dependence of the soil surrounding the

underground cable. Their work was able to improve the accuracy of modeling the

transient response of a cable.

Other recent work has aimed to improve the limitations of TDR to identify PDs

on transmission lines. In 2013, Wild et al [49] placed two TDR detectors on the

transmission line, with one TDR detector placed at each end of the line. This was

done in an effort to reduce the effects of attenuation when the PD pulse propagates

down the line and reflects back to the detector. With two TDR detectors, waiting

for the response due to the reflected PD pulse need not be necessary. As a result,

any attenuation or dispersion caused by the PD pulse reflection is reduced. However,

placing a TDR detector at both ends, particularly at the end of the line, is not always

possible.

In 2016, Rodgrigo Mor et al [50] sought to improve the accuracy of PD pulse local-

ization in the situation where the PD starts at the end opposite to the TDR detector.

A resonance circuit at the end of the transmission line that matches the resonant

impedance of the line is introduced. In doing so, the reflected pulse is not fully re-

flected and is partially absorbed by the resonance circuit at the resonant frequency.

The advantage of this method is that the TDR measurement is not dependent upon

any attenuation effects of the transmission line or the amplitude of the PD pulse.
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Moisture content in soil

A further use of a transient field considers the identification of materials, such as the

moisture content in soil. TDR is helpful in agricultural and environmental applica-

tions such as irrigation, soil cover for landfills [23], or detecting water condensation

on buildings that could lead to premature deterioration of the building material [51].

Since the late 1970s, TDR has been used in hydrogeological applications in order

to determine the water content and electrical conductivity in soil. It has been demon-

strated that small changes in moisture content can easily be captured by TDR [23].

Davis and Annan [7] were among the first to use electromagnetic waves in this capac-

ity, determining that an empirical relationship exists between the complex dielectric

permittivity of the soil and its moisture content, this being due to the relationship

between the speed of propagation of the electromagnetic wave and the dielectric per-

mittivity through which it is propagating. Davis and Annan’s [7] work instigated

several landmark studies of TDR soil moisture measurements throughout the 1980s.

Topp et al [8,52], Heimovaara [10], Dalton et al [53], and Zegelin [54] carried out TDR

experiments in various types of soils in order to more accurately develop empirical

equations for the dielectric permittivity, the electric conductivity of the soil, and the

water content of the soil.

More recent estimations of soil water content using TDR focused on the simulation

and modeling of the TDR probe and the associated pulse propagation. Skierucha [55]

sought to reduce the sources of error when measuring volumetric water content of

the soil by taking into account bulk soil density when calibrating the TDR device.

In 2006, Greco [27] developed a more accurate model of TDR pulse propagation

and treated the determination of soil moisture content from a voltage pulse as an
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inverse problem. The direct problem was evaluated by modeling a three-wire TDR

probe as a waveguide, solving the Telegrapher’s equations along the waveguide using

boundary conditions that are determined from the hydraulic properties of the soil.

The variability in solutions that can arise from the inverse problem were reduced by

applying a set of physical constraints to the solution.

In order to improve the accuracy of TDR modeling in soil, it was found that the

polar mechanics and dielectric relaxation of the soil needed be considered [56]. Neveux

and Chambrel [57] treated the soil as a Debye-type dielectric. In 2016, Loewer, et

al [58] took into account the dielectric relaxation of the soil by treating the soil as

both a Debye and a Cole-Cole type with a constant DC conductivity.

1.5 Proposed Research

Much of the published research on the subject of transmission line analysis that

exists in the open literature includes the detection and identification of the substrate

material or material surrounding the line, however several key elements still remain

to be investigated. The first considers the use of the measured pulse velocity of

the return signal to determine the composition of the substrate material, as well as

the location of any interface where the material properties change. Prior research

relies upon the use of the group velocity of the initial and reflected pulses. However,

the peak amplitude point of the pulse that moves with group velocity is not easily

measured or numerically determined. In this research, the pulse centrovelocity is

investigated, as it has physical meaning and is directly measurable.

Transmitted pulse properties that are used to determine the substrate material
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composition, such as water content in soil, are also investigated. The measured pulse

centrovelocity is essential in this determination. The pulse amplitude attenuation

coefficient and the pulse energy attenuation coefficient are of interest here, as well as

the relationship between them as the input pulse width decreases.

The propagated pulse characteristics change fundamentally, as the input pulse

width decreases into the ultrashort/ultra-wideband limit, resulting in a transient

waveform that is more indicative of the transmission line properties and its substrate

material, rather than initial shape of the input pulse. Historically, this transient field

is often referred to as a precursor. Its asymptotic form and propagation velocity

depends upon the temporal dispersion properties and reveals much about the trans-

mission line and substrate material properties. Such behavior will also be presented

in this dissertation.
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Chapter 2

Dispersive Attenuative

Transmission Line Analysis

2.1 Introduction

An overview of voltage pulse propagation on a dispersive attenuative transmission line

is essential for understanding the transmission and reflection properties of a trans-

mission line in the presence of a layered medium. Such a study can be used to design

new transmission line structures or to observe the behavior of a pulse as it propa-

gates through a series of discontinuous media changes. Some examples of external

media changes include changes in motherboard PCB layering, weather events around

a power line, changes in soil moisture content, or a line that is partially underground

and partially above ground. External media changes result in changing impedance

values along the line. Because this impedance directly impacts the propagation be-

havior of the signal on the transmission line, the observed signal changes along a

transmission line are dependent on the surrounding media properties as well as upon
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the circuit parameters of the line. Modeling the propagation of a voltage pulse signal

on a transmission line with a frequency-dependent complex impedance may provide

insight into the resultant signal integrity, a property that is essential to maintaining

the system performance or the measurement accuracy of a transmission line.

It is of particular interest to study dispersion effects on transmission line signal

flow. Most transmission line studies have been simplified by neglecting loss. However,

these inherent losses can have a significant impact on the propagation of a voltage

and its related current pulse. Dispersive effects can result in distortion of the shape

of the pulse over long distances. In the power grid, for example, dispersion may be

a contributing factor in the instigation of a blackout. In the case of soil moisture

measurements using Time Domain Reflectometry (TDR), the dispersive properties of

the surrounding soil may be used to more accurately measure that moisture content.

In this chapter, the elements of transmission line analysis are reviewed. Because

of its importance to this research as well as its applicability in practice, a trapezoidal

envelope pulse is considered in detail along with its frequency spectrum. The low

frequency behavior of the pulse is of particular importance here when the carrier

frequency is considered as low. The pulse is first described analytically in both the

time and frequency domains, which is then compared against a numerical Fast Fourier

Transform (FFT) calculation of the pulse spectrum. With that in hand and its assured

numerical accuracy, the propagation of a single-cycle trapezoidal envelope voltage

pulse along a lossy dispersive transmission line may be compared with the propagation

characteristics of an identical initial voltage pulse along a lossless transmission line.

This is done in order to study the effects of dispersion along a more realistic model

of a transmission line. These computations are performed using MATLAB software
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with adequate time and frequency sampling.

2.2 Distributed Circuit Model

It is of central interest to observe the propagation behavior of an input voltage pulse

along the various transmission line models that are discussed throughout this disser-

tation, including the coaxial cable, the single and coupled microstrip lines, and in

particular, microstrip lines with a Debye-type dielectric substrate. Special emphasis

is placed upon the effects of dispersion and the observed pulse evolution.

In order to calculate the propagation of a voltage pulse along a given transmission

line, the traditional distributed circuit model [41, 59, 60] is used. The distributed

circuit method of analysis provides an advantage over electromagnetic field methods

in that it makes use of typical circuit analysis quantities of voltage, current, and

impedance that would be familiar with practitioners in this field. In addition, using

such a method allows for ease of handling each of the frequency-dependent circuit

terms. The equivalent circuit model of a transmission line presented in Figure 2.1 is

used to develop the distributed circuit analysis. Here R is the total series resistance of

the line per unit length, L is the total series inductance of the line per unit length, C

is the shunt capacitance of the line per unit length, and G is the shunt conductance of

the line per unit length. The coaxial cable, single microstrip, and coupled microstrip,

all make use of the same circuit model presented in Figure 2.1, but expressions and

values for each circuit parameter differ based upon the particular transmission line

type. With application of Kirchhoff’s Circuit Laws to the circuit model depicted in

Figure 2.1, the coupled Telegrapher’s equations that describe the propagation of the
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Figure 2.1: Distributed Circuit Model of an incremental section of a Transmission Line.
Here, R is the total series resistance of the line per unit length, L is the total series induc-
tance of the line per unit length, C is the shunt capacitance of the line per unit length, and
G is the shunt conductance of the line per unit length.

voltage and current pulses are readily obtained.

2.2.1 The Uniform Transmission Line Equations

Kirchhoff’s Voltage Law (KVL) is applied to the incremential section of a transmission

line depicted in Figure 2.1 to yield the following expression relating the instantaneous

voltage along an infinitesimal segment of transmission line,

v(z, t)−R∆zi(z, t)− L∆z∂i(z, t)
∂t

− v(z + ∆z, t) = 0, (2.1)

while application of Kirchhoff’s Current Law (KCL) for the instantaneous current

along the same segment of transmission line gives

i(z, t)−G∆zv(z + ∆z, t)− C∆z∂v(z + ∆z, t)
∂t

− i(z + ∆z, t) = 0, (2.2)
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where v(z, t) and i(z, t) are the instantaneous voltages and current at the space-

time point (z, t) respectively, where ∆z is the incremental length of the line segment

considered. With the definition of the derivative in mind, this pair of equations may

be rewritten in the form

−
(
v(z + ∆z, t)− v(z, t)

∆z

)
= Ri(z, t) + L

∂i(z, t)
∂t

, (2.3a)

−
(
i(z + ∆z)− i(z, t)

∆z

)
= Gv(z + ∆z, t) + C

∂v(z + ∆z, t)
∂t

. (2.3b)

Upon taking the limit as ∆z approaches zero these two equations become

− ∂v(z, t)
∂z

= Ri(z, t) + L
∂i(z, t)
∂t

(2.4a)

− ∂i(z, t)
∂z

= Gv(z, t) + C
∂v(z, t)
∂t

. (2.4b)

The pair of relations appearing in Equations (2.4a) and (2.4b) form a set of cou-

pled partial differential equations known as either the Telegrapher’s Equations or the

Transmission Line Equations. The solutions of these equations provide expressions

for the voltage and current behavior along the transmission line.

In order to begin the analysis, Equations (2.4a) and (2.4b) are first expressed in the

frequency domain through the introduction of a complex valued phasor representation

of both the voltage and current functions, where

v(z, t) = <{Ṽ ejωt}, (2.5a)

i(z, t) = <{Ĩejωt}. (2.5b)
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Upon transforming the Telegrapher’s equations into the phasor domain by substitut-

ing the phasor representations given in Equations (2.5a) and (2.5b) gives

− dṼ (z)
dz

= (R + jωL)Ĩ(z) (2.6a)

− dĨ(z)
dz

= (G+ jωC)Ṽ (z). (2.6b)

In order to decouple these two equations, each is differentiated with respect to

the propagated distance z. The expression in Eq. (2.6b) is then substituted into the

resulting dĨ(z)
dz

term in Eq. (2.6a). A similar substitution for the first derivative term
dṼ (z)
dz

in Eq. (2.6b) is also performed. This then results in two second-order differential

equations for the phasor voltage and current, respectively, that are fully decoupled,

given by
d2Ṽ (z)
dz2 = (G+ jωC)(R + jωL)Ṽ (z), (2.7a)

d2Ĩ(z)
dz2 = (G+ jωC)(R + jωL)Ĩ(z). (2.7b)

Nevertheless, the phasor voltage and the current along the line are related through

the line impedance.

With the definition that γ2(ω) = (G+ jωC)(R+ jωL), Eqs. (2.7a) and (2.7b) can

be rewritten in the form of the Helmholtz equations as

d2Ṽ (z)
dz2 − γ2(ω)Ṽ (z) = 0, (2.8a)

d2Ĩ(z)
dz2 − γ2(ω)Ĩ(z) = 0. (2.8b)

Here, γ(ω) is the complex propagation factor of the wave and and may be expressed
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in terms of its real and imaginary parts as

γ(ω) = α(ω) + jβ(ω), (2.9)

with

α(ω) = <{γ(ω)}, (2.10a)

β(ω) = ={γ(ω)}. (2.10b)

As expressed in these equations, the real part of γ(ω) defines the attenuation or

loss factor of the wave. The effect of this attenuation factor α(ω) on the wave results

in an exponential decay of the wave amplitude with increasing propagation distance

z. The imaginary part β(ω) of γ(ω) is the phasal propagation factor. It defines the

phase change of the wave as it propagates along the transmission line. Notice that

The effects of material dispersion are embedded within the expression for the complex

propagation factor.

The general solutions to the Helmholtz equations can be described in terms of two

parts: (1) a forward traveling wave which propagates in the positive (+)z-direction

toward the receiving end of the transmission line or an interface along the line and

(2) a backward traveling wave which propagates in the negative (−)z-direction back

toward the input voltage or current source. The voltage and the current, are then

given by

Ṽ (z) = V +
0 e
−γ(ω)z + V −0 e

γ(ω)z, (2.11a)

Ĩ(z) = I+
0 e
−γ(ω)z + I−0 e

γ(ω)z, (2.11b)

where V +
0 and I+

0 are the amplitudes of the voltage and current, respectively, for
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the forward traveling wave that is moving away from the voltage or current source.

Similarly, V −0 and I−0 are the amplitudes of the voltage and current for the backward

traveling wave, propagating back towards the voltage or current source.

Substitution of Eq. (2.11a) into Eq. (2.6a) gives

Ĩ(z) = γ(ω)
R + jωL

(
V +

0 e
−γ(ω)z − V −0 e+γ(ω)z

)
= 1
Z0(ω)

(
V +

0 e
−γ(ω)z − V −0 e+γ(ω)z

)
,

such that V +
0 /I

+
0 = −V −0 /I−0 = Z0, where

Z0(ω) = R + jωL

γ(ω) =
√
R + jωL

G+ jωC
(2.12)

is the characteristic impedance of the transmission line. With this identification, the

general solution of Equations (2.11a) and (2.11b) becomes

Ṽ (z) = V +
0 e
−γ(ω)z + V −0 e

+γ(ω)z, (2.13a)

Ĩ(z) = 1
Z0(ω)

(
V +

0 e
−γ(ω)z + V −0 e

+γ(ω)z
)
, (2.13b)

for the voltage and the current, respectively. For simplification of the resulting anal-

ysis, let z = 0 represent the sending (source) end of the transmission line, where

the initial voltage or current pulse is inserted. Notice the departure from a typical

transmission line analysis where z = 0 is chosen at the receiving end and the source

then becomes located at z = −zd In this case,

Ṽ (0) = V +
0 + V −0 , (2.14a)
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Ĩ(z) = 1
Z0(ω)

(
V +

0 + V −0
)
. (2.14b)

With this choice of the z = 0 point, any change in the line impedance will be taken to

occur at z = zmn, where Zm is the incident line impedance and Zn is the transmitted

line impedance. The relation between V +
0 and V −0 is then determined by the reflection

coefficient at each coordinate value z = zmn where the line impedance changes.

In order to gain further insight into the propagation of an elementary time-

harmonic wave on a transmission line, consider the exponential term e−γ(ω)z in con-

junction with its assumed ejωt time-dependence (which is not explicitly displayed).

Substitution of the decomposition of γ(ω) yields e−γ(ω)zejωt = e−α(ω)zej(ωt−βz). The

phase velocity of the wave in the forward direction is then given by the derivative the

phase term ωt − β(ω) with respect to time and space, which is constant on a wave-

front, so that vp = ω
β(ω) m/s in the reverse direction. Upon application of the exact

same analysis to the exponential term for the backward propagating piece eγ(ω)z gives

a phase velocity that is vp = − ω
β(ω) m/s. Notice that the phase velocity is dependent

on the frequency-dependence of the propagation factor which contains any material

or system dispersion.

2.2.2 Segmented Transmission Line Analysis

Consider now a longitudinally segmented transmission line where each homogeneous

section extends from zj to zj+1 with j = 0, 1, 2, . . . , N , with there being N+1 sections.

The first section (j = 0), extends from z0, the location of the voltage source, to

z1, where the first interface is encountered. Within the jth segment, the line has

characteristic resistance Rj, conductance Gj, inductance Lj, and capacitance Cj.
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Each section of uniform section of transmission line is characterized by its own in-

trinsic impedance that is given by Zj = V +
j /I

+
j = V −j /I

−
j , as required by Ohm’s Law.

Upon using Equations (2.7a) and (2.7b) and the general solutions to the Helmholtz

equation, the characteristic impedance of each line segment is found to be

Zj =
√
Rj + jωLj
Gj + jωCj

for j = 0, 1, 2, . . . , N (2.15)

Along such a longitudinally segmented transmission line, an interface occurs be-

tween each homogeneous segment, as depicted in Figure 2.2, where the characteristic

impedance differs on either side of the interface. A transmission and reflection of

any incident wave will then occur at that interface along with a phase change. The

amount of transmission and reflection in both amplitude and phase at the interface

is determined by the transmission and reflection coefficients at that point, which are

functions of the impedance values on each side of the interface.

z = 0 z = z
12

Z
1

Z
2

V
1

+
V

1

-

V
2

+

Figure 2.2: Model of a transmission line with an interface at a location z = z12, which
separates different media described by different characteristic impedance values, Z1 and Z2.
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(a) A Single Interface

From Equations (2.11a) and (2.11b), the phasor voltage and current along the first

segment of the line, where 0 ≤ z ≤ z12, are given by

Ṽ1(z) = V +
1 (0)e−γ1(ω)z + V −1 (z12)eγ1(ω)(z−z12), (2.16a)

Ĩ1(z) = 1
Z1

(
V +

1 (0)e−γ1(ω)z + V −1 (z12)eγ1(ω)(z−z12)
)
, (2.16b)

respectively. Here, V +
1 (0) is the input value of the voltage at the source (the input

port), where as V −1 (z12) is the value of the voltage reflected at the interface z = z12

and its value incident back on the input port being given by

V −1 (0) = V −1 (z12)e−γ(ω)z12 . (2.17)

At z = 0 the voltage and current are then given respectively by

Ṽ1(0) = V +
1 (0) + V −1 (z12)e−γ1(ω)z12

= V +
1 (0) + V −1 (0), (2.18a)

Ĩ1(0) = 1
Z1

(
V +

1 (0)− V −1 (z12)e−γ1(ω)z12
)
, (2.18b)

and at the interface at z = z12 separating the first segment of the transmission line

(with complex impedance Z1) from the second segment of the transmission line (with

complex impedance Z2), the voltage and current on the transmission line are given
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by

Ṽ1(z12) = V +
1 (0)e−γ1(ω)z12 + V −1 (z12)

= V +
1 (0)e−γ1(ω)z12 + V −1 (0)eγ1(ω)z12 (2.19a)

Ĩ1(z12) = 1
Z1

(
V +

1 (0)e−γ1(ω)z12 + V −1 (z12)
)
, (2.19b)

respectively. Notice that the second forms of Eqs. (2.18a) and (2.19a) express the

backward propagating phasor voltage in terms of its limiting value at the input port,

that is

V −1 (0) = lim
z→0+

(
V −1 (z12)eγ(ω)(z−z2)

)
(2.20)

Along the second transmission line segment, z ≥ z12, the phasor voltage and

current are

Ṽ2(z) = V +
2 (z12)e

−γ2(ω)(z−z12) (2.21a)

Ĩ2(z) = 1
Z2

(
V +

2 (z12)e−γ2(ω)(z−z12)
)
, (2.21b)

respectively, where V +
2 (z12) is the forward traveling voltage transmitted across the

interface at z = z12.

At the interface, z = z12, where the characteristic impedance changes discontin-

uously from Z1 to Z2, continuity of the total voltage and current are demonstrated

as, Ṽ1(z12) = Ṽ2(z12) and Ĩ1(z12) = Ĩ2(z12), respectively. Upon substitution from

Eqs. (2.19) and (2.21) into these two relations, one obtains

V +
1 (0)e−γ1(ω)z12 + V −1 (z12) = V +

2 (z12), (2.22a)
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1
Z1

(
V +

1 (0)e−γ1(ω)z12 + V −1 (z12)
)

= 1
Z2
V +

2 (z12). (2.22b)

Further substitution of Eq. (2.22a) into Eq. (2.22b) gives

1
Z1

(
V +

1 (0)e−γ1(ω)z12 − V −1 (z12)
)

= 1
Z2

(
V +

1 (0)e−γ1(ω)z12 + V −1 (z12)
)
,

which then reduces to

(Z2 − Z1)V +
1 (0)e−γ1(ω)z12 = (Z1 + Z2)V −1 (z12). (2.23)

Taking note that

V +
1 (z12) = V +

1 (0)e−γ1(ω)z12 (2.24)

is the value of the forward propagating voltage incident upon the interface, Eq. (2.23)

may also be written as

(
Z2 − Z1V

+
1 (z12)

)
= (Z1 + Z2)V −1 (z12). (2.25)

There are two ways in which voltage reflection coefficient may be described, the

first using Eq. (2.23), and the second starting with Eq. (2.25).Consider first the second

approach in which the voltage reflection coefficient is defined as

Γ12 = V −1 (z12)
V +

1 (z12) = Z2 − Z1

Z1 + Z2
. (2.26)

With this result, the expression in Eq. (2.18) for the phasor line voltage along the
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first segment of the transmission line, 0 ≤ z ≤ z12, becomes

Ṽ1(z) = V +
1 (0)e−γ1(ω)z + Γ12V

+
1 (z12)eγ1(ω)(z−z12). (2.27)

Because V +
1 (z12) = V +

1 (0)e−γ1(ω)z12 , this expression may be written as

Ṽ1(z) = V +
1 (z12)

(
eγ1(ω)(z12−z) + Γ12e

−γ1(ω)(z−z12)
)

= V +
1 (0)

(
e−γ1(ω)z + Γ12e

γ1(ω)(z−2z12)
)
. (2.28)

In a similar manner, the voltage transmission coefficient is defined as

τ12 = V +
2 (z12)
V +

1 (z12) , (2.29)

so that, from Eqs. (2.22a) and (2.24).

τ12 = 1 + Γ12 = 2Z2

Z1 + Z2
, (2.30)

which are just the usual expressions [41,59,60] for the voltage reflection and transmis-

sion coefficients at a single interface. They are most appropriate to use in addressing

the multiple interface problem.

Consider now the first choice for the reflection coefficient in Eq. (2.26), included

here for comparison with both the above results as well as that found in the open

literature [61]. With Eq. (2.23), a modified voltage reflection coeffieicent is defined as

Γ′12 = V −1 (z12)
V1 + (0) = Z2 − Z1

Z1 + Z2
e−γ1(ω)z12 , (2.31)
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in which case,

Γ′12 = Γ12e
−γ1(ω)z12 . (2.32)

With this identification, the expression for the line voltage at z = z12 given in

Eq. (2.19a) becomes

Ṽ (z12) = V +
1 (0)e−γ1(ω)z12 + Γ′12V

+
1 (0). (2.33)

Similarly, the modified voltage transmission coefficient is defined as

τ
′

12 = V +
2 (z12)
V +

1 (0) = e−γ1(ω)z12 + Γ′12 (2.34)

following substitution from Eq. (2.22a). From this result, it is immediately found

that

τ
′

12e
−γ1(ω)z12 − Γ′12e

γ1(ω)z12 = 1. (2.35)

In addition, Eq. (2.34) yields, after substitution from Eq. (2.31), the result

τ
′

12 = 2Z2

Z1 + Z2
e−γ1(ω)z12 = τ12e

−γ1(ω)z12 (2.36)

(b) Two Interfaces

In keeping with Fig. 2.2, let interface 1, separating medium 1 (with impedance Z1)

from medium 2 (with impedance Z2) be at distance z = z12 from the input port at

z = 0, and let interface 2, separating medium 2 (with impedance Z2) from medium

3 (with impedance Z3) be at the distance z = z23 from the input port so that it is at

the distance z2 = z23 − z12 from interface 1, as illustrated in Fig. 2.3.
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Figure 2.3: Model of a transmission line with an two interfaces location z = z12 and z = z23,
which separates different media described by different characteristic impedance values, Z1,
Z2, Z3.

Recall the single interface reflection and transmission coefficients at interface 1

found in Eqs. (2.26) and (2.30)

Γ12 = Z2 − Z1

Z1 + Z2
, (2.37a)

τ12 = 1 + Γ12 = 2Z2

Z1 + Z2
, (2.37b)

and subsequently, the single interface reflection and transmission coefficients at inter-

face 2 when the incident field on interface 2 is taken to originate from interface 1 are

Γ23 = Z3 − Z2

Z2 + Z3
, (2.38a)

τ23 = 1 + Γ23 = 2Z3

Z2 + Z3
. (2.38b)

Let the voltage traveling in the positive (+) direction incident upon interface 1 be

V +
1i = V +(0)eγ1(ω)z1 , where V +(0) is the input voltage at the source port. A portion
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of this incident voltage V +
1i is reflected back into medium 1

V −1r = Γ12V
+

1i , (2.39a)

and the remaining portion is transmitted into medium 2, where

V +
2t1 = τ12V

+
1i . (2.39b)

This transmitted field V +
2t propagates to the second interface, yielding the incident

voltage

V +
2i1 = V +

2t1e
γ2(ω)z2 = τ12e

γ2(ω)z2V +
1i , (2.39c)

which produces the reflected voltage

V −2r1 = Γ23V
+

2i1 = τ12Γ23e
γ2(ω)z2V +

1i (2.39d)

in medium 2, and the transmitted voltage

V3t1 = τ23V
+

2i1 = τ12τ23e
γ2(ω)z2V +

1i (2.39e)

entering into medium 3. The reflected voltage incident back on interface 1 is given

by

V −2r1i = V −2r1e
γ2(ω)z2

= τ12Γ23e
2γ2(ω)z2V +

1i (2.39f)
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which, in turn, gives rise to the reverse travelling transmitted voltage in medium 1,

given by

V −2r1t = τ21V
−

2r1i = τ12τ21Γ23e
2γ2z2V +

1i , (2.39g)

where

τ21 = 2Z1

Z1 + Z2
,

which does not equal τ12 unless Z1 = Z2 (in which case interface 1 vanishes). The

reverse propagating voltage V −2r1i in medium 2 also produces a reflected voltage

V +
2r1r = Γ21V

−
2r1i = −τ12Γ12Γ23e

2γ2z2V +
1i (2.39h)

because

Γ21 = Z1 − Z2

Z1 + Z2
= −Γ12.

Notice that, as a consequence of this relation, τ21 = 2− τ12, that is, (τ12 + τ21)/2 = 1.

The forward propagating voltage V +
2r1r reflected at interface 1 in medium 2 results

in the voltage

V +
2r1ri = V +

2r1re
γ2z2 = −τ12Γ12Γ23e

3γ2z2V +
1i (2.39i)

incident upon interface 2. This incident forward propagating voltage in medium 2
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produces a reflected voltage

V −2r1rr = Γ23V
+

2r1ri = −τ12Γ12Γ2
23e

3γ2z2V +
1i (2.39j)

propagating the in the reverse direction in medium 2, and a transmitted voltage

V +
3t2 = τ23V

+
2r1ri = −τ12τ23Γ12Γ23e

3γ2z2V +
1i (2.39k)

propagating in the positive direction in medium 3. The reflected voltage back on

interface 1 in medium 2 is given by

V −2r1rri = V −2r1rre
γ2z2 = −τ12Γ12Γ2

23e
4γ2z2V +

1i (2.39l)

which then results in a transmitted voltage across interface 1 and into medium 1,

given by

V −2r1rrt = τ21V
−

2r1rri = −τ12τ21Γ12Γ2
23e

4γ2z2V +
1i , (2.39m)

and so on.

The total reflected voltage at the first interface in medium 1 travelling in the

negative direction back towards the input port is then given by the summation.

V −r = V −1r + V −2r1t + V 1
2r1rrt + . . .

=
[
Γ12 + τ12τ21Γ23e

2γ2z2
(
1− Γ12Γ23e

2γ2z2 + Γ2
12Γ2

23e
4γ2z2 − . . .

)]
V +

1i

=
(

Γ12 + τ12τ21e
2γ2z2

1 + Γ12Γ23e2γ2z2

)
V +

1i , (2.40)

and the total transmitted voltage at the second interface in medium 3 travelling in
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the positive direction towards an infinitely distant end of the transmission line given

by the summation

V +
t = V +

3t1 + V +
3t2 + . . .

= τ12τ23e
γ2z2

(
1− Γ12Γ23e

2γ2z2 + . . .
)
V +

1i

= τ12τ23e
γ2z2

1 + Γ12Γ23e2γ2γ3
V +

1i . (2.41)

Therefore, the overall or net reflection coefficient though the entire two interface

system is

Γ = V −r
V +

1i
= Γ12 + τ12τ21Γ23e

2γ2z2

1 + Γ12Γ23e2γ2z2
, (2.42)

and the overall transmission coefficient through the two interface system is

τ = V +
t

V +
1i

= τ12τ23e
γ2z2

1 + Γ12Γ23e2γ2z2
. (2.43)

Notice that

Γ + τ = Γ12 + τ12e
γ2z2

τ21τ23e
γ2z2 + τ23

1 + Γ12Γ23e2γ2z2
. (2.44)
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Figure 2.4: Lattice diagram of the voltage reflection and transmission for two interfaces.

2.3 Voltage Pulse Velocity

Several methods exist to calculate and measure the velocity of an electromagnetic

pulse propagating along a transmission line. The most commonly used velocity rep-

resentations are the phase velocity and the group velocity. However, it has been found

that there are many shortcomings regarding the accuracy of the such velocity calcu-

lations in dispersive and attenuative media [62–64]. In such a case, the wave becomes

distorted as it propagates through the medium, making it difficult to measure or even

define a physically meaningful velocity using traditional time of flight methods. Al-

though the phase and group velocity may be physically meaningful in non-dispersive
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media, they can yield vastly different results when material dispersion and absorption

are present [62, 63]. Therefore, it is important to define a measurable pulse velocity

that remains meaningful when dispersion and absorption are present [64–66].

A different description of the pulse velocity was introduced by Smith in 1970 [62].

This velocity, known as the centrovelocity, makes use of the centroid of the electromag-

netic pulse energy. The centrovelocity overcomes many of the previous shortcomings

as it can be measured using time of flight methods, is not dependent on the frequency

response of the detector, and the pulse itself is not required to be quasimonochro-

matic.

2.3.1 The Phase Velocity

The phase velocity is often described as the propagation speed and direction of the

carrier wavefront. Brillouin defines the phase velocity as “the phase difference between

the vibrations observed at two different points in a free plane wave” [67].

For the time-harmonic voltage pulse, the space-time behavior is given by

V (z, t) = V +
0 e
−γzejωt = V +

0 e
−αzej(ωt−βz), (2.45a)

I(z, t) = I+
0 e
−γzejωt = V +

0
Z0

e−αzej(ωt−βz). (2.45b)

The phase front of the wave is given by (ωt− βz) = k, where k is a constant. Upon

differentiating this expression, one obtains ωdt− βdz = 0, giving the phase velocity

vp = dz

dt
= ω

β(ω) . (2.46)
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However, because the phase velocity represents the of the velocity phase front of the

carrier wave, this may not be the velocity at which the voltage pulse itself propagates.

As a result, the phase velocity of any wave cannot be directly measured, only indirectly

inferred.

2.3.2 The Group Velocity

The difference between the group velocity and the phase velocity was first described

by Lord Rayleigh in 1877 [68]. If the medium is homogeneous and is non-dispersive,

then the phase velocity is found to be equal to the group velocity. This, however, is

not the case for dispersive, absorptive media.

In order to derive an expression for the group velocity, consider the spectral rep-

resentation of a temporal pulse on a dispersive attenuative transmission line. Let the

input voltage pulse at z = 0 be given by

V (t) = V +
0 f(t) (2.47)

where V +
0 is the magnitude of the input pulse voltage and f(t) represents an expression

for a periodic wave pulse. The temporal frequency spectrum of the input pulse voltage

is then given by

Ṽ (ω) = V +
0 f̃(ω) (2.48)

where

f̃(ω) =
∫ ∞
−∞

f(t)e−jωtdt, (2.49)
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with its inverse Fourier Transform

f(t) = 1
2π

∫ ∞
−∞

f̃(ω)ejωtdω. (2.50)

For an envelope modulated sine wave pulse with fixed angular carrier frequency

ωc = 2πfc,

f(t) = u(t) sin(ωct) (2.51)

with envelope spectrum

ũ(ω) =
∫ ∞
−∞

u(t)e−jωtdt, (2.52)

the temporal frequency spectrum of the input pulse function f(t) is given by [61]

f̃(ω) =
∫ ∞
−∞

u(t) sin(ωct)ejωtdω

= 1
2j [ũ(ω − ωc)− ũ(ω + ωc)] . (2.53)

If u(t) is real-valued then ũ∗(ω) =
∫∞
−∞ u(t)e−jωtdt = ũ(−ω); that is, the complex

conjugate of the envelope spectrum for a real-valued function is equal to the spectrum

at negative frequencies [61].

Consider substituting −ω for ω in the expression for ũ(ω + ωc). Then,

ũ(ω + ωc)→ ũ(−ω + ωc) = ũ∗(ω − ωc)
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and Eq. (2.53) becomes

f̃(ω) = 1
2j [ũ(ω − ωc)− ũ∗(ω − ωc)]

= ={ũ(ω − ωc)}. (2.54)

The propagated pulse in the forward direction is given by

V +(z, t) = 1
2πV

+
0

∫ ∞
−∞

f̃(ω)ej(ωt−β(ω)z)dω. (2.55)

With f̃(ω) = ={ũ(ω−ωc)} peaked at ωc, the propagation factor β(ω) can be expanded

in a Taylor Series about ωc as

β(ω) = β(ωc) + β′(ωc)(ω − ωc) + 1
2β
′′(ωc)(ω − ωc)2 + . . . (2.56)

One can make use of the first-order approximation to directly obtain an expression

for the group velocity. To first-order, β(ω) and α(ω) may be approximated as

β(ω) ≈ β(ωc) + β′(ωc)(ω − ωc)

and

α(ω) ≈ α(ωc).

Within this approximation, the propagated voltage pulse, in Eq. (2.55), in the forward

direction becomes

V +(z, t) ≈ V +
0 e
−α(ωc)z 1

2π

∫ ∞
−∞

f̃(ω)ej(ωtβ(ωc)z−β′(ωc)(ω−ωc)z)dω, (2.57)
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which may be evaluated as

V +(z, t) ≈ V +
0 f(t− β′(ωc)z)e−(α(ωc)−jβ(ωc)z)e−jωc(t−β

′(ωc)z). (2.58)

In this linear approximation, the pulse propagates with an undistorted shape, though

uniformly attenuated in amplitude with propagation distance z and is uniformly

phase-shifted with z, and travels with the group velocity given by dt− β′(ωc)dz = 0

or
dz

dt
= 1
β′(ωc)

= 1
(∂β/∂ω)ωc

(2.59)

which is evaluated at the input carrier frequency ωc. Here, we have the well-known

first-order expression for the group velocity [67].

The approximation can be extended to the second-order where

β(ω) ≈ β(ωc) + β′(ωc)(ω − ωc) + 1
2β
′′(ωc)(ω − ωc)2. (2.60)

With this quadratic approximation, the propagated voltage pulse in the forward di-

rection in Eq. (2.57) becomes

V +(z, t) ≈ V +
0 e
−α(ωc)z 1

2π

∫ ∞
−∞

f̃(ω)ej(ωtβ(ωc)z−β′(ωc)(ω−ωc)z− 1
2β
′′(ωc)(ω−ωc)2z)dω, (2.61)

which simplifies to

V +(z, t) ≈ V +
0 e
−α(ωc)zej(ωct−β(ωc)z) 1

2π

∫ ∞
−∞

f̃(ω)e−j 1
2β
′′(ωc)(ω−ωc)2

ej(t−β
′(ωc)z)(ω−ωc)dω

(2.62)

and can then be evaluated by completing the square in the exponent of the integrand,
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where ζ = ω − ωc,

1
2β
′′ζ2 − (t− β′z)ζ =1

2β
′′
(
ζ2 − t− β′z

β′′/2 ζ + (t− β′ζ)2

β′′2

)
− 1

2β
′′ (t− β′z)2

β′′2

=1
2β
′′
(
ζ − t− β′z

β′′

)2

− (t− β′z)2

2β′′ (2.63)

so that, with the change of variable ζ = ω − ωc in the integrand, one obtains

V +(z, t) ≈ V +
0 e
−α(ωc)zej(ωct−β(ωc)z)e

j
(t−β′(ωc)z)2

2β′′(ωc)

∫ ∞
−∞

f̃(ζ + ωc)ej
1
2β
′′(ζ− t−β

′z
β′′ )2

dζ. (2.64)

Let Ω = ζ − t−β′z
β′′

so that

V +(z, t) ≈ V +
0 e
−α(ωc)zej(ωct−β(ωc)z)e

j
(t−β′(ωc)z)2

2β′′(ωc)

·
∫ ∞
−∞

f̃

(
Ω + ωc + t− β′(ωc)z

β′′

)
ej

1
2β
′′(ωc)Ω2

dΩ.
(2.65)

This is the Fresnel transform of f̃ , which can be used to describe the propagation

of an optical pulse in a waveguide. This second-order term shows that the pulse

travels at the group velocity vg = 1/β′(ωc) while the shape is distorted by an amount

dependent upon β′′(ωc), called the group velocity dispersion (GVD) [66].

2.3.3 The Energy Centrovelocity

The average energy centrovelocity of the pulse is defined by the quantity [62,66]

vcv = z

〈tz〉 − 〈t0〉
(2.66)
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where

〈tz〉 =
∫∞
−∞ tS(z, t)dt∫∞
−∞ S(z, t)dt (2.67)

is the arrival time of the temporal centroid of the pulse energy at the position z ≥ 0

along the transmission line, and

〈t0〉 =
∫∞
−∞ tS(0, t)dt∫∞
−∞ S(0, t)dt (2.68)

is the temporal centroid of the input pulse energy. Here,

S(z, t) = V (z, t)I(z, t) (2.69)

describes the instantaneous pulse energy at the position z ≥ 0 along the transmission

line. With the voltage V (z, t) and current I(z, t) calculated at any position z ≥ 0

along the transmission line, both 〈tz〉 and 〈t0〉 may be numerically determined and

the average centrovelocity vcv computed at an input pulse carrier frequency ω where

Ĩ(z, ω) = Ṽ (z, ω)/Z(ω) and Z(ω) is the characteristic impedance of the line at that

point.

Notice that the instantaneous energy centrovelocity of the pulse is given by the

limit

vcvinst(z) = lim
∆z→0

∆z
〈tz+∆z〉 − 〈tz〉

(2.70)

where 〈tz〉 and 〈tz+∆z〉 are defined in Eq. (2.67). However, the time it takes for a

pulse to travel the distance z is determined from the average centrovelocity that is

given by Eq. (2.66). If T is the time it takes for the energy centroid of the pulse

to travel the distance z, then that propagation distance is given by the traditional
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time-of-flight definition using the centrovelocity z = vcvT .

These numerical results can then be compared to the group velocity and phase

velocity as a function of ω. As an example, consider the Debye model [69] of fre-

quency dispersion in the dielectric permittivity presented in Appendix A. For a single

relaxation model, the relative dielectric permittivity is given by

ε(ω)/ε0 = ε∞ −
ε∞ − εs
1− iτω (2.71)

where εs = ε(0)/ε0 denotes the static zero frequency relative permittivity and where

ε∞ = limω→∞ ε(ω)/ε0 is the high frequency relative permittivity. The constant τ

describes the relaxation time for the orientational polarization phenomenon. Values

representative of loamy soil with 0% moisture content are given by

ε∞ = 2.44,

εs = 7.51,

τ = 1.032× 10−5s,

and are used in the numerical calculations presented in this dissertation. With µ/µ0 =

1, the complex index of refraction of the Debye model dielectric is given by

n(ω) =
[
µε(ω)
µ0ε0

]1/2

=
[
ε∞ −

ε∞ − εs
1− iτω

]1/2
, (2.72)
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with derivative

n′(ω) = −iτ ε∞ − εs
2n(ω)(1− iτω)2 . (2.73)

With the complex wavenumber given by k̃(ω) = (ω/c)n(ω), the complex group ve-

locity is given by

ṽg = 1
∂k̃(ω)/∂ω

= c

n(ω) + ωn′(ω) (2.74)

with associated complex group delay

t̃g(ω)1
c

(n(ω) + ωn′(ω)) . (2.75)

This is to be compared with the real group velocity

vg(ω) = 1
∂β(ω)/∂ω = c

nr(ω) + ωn′r(ω) (2.76)

where ω is real and nr(ω) = <{n(ω)} with β(ω) = <{k̃(ω)}. Thus, when ω is real,

<{t̃g} = 1
c

(nr(ω) + n′r(ω)) (2.77)

which is just the real group delay tg(ω) = v−1
g (ω). Therefore,

vg(ω) = <{ṽg(ω)} (2.78)

for real-valued ω, and the real group velocity is indeed given by the real part of the

complex group velocity when ω is real valued. Notice that this is in general for true

for complex ω.

As stated by G.B. Whitham in his now classic text on Linear and Nonlinear

50



Waves [?], “|A|2 propagates with the group velocity.” Here, A refers to the complex

amplitude of the wave. Furthermore, |A|2 is an “energy-like quantity.” The group

velocity is then sen to have a dual characteristic in dispersive wave propagation.

First, “different wavenumbers propagate with the group velocity”, where different

wavenumbers k(ω) correspond to monochromatic waves that describe the wave group,

or pulse. Secondly, |A|2 is related to the average flow of energy in the wave, where

F = vg(k)ξ.

Here, F is the average “energy flux” in the wave group and ξ is the average “energy

density” in that wave group.

Although this energy flow equation is claimed [?] to be completely general, it

is not as it only applies to the case where this no dispersive loss. Because this

may be the cause of errors in Time Domain Reflectometry (TDR), for example, it

is critical to obtain what the pulse velocity measure is most appropriate to use in

a dispersive absorptive medium. It is proposed there that this pulse velocity is the

energy centrovelocity described by Eqs. (2.66) - (2.69). This is done for the following

reasons:

1. it reduces the group velocity in the absence of dispersive loss,

2. like the propagation of information, it is causal,

3. it is measurable,

4. the result is independent of both the initial pulse shape and its duration.

As an example, consider the determination of the average energy centrovelocity vcv
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in a dispersive attenuative dielectric medium whose relative permittivity is given by

Eq. (2.71) with model parameters representative of loamy soil with 0% moisture

content. The initial voltage pulse is a single cycle trapezoidal with equal rise and fall

times. This initial pulse structure is illustrated in Fig. 2.5.

The velocity behavior with respect to frequency of this propagated pulse is plotted

in Fig. 2.6. The group velocity, the phase velocity, and the energy centrovelocity are

all compared.
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Figure 2.5: Single cycle trapezoidal envelope pulse with equal rise tr and fall tf times. The
overall initial pulse width is given by the inverse of the applied carrier frequency fc.
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Figure 2.6: Velocity calculations of the trapezoidal envelope pulse through a Debye model of
loamy soil with 0% moisture content. The blue line is phase velocity. The dashed orange
line is the group velocity. The red ‘x’ points are centroid velocity.

The behavior of the calculated pulse energy centrovelocity vcv relative to the group

velocity vg(ωc) at the input pulse angular frequency ωc = 2πfc is presented in Fig. 2.7.

as a function of the relative propagation distance z to the absorption depth zd at that

frequency.
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Figure 2.7: Calculated pulse energy centrovelocity vcv relative to the group velocity vg(ωc) at
different input pulse angular frequency ωc = 2πfc as a function of the relative propagation
distance z to the absorption depth zd at each frequency.

Notice that, with the relaxation time of the medium given by τ = 1.032× 10−5 s,

the dielectric dispersion is rapidly changing about the frequency fτ ≈ 1/τ = 1× 105 Hz.

This is also the frequency about which the material absorption is the greatest and

changing most rapidly with frequency. See Fig. A.1 in Appendix A for this absorp-

tion behavior. This characteristic frequency fτ then helps explain the behavior of the

relative centrovelocity curves in Fig. 2.7. The largest variation in vcv/vg occurs when

the applied pulse carrier frequency fc is approximately the relaxation time frequency

fτ ; that is, when fc = 1 × 105Hz. For smaller frequencies near the “base” of the

dispersion curve, illustrated by the fc = 5kHz and fc = 10kHz curves in Fig. 2.7,

the dispersion is less than their centrovelocity decreases with propagation distance
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z/zd in a manner that is similar to exponential decay. For larger carrier frequencies

near fτ (fc = 50 kHz), the decrease is characteristic of that for fc = fτ . Notice

that each curve approaches unity as z/zd → 0+; that is, the group velocity is only

approximately valid when the propagation distance is very small (z � zd), its validity

decreasing as z increases.

Because the pulse centrovelocity decreases as z increases, estimates of the distance

and the pulse has propagated using “time of flight” measurements will be smaller

than the actual distance, the error in measured distance increasing with z. Use of

the average pulse energy centrovelocity vcv for this estimate will undoubtedly be very

accurate. As can be imagined, this will be of critical importance to Time Domain

Reflectometry when the transmission line is dispersive.
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Chapter 3

Transmission Line Models

Different transmission line geometries have been developed [41, 59, 70], based upon

their effectiveness in a variety of applications. Some of the more common examples

include, but are not limited to, coaxial cables, twisted shielded pairs, and microstrip

lines. Coaxial cables are perhaps one of the most well know types of transmission

lines in existence today. They are ideal for such uses as television cables or preci-

sion measurement devices. In communications applications, twisted shielded pairs on

utility poles are often the ideal choice because they reduce the effects of noise and

cross-talk in the system [41]. Finally, microstrip transmission lines lend themselves

well to simple fabrication of printed circuit boards [59].

The understanding of transmission line models is essential for improving the prac-

tical uses of transmission lines, such as for those Time Domain Reflectometry (TDR)

applications that were described in Chapter 1. For this purpose, three different trans-

mission line geometries are presented and compared in this chapter, these being the

coaxial cable, the single microstrip, and the coupled microstrip. A Debye-type dielec-

tric material model (see Appendix A) of the dispersive and attenuative microstrip
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substrate is assumed as this causal model is the most appropriate throughout the

low frequency domain of interest. The cross-sectional geometry, material properties,

and circuit model representations of a coaxial cable, a single microstrip, and a cou-

pled microstrip transmission line are illustrated in Figs. 3.1 through 3.3 and Fig. 3.5,

respectively. Each of these geometries are individually considered in the remaining

sections of this chapter.

In addition, expressions for the effective dielectric permittivity εeff (ω) are de-

veloped for both the single and coupled microstrip transmission line models. Both

material properties and the cross-sectional geometry of the particular transmission

line influence the value of the effective dielectric permittivity, and ultimately impacts

the dispersive behavior of the transmission line. For example, microstrip transmis-

sion lines make use of the interaction between air and the dielectric substrate material

for its guidance properties. It is this interaction that creates the effective dielectric

permittivity. Because of the inherent material dispersion, frequency dependent losses

will occur along the transmission line that highly influence the dispersion properties

of the wave propagation along the line. This waveguide dispersion results in pulse

distortion along the transmission line [71]. Such dispersive losses are often neglected

in the literature, but they are one of the main areas of focus in this dissertation as

their influence on observable pulse propagation effects may be used in practice to

determine the material properties.

The dispersion relations for each transmission line model are derived in this chap-

ter and then applied to specific waveguide geometries in order to determine their

effect on the distributed circuit parameters and the resultant propagation factor for

that geometry. The distributed circuit model for transmission lines and its role in
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modeling the pulse propagation analysis is then described in this chapter. The nu-

merical analysis of the propagation for each waveguide geometry considered in this

dissertation is then presented in Chapter 4.

3.1 The Coaxial Cable

Coaxial cables are one of the most commonly used transmission lines, ranging in uses

from cable television to communications to high precision measurement devices [59],

such as the Time Domain Reflectometry (TDR) probe. As is well-known from under-

graduate electromagnetics texts, the inner and outer conductors of the coaxial cable

are highly effective at containing the electromagnetic field to the enclosed dielectric

region [59]. The first patent for the coaxial cable is credited to the mathematician

Oliver Heaviside in 1880 [42]. An insulator was placed in between the two wires,

which allowed them to act independently of each other. An early model of the coax-

ial cable was developed by Schelkunoff [72] in 1934. This model used the physical

geometry introduced by Heaviside and applied a rigorous analysis of electromagnetic

field theory to the coaxial transmission line in an idealized situation when it was per-

fectly straight and infinite in length. Employing modified Bessel functions, Maxwell’s

equations were evaluated to describe the impedance of each conductor. More recently,

Tesche’s model of the coaxial cable [71] successfully simplified Schelkunoff’s [72] per-

unit parameters of a lossy, non-dispersive cable. In doing so, Tesche developed an

equivalent distributed circuit model in the low- and high-frequency ranges.

Because of its simplicity, the coaxial cable geometry and electrical properties given

in this chapter follows the model given by Chipman [41]. At its most basic form, a
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coaxial cable consists of a cylindrical internal conductor surrounded by a cylindri-

cal, annular insulator contained within an annular conductor. The insulator is typ-

ically made of a dielectric material, such as polystyrene or polytetrafluoroethylene

(PTFE) [60]. Chipman [41] describes the orientation of the coaxial cable as "solid

homogenous wires of circular cross-section" with "tubular conductors of circular pe-

riphery." Figure 3.1 illustrates the cross-sectional geometry of the coaxial cable. The

cross-section of the inner cable holds a radius of r1 meters. The inner surface of the

surrounding coaxial conductor is defined by a radius of r2 meters. The insulating

material lies between these two surface within the annular region r1 < r < r2. Both

the inner and outer conductors are assumed to be ideal with infinite conductivity.

1

ε(ω)

r

r2

Figure 3.1: Coaxial cable model with inner conductor of radius r1 and outer conductor of
radius r2. Each conductor is separated by an imperfect dielectric material in the region
r1 < r < r2, with complex dielectric permittivity ε(ω)

As a result of the conductive and insulating properties of the materials, there exists
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an internal resistance and conductance distributed along the length of the cable. The

inner conductor gives rise to the resistance R and inductance L. The separation of

the outer from the inner conductor provides a capacitance C and conductance G. As

provided by Miner [60], a visual representation of the distributed circuit model of the

coaxial cable is shown in Fig. 3.2.

Scanned by CamScanner

Figure 3.2: Coaxial cable geometry and corresponding distributed parameter circuit model
as defined by Miner [60].

Miner [60] provides a detailed description of how the material properties and

geometry of the coaxial cable determines the values of the circuit parameters. Because

the overall length of the cable impacts the resistance, inductance, capacitance, and

conductance, these parameters are represented in per unit length units so that they

are independent of the total length of the transmission line. Current flow through
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the coaxial cable gives rise to the formation of the circuit parameters [60] along

with the dimensions and material properties of the inner and outer conductors. The

various relationships between the circuit parameters and the physical properties of

the conductors are given in Chapter 9 of Cheng’s text [59], where r1 is the radius of

the center conductor, and r2 is the inner radius of the outer conductor, as depicted

in Fig. 3.1. These are the following:

The resistive properties of the inner and outer conductors create a series resistance

R per unit length that may be expressed as [59]

R = 1
πa

√
πfµc
σc

, (3.1)

where σc and µc are the inherent electric conductivity and magnetic permeability of

the conductor, respectively. A magnetic flux is produced in and around the wire when

current flows through the wire. As a result, an inductance L arises and is given by

the ratio of that magnetic flux to the current flow. When written in terms of the

permeability and dimensions of the coaxial cable this inductance per unit length is

given by [59]

L = µ

2π ln
r2

r1
. (3.2)

The capacitance C arises from the electric potential between the two conductors, and

when written in terms of the geometry is [59]

C = 2πε
ln(r2/r1) , (3.3)

where ε is the dielectric permittivity of the insulating dielectric between the inner and

outer conductors. As the current flows between the inner and outer conductors, an
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effective resistance arises between them due to the lossy dielectric. Because this resis-

tance is in parallel with the resistance in the wire, it is represented as a conductance

G per unit length [59], given by

G = 2πσ
ln(r2/r1) . (3.4)

3.2 The Single Microstrip Line

Microstrip transmission lines, as found in microwave circuits, can appear in appli-

cations of digital communications, computers, and radar. They are fabricated on

printed circuit boards with a conductive strip of copper or gold, a dielectric substrate

made of silicon or similar material, and a ground plane. A visual representation of

the cross section of a single microstrip line is given in Fig. 3.3. The relative dielectric

constant of the air surrounding the microstrip line is, to a very good approximation,

equal to unity. The conductive segment of the microstrip line has a width w. Finally,

b is the thickness of the imperfect nonmagnetic dielectric substrate that has a complex

dielectric permittivity of εs(ω), which is frequency dependent

w

bεs 

ε = 1.0 

Figure 3.3: Cross-section of a single microstrip geometry as defined by Getsinger [26]. The
conductive segment holds width w, the substrate thickness is b, and the substrate dielectric
permittivity of εs(ω). The relative dielectric constant of the air surrounding the microstrip
line is taken as ε = 1.0.
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One unique characteristic of the microstrip line is the relative influence between

the air above and the dielectric substrate below and on the sides of the conductive

strip. This interaction results in an effective dielectric permittivity that leads to im-

pactful dispersion effects. As a result, the phase constant, which describes the phase

angle evolution of a propagating sinusoidal voltage pulse, becomes a complicated

function of the carrier frequency, which by itself will then result in the pulse being

dispersed as if it propagates. Because of this, the single microstrip transmission line

can only be a pure-TEM mode waveguide at zero frequency. At higher frequencies,

the frequency-dependence of the microstrip line gives rise to a slight longitudinal

component associated with the propagation of the electric and magnetic fields rela-

tive to the propagation direction. This results in the microstrip line behaving as a

quasi-TEM waveguide. The effective dielectric permittivity εeff (ω) introduced here

captures the dispersive behavior of the microstrip transmission line.

Much of the previously published work [2,26,73,74] has attempted to develop an

expression for the dispersion effects caused by the air-substrate combination surround-

ing the microstrip line. The effective dielectric permittivity εeff (ω) is the primary

parameter that describes this dispersive effect. The quantity εeff (ω) varies with fre-

quency and impacts the propagation factor of the pulse, which then leads to dispersive

distortion of the pulsed waveform as it propagates along the transmission line.

The per unit length inductance L′ and capacitance C ′ of the microstrip transmis-

sion line can be found in terms of the effective dielectric permittivity at zero frequency

εe0 by making use of the physical properties of the transmission line in the air region

and the substrate-region. These solutions for L′ and C ′ will ultimately influence

εeff (ω).
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The air-region of the microstrip transmission line is considered first in this analysis.

The phase velocity in the air vp,a is given by

vp,a = 1
C ′aL

′ ≈ c. (3.5)

and is approximately equal to the speed of light c in vacuum. As has been described

previously, the dielectric permittivity differs between the air region and the substrate,

so that the per unit capacitance of the air region alone, denoted by C ′a, is different

from that for a transmission line surrounded by vacuum (air). However, the magnetic

permeability is not impacted by either medium and is approximately equal to unity

in both the air and the substrate. Because the inductance is a result of the magnetic

flux, it is also minimally impacted and a separate term that describes the per unit

inductance of the air is not required [75].

In order to determine L′ and C ′, each material region needs to be analyzed sepa-

rately. From Eq. (3.5), the inductance per unit length is seen to be given by,

L′ = 1
c2Ca

. (3.6)

By definition [60], the per unit length characteristic impedance of a transmission

line is given by the square root of the ratio of the inductance per unit length to the

capacitance per unit length, i.e.

Z0 =
√
L′

C ′
. (3.7)
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With Eq. (3.6), this expression becomes

Z0 = 1
c

√
1

C ′C ′a
. (3.8)

Since L′ is unaffected by either the air or substrate medium, it follows that the relation

εe0 = C ′/C ′a is established to describe the permittivity between the air and dielectric

regions at zero frequency [75]. The characteristic impedance can then be written in

terms of εe0 as

Z0 =
√
εe0
cC ′

, (3.9)

so that

C ′ =
√
εe0
cZ0

. (3.10)

With the expression η0 = 1/(ε0c) for the intrinsic impedance, the speed of light in

air may be expressed as c = 1/ε0η0, so that, Eq. (3.10) becomes

C ′

ε0
=
√
εe0η0

Z0
, (3.11)

which is that given in Eq. (1b) by Getsinger [26].

Consider next obtaining an expression for the per unit length inductance L′ of the

microstrip line with Eq. (3.11). The expression Z0 =
√
L′/C ′ for the characteristic

impedance becomes

Z0 =
√√√√ L′Z0√

εe0ε0η0
, (3.12)

so that

L′ = Z0
√
εe0ε0η0. (3.13)
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Because η0 =
√
µ0/ε0, this equation yields the relation

L′ = Z0
√
εe0ε0µ0. (3.14)

Upon multiplying this equation through by η0 in order to remove the ε0 term, one

obtains the expression

L′η0 = Z0
√
εe0ε0µ0

√
µ0

ε0
, (3.15)

which finally yields the relation

L′

µ0
= Z0

η0

√
εe0. (3.16)

This expression is found to be in agreement with Eq. (1a) of Getsinger [26]. Equa-

tions (3.11) and (3.16) are next used to develop relations between the geometries of

the standard microstrip model and the Longitudinal Section Electric (LSE) model

that is now described.

LSE Model of the Single Microstrip Transmission Line

A single microstrip transmission line is a quasi-TEM mode waveguide due to the

influence of the air surrounding the conductive segment of the stripline [2]. Quasi-

TEM waveguides cannot be easily analyzed because they do not have an exact solution

like that for a pure TEM waveguide. Consequently, Getsinger [26] simplifies the quasi-

TEM problem by treating the single microstrip as a Longitudinal Section Electric

(LSE) mode waveguide due to its ability to be analyzed more directly. The LSE model

makes use of the linear superposition of the TE and TM modes of the waveguide.
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The single microstrip is then approximated as a series of parallel plate transmission

lines. Getsinger’s [26] LSE model of the microstrip transmission line is depicted in

Fig. 3.4.

εs 

ε = 1.0 

b

b'

a' a'2s

Figure 3.4: Longitudinal Section Electric (LSE) model of the single microstrip, with sub-
strate length 2s, substrate thickness b, and substrate dielectric constant εs. The quantities
b′ and a′ are the dimensions of the region of air surrounding the substrate. The dielectric
permittivity of the air is taken as ε = 1.0. This model follows the description given by
Getsinger in [26].

The LSE model is described as one parallel plate transmission line with a dielectric

permittivity εs, width 2s, and height b, indicated by the shaded section in Fig. 3.4.

Two additional parallel plate transmission lines are connected to either side of the

dielectric filled parallel plate transmission line. These sections are air-filled with a

dielectric permittivity of ε = 1.0, with width a′, and height b′, as illustrated.

In order to determine the per unit inductance L′LSE and capacitance C ′LSE of the

LSE model, the definition of the inductance L and capacitance C of the parallel plate

transmission line are first considered, where

L = µ0
µrH

W
, (3.17a)
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C = ε0
εrW

H
. (3.17b)

Here εr and µr are, respectively, the relative dielectric permittivity and magnetic

permeability of the media in a parallel plate transmission line, where W is the width,

and H is the height. When applied to the case of the LSE model shown in Fig. 3.4,

the previous equations are replaced by a summation of the geometric properties of

each region,

L′LSE = µ0

[
b

2s + b′

2a

]
(3.18a)

C ′LSE = ε0

[
εs(2s)
b

+ 2a′
b′

]
. (3.18b)

After some algebraic rearrangement, these relations may be cast into a form that is in

agreement with Getsinger’s definitions of the inductance and capacitance [26], where

L′

µ0
= 1

2[(s/b) + (a′/b′)] , (3.19a)

C ′

ε0
= 2

[
εs
s

b
+ a′

b′

]
. (3.19b)

The transverse resonance method [70,76] allows one to use circuit theory methods

to set up algebraic equations describing the properties of a microstrip transmission

line. This method is typically used to determine the modes of a waveguide and it’s

cutoff frequency. The transverse resonance method is used here to define equations

for the propagation factor, which may ultimately be used to determine the dielectric

permittivity of the surrounding material. From the definition of transverse resonance,

the sum of the impedances on either side of the air-dielectric interface are set equal
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to zero. Therefore, the sum of the impedance on the air-side of the interface is

Za + Zas + εaZ0 = 0, (3.20)

where Za is the the impedance of the air-side, Zas is the impedance at the interface

of the air and the substrate, Z0 is the impedance of free space, and εa = 1 is taken

as the dielectric permittivity of the air. On the substrate-side of the air-dielectric

interface, the sum of the impedance is

Zs + Zas + εsZ0 = 0. (3.21)

Here, Zs is the impedance of the substrate and εs is the dielectric permittivity of the

substrate. At the magnetic walls, which are open circuits that are represented by the

dashed lines in Fig. 3.4, the sum of the impedances is

Zina + Zins = 0, (3.22)

where Zina is the input impedance on the air-side of the magnetic wall, and Zins is

the input impedance on the dielectric-side of the magnetic wall.

In a lossless transmission line, the impedance is given by the ratio of the ca-

pacitance to the inductance, Z = C/L, so that application of this identification to

Eqs. (3.20) and (3.21) in order to bring each expression into terms that appropri-

ate for the propagation factor of the transmission line, there results in the following

expression on the air-side
Ca
La

+ Cas
Las

+ C0

L0
= 0 (3.23)
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where Ca and La are the capacitance and inductance of the air, Cas and Las are the

capacitance and inductance between the interface of the air and the substrate, and C0

and L0 are the capacitance and inductance of free-space, respectively. Consequently,

on the substrate side of the transmission line,

Cs
Ls

+ Cas
Las

+ C0

L0
= 0, (3.24)

where CS and Ls are the capacitance and inductance of the dielectric substrate.

Since γ2 = ω2LC for a lossless line, Eqs. (3.23) and (3.24) are accordingly multiplied

through by ω2L2, yielding

ω2CaLa + ω2CasLas + ω2C0L0 = 0, (3.25)

and

ω2CsLs + ω2CasLas + ω2C0L0 = 0, (3.26)

which are the desired forms appropriate for the lossless propagation factor γ2 = ω2LC.

Application of this definition of the propagation factor on a lossless line results in

an expressions for the sum of the propagation factors on the air-side, given by

γ2
a + γ2

as + k2
0 = 0, (3.27)

and the sum of propagation factors on the substrate-side

γ2
s + γ2

as + εsk
2
0 = 0. (3.28)
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Here γa is the propagation factor in air, γs is the propagation factor in the substrate,

γas is the propagation factor at the air-dielectric interface, and k0 = ω/c is the

wavenumber in free space.

The generic form of the input impedance of a transmission line, which may be

found in many undergraduate texts [60], may be written as

Zin = Z0
ZL + Z0 tanh (γl)
Z0 + ZL tanh (γl) . (3.29)

For a lossless transmission line, the load impedance vanishes (ZL = 0), and the input

impedance of a lossless line becomes

Zin = Z0 tanh (γl). (3.30)

Substitution of this expression for the input impedance of a lossless transmission line

into Eq. (3.22) yields the result

Za tanh (γaa′) + Zs tanh (γss) = 0. (3.31)

In the LSE model, the characteristic impedances Za and Zs are directly propor-

tional to the propagation factor and inversely proportional to the heights of each line.

Therefore Za = γa/b
′ and Zs = γs/b, and Eq. (3.31) becomes

γa
b′

tanh γaa′ +
γs
b

tanh γss = 0, (3.32)

where γa and γs are the propagation factors of the air-filled and substrate regions

respectively. The quantities b, b′, and s are geometrical parameters associated with
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the single microstrip LSE model, as indicated in Fig. 3.4.

The MacLauren Series approximation of the hyperbolic tangent function [77] is

now used in order to simplify the analysis, where

tanh x ≈ 1
1/x+ x/3 , |x| < π

2 (3.33)

With this substitution, Eq. (3.32) becomes

γa
b′

(
1

1/γaa′ + γaa′/3

)
+ γs

b

(
1

1/γss+ γss/3

)
= 0, (3.34)

which may be simplified to

γa
b′

(
3γaa′

3 + γ2
aa
′2

)
+ γs

b

(
3γss

3 + γ2
ss

2

)
= 0. (3.35)

and on to the expression

γ2
aa
′(3b+ bγ2

ss
2) + γ2

ss(3b′ + b′γ2
aa
′2) = 0. (3.36)

which may be rearranged into the form

3(γ2
aa
′b+ γ2

ssb
′) + γ2

aγ
2
sa
′s(bs+ b′a′) = 0. (3.37)

The second term of the above expression is next moved to the right-hand side of

the equation, and with a common denominator established, this expression finally

becomes
b/s

γ2
s

+ b′/a′

γ2
a

= −sb+ b′a′

3 , (3.38)

72



in agreement with Eq. (10) of Getsinger’s original derivation [26].

Next, Getsinger [26] establishes a relationship between the propagation factor

and effective dielectric constant of the microstrip transmission line. For a generic

transmission line, the complex propagation factor is expressed as γ = α + jβ, where

α is the attenuation factor and β is the dispersive term of the propagation factor.

In the case of a lossless dispersive transmission line, α = 0 so that γ = jβ and

consequently

γ2 = −β2. (3.39)

The dispersive propagation factor of the microstrip transmission line is directly pro-

portional both to the free-space wavenumber k0 = ω/c and the effective dielectric

permittivity of the microstrip transmission line, as given by the expression β2 = k2
0εe,

so that

γ2 = −k2
0εe. (3.40)

Per Gestinger [26], the longitudinal propagation factor appearing in Eq. (3.40) is

defined by both guided wave propagation in the air-filled region

γ2
a + γ2 + k2

0 = 0 (3.41)

and in the dielectric substrate

γ2
s + γ2 + εsk

2
0 = 0, (3.42)

where εs is the dielectric permittivity of the substrate.

73



With Eq. (3.40), this pair of equations becomes

γ2
a = k2

0(εe − 1) (3.43)

for the longitudinal propagation factor in terms of the effective dielectric permittivity

for the air-filled and

γ2
s = −k2

0(εs − εe). (3.44)

dielectric substrate regions, respectively. Finally, substitution of Eqs. (3.43) and (3.44)

into Eq. (3.38) results in Getsinger’s [26] expression for the basic dispersion relation-

ship, given by

− b′/a′

εe − 1 + b/s

εs − εe
= a′b′ + sb

3 k2
0. (3.45)

The relationship between the actual microstrip width parameters a and b and the

parameters a′ and b′ appearing Getsinger’s LSE model is simply

b′/a′ = b/a. (3.46)

With this substitution, one obtains the final expression for the basic dispersion rela-

tionship as
−1/a
εe − 1 + 1/s

εs − εe
=
(
a(b′/b)2 + s

3

)
k2

0. (3.47)

Based upon the basic dispersion relationship given in Eq. (3.47), an expression

for εe can noe be derived. Upon following Getsinger’s approach [26] Eq. (3.47) may

be expressed as a quadratic equation with the difference (εs − εe) as the dependent
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variable, given by

(εs − εe)2 +
[
(εs − 1) + (a+ s)/as

Ak2
0

]
(εs − εe) + (εs − 1)/s

Ak2
0

= 0, (3.48)

with A = [a(b′/b)2 + s]/3. This quadratic equation in admits the solution

εs − εe = B

2

1−

√√√√1− (εs − 1)/s
B2Ak2

0

 , (3.49)

where B = (εs−1)+(a+s)/asAk2
0. Upon substituting the first two terms of a Taylor

Series expansion of the square root quantity appearing in this equation, there results

εs − εe '
(εs − 1)/s
BAk2

0
, (3.50)

which provides a good approximation when ε0 − 1 � B2Ask2
0. Finally, upon sub-

stitution of the expressions for A and B into this equation, one finally obtains,

Getsinger’s [26] expression for the effective dielectric constant εe as

εe = εs −
[(εs − 1)a]/(a+ s)

1 + k2
0as{[a(b′/b)2 + s]/3}(εs − 1)/(a+ s) . (3.51)

However, there still remains the unknown quantities a and s in Eq. (3.51) that

arise from the geometry used in the LSE model. These can be determined by equating

Eqs. (3.11) and (3.16) to Eq. (3.19). First, upon equating the equations for the per

unit inductance,
Z0
√
εe0

η0
= 1

2 [(a′/b′) + (s/b)] , (3.52)
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so that
η0

Z0
√
εe0

= 2 [(a′/b′) + (s/b)] . (3.53)

This equation may then be rearranged to give an expression for a′/b′, where

a′

b′
= η0

2Z0εe0
− s

b
. (3.54)

An expression for s/b must now be determined in order to fully determine the ratio

a′/b′. This is found by equating Eq. (3.11) to Eq. (3.19), whence,

η0
√
εe0

Z0
= 2

(
a′

b′
+ εs

s

b

)
. (3.55)

Consequently,
s

b
= η0

√
εe0

2εsZ0
− a′

εsb′
. (3.56)

With this result, Eq. (3.56) gives

a′

b′
= η0

2Z0
√
εe0
− η0
√
ε+ e0

2εsZ0
+ a′

εsb′
. (3.57)

so that
a′

b′

(
εs − 1
εs

)
= η0

2Z0
√
εe0
− η0
√
ε+ e0

2εsZ0
. (3.58)

which may be rewritten as

a′

b′

(
εs − 1
εs

)
= η0

2Z0
√
εe0

(
εs − εe0
εs

)
. (3.59)

This then gives an expression for a′/b′ that is in agreement with Eq. (4a) of Getsinger [26];
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viz.
a′

b′
=
(

η0

2Z0
√
εe0

)(
εs − εe0
εs − 1

)
. (3.60)

This solution for a′/b′ can now be used to determine an expression for s/b. Upon

returning to Eq. (3.52), an expression for s/b in terms of a′/b′ results, where

s

b
= η0

2Z0
√
εe0
− a′

b′
. (3.61)

Upon substitution of the expression for a′/b′ given in Eq. (3.60), there results

s

b
= η0

2Z0
√
εe0
−
[(

η0

2Z0
√
εe0

)(
εs − εe0
εs − 1

)]
, (3.62)

which may be simplified to read

s

b
= η0

2Z0
√
εe0

(
1− εs − εe0

εs − 1

)
. (3.63)

This then provides an expression for s/b that is in agreement with Eq. (4b) of

Getsinger [26], namely,
s

b
= η0

2Z0
√
εe0

(
εe0 − 1
εs − 1

)
(3.64)

Equations (3.60) and (3.64) are then substituted into Eq. (3.51), in order to yield

an expression for the the effective dielectric constant in terms of known quantities.

First

a+ s = bη0

2Z0
√
εe0

εs − εe0
εs − 1 + bη0

2Z0
√
εe0

εe0 − 1
εs − 1 , (3.65)

and

as = bη0[(εs − εe0) + (εe0 − 1)]
2Z0
√
εe0(εs − 1) . (3.66)
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Upon substitution of these two relations in Eq. (3.51), there results

εs = εs − εe0
1 + C[(k2

0b
2η2

0)/(12Z0)] (3.67)

where C is a an expression defined both by the dielectric permittivites and the waveg-

uide geometry as,

C = (εs − εe0)(εe0 − 1)[(εs − εe0)(b′/b)2 + (εe0 − 1)]
εe0(εs − 1)2 , (3.68)

The expressions k0 = ω/c for the wavenumber in free space, η0 =
√
µ0/ε0 for the

intrinsic impedance of free space, and c = 1/√ε0µ0 for the speed of light in a vac-

uum are substituted into Eq. (3.67) along with a term Getsinger [26] defines as the

frequency parameter of the dispersion function

fp = Z0

2µb, (3.69)

where µ = 31.92 nH/in is the magnetic permeability of the non-magnetic substrate.

This then yields dispersion of the single microstrip transmission line, taken here as

εe = εs − εe0
1 +G(f/fp)2 . (3.70)

Here G is defined as an “empirical parameter that is introduced in order to simplify

the microstrip dispersion function” [26], where

G = π2

12
(εs − εe0)(εe0 − 1)[(εs − εe0)(b′/b)2 + (εe0 − 1)]

εe0(εs − 1)2 . (3.71)
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Equations (3.70) and (3.71) provide the desired relationship between the parameters

b′/b, εs, εe0 and the empirical parameter G and these ultimately lead to a determina-

tion of the effective dielectric constant εe of the substrate material.

As an example, illustrating the use of these relations, consider comparing two

different microstrip models in order to observe the influence of the material parameters

and geometry on G and εe. The first model is cited by Getsinger [26] and makes use

of measurements obtained by Zysman and Varon [78]. The second model considered

here was developed by Veghte and Balanis [2]. Both models use a common substrate

material of alumina, for which εs ≈ 10. Table 3.1 provides a comparison of the

substrate dielectric constant εs, effective dielectric constant at zero frequency εe0, the

characteristic impedance Z0, and the dispersive frequency parameter fp using each

model.

Model εs εe0 Z0 fp
Zysman & Varon [78] 9.7 6.5 50 Ω 15.56 GHz
Vehgte & Balanis [2] 10.2 7.51 28.6 Ω 8.96 GHz

Table 3.1: Comparison of material parameters of two different microstrip transmission line
models containing alumina substrates.

As can be seen from Eq. (3.71), G is also dependent on the geometric parameter

b′/b, which is the ratio of the height of the dielectric to that of the waveguide in

Figure 3.4. Getsinger [26] provides a detailed analysis determining that b′/b ≈ 3 and

G ≈ 1.

In order to observe the effects of the effective dielectric permittivity on the real

part of the complex propagation factor, Equation (3.70) is applied to Veghte and

Balanis’s [2] expression for this frequency dependent variable. Equation (6) of Veghte

and Balanis’s published analysis [2], states that the frequnecy-dependent propaga-
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tion factor is related to the effective dielectric permittivity according to the familiar

relation

β(ω) = ω

c

√
εe(ω) (3.72)

where c is the wave speed in a vacuum. Substitution of Eq. (3.70) into Eq. (3.72)

then gives

β(ω) = ω

c

√
εs − εe0

1 +G(f/fp)2 . (3.73)

Consider next the complex propagation factor, defined as

γ(ω) = α(ω) + jβ(ω) (3.74)

where α(ω) is the attenuation factor. Veghte and Balanis [2] assume a lossless trans-

mission line in their analysis, in which case α(ω) ≈ 0. Substitution of Eq. (3.73) into

the expression for the lossless propagation factor, there results

γ(ω) = j

[
ω

c

√
εs − εe0

1 +G(f/fp)2

]
. (3.75)

3.3 The Coupled Microstrip Line

Coupled microstrip models are similar to single microstrip models in their method of

fabrication where, for the single microstrip, a conductive strip lies above a dielectric

substrate. Instead of a single conductive element, in the couple microstrip case, there

are two or more conductive elements that are in close proximity on the substrate.

Current and voltage coupling will then occur between the conductive elements. Simi-

lar to the single microstrip, the effective dielectric permittivity εe is influenced by the
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interaction of the air and substrate dielectric. In addition, the coupling effects of the

multiple conductive elements also play a role by contributing an additional self- and

mutual- capacitance to the effective circuit properties.

Garg and Bahl [14] consider a symmetrical coupled microstrip line with two con-

ductive elements, as illustrated in Figure 3.5. The conductive elements hold a nor-

malized width to height ratioW/h and are separated by a distance s. They sit upon a

dielectric substrate of thickness b with a relative dielectric permittivity εr. Similar to

the single microstrip line, the coupled microstrip is surrounded by air with a relative

dielectric constant of taken here as being close to unity.

W/h W/h

ε
r

ε = 1.0

b

s

Figure 3.5: Cross-section of a coupled microstrip with two conductive strip lines with nor-
malized width W/h, separation distance s between the two conductive strips, substrate thick-
ness b, and substrate dielectric permittivity εr. The relative dielectric constant of the air
surrounding the microstrip line is taken as ε = 1.0.

In order to model the effects of the additional capacitance terms introduced by the

coupling of the conductive strips, Garg and Bahl [14] apply the classical definition

of the dielectric permittivity of a capacitor as given by ε = C/C0. Here C is the

capacitance and C0 is the capacitance of an ideal capacitor in vacuum.For this coupled

microstrip geometry,

εire = Ci/C
a
i . (3.76)

Here, the subscript i indicates the even (e) or odd mode (o) and the superscript
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a indicates that it is the capacitance of air as the dielectric material that is being

referenced. In a symmetrical coupled microstrip line, the capacitance influences the

inductance. Because of this, the capacitance is used to describe the coupling between

the conductive strip lines.

Garg and Bahl [14] explain that two capacitance terms will arise in this configu-

ration. One is the parallel plate capacitance that arises between the two lines and the

other is the fringing capacitance of each line. The capacitance will differ for the even

and odd modes of the microstrip lines, which act as waveguides. The total even-mode

capacitance Ce, and odd-mode capacitance Co, of a coupled microstrip line may be

expressed as

Ce = Cp + Cf + C ′f , (3.77)

Co = Cp + Cf + Cga + Cgd, (3.78)

respectively. Here Cga is the capacitance for the odd-mode for fringing across the

gap in vacuum and Cgd is the capacitance across the gap in the dielectric substrate.

In addition, Cp is the capacitance of a single microstrip of relative width to ground

ratio W/h without fringing effects, and is given by the expression for a parallel plate

capacitor as

Cp = ε0εr
W

h
, (3.79)

where ε0 is the dielectric permittivity of free space, and εr is the relative dielectric per-

mittivity of the substrate. The quantity Cf is the fringing capacitance of a microstrip

line of relative width to ground ratio W/h and free-space impedance Z0, given by [14]

Cf =
√
εre

2cZ0
− Cp

2 , (3.80)
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where c is the speed of light in a vacuum. Finally, C ′f is the fringing capacitance of

the coupled microstrip line with separation s between the microstrip lines, given by

Garg and Bahl [14]

C ′f = Cf
1 + A(h/s) tanh(8s/h) , (3.81)

where A is an empirical factor that is based on the geometry and given as [14]

A = exp [−0.1 exp (2.33− 2.53W/h)]. (3.82)

With these results, consider the expression for the even-mode capacitance Ce given

in Equation (3.77). With the above expressions for Cp, Cf , C ′f substituted into that

equation for Ce, one obtains

Ce = 1
2ε0εre

[
1

ε0
√
εrecZ0

+ W

h
+ 1/ε0

√
εrecZ0 −W/h

1 + A(h/s) tanh 8s/h

]
. (3.83)

Because

ε0cZ0 =
√
ε0
µ0
Z = Z

Z0
, (3.84)

the expression for Ce becomes

Ce = 1
2ε0εre

[
Z0/Z√
εre

+ W

h
+ (Z0/Z)√εre −W/h

1 + A(h/s) tanh 8s/h

]
. (3.85)

In order to incorporate the effects of dispersion, Garg and Bahl [14] make use of

Getsinger’s [26] expression of the effective dielectric permittivity as given in Eq. (3.70)
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for the even and odd mode as

εire(f) = εr −
εr − εire

1 +G(f/f)2 , (3.86)

where the superscript i denotes the even (i = e) or odd (i = o) mode, and the quantity

G is related to the vacuum impedance Z0 for the coupled microstrip.
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Chapter 4

Numerical Analysis

4.1 Initial Voltage Pulse

The initial voltage pulse v(t) on the transmission line considered here is taken as a

single-cycle trapezoidal envelope modulated sine wave

v(t) = u(t) sin(ωct) (4.1)

where u(t) is the envelope of the pulse, and where ωc is the fixed carrier frequency of

the envelope modulated wave, which may differ depending upon the area of applica-

tion of interest. Here, the carrier frequency can range from tens of Hz to GHz, where

50 - 60 Hz is typical for power systems, while the GHz range is more commonly used

in communication networks or computer circuitry. Trapezoidal pulses are a more ac-

curate model of digital clock pulses, which are often approximated as square pulses.

Gaussian pulses are often chosen because they are infinitely smooth, thereby avoiding

any singularities in their analysis; however, trapezoidal envelope pulses are considered
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because of their general use in practical applications.

Fig. 4.1 illustrates an example of the temporal pulse behavior for a single cycle

initial pulse with a fixed carrier frequency fc = 50 Hz. At this carrier frequency, the

period of the carrier wave is T = 20ms, and the rise tr and fall tf times are chosen

to be equal as tr = tf = 2ms, making the pulse symmetrical. The amplitude over the

main body of the envelope is unity. Although the trapezoidal envelope is continuous,

their first derivative is discontinuous at both the leading and trailing edges.
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Figure 4.1: Single-cycle sine wave at fc = 50 Hz with a trapezoidal pulse envelope with equal
rise and fall times tr = tf = 2ms.
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4.2 Temporal Spectrum of the Initial

Voltage Pulse

The temporal spectrum representation of pulse propagation provides a straightfor-

ward method of analysis through the frequency characteristics of the initial pulse.With

this in mind, the temporal spectrum representation of the trapezoidal envelope pulse

is now considered.

The temporal spectrum is evaluated using the usual Fourier Transformation is

taken here as

F̃ (ω) =
∫ ∞
−∞

f(t)ejωtdt (4.2)

with the inverse Fourier Transform

f(t) = 1
2π

∫ ∞
−∞

F̃ (ω)e−jωtdω. (4.3)

With the initial voltage pulse given by v(t) = u(t) sin (ωct), its Fourier Spectrum is

given by

Ṽ (ω) =
∫ ∞
−∞

u(t) sin(ωct)ejωtdt, (4.4)

which may be rewritten as

Ṽ (ω) = 1
2i

∫ ∞
−∞

u(t)
(
ejωct − e−jωct

)
ejωtdt (4.5)
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using Euler’s Identity. This then results in two separate transform integrals

Ṽ (ω) = 1
2j

∫ ∞
−∞

u(t)ej(ω+ωc)tdt− 1
2j

∫ ∞
−∞

u(t)ej(ω−ωc)tdt. (4.6)

From the frequency shift property of the Fourier Transform, one then obtains

Ṽ (ω) = 1
2j (ũ(ω + ωc)− ũ(ω − ωc)) , (4.7)

where

ũ(ω) =
∫ ∞
−∞

u(t)ejωtdω (4.8)

is the Fourier Transform of the pulse envelope function.

Consider next determining the Fourier Transform of the trapezoidal function en-

velope function u(t). The analysis begins by defining the trapezoidal envelope as the

difference between the initial rise-half of the signal envelope ur(t) and the fall-half of

the signal uf (t). The rise-half is described by

ur(t) =



(t− t1)/tr t1 ≤ t ≤ t2

1 t ≥ t2

0 t ≤ t1

(4.9)

where tr = t2 − t1 is the rise time of the leading edge envelope and is assumed to be
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less than the period of the signal. The fall-half is described by

uf (t) =



(t4 − t)/tf t3 ≤ t ≤ t4

1 t ≤ t3

0 t ≥ t4

(4.10)

where tf = t4−t3 is the fall time of the trailing edge of the envelope. For a symmetric

pulse, the rise and the fall times are equal. The complete signal envelope function is

then given by the difference u(t) = ur(t)− uf (t).

The Fourier Transform of this envelope function is then given by the difference

between the transforms of the rise and fall envelope function as

Ũ(ω) =
∫ ∞
−∞

u(t)ejωtdt =
∫ ∞
−∞

ur(t)ejωtdt−
∫ ∞
−∞

uf (t)ejωtdt, (4.11)

where the individual Fourier Transforms of the rise and fall functions can be evaluated

separately.

Consider first the rise-half with Eq. (4.9) is substituted into expression for the

Fourier Transform, one obtains

Ũr(ω) =
∫ t2

−t1

t− t1
tr

ejωtdt+
∫ ∞
t2

eiωtdt

= 1
tr

∫ t2

t1
tejωtdt− t1

tr

∫ t2

t1
ejωtdt+

∫ ∞
t2

ejωtdt (4.12)

Each of the three remaining integrals appearing in Eq. (4.12) are now evaluated
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separately. The first integral is evaluated using integration by parts, as

∫ t2

t1
tejωtdt = 1

jω
tejωt|t2t1 −

∫ t2

t1

1
jω
ejωtdt

= 1
jω

(
t2e

jωt2 − t1ejωt1
)

+ 1
ω2

(
ejωt2 − ejωt1

)
(4.13)

With the substitution, t2 = t1 + tr, this integral becomes

∫ t2

t1
teiωtdt = 1

jω

{
(t1 + tr)ejω(t1+tr) − t1ejωt1

}
+ 1
ω2

(
ejω(t1+tr) − ejωt1

)
. (4.14)

which, when rewritten using Euler’s Identity, may be simplified to read

∫ t2

t1
tejωtdt = ejω(t1+tr/2)

{ 1
ω

(
2t1 sin(ωtr/2)− itrejωtr/2

)
+ 2j
ω2 sin(ωtr/2)

}
. (4.15)

For the second term in Eq. (4.12), one obtains

∫ t2

t1
ejωtdt = 1

jω

(
ejωt2 − ejωt1

)
= 1
jω

(
ejω(t1+tr) − ejωt1

)
= 1
jω
ejωt1

(
ejωtr − 1

)
(4.16)

with the substitution t2 = t1 + tr. One then has that

∫ t2

t1
ejωtdt = 1

jω
ejωt1ejωtr/2

(
ejωtr/2 − e−jωtr/2

)
= 2
ω

sin(ωtr/2)ejω(t1+tr/2). (4.17)
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Finally, the third term in Eq. (4.12) is evaluated as

∫ ∞
t2

ejωtdt = j

ω
ejωt2

= j

ω
ejω(t1+tr) (4.18)

where t2 = t1 + tr.

The temporal spectrum representation of the rise-half of the trapezoidal pulse is

then given by the sum of each previously integrated term as

Ũr(ω) = 1
tr
ejω(t1+tr/2)

{ 1
ω

(
2t1 sin(ωtr/2)− jtrejωtr/2

)
+ 2j
ω2 sin(ωtr/2)

}
− t1
tr

2
ω

sin(ωtr/2)ejω(t1+tr/2) + j

ω
ejω(t1+tr), (4.19)

which may be simplified to the expression

Ũr(ω) = 2j
ω2tr

sin(ωtr/2)ejω(t1+tr/2). (4.20)

Notice that in the limit as tr goes to zero and the trapezoidal front becomes a

Heaviside step function, sin(ωtr/2) approaches ωtr/2, and limtr→0 Ũr(ω) = j
ω
ejωt1 ,

which is precisely the well-known expression for the Fourier Transform of the Heavi-

side step-function at t = t1 [79]. Thus, the envelope spectrum given in Eq. (4.20) has

the appropriate limiting behavior as the rise-time tr approaches zero and the trape-

zoidal envelope function takes on the limiting form of a Heaviside unit-step function

at t = t1.

In a similar manner, the temporal spectrum of the fall-half of the envelope function
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defined in Eq. (4.10), is given by

Ũf (ω) =
∫ t4

t3

t4 − t
tf

ejωtdt+
∫ ∞
t3

ejωtdt

= t4
tf

∫ t4

t3
eiωtdt− 1

tf

∫ t4

t3
tejωtdt+

∫ ∞
t3

ejωtdt (4.21)

For the first term the first term appearing in Eq. (4.21), one obtains

∫ t4

t3
ejωtdt = 1

jω

(
ejωt4 − ejωt3

)
, (4.22)

which may be rewritten in terms of tf = t4 − t3 as

∫ t4

t3
ejωtdt = 1

jω

(
ejω(tf+t3) − ejωt3

)
= 2
ω
ejω(t3+tf/2) sin(ωtf/2). (4.23)

The Fourier transform integral appearing in the second term appearing in Eq. (4.21)

may be evaluated using integration by parts as,

∫ t4

t3
tejωtdt =

(
t4
jω
ejωt4 − t3

jω
ejωt3

)
+ 1
ω2

(
ejωt4 − ejωt3

)
= 1
jω

[
tfe

jωtf + t3
(
ejωtf − 1

)]
+ 1
ω2 e

jωt3
(
ejωtf − 1

)
, (4.24)

where t4 = tf + t3 has been substituted. Application of Euler’s Identity then results

in

∫ t4

t3
tejωtdt = ejω(t3+tf/2)

{ 1
ω

(
2t3 sin(ωtf/2)− jtfejωtf/2

)
+ 2j
ω2 sin(ωtf/2)

}
. (4.25)
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in a similar manner as was used in the derivation of Eq. (4.15).

Finally, the integral appearing in the third term is evaluated as

∫ ∞
t3

ejωtdt = j

ω
ejωt3

= j

ω
ejω(tf+t3) (4.26)

because tf = t4 − t3.

The temporal spectrum for the fall-side of the trapezoidal envelope pulse is then

given by the summation of these three terms as

Ũf (ω) = 2t4
ωtf

ejω(t3+tf/2) sin(ωtf/2)

− 1
tf
eiω(t3+tf/2)

{ 1
ω

(
2t3 sin(ωtf/2)− itfejωtf/2

)
+ 2j
ω2 sin(ωtf/2)

}
+ j

ω
ejω(tf+t3) (4.27)

which may be simplified to read

Ũf (ω) = − 2j
ω2tf

sin(ωtf/2)ejω(t3+tf/2), (4.28)

a result that is very similar to that of the rise-half of the signal. Upon combining

these results for the rise and fall time spectra for the complete trapezoidal pulse, one

obtains

Ũ(ω) = 2j
ω2tr

sin(ωtr/2)ejω(t1+tr/2) − 2j
ω2tf

sin(ωtf/2)ejω(t3+tf/2), (4.29)
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which simplifies to

Ũ(ω) = 2j
ω2

(
1
tr

sin(ωtr/2)ejω(t1+tr/2) − 1
tf

sin(ωtf/2)ejω(T+t1−tf/2)
)
, (4.30)

where T = t3 − t2 is the time period of the pulse. This result holds for either an

asymmetric or symmetric pulse, depending on the rise and fall time values.

For the special case when the pulse is symmetric (i.e. when tr = tf ) the envelope

spectrum in Eq. (4.30) simplifies to

Ũ(ω) = 4j
ω2tr

sin(ωtr/2) sin(ω(T − tr)/2)ejω(t1+T/2). (4.31)

With this result, Eq (4.7) for the single-cycle trapezoidal envelope voltage pulse

spectrum becomes

Ṽ (ω) = 4j
(ω + ωc)2tr

sin((ω + ωc)tr/2) sin((ω + ωc)(T − tr)/2)ej(ω+ωc)(t1+T/2) (4.32)

− 4j
(ω − ωc)2tr

sin((ω − ωc)tr/2) sin((ω − ωc)(T − tr)/2)ej(ω−ωc)(t1+T/2).

This analytical solution of the Fourier spectrum of the initial voltage pulse is compared

with a numerical FFT result as illustrated in Fig. 4.2. The green curve in the figure

illustrates the results of the numerical calculation of the specturm for the voltage pulse

using the FFT algorithm. The dashed blue curve is the analytical Fourier spectrum

of the initial voltage pulse in Eq. (4.33). It can be seen that the error between the

analytical and numerical solutions is negligible, over the frequency domain of practical

interest.
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Figure 4.2: Fourier spectrum of single-cycle sine wave at ωc = 50 Hz with a trapezoidal
envelope. The green line is the FFT of the pulse. The blue dashed line is analytical solution.

To further verify the accuracy of the FFT, the ratio of the rise and fall time of the

envelope to period of the pulse tr/T was varied and the Root-Mean-Square (RMS)

error was calculated for each ratio value. The RMS error was again found to be

negligible across the range of tr/T values. Table 4.1 shows the change in RMS error

across each chosen value of tr/T .
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|Ũ(0)| |Ũ(ωc)|

tr/T RMS Error Analytical Numerical Analytical Numerical

0.0001 2.66e-15 0 5.44e-16 0.96 0.96

0.001 5.67e-09 0 5.44e-16 0.96 0.96

0.01 5.46e-11 0 5.49e-16 0.96 0.96

0.1 8.75e-11 0 9.80e-04 0.97 0.97

0.2 2.12e-08 0 -8.82e-14 0.92 0.92

0.3 1.17e-10 0 -1.36e-13 0.99 0.99

0.4 7.23e-11 0 3.33e-03 1.00 1.00

0.5 1.20e-10 0 -1.91e-13 1.00 1.00

Table 4.1: Analytical and numerical calculations of the pulse spectra for increasing values
of tr/T .

4.2.1 Low Frequency Effects

A more detailed analysis of the low frequency content of a pulse with a low frequency

carrier wave is in order. When the carrier frequency of the pulse is sufficiently high

such that the negative and positive frequency components of the pulse spectrum,

ũ(ω− ωc) and ũ(ω+ ωc), respectively, have negligible amplitudes in the opposite fre-

quency domain (the negative frequency domain for the positive frequency component

and vice-versa), one needs to account for these opposite frequency components in a

numerical FFT calculation of the spectrum. However, when the signal frequency is

sufficiently small, as would be for a 50 Hz voltage pulse, allowance for the opposite

frequency components must be made in any numerical FFT calculation. Fig. 4.3

illustrates the overlap of the positive and negative frequency components for the case
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of 50 Hz pulse.

From Fig. 4.3, it is clear that there is an impact on the overall pulse behavior

because there is an overlap with the negative half of the frequency spectrum. The

goal is to quantify that impact. Because the carrier frequency is low, at 50 Hz, there is

going to be more of influence of the low frequency content than if the carrier frequency

were higher. Another piece to be investigated is to determine at what frequency does

the low frequency content become negligible.
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Figure 4.3: Fourier Spectrum of the single-cycle sine wave at fc=50 Hz with a trapezoidal
pulse over positive and negative frequencies. The top plot shows the positive-half of the
pulse. The bottom plot shows the negative-half of the pulse. Note the overlap of the two
halves of the pulse when ω ≈ 0.

97



4.3 Transmission Line Parameters

Recall the complex propagation factor in Eq. (2.9), γ(ω) = α(ω)+jβ(ω). As described

in Section 2.2.1, the complex propagation factor γ(ω) is comprised of the attenuation

factor α(ω) and propagation factor β(ω) and describes the loss and phase behavior

of the wave traveling along the transmission line. The attenuation and propagation

factors are frequency dependent. Their frequency characteristics will impact the

shape and time delay of the pulse propagation as frequency varies. An analysis of the

attenuation and propagation factors with respect to frequency is performed for the

coaxial cable and microstrip transmission line models described in Chapter ??.

4.3.1 Coaxial Cable Parameters

Two coaxial cable examples are considered: (1) a high loss line and (2) a low loss

line. Fig. 4.4 shows the dependence of frequency for the attenuation and propagation

factors for both high and low loss coaxial cable transmission lines. The solid lines

represent the high loss case, where Rhigh = 100L. The dashed lines are the low loss

case, where

Rlow =

√
ωcµ/2σc

2πb(1 + b/a) . (4.33)

Table 4.2 shows the per unit circuit parameter values for the high and low loss cases.

From this comparison, one can observe that the attenuation α(ω) and propagation

β(ω) constants on the high line is highly dependent on frequency. In particular, the

lower frequency region shows much more variation in the behavior of α(ω) and β(ω).

This means that a wave propagating on a highly lossy transmission line will be more
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Low Loss High Loss
R (Ω/m) 2.1651e-07 2.0794e-05
L (H/m) 2.0794e-07 2.0794e-07
G (S/m) 0.5439 0.5439
C (F/m) 1.6854e-10 1.6854e-10

Table 4.2: Per unit circuit parameter values of the high loss and low loss coaxial cable
transmission lines.

susceptible to attenuation and dispersion in the lower frequency region. It can be

seen in Fig. 4.4 there are some frequency regions that overlap where the line will

behave as lossless or have extremely low loss. In this case, with the chosen per unit

circuit parameters, the red "x" in Fig. 4.4 indicates the behavior of the attenuation

and propagation factors at the carrier frequency of 50 Hz. At this frequency, Fig. 4.4

indicates that the pulse on the high loss line will propagate slightly slower and decay

in amplitude in contrast to the pulse propagation on the low loss transmission line.

In the kHz range and above, the attenuation and dispersion of both the high loss

and low loss cases follow a linear behavior, which indicates that the high loss line will

behave similarly to the the low loss line in the higher frequency regime.
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Figure 4.4: α(ω) and β(ω) vs. ω for the high loss and low loss coaxial cable transmission
line. The green lines are the attenuation constant α(ω) and the blue lines are the propagation
factor β(ω). The solid lines represent the high loss case and the dashed lines represent the
low loss case. The red ‘x’ denotes the carrier frequency at ωc = 314 rad/s.

4.3.2 Microstrip Transmission Line Parameters

Two types of microstrip transmission lines models are compared in this section. One

is the Getsinger model with a constant substrate permittivity εs, as described in

Section 3.2. The other case is the dispersive, Debye-type substrate that is described

in Appendix A. Fig. 4.6 illustrates the differences in the attenuation and dispersion

between each model.

The complex propagation factor for a microstrip transmission line γµ(ω) is written

in terms of the relative effective dielectric permittivity εreff (ω) of the transmission
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line, as defined in Chapter 3, where

γµ(ω) = αµ(ω) + jβµ(ω) = ω

c

√
εreff (ω). (4.34)

Recall Eq. (3.70), which defines εreff (ω) in terms of the dielectric permittivity of

the substrate εs. Fig. A.1 illustrates the real and imaginary parts of εs for the case

of a Debye-type substrate consisting of loamy soil with 0% moisture content. Note

that both the real and imaginary parts of εs for this case are heavily dependent

on frequency, which will result in the substrate attenuation factor αs(ω) and the

substrate dispersion factor βs(ω) to be dependent upon frequency as well. Such a

behavior is illustrated in Fig. A.3. It can be seen from both Figs. A.1 and A.3 that

for the case of the loamy soil with 0% moisture content, there will be a strong impact

on the behavior of the pulse in the frequency range of 104 Hz to 106 Hz. When the

carrier frequency of the pulse is within this range, it will be attenuated significantly

and disperse slightly.

The effective dielectric permittivity εreff (ω) for the Getsinger microstrip trans-

mission line with a Debye-type substrate material exhibits the combined behavior of

both the Getsinger model and Debye-type substrate. This behavior is illustrated in

Fig. 4.5 where it can be seen that there are two regions of significant change in the

dielectric permittivity. The first region from 104 Hz to 106 Hz is due to the Debye-

type substrate and is identical to Fig. A.1 in that frequency range. The second region

from 108 Hz to 1011 Hz is due to the resonance of the microstrip transmission line.

This leads to the dispersive and attenuative behavior in Fig. 4.6.
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Figure 4.5: Real and Imaginary parts of the relative dielectric permittivity of the microstrip
transmission line with a Debye-type dielectric substrate.

A strong dependence on frequency can be seen in the case of the microstrip with

a Debye-type substrate, illustrated by the solid lines in Fig. 4.6. The constant sub-

strate case behaves similarly to the low loss coaxial cable where αµ(ω) and βµ(ω) are

primarily linear with frequency. However, one noticeable difference from the coaxial

cable is that γµ(ω) is a function of εreff (ω), which is limited by the maximum value

of the substrate dielectric that is chosen with respect to infinite frequency, where

ε∞ = ε(ωmax) = 10.2 is the value established in the Getsigner model. This limitation

can be seen in Fig. 4.6 when αµ(ω), illustrated by the dashed green line, reaches a

constant value in the higher frequency range.
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Figure 4.6: α(ω) and β(ω) vs. ω for the microstrip transmission line model with a Debye-
type substrate. The green line represents the attenuation constant α(ω) and the blue line
represents the propagation factor β(ω).

4.4 Numerical Pulse Propagation

The single-cycle sine wave with a trapezoidal envelope described in Eq. (4.1) was

propagated numerically along the various types of transmission lines described in the

previous section. The forward problem is considered here. First, the pulse was first

propagated along lines of an infinite length. Reflection and transmission behavior of

the voltage pulse across multiple interfaces or discontinuities is calculated here is as

well.

As explained in Section 2.2.1, the initial voltage pulse is brought into phasor form

in order to decouple the voltage from the current and concert the Kirchoff’s Equation
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to the Telegrapher’s Equations. This is performed numerically through the use of Fast

Fourier Transform (FFT) function. The green line in Fig. 4.2 shows the numerical

spectrum of the initial voltage pulse, which was calculated by the FFT.

Calculation of Eq. (2.8a) reveals the pulse spectra at the end of the calculated

propagation length. The pulse is calculated along the positive and negative frequency

ranges to ensure symmetry. The propagated pulse was found by multiplying the

initial pulse by the propagation factor over the specified distance. For this case, the

specified distance is based upon the absorption depth, which is defined as the inverse

of the attenuation factor, that is zd = 1/α [41]. This calculation was performed for

the low loss coaxial cable, the high loss coaxial cable, the Getsinger model microstrip

transmission line with a constant dielectric substrate, and the microstrip transmission

line with a Debye-type substrate.

4.4.1 Pulse Propagation on Coaxial Cable

The single-cycle sinusoidal voltage pulse with a trapezoidal envelope was propagated

along a coaxial cable transmission line of infinite length. Two types of coaxial cables

are considered. One is the high loss case and the other is the low loss case. Physical

properties of each case are described in in Section 4.3.1. The goal here is to compare

the pulse propagation behavior under high loss and low loss conditions.

The numerical sampling parameters for the coaxial cable models were taken at

the Nyquist Rate with N = 222 samples, a maximum frequency of fmax = 1 × 104

Hz and a sampling interval of ∆t = 1/(2fmax). The size of the initial pulse envelope

was determined by finding the limits of the time array, which were established by the

numerical sampling parameters. The initial voltage pulse in the frequency domain
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was then applied to the numerical Hemlholtz equations to propagate the pulse down

the line. The length of the coaxial cable was set to one absorption depth of the line.

Further absorption depth lengths could be considered.

Figs. 4.7a and 4.7b show the temporal frequency spectrum of the voltage pulse

at the source and after propagation down the coaxial cable at 50 Hz and 5 Hz,

respectively. Figs. 4.8a and 4.8b shows the pulse propagation in the time domain,

through the application of the Inverse Fast Fourier Transform (IFFT) of the data in

Figs. 4.7a and 4.7b. In both Figures, the green line is the initial pulse for both the

high and low loss cables, the blue line shows the propagation on the low loss line, and

the red line shows the propagation on the high loss line, propagated over a distance

of one absorption depth.
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(a) Frequency Spectrum of the voltage pulse propagation on a coaxial

cable of infinite length with a carrier frequency of 50 Hz.
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Figure 4.7: Comparison of the frequency spectra of voltage pulse propagated on a coaxial
cable with carrier frequencies of 50 Hz and 5 Hz. The green line is the spectrum of the
initial voltage pulse. The blue represents the propagation of the pulse on a low loss line.
The red line represents the propagation of the pulse on a high loss line.
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(a) Time domain representation of the voltage pulse propagation on

a coaxial cable of infinite length with a carrier frequency of 50 Hz.
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(b) Angular Spectrum of the voltage pulse propagation on a coaxial

cable of infinite length with a carrier frequency of 5 Hz.

Figure 4.8: Time domain representation of the voltage pulse propagation on a coaxial cable of
infinite length. The green line is the initial voltage pulse. The blue represents the propagation
of the pulse on a low loss line. The red line represents the propagation of the pulse on a
high loss line.
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In both sets of figures of the frequency spectrum and the time domain represen-

tation, the effects of losses on the the coaxial cable are evident. There is a clear

difference between initial pulse and the propagated pulses of each case. The effects

of time delay, dispersion, and amplitude reduction are also shown. Such effects are

more pronounced on the high loss case. Both cases show an over 50% decrease in

time-domain amplitude from the initial voltage pulse. Therefore, it can be concluded

that the losses and dispersion are contributing to the pulse behavior on the transmis-

sion line. Per Fig. 4.4, it is expected to have a minimal difference in the high and low

loss at 50 Hz. It can be seen that even lower frequencies, such as 5 Hz, will be more

impacted on the coaxial cables with the chosen parameters listed in Table 4.2.

Fig. 4.9 illustrates the different velocity calculations of the high and low loss

coaxial cables. The behavior of the velocity follows what is described in Fig. 4.4. At

the lower frequencies, there is a slight difference between the high and low loss cables,

as indicated by the red ‘x’ and red ‘o’ points representing the the centrovelocity. As the

frequency increases, the centrovelocity values are nearly identical. Additionally, the

behavior of the velocity shown is consistent with the velocity discussion in Chapter 2.

The group velocity, indicated by the dashed lines, departs significantly from the phase

velocity in the higher frequency range. The centrovelocity values track closely to the

group velocity, but remains in between the group and phase velocity. This is similar

to the behavior described in Chapter 2 and further shows that the centrovelocity is

an acceptable measure of velocity.
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Figure 4.9: Phase Velocity (solid lines), group velocity (dashed lines), and centrovelocity
(red points) for the high loss (blue lines and red ‘x’) and low loss (green lines and red ‘o’)
coaxial cable.

4.4.2 Pulse Propagation on Lossless Microstrip

Transmission Line

This initial analysis verifies that dispersive and lossy transmission lines do have a

significant impact on the propagation of a voltage pulse. Hence, it is of interest to

further investigate the effects of these losses for other transmission line geometries.

In particular, two types of microstrip transmission lines are considered here: (1) the

Getsinger model microstrip with a constant valued dielectric substrate and (2) the

microstrip with a Debye-type dielectric substrate. The physical properties of each

type of microstrip transmission line are described in Section 4.3.2.
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First, the performance of the Getsigner model is verified through an attempt to

recreate the results presented by Veghte and Balanis [2]. In order to do so, the

numerical sampling parameters were taken at the Nyquist rate with N = 228, a

maximum frequency of fmax = 1×1019 Hz and a sampling interval of 1/(2fmax). The

carrier frequency follows Veghte and Balanis’s choice of a 10ps pulse [2]. Therefore,

fc =1 THz. The time array is defined by period Tc of the voltage pulse. However, in

this case, the carrier is not included in the generation of the initial voltage pulse in

order to observe the behavior of the envelope and easily compare results to Veghte

and Balanis [2].

The size of the initial voltage pulse envelope was determined but finding the limits

time array. From there, the Fast Fourier Transform (FFT) of the initial voltage pulse

was taken to bring the initial pulse into the frequency domain. The temporal spectrum

of the initial voltage pulse are then applied to the numerical Hemlholtz equations in

order to propagate the pulse down the line.

For the Getsigner transmission line model, the length of the transmission line

follows Veghte and Balanis’s defined length of 0.354 inches [2]. The results for the

propagated voltage pulse on the Getsinger transmission line model in the frequency

domain and the time time domain are shown in Figs. 4.10 and 4.11 respectively. In

both figures, the green line represents the initial pulse and the dashed blue line is

the propagated pulse. Fig. 4.11 closely mirrors the results of Fig. 4 in the Vegthe

and Balanis paper [2]. The role of dispersion is evident in the propagated pulse.

As expected, there is no strong presence of losses because the transmission line is

lossless. The sharp peaks the the leading and trailing edges Fig. 4.11 are also present

in the results of Veghte and Balanis [2]. These peaks indicate the presence of the

110



Gibbs phenomenon and can occur as numerical artifact of the FFT. Ultimately, these

results give confidence to the accuracy of the numerical propagation of the initial

voltage pulse.

10
10

10
12

10
14

10
16

10
18

10
20

angular frequency - rad/sec

10
-15

10
-10

10
-5

10
0

10
5

10
10

|a
0

(w
)|

Figure 4.10: Temporal frequency spectrum of the Getsinger transmission line model. The
green line is the spectrum of the initial pulse envelope with the carrier wave omitted. The
blue is the spectrum of the propagated pulse envelope.
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Figure 4.11: Time domain trapezoidal envelope pulse propagation of the Getsinger trans-
mission line model. The green line is the spectrum of the initial envelope. The carrier wave
is omitted. The blue line is the propagated pulse envelope. Results are similar to Fig. 4 of
Veghte and Balanis [2].

The pulse velocity, group velocity, and centroid velocity of the trapezoidal envelope

on the Getsinger transmission line model are illustrated in Fig. 4.12. Note that the

centroid velocity values are close to the phase velocity values. This differs from

what occurs with centroid velocity when the carrier wave is included in the pulse,

which typically has values that are close to the group velocity. This is not surprising,

however, as there is no underlying carrier. In such as case, the pulse velocity provides

a more accurate representation of the velocity of the envelope propagation.
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Figure 4.12: Velocity calculations of the trapezoidal envelope on the Getsigner transmission
line mode. The blue line is phase velocity. The dashed orange line is the group velocity.
The red ‘x’ points are centroid velocity.

Next, the carrier frequency of fc =1 THz, as defined by Veghte and Balanis [2], is

added back into the initial voltage pulse and the propagation is again performed on

the Getsigner transmission line model. All numerical parameters remain the same as

the propagation calculations without the carrier wave. The results for the propagated

spectrum and time domain pulse with the carrier included are shown in Figs. 4.13

and 4.14 respectively. Similar to the previous figures, the green line is the initial

pulse and the dashed blue line is the propagated. Although minimal, the evidence is

dispersion can be seen on the trailing edge of the propagated pulse in Fig. 4.14. Loss

is negligible, as expected, because the Gestinger transmission line model is lossless.
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Figure 4.13: Temporal spectrum of the Getsinger transmission line model. The green line
is the spectrum of the initial pulse envelope with carrier frequency of fc =1 THz. The blue
is the spectrum of the propagated pulse envelope.
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Figure 4.14: Time domain pulse of the Getsinger transmission line model. The green line is
the initial pulse envelope with the carrier frequency of fc =1 THz. The blue the propagated
pulse envelope.

Fig. 4.15 illustrates the pulse velocity, group velocity, and centroid velocity of the

trapezoidal envelope pulse on the Getsinger transmission line model. In this case,

the centroid velocity values are close to the group velocity values. This is in contrast

to Fig. 4.12, where the centroid velocity of the pulse without the carrier aligns more

closely with the phase velocity.
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Figure 4.15: Velocity calculations of the trapezoidal envelope pulse with a 1 THz carrier
wave on the Getsigner transmission line model. The blue line is phase velocity. The dashed
orange line is the group velocity. The red ‘x’ points are centroid velocity.

4.4.3 Pulse Propagation on a Debye Microstrip

Transmission Line

Finally, the microstrip transmission line with a Debye-type substrate is considered.

Physical properties of this type of transmission line are described in Appendix A. Two

different carrier frequencies were considered in order to observe the attenuative and

dispersive effects in the frequency regions shown in Fig. 4.5. Figs. 4.16 - 4.19 show

the propagated pulse spectrum and propagated time domain pulse, respectively, on

the microstrip transmission line with the Debye-type dielectric substrate, with carrier

frequencies of 2× 104 Hz and 1× 1011 Hz. The lossy nature of the transmission line
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is particularly noticeable in Figs. 4.17 and 4.19, as there is nearly a 20% reduction

from the initial pulse to the propagated pulse. Dispersion can also be seen through

the smoothing or spreading effects at the leading and trailing edges of the propagated

pulse. This behavior confirms what would be expected for propagation through a

lossy and dispersive Debye-type medium.
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Figure 4.16: Temporal frequency spectrum of the Debye-type transmission line model. The
green line is the spectrum of the initial pulse envelope with carrier frequency of fc =20 kHz.
The blue is the spectrum of the propagated pulse envelope.
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Figure 4.17: Time domain pulse of the Debye-type transmission line model. The solid green
line is the initial pulse envelope with the carrier frequency of fc =20 kHz. The dashed blue
line is the propagated pulse envelope.
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Figure 4.18: Temporal frequency spectrum of the Debye-type transmission line model. The
solid green line is the spectrum of the initial pulse envelope with carrier frequency of fc =1
GHz. The dashed blue line is the spectrum of the propagated pulse envelope.
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Figure 4.19: Time domain pulse of the Debye-type transmission line model. The sold green
line is the initial pulse envelope with the carrier frequency of fc =1 GHz. The dashed blue
line is the propagated pulse envelope.

The velocity calculations for the pulse propagating on the microstrip transmission

line containing a Debye-type substrate are found in Fig. 4.20. The pulse velocity,

group velocity, and centroid velocity of the trapezoidal envelope pulse are illustrated.

In this case, the centroid velocity lies between the pulse and group velocity values,

which is similar to the case of the loamy soil material described in Appendix A. Notice

the increasing behavior in the low-frequency range, which is similar to the velocity

curve of the Debye material shown in Fig. 2.6. There is also a decrease in slope within

the higher frequency range, which mimics the behavior in Fig. 4.12. This confirms

the influence of both the Debye substrate material and entire microstrip transmission

line.
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Figure 4.20: Velocity calculations of the trapezoidal envelope pulse on a microstrip trans-
mission line containing a Debye-type substrate. The blue line is phase velocity. The dashed
orange line is the group velocity. The red ‘x’ points are centroid velocity.

4.5 Summary

The results presented in this chapter show the voltage pulse propagation behavior

of several different types of transmission lines, namely, the high and low loss coaxial

cable, the lossless microstrip transmission line, and the lossy and dispersive trans-

mission line. It is important to note that despite the various behaviors, all of these

transmission line models are built upon the same distributive circuit model.

Now that the forward problem has been examined for several different cases, the

inverse problem may be introduced in future research. Such an interface added to each

transmission line represents changes in the media surrounding the transmission line.
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Practical examples include stratified layers of moisture content in soil or a damage

on a PCB trace. The propagated pulse will reflect back to the where the pulse was

generated upon reaching the interface. From this reflected pulse, one can determine

the location of the interface and the material changes that are present. The centroid

velocity calculations are critical to accurately determine the location of any material

changes that may occur around the transmission line.
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Chapter 5

Conclusion and Future Work

5.1 Summary

Voltage pulse propagation on a variety of transmission lines was studied in this disser-

tation. Despite the long history of transmission line modeling and experimentation,

as described in Chapter 1, the question of accuracy still remains. The work presented

here attempted to improve the accuracy constraints of the literature in this area.

Three transmission line models were studied: (i) the coaxial cable, (ii) the single

microstrip transmission line, and (iii) the coupled microstrip transmission line. The

coaxial cable was first studied to provide confidence in the analysis and computation.

The single microstrip was the main focus of this work and was chosen for its common

use in a variety of applications, such as Time Domain Reflectometry (TDR). The cou-

pled microstrip was also chosen for it common usage and was introduced analytically

in Chapter 3. An extensive analytical description of each model was taken and the

analysis of voltage pulse propagation on a generic transmission line was performed.

Following the analytical foundation, a numerical computation was performed to
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observe the behavior of the pulse propagation on each transmission line in Chapter 4.

The dispersive and attentuative properties of each transmission line was studied with

respect to frequency. For the case of the microstrip transmission line, a lossless

transmission line and a lossy, dispersive transmission line with a Debye-type substrate

material were compared. The influnce of the Debye material can be seen in the results

presented in Chatper 4.

As described in the literature presented in Chapters 1 and 2, the method of mea-

surement considered for the pulse velocity has a significant impact upon accurately

determining the distance of propagation and changes in surrounding material. The

group velocity had been traditionally used when calculating distance of pulse propa-

gation via time-of-flight methods. However, a different velocity measurement, which

takes into account the energy centroid of the pulse and more accurately reflects how

the pulse moves through a dispersive and attenuative medium. While the group

velocity is a constant value of the wave packet velocity and does not change as the

pulse moves further into the medium, the energy centrovelocity contradicts the notion

that the pulse is propagating at a constant speed thought the medium. The energy

centrovelocity indicates that pulse is actually slowing down as it propagates over in-

creasing distance. Therefore there is a significant error between the group velcoity

measurement and the energy centrovelocity measurement.

5.2 Conclusion

• Electromagnetic transients have been utilized to study propagation behavior

through different media.
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• A Debye-type dielectric material displays lossy and attenuative properties

• The energy centrovelocity provides promising results in regards to Time Domain

Reflectometry (TDR) applications.

• The centrovelocity shows that the pulse decreases in speed as propagates through

the medium.

• The use of the group velocity will be inaccurate if performing TDR in dispersive

and attenuative materials and the centrovelocity may improve the accuracy.

5.3 Future Work

• The numerical analysis of the coupled microstrip should be performed and com-

pared against the single microstrip to determine if the coupling effects of the

conductors improve or reduce the accuracy TDR calculations in a dispersive

and lossy media.

• The segmented transmission line analysis described in Chapter 2 can be ex-

tended for more layers. Complications lie in the unraveling of all the successive

transmitted and reflected pulses.

• Following the analytical solution, numerical analysis of the pulse propagation

in the multilayered media could be performed.

• Since the centrovelocity is directly measurable, an experiment can be performed

to verify the numerical results obtained in this dissertation. There experiment

could be performed in a few steps:
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1. First, conduct measurements in a known material for a known distance

and use the Debye-model to characterize the dielectric permittivity of that

material. From there, a time-of-flight calculation can be used to calculate

the velocity of the pulse if the distance and time of pulse propagation are

measured.

2. This measurement with a known material and known distance can be re-

peated in different types of material. Debye models of the dielectric per-

mittivity exist in the literature for a variety of materials. Examples for

detecting moisture content could include sand, dry soil, or loamy soil.

3. Once data is gathered in known materials for a single distance, the process

can be repeated again at different distances deeper in the material. If the

numerical results hold, one should see a similar behavior in the slowing of

the pulse velocity. Ideally, this should verify the use of the centrovelocity

in contrast to the group velocity.

4. The experiment can then be performed again in different materials layered

upon each other. More work on the numerical analysis should be done in

order to predict the expected behavior in such layered media.
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Appendix A

The Debye Model Description

of Dielectric Dispersion

The Debye model of dielectric dispersion [69] begins with the relaxation equation

dP
∼
dt

+ 1
τm
P
∼

(r
∼
, t) = aE

∼ eff
(r
∼
, t) (A.1)

where a is a constant in time and where τm is the relaxation time of the molecu-

lar dipole moment in the absence of an applied electromagnetic field, P
∼

(r
∼
, t) is the

molecular dipole moment, and E
∼ eff

(r
∼
, t) is the effective electric field strength at the

molecular position. The frequency domain solution of this equation followed by a

spatial average over molecular sites leads to the expression [80]

ε(ω)/ε0 = ε∞ + εs − ε∞
1 + jωτ

(A.2)

for the relative dielectric permittivity, where εs = ε(0)/ε0 describes the static (ω = 0)

relative permittivity, and ε∞ describes the high-frequency limit of the relative per-
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mittivity

ε∞ = lim
ω>>2π/τ

(
ε(ω)
ε0

)
. (A.3)

Because this model describes the rotational effects of the molecular dipole moment,

it is a low-frequency model, valid provided that ω does not greatly exceed 2π/τ and the

electric effects begin to dominate. Because this typically occurs at infrared frequencies

(ω ∼ 1012rad/s), the model is entirely appropriate for the transmission line analysis

presented in this dissertation.

The analysis presented here explicitly includes the influence of the dielectric mate-

rial dispersion of the substrate on the effective permittivity of the single and coupled

microstrip lines. Most of the published literature [2, 81] of microstrip transmission

lines, including that of both Garg and Bahl [14] and Getsinger [26], treats the dielec-

tric permittivity of the substrate as a constant, independent of the frequency content

of a given signal. However, a realistic transmission line would be dispersive in both

phase and attenuation.

Note that by making the model causal with a Debye-type substrate, the substrate

dielectric permittivity becomes complex, with the real and imaginary parts

εr(ω)/ε0 = <{ε(ω)/ε0} = ε∞ + εs − ε∞
1 + τ 2ω2 , (A.4a)

εi(ω)/ε0 = ={ε(ω)/ε0} = (εs − ε∞) τω

1 + τ 2ω2 (A.4b)

forming a Hilbert Transform pair. Typical behavior of the real and imaginary parts

of the relative dielectric permittivity are illustrated in Figure A.1 for a material of

loamy soil with 0% moisture content.
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Figure A.1: Real and imaginary parts of the relative dielectric permittivity of the Debye
model for loamy soil with 0% moisture content. The red ‘x’ indicates the carrier frequency
fc = 10kHz of the pulse propagated through the Debye material.

Note that imaginary part εi(ω)/ε0, which is related to the absorption coefficient

α(ω), nearly vanishes at ω = 0 and also approaches zero as ω increases above 2π/τ

near where the peak value occurs. Furthermore, the real part εr/ε0 is approximately

constant for small values of ω and decreases rapidly for values of ω in the neighborhood

about 2π/τ . This region is where the effects of frequency dispersion are significant

when compared to the behavior either above or below this critical value of 2π/τ .

Estimates of the model parameters εs, ε∞, and τ from observed pulse distortion should

be sufficient to identify the substrate material. This is also shown though the complex

relative impedance. The real and imaginary parts are plotted in Fig. A.2. Note
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that the impedance will have an influence on the current pulse at the chosen carrier

frequency.
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Figure A.2: Real and imaginary parts of the relative impedance of the Debye model for
loamy soil with 0% moisture content. The red ‘x’ indicates the carrier frequency fc = 10kHz
of the pulse propagated through the Debye material.
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Figure A.3: Attenuation and dispersion of loamy soil with 0% moisture content. The sold
blue line is the dispersion factor βs(ω). The dashed green line is the attenuation factor
αs(ω).

A single-cycle sine wave voltage pulse with carrier frequency fc = 10 kHz was

chosen to propagate through the Debye material. This value was chosen because it

lies within the region that is most influences dispersion. Figs. A.4 and A.5 show the

propagated voltage and current pulses. Note that due to the high impedance, the

amplitude of the current pulse is significantly lower than the amplitude of the voltage

pulse.
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Figure A.4: Real and imaginary parts of the 10 kHz single-cycle sine wave voltage pulse
propagated through the Debye model for loamy soil with 0% moisture content.

139



0.04185 0.0419 0.04195 0.042 0.04205 0.0421 0.04215 0.0422

Time (s)

-1

-0.5

0

0.5

1

{I
(t

)}

10
-3

0.04185 0.0419 0.04195 0.042 0.04205 0.0421 0.04215 0.0422

Time (s)

-1

-0.5

0

0.5

1

{I
(t

)}

10
-5

Figure A.5: Real and imaginary parts of the 10 kHz single-cycle sine wave current pulse
propagated through the Debye model for loamy soil with 0% moisture content.

In order to better understand the behavior of the pulse propagation as it goes fur-

ther into the media, the pulse power at increasing propagation distances was plotted

for different frequencies in Fig. A.6. From the figure, it can be seen that the power

decays across all chosen frequencies. This confirms the previous conjecture that the

absorption there is more pulse absorption at the higher frequencies. Higher frequen-

cies are impacted more significantly than lower frequencies, which is shown through

the steeper slope of the fc = 100 kHz and fc = 50 kHz curves.

140



0 1 2 3 4 5 6 7 8 9 10

z/z
d

10
-4

10
-3

10
-2

10
-1

10
0

P
1
/P

0

f
c
 = 100 kHz

f
c
 = 50 kHz

f
c
 = 10 kHz

f
c
 = 5 kHz
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Appendix B

Voltage Pulse Propagation on a

Dispersive Microstrip Line

This appendix is a conference paper [82], based on the work in Chapters 3, 4, and Ap-

pendix A, as it appears in 2021 United States National Committee of URSI National

Radio Science Meeting (USNC-URSI NRSM).
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Abstract—The influence of Debye model material dispersion
on transmission line dispersion using the Getsinger model is
described with regard to voltage pulse propagation along the
line as well as the inverse problem of the determination of the
medium properties from the propagated pulse behavior.

I. INTRODUCTION

The propagation of a voltage pulse along a dispersive
attenuative transmission line is a problem of fundamental
interest in electrical engineering [1] with application to both
remote sensing for material identification, such as in time-
domain reflectometry (TDR), and environmental vulnerability,
such as that found in power lines [2]. The focus of the analysis
presented in this paper is on the influence of the dielectric
material properties of the substrate on the effective permittivity
of a single microstrip transmission line as here described by
the so called Getsinger model [3].

II. TRANSMISSION LINE ANALYSIS

With reference to the geometry and notation of Fig. 2 of
Getsinger [3] and following the analysis given there, con-
sider a single microstrip transmission line of width W on a
nonmagnetic dielectric substrate of thickness b with relative
permittivity εs. Above the microstrip line is air (vacuum) with
ε = 1. Microstrip propagation is considered here as a single
longitudinal-section electric (LSE) mode approximated as that
in a parallel plate transmission line with dielectric permittivity
εs = εs(ω), width 2s, and height b, connected to other parallel-
plate transmission lines with unit relative permittivity, width
a′ and height b′ with a′/a = b′/b.

Within this approximation, the effective relative dielectric
permittivity of the microstrip line is found to be given by [3]

εe(ω) = εs(ω)−
εs(ω)− εe0

1 +G(ω2/ω2
p)

(1)

with εe0 = εe(0) the zero-frequency microstrip relative effec-
tive permittivity, where

ωp = π
Z0

µ0b
(2)

with Z0 the zero-frequency characteristic impedance of the
microstrip, µ0 the magnetic permeability of vacuum, and

G =
π2

12

[
(εe0 − 1) + (b′/b)2(εs − εe0

]
(εe0 − 1)(εs − εe0)

εe0(εs − 1)2
.

(3)
Notice that G = G(ω) depends upon the frequency through
the substrate dispersion εs = εs(ω). However, the Getsinger
model [3] does not capture the attenuation of the medium.

The Debye model is implemented in order to consider a
substrate with attentive properties. At low frequencies, the
material dispersion of the substrate is described by the Debye
model [4], [5]

εs(ω) = ε∞ +
εs0 − ε∞
1− jωτ

, (4)

where εs0 = εs(0) is the static relative permittivity of the
substrate material, ε∞ ≥ 1 is the high-frequency (ω � 1/τ )
limiting value of the relative permittivity, and where τ is the
effective relaxation time of the material dispersion. Estimates
of the model parameters εs0, ε∞, and τ from observed pulse
distortion should be sufficient to identify the substrate material
(e.g. the percentage of water present in soil).

III. NUMERICAL RESULTS

Figure 1 illustrates the real and imaginary parts of the
material dispersion of the substrate as described by the Debye
model (4). These results illustrate the extent to which the
relaxation time τ influences both the real and imaginary parts
of the Debye model permittivity.

Of central interest here is the behavior of the effective
relative dielectric permittivity of the microstrip line when a
Debye model of the substrate dispersion is included. Veghte
and Balanis [1] present several propagated pulse results, all
using a constant value for the substrate dielectric εs. Of interest
in future research is how material dispersion in the substrate
will influence these results. Notice that without attenuation,
the effective relative dielectric permittivity of the microstrip
line increases towards the limit of the value of the substrate.

Figs. 2 and 3 present a comparison of the effective relative
dielectric permittivity of the microstrip line with a constant
substrate dielectric permittivity with εs = 10.2 and with
that for the Debye model substrate for several values of the
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Fig. 1. Real and imaginary parts of the Debye model material dispersion
of the substrate with εs0 = 10.2 and ε∞ = 7.51 for several values of the
relaxation time τ : solid curve (τ = 0.01ns), dashed curve (τ = 0.1ns),
dotted curve (1.0ns).

relaxation time. The influence of attenuation in the Debye
model substrate is prevalent. There is an overall decrease in the
magnitude of the real part of the transmission line permittivity
as the relaxation time τ increases. Fig. 3 also indicates the
extent to which the imaginary part influences the attenuation
in the transmission line, noting that there is zero attenuation in
the Getsinger model for the case of a constant valued substrate
permittivity.
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IV. FUTURE WORK

Future work will investigate both the effects of substrate
dispersion on voltage pulse propagation in a coupled mi-
crostrip transmission line as well as the inverse problem on
estimating the Debye material properties of the substrate from
measurements of the propagated pulse behavior along the
transmission line.
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Fig. 3. Comparison of the imaginary part of the effective relative dielectric
permittivity of the microstrip line between the constant valued substrate εs =
10.2 and Debye model substrate εs(ω) for several values of the relaxation
time τ : dashed curve (τ = 0.01ns), dot-dashed curve (τ = 0.1ns), dotted
curve (1.0ns)
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