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Abstract

Mathematical modeling of disease dynamics provides powerful tools to understand,
predict, and evaluate emerging diseases. These insights aid public health officials,
along with other modelers. With a plethora of models to choose from, it is impor-
tant to consider a model that encapsulates the stochastic nature of disease dynamics.
Stochasticity not only conveys chances of stochastic extinction, but provides proba-
bilistic outcomes, essential for capturing the stochastic nature of the real world. In
this thesis, three stochastic models are presented, each addressing uncertainties in
mechanisms and interpretation of these models, to aid other modelers and decision
makers.

Starting with the source of infection spread, we address the uncertainties in human
papillomavirus (HPV) within-host dynamics. The motivation behind this mechanistic
cellular dynamics model is that HPV infection progression information, viral load and
extinction are not well documented for model inputs. Through a master equation
approach, we establish extinction probability, persistence, and viral load metrics from
moment information to inform population-level model parameters. Furthermore, the
structure of the skin layer, possibly indicating an older individual, impacts differing
viral load information and disease propagation.

The subsequent topic of this thesis models interventions on stochastic branching
processes on disease spread contact patterns. From an extension of a temporal prob-
ability generating function approach, we evaluate different interventions, resulting in
cumulative count probability distributions. When comparing intervention strategies,
probability distribution output makes comparison difficult. Nevertheless, we establish
several metrics to compare these temporal and probabilistic forecasts, providing clear
definition on what a decision maker may want to mitigate.

Lastly, the final chapter addresses uncertainty in the giant component analysis
application of probability generating functions (PGFs): a sensitivity analysis of the
polynomial roots. The condition number of these roots can be evaluated when small
perturbations are applied to the coefficients. Two probability distributions are pre-
sented as case studies to assess which systems may be more prone to giant component
variation, or in the context of disease modeling, final outbreak size variation. This not
only evaluates the sensitivity of PGF applications for the first time, but establishes
a way to examine the sensitivity of a branching process for other applications.

This thesis explores the uncertainties for disease progression outcomes, case count
distribution comparison, and branching process final outbreak size sensitivity. Each
chapter contributes method expansion or evaluation, along with commentary on
declaring clear assumptions for each method.



Citations
Material from this dissertation has been published in the following form:

Boudreau, M. C., Allen A. J., Roberts, N. J., Allard, A., & Hébert-Dufresne, L..
(2023). Temporal and probabilistic comparisons of epidemic interventions. Bull. of
Math. Biol., 85(12), 118.

Allen, A. J., Boudreau, M. C., Roberts, N. J. Allard, A., & Hébert-Dufresne, L..
(2022). Predicting the diversity of early epidemic spread on networks. Phys. R. Re-
search, 4(1), 013123.

Stuart, R. M., Cohen, J. A., Kerr, C. C., Abeysuriya, R. G., Zimmermann, M.,
Rao, D. W., Boudreau, M. C., Serin, L., Luojun Y.,& Klein, D. J.. (2024) Hpvsim:
An agent-based model of hpv transmission and cervical disease. PLOS Comp. Biol.,
20(7), e1012181.

Other materials from this dissertation have been submitted for publication:

Boudreau, M. C., Cohen, J. A., & Hébert-Dufresne, L.. (2024). Within-host in-
fection dynamics with master equations and the method of moments: A case study of
human papillomavirus in the epithelium. Manuscript currently under preparation.

Boudreau, M. C., Thompson, W., Danforth, C. M., Young, J.-G., & Hébert-Dufresne,
L.. (2024).Sensitivity analysis of stochastic polynomial roots, and its application to
epidemic forecasting and random graphs. Manuscript currently under preparation.

ii



Human beings have a remarkable ability to accept the abnormal and make it
normal.

-Andy Weir, Project Hail Mary

Learning anything takes time, practice, and vulnerability.

-Tori Dunlap, Financial Feminist
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Foreword

Upon each inquiry of the details of my graduate studies, I am reminded that mathe-

matics is a language the transcends all subject areas. This universality allows mathe-

matical modeling tools to be extended, adjusted, and applied to various phenomena.

With my interest landing on disease dynamics, understanding the nature of these

dynamics through a stochastic modeling lens resulted in this thesis. The stochastic

models presented in this thesis not only extend particular methodologies, but rec-

ognizes uncertainties that other modelers, and decision makers encounter. Due to

their probabilistic nature, stochastic models provide an excellent tool to explore and

consider these uncertainties.

Each chapter explains an uncertainty, and details a model that aims to fill a gap

in current knowledge. Analogous to how disease spread begins, Chapter 2 focuses

on the disease dynamics for a within-host application. For a particular infection,

we identify knowledge gaps in the infection progression outcomes. Therefore, we

establish a framework for cellular infection dynamics. The model outputs, extinction,

persistence, and viral load distributions, vary depending on the structure of the skin.

Thus this framework accounts for heterogeneity in within-host model outputs, which

can be translated into population-level model inputs.
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Moving from within-host modeling to population-level modeling, Chapter 4 ex-

tends a temporal probability generating function analysis to evaluate intervention

strategies. When analyzing two different types of intervention strategies, probability

distributions are difficult to compare. This chapter proposes a comparison method

for the output distributions. Therefore, decision makers can decide what the goal of

the intervention is, then focus on that particular metric from the output.

Finally, Chapter 5 evaluates the sensitivity of final outbreak sizes using proba-

bility generating functions. Rather than modeling projections of disease spread, this

framework derives the variation in outbreak sizes for perturbed systems. We discuss

the implications for other probability generating function sensitivity analysis appli-

cations at the end of this chapter. In order to give accurate modeling outcomes, the

bounds and scope of a model must be tested. While this has the potential to point

out the flaws of a model, all models have flaws and the more we understand how those

effect their outcomes, the better.

The concept presented in Chapter 2 follows from work with the Institute for

Disease Modeling at the Bill and Melinda Gates Foundation [91]. Chapters 2 and

5 of this thesis are manuscripts under preparation [16, 17]. While Chapter 4 is a

peer-reviewed publication, it follows from another publication within our group [4],

with more details found in Sec. 3.3.1.
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Chapter 1

Differential Equation Models of

Disease Dynamics

Diseases have been around long before mathematics. We consistently use mathemati-

cal models to understand how the world around us affects or will affect individual and

population-level well-being. With the spectrum of mathematical models, we hold the

ability to predict, mitigate, explore, and comprehend the complex systems that we

interact with each day. In the context of disease dynamics, predicting and mitigat-

ing disease progressions can save lives, while exploring and comprehending diseases

provides insights into the drivers and macroscopic effects on their dynamics. Given

these statements, no wonder a myriad of models came to light during the COVID-19

pandemic.

The tool shed of mathematical disease modeling1 has grown and diversified over

time from influence of various disciplines. The disciplines that have influenced the

models of this thesis include biology, statistical physics and combinatorics. When
1The box is not big enough anymore.
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considering models to address a disease dynamics problem, certain questions will

filter out some models. These questions can range from: Is the desired outcome

the average of the system? What happens temporally? Or, what about the role

of randomness? Some models that address these questions range from mean-field

models that provide the average state of the system over time, to agent-based models

that provide granularity and heterogeneity through tracking all individual agents.

Since one mathematical model cannot address all possible questions, assumptions and

desired outputs, it is up to the modeler to clearly define those aspects of their model

choice. Nevertheless, this thesis will focus on models that contain a probabilistic

aspect. Now, let’s consider some of the original models that established the tool

shed.

1.1 Mathematical Models of Disease Dy-

namics

The first recorded instance of mathematical disease modeling was conducted by Daniel

Bernoulli in the 1700s. Bernoulli modeled the spread of smallpox in a population

using probabilities of death and transmission, along with the effect of immunized

people in a population [13]. This model took steps towards defining the variation in

susceptible individuals over time, represented as a differential equation [9]. Kermack

and McKendrick catapulted the differential equation model further between 1927

and 1933 [48, 50, 49]. These authors most famously established the SIR model,

which paved the way for the generalized compartmental model. In the SIR model,

each compartment defines a category of individuals, susceptible, S(t), infected, I(t),

4



and recovered or removed, R(t). The transitions between each compartment allow

for temporal changes to occur in each compartment’s population. Compartmental

models derive the average state of the system each time they are computed. This

establishes them as a mean-field model. These rates of change define parameters

that include the infection rate β, and the recovery or removal rate, γ. The governing

equations for these dynamics are given by,

d

dt
S(t) = −βSI

N
,

d

dt
I(t) = β

SI

N
,−γI, (1.1)

d

dt
R(t) = γI.

Figure 1.1 illustrates the temporal change in each compartment population. While

this is the original version of the compartment model, variations have emerged, such as

the SIS (susceptible, infected, susceptible) [45]. The flexibility of these compartments

and the differential equation structure make defining the average state of a system

with categories of individuals easy.

1.2 Stochastic Differential Equation Mod-

els of Disease Dynamics

What happens if an infected individual/cell/particle recovers before infecting others?

Deterministic mean-field models do not consider this question, and produce their

determined dynamics for a specific set of parameters without a stochastic aspect.

However, there is potential for a spreading process to never spread past its early

5
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Figure 1.1: SIR model dynamics: Over 80 days, the number of susceptible, infected, and
recovered individuals is tracked, illustrating the interaction dynamics.

stages. To capture this phenomenon, modelers move from deterministic mean-field

models towards stochastic models, which allow for random events to occur. However,

as differential equations are a powerful method for solving temporal state changes,

this section showcases stochasticity in a differential equation model.

1.2.1 Stochastic Processes

Stochastic models use different stochastic processes, X, to incorporate randomness.

Now, a stochastic process is defined as a collection of random variables,

X = {X(t), t ∈ T}, (1.2)

6



where X(t) represents the state of the stochastic process at time t in the time interval

T . Time can either be discrete or continuous, depending on the type of process [81].

For a discrete-time stochastic process, we assign a random variable to each discrete

time value. For example, random variables for t ∈ {0, 4} could give the set [0, 1, 0, 0, 2].

On the other hand, continuous-time stochastic processes allows for independent time

increments, meaning the state can change at any time on the interval [0, t]. In the

context of disease dynamics, this set of random variables could indicate infected

population counts, an infection event or events, along with a variation from the

average of the system.

Different types of stochastic processes allow for additional properties to govern

the process of interest. Stochastic models incorporate either one type or multiple

sub-types of a stochastic process into their framework. For example, in an SI process,

a stochastic differential equation (SDE) tracks the process X(t) = [S(t), I(t)]. SDEs

are similar to compartmental models except for the noise added to the system through

a Wiener process. The Wiener process is a stochastic process that provides change

variable i.i.d. from a Normal distribution with µ = 0 and σ2 = t [81, 5]. While

the SDEs sample a single stochastic process over time, averaging those paths is an

extra step to understand the probability a particular process occurring. To track a

probability distribution with differential equations, we need a different model with

a different stochastic process. The stochastic process focused on in this thesis is a

Markov chain. The current state’s dependence on only the previous state is defined

as the Markov property, while successive events defined as such produce a Markov

chain [81]. In particular, we focus on Markov chain’s transition probabilities and a

specific type of Markov chain, branching processes. Transition probabilities integrate

7



stochasticity into the model for Chapter 2, while branching processes are integral to

the methods defined in Chapters 4 and 5.

1.2.2 Stochastic Simulation

Before over viewing the particular stochastic models presented in this thesis, we must

address how stochastic models are validated. Ideally, real-world data of infection

counts over time would for example be the source of validation for the models of this

thesis. However, Chapter 2 details a cellular infection inside the body that, once

found, is eradicated. This eliminates the possibility of data with progression informa-

tion, leading to the need for stochastic simulation. Chapter 4 proposes intervention

rollouts on an infected population, which are unique schemes and large amounts of

data for those schemes are not available. Finally, Chapter 5 is performing pertur-

bations or simulated noise on a system to evaluate the expected proportion of the

population to be infected. Contact distributions with known noise and information

on the proportion of the population infected is not available at this time. Therefore,

we use simulations to validate our models.

For the Markov chain stochastic processes used in the Chapters 2 and 4 of this

thesis, we perform simulations using a Gillespie algorithm [37]. This algorithm defines

a continuous-time event-driven algorithm, meaning the algorithm determines the time

at which the next event will happen. We note the perturbed systems simulated in

Chapter 5 do not follow the algorithm in the next paragraph.

Simulations initialize an event-queue with a starting event, say an infected indi-

vidual enters the population. Once this initial event is placed in the event-queue,

it triggers the process to determine the time at which the next event will occur. A
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Poisson process is used to model the time to the next event. This process defines the

rates at which an event occur, also defined as the rate for a Poisson distribution. As

a result, the time to the next event is given by an exponential distribution, which is

parameterized by 1 over the event rate. A larger rate leads to a smaller exponential

distribution parameter, meaning there is a higher chance of producing a smaller ran-

dom time value to next event. Furthermore, for the smallest time, the corresponding

event will be placed in the event-queue to occur at time equal to the current time

plus the pulled time value. This algorithm comes to a stop when either there are no

more events in the event-queue to occur, or the specified end time is reached.

1.2.3 Master Equations

Rather than track a single stochastic process, master equations track the full dis-

tribution of possible outcomes for these continuous-time stochastic dynamics. This

stochastic process defines a fixed probability of the process moving from state i at

time t to state j in time t+ δt. This probability is defined as ωt(i, j), which assumes

that current state i, is the only state to inform the next state j. Remember, the

chain of events for this stochastic process leading to ωt(i, j) defines a Markov chain

[81]. For master equations, the probability distribution of the system being in state i

is Ci(t) [39]. In this simple master equation example, i could indicate the number of

infected cells. With probability flowing between states over time, modelers can track

the probabilistic evolution with a differential equation structure. This is shown in

Fig 1.2, where the transfer of probability occurs between neighboring states, with the

resulting master equation for the system given by
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Figure 1.2: Probability flow for master equations: For the probability of being in
state i, there is a transfer of probability to and from other states of the system. Each arrow
defines an ωt from one state to another.

d

dt
Ci(t) = − ωt(i, i− 1)Ci(t) − ωt(i, i+ 1)Ci(t)

+ ωt(i+ 1, i)Ci+1(t) + ωt(i− 1, i)Ci−1(t). (1.3)

Since this equation defines the governing dynamics of Ci(t), arrows leaving that

state give negative terms. Similarly, arrows going towards Ci(t) are represented as

positive terms. The major advantage to tracking distributions lies in their moments,

more importantly, how the moments can inform stochastic disease extinction and

persistence information. More details and an application of master equations with

the method of moments for with-in host disease modeling are shown in Chapter 2.
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Chapter 2

Within-host infection dynamics with

master equations and the method

of moments: A case study of hu-

man papillomavirus in the epithe-

lium

Abstract

Master equations provide researchers with the ability to track the distribution over

possible states of a system. From these equations, we can summarize the temporal

dynamics through a method of moments. These distributions and their moments

capture the stochastic nature of a system, which is essential to study infectious dis-
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eases. In this chapter, we define the states of the system to be the number of infected

cells of a given type in the epithelium, the hollow organ tissue in the human body.

Epithelium found in the cervix provides a location for viral infections to live and

persist, such as human papillomavirus (HPV). HPV is a highly transmissible disease

which most commonly affects biological females and has the potential to progress into

cervical cancer. By defining a master equation model which tracks the infected cell

layer dynamics, information on disease extinction, progression, and viral output can

be derived from the method of moments. From this methodology and the outcomes

we glean from it, we aim to inform differing states of HPV infected cells, and assess

the effects of structural information for each outcome.

2.1 Introduction

Population models for the spread of disease are a major area of study which emphasize

the macroscopic effect of a disease: the number of cases, complications, hospitaliza-

tions, or mortality within a population as a whole. As we refine these models, we also

aim to capture the nuances of underlying within-host disease dynamics, which are

often hidden under parameters and assumptions of population models. The intrica-

cies of within-host interactions have been explored by many, as reviewed by Speranza

[87]. Sequencing cells, identifying infection, tracking replication, and understanding

the spatial aspect of cellular infection play into the complexities that can inform

heterogeneous dynamics in a population [87]. From literature reviews of within-host

biological dynamics, we attempt to understand the mechanisms of a disease. The

focus of this chapter is on human papillomavirus (HPV), where the literature ad-
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mits gaps in knowledge. Gravitt showcases HPV knowledge limitations in latency,

clearance and incidence [38]. These limitations can lead to a single parameter that

assumes homogeneity within the dynamics or calibrating the model parameters with

data. This chapter takes a different approach. This work aims to use master equa-

tions and method of moments to illuminate the within-host cell dynamics of HPV

that pose uncertainty in population models. [29, 82].

Modeling healthy and unhealthy cells in an epithelium is not a novel idea. Or-

dinary differential equations are used in many different ways to model within-host

dynamics like epidermis dynamics [22]. Murall et al. focus on three systems of or-

dinary differential equations, two of which model skin systems for unvaccinated and

vaccinated hosts exposed to HPV. The final system is a compartmental model for the

transmission dynamics between individuals [69]. Both Sierra-Rojas et al. and Asih

et al. define ordinary differential equations for the populations of differing layers

of the epithelium [86, 8]. Another differential equation model for general epidermis

turnover was developed by Ohno et al. [75]. Lastly, partial differential equations

enter the space when Sari et al. consider how time and age affect the progression of

HPV toward cancer [85]. While the mechanistic aspect of an epithelial infection is

included in these models, they do not encapsulate the stochasticity that comes with

infections.

All the aforementioned models are defined as mean-field models, which track the

average dynamics of the system. Their structure makes it easy to define changes

in average states of the system, however, the distribution of possible states around

the average are missed. Mean-field models do not address the stochasticity that

comes with infections. In the context of cell divisions, their random nature can cause
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extinction events, resulting in transient infections. On the other hand, stochastic

reinfection and multiple infection events can result in persistent infections. To factor

in these types of infection events, models other than ordinary or partial differential

equations have been explored.

Stochasticity not only integrates varying infection events, but provides perspec-

tive on the gaps in HPV knowledge [38, 82]. Branching processes are one stochastic

method, which Ryser et al. and Beneteau et al. each use to address the randomness

of cell division dynamics for HPV clearance [83, 12]. While modelers use branch-

ing processes to define the probability of random events, master equations strike the

balance of tracking all aspects of a system with stochastic dynamics. Since probabil-

ity distributions inherently provide stochasticity to a model, master equations track

these distributions of all states in the system are tracked over time. This method

accounts for the probability transfer between states, which is detailed in Sec. 2.2.2.

One example of an infection-specific master equation approach is detailed by Vaughan

et al., who define target, HIV-infected, and virion cells, and the dynamics between

them [96]. In contrast, Clayton et al. give an in-depth model using master equations

to tracking a cell through its division process. The stochastic divisions of the base

layer cells, either asymmetric and symmetric, maintain homeostasis in an arbitrary

epithelium [23]. This chapter follows Clayton et al.’s model for the epithelial division

process, however, their work focuses on the homeostasis achieved in epidermis tissue

and general cell clone-size distributions [23]. Our results focus on how moments of

distributions computationally simplifies the issue of solving a large master equation

system. Avoiding this computational expense allows for additional cell types to be

added in the system, meaning structural comparisons can occur. These moments
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are defined through the method of moments, discussed in detail in Sec. 2.2.3, and

allow for determining extinction, persistence, and viral output events for different

structured systems.

Now, HPV is a sexually transmitted infection that is highly transmissible, leading

to either transient or persistent infections. Transmission occurs through direct skin

contact, causing infections to affect either the skin or mucosal epithelium. There

are two categories of HPV infections: high and low-risk genotypes. Each type

comes with different symptoms, for example, low-risk genotype infections lead to skin

warts. High-risk genotype infections most commonly lead epithelial lesions, which

can progress into cancer. These lesions and cancer are usually found in the cervix,

but cancers of the vulva, vagina, penis, anus, mouth and throat are also possible. The

Centers for Disease Control report that 99% of cervical precancers detect high-risk

genotypes, and that one of these genotypes specifically cause about half of cervical

cancers around the world [58].

Figure 2.1 depicts a cervical epithelium composed of basal, parabasal, intermediate

and superficial cell layers. The basal cells mature through each layer to the superficial

layer [70, 78]. In a healthy epithelium, basal and parabasal cells have the ability to

divide, however, parabasal cells can also differentiate into intermediate cells. Once a

cell is in the intermediate cell layer, it can only transition up to the superficial cell

layer. Eventually, a superficial cell will shed and no longer be a part of the epithelium.

An individual becomes infected with HPV when the virus infects the basal cell layer.

The infection then propagates through cell divisions and transitions, but will only

clear when there are no more infected basal cells [86].

With master equations providing the structure of differential equations and incor-
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Superficial cell layer

Intermediate cell layer

Parabasal cell layer

Basal cell layer
Basement membrane

Figure 2.1: Cervical epithelium: Shown is the side view of the cervical epithelium, with
its distinct cell layers. For the models presented in this chapter, the basement membrane
will not be included. Cells either divide or differentiate, meaning they either duplicate or
transition to the subsequent layer, to sustain each layers depth [23]1.

porating stochasticity into the system, we model HPV infection progression through

epithelial tissue. We show the details of master equations and the method of moments

in Sections 2.2.2, and 2.2.3. From this mathematical framework, we capture the

mechanistic essence of extinction, persistence, and viral load in Sections 2.2.4, and

2.2.5. In this chapter, we simulate and derive analytical measures for two different

systems in Sections 2.2.6, 2.3.1, and 2.3.2. Finally, Sec. 2.4 will validate the

method of moments with simulations, along with showcasing the structural effect on

each outcome.
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2.2 Methods

2.2.1 Assumptions

In order to model this system mechanistically, we assert the following assumptions for

HPV infections: First, our focus is only on specific divisions and cell processes which

are described in Sections 2.3.1 and 2.3.2. Second, our model assumes there is only one

infection occurring at a time, defined through initial conditions and lack of reinfection

events, even though that might not be true for a real-world scenario and could be

easily relaxed in our equations. Third, it is assumed that we are infecting the system

with a high-risk genotype infection, to simulate infected cells that accumulate into

lesions. Fourth, viral latency is an unknown aspect of HPV that Gravitt points out,

however, this model does not incorporate a latent period in the spreading process [38].

Finally, we do not account for virion decay and instead focus on cumulative expulsion

of virions from cells that have shed, or are considered dead. As stated previously, the

assumptions of master equations are as follows: master equations define unique state

changes that happen in continuous time. That being said, the number of such states

is constrained by how computationally expensive it is to run the resulting system of

equations. It is important to note that the master equations and method of moments

are all exact, however, the extinction analysis is no longer exact since assumptions

on the distributions are imposed. The purpose of this model is to provide insight into

epithelium dynamics modeling and the role of epithelium structure using the method

of moments to reduce computational cost.
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2.2.2 Master equations

Consider the general first order linear differential equation, defining the instantaneous

rate of change for the discrete variable y,

dy

dt
+ p(t)y = g(t). (2.1)

The equations p(t) and g(t) define time-dependent processes [19]. When this frame-

work is applied to population dynamics, where y represents the population density at

time t, we can solve for an exact solution. Due to its deterministic nature, solutions

give a specific unique population density at a time t. To transition from a deter-

ministic framework to a stochastic framework, which accounts for the randomness of

certain processes, while still using differential equation structure, we look to master

equations.

In this stochastic framework, the discrete variable is replaced by the probability

associated with the state y, denoted by Cy(t). For all states, the probability distri-

bution incorporates stochasticity, which is beneficial for integrating uncertainty into

this model. Master equations also substitute equations p(t) and q(t) for transition

rates, ωt, which define a stochastic rate at which the state of the system changes.

These stochastic rates can be thought of as the transfer of probability mass from one

state to another [39]. We define a general master equation as,

d

dt
Cy(t) = −

∑
z

ωt(y, z)Cy(t) +
∑

z

ωt(z, y)Cz(t), (2.2)
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which represents the change in the occupation probability or probability associated

with state y. The left-hand summation of Eq. (2.2) defines the subtraction of mass

from the probability density, Cy(t), meaning the probability mass is leaving state

y to any state z. With the addition of probability mass shown in the right-hand

summation, we notice probability mass moving from any state z to y [39]. It is

important to notice that the arbitrary state y represents all information relevant to

the state, and can therefore be a scalar or a multi-dimensional quantity.

As an example, consider an arbitrary state which represents the scalar quantity

n. This quantity tracks the number of infected cells in the system. The stochastic

rates of transitions for this system are the infection rate, ωi and the recovery rate,

ωr. We define three master equations for n = {1, 2, 3} as

d

dt
Cn=1(t) = −ωiCn=1(t) − ωrCn=1(t) + ωrCn=2(t), (2.3)

d

dt
Cn=2(t) = −ωiCn=2(t) − ωrCn=2(t) + ωiCn=1(t) + ωrCn=3(t), (2.4)

d

dt
Cn=3(t) = −ωiCn=3(t) − ωrCn=3(t) + ωiCn=2(t). (2.5)

Now, we have a definition for the change in the probability density for n = {1, 2, 3}.

From these equations we can determine the probability density at time t for each n.

The total number of states for this system is the range of n, meaning we have three

possible states to track and have two degrees of freedom. Since a single dimension

master equation model represents the probability distribution dynamics for n, we

can extend this framework to a multi-dimensional master equations. The multi-

dimensional master equations have the ability to represent population interactions.
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We define another quantity, h, representing the number of healthy cells. Therefore

we can define Cn,h(t) changing over time for n = {1, 2} and h = {1, 2} as

d

dt
Cn=1,h=1(t) = −ωiCn=1,h=1(t) − ωrCn=1,h=1(t), (2.6)

d

dt
Cn=2,h=1(t) = −ωiCn=2,h=1(t) − ωrCn=2,h=1(t) + ωiCn=1,h=2(t), (2.7)

d

dt
Cn=1,h=2(t) = −ωiCn=1,h=2(t) − ωrCn=1,h=2(t) + ωrCn=2,h=1(t), (2.8)

d

dt
Cn=2,h=2(t) = −ωiCn=2,h=2(t) − ωrCn=2,h=2(t). (2.9)

By adding another cell, we alter where the probability mass is transitioning from,

which showcases the population interaction possible with this method. The number

of states also increases to four, providing three degrees of freedom, which is achieved

by multiplying each quantity range by the other. We will use this multi-dimensional

approach moving forward, and specify the types of transitional interactions between

each quantity in the system. As shown in the examples, this chapter defines a quan-

tity as a unique cell type, therefore, the multi-dimensional system is renamed as a

multi-cell-type system. Sections 2.3.1 and 2.3.2 define a three-cell-type system, repre-

senting a three layer epithelium, and a five-cell-type system, representing a five layer

epithelium.

2.2.3 Method of moments (MoM)

From the small multi-cell-type example in Sec. 2.2.2, we define a system with two cell

types and see the number of equations to satisfy with a solution grows exponentially
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with the number of cells. For multi-cell-type models with large ranges, the state

spaces grows quite large and this explicit method becomes computationally expensive.

A simple solution to avoid solving for a large number of states is to derive the mean

and variance from the probability distribution being defined. A mean value and

variance description has been deemed adequate for describing large state spaces or

populations [39]. This process is not as computationally expensive as explicitly solving

all the master equations, since there are only the chosen moments of each state and

their interaction terms to track over time.

The mean for a given cell, k, in the cell range of 0 to L, y = (y1, y2, y3, . . . , yL) is,

ȳk(t) =
∑

y

ykCy(t) = ⟨yk⟩t, (2.10)

where Cy(t) is the probability distribution for all states. The master equations solve

for the change over these probability distributions, so using Eq. (2.10), we define the

equation for the change in the moment of a distribution as

d

dt
⟨yk⟩t =

∑
y

yk
dCy(t)
dt

. (2.11)

Now, given a multi-cell-type system, we must consider higher order moments and

interaction terms as

d

dt
⟨yℓ

ky
q
s⟩t =

∑
y

yℓ
ky

q
s

dCy(t)
dt

. (2.12)

From the first and second moment of state y, we define the variance as

V ar(yk)t = ⟨y2
k⟩t − ⟨yk⟩2

t . (2.13)
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2.2.4 Extinction and non-extinction events

The probability of extinction is essential for understanding the duration of an infection

event, therefore, from the first two moments of any cell, we can derive the probability

of extinction. We can do this from the assumption that the underlying distribution

of a given average, ⟨yk⟩, follows a zero-inflated geometric distribution. Kendall previ-

ously showed that the geometric distribution is a solution to the birth-death process

[47] therefore, we use a geometric approximation of non-extinct trajectories to extract

the probability of extinction from the method of moments. We redefine the first two

moments as,

⟨y⟩ = 1
p

[1 − P (y = 0)], (2.14)

⟨y2⟩ = (0)P (y = 0) + 2 − p

p2 [1 − P (y = 0)], (2.15)

where P (y = 0) is the probability of extinction for cell y and 1
p

and 2−p
p2 are the first

and second moment of the geometric distribution for non-extinct states. Solving for

p from Eq. (2.14), we define

p = [1 − P (y = 0)]
⟨y⟩

. (2.16)

Now, substituting Eq. (2.16) into Eq. (2.15), we can solve for the probability of

extinction as

P (y = 0) = 1 − 2⟨y⟩2

⟨y2⟩ + ⟨y⟩
, (2.17)
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which provides a solution for the probability of extinction using the first two moments

of the distribution of associated with cell y. In Sec. 2.4, details on transient infections

defined by the probability of extinction will be discussed. Now, when solving for the

probability of extinction, we inherently solve for the probability of non-extinction as

well,

1 − P (y = 0) = 2⟨y⟩2

⟨y2⟩ + ⟨y⟩
. (2.18)

From the probability of non-extinction, we can estimate the geometric distribution

parameter with a specific cell from Eq. (2.16),

p = 2⟨y⟩
⟨y2⟩ + ⟨y⟩

, (2.19)

thus estimating the mean and variance of a cell count for a persistent infection. This

provides valuable insights for the average basal cells from a persistent infection, which

will be discussed in Sec. 2.4.

2.2.5 Viral load

The viral load metric in an individual is the product of infected cells shedding from

the epithelium. When a cell is shed, it disperses virions or copies of HPV that can go

on to infect others. As pointed out in Sec. 2.1, there are many uncertainties around

the progression of an HPV infection, one of which is viral load [38, 82]. It is known

that when a cell becomes infected by HPV, there is a genome replication that occurs

in the basal cell layer, resulting in 50-100 viral copies in the cell [26, 88]. As infected

cells differentiate and move up the cell layers, more viral copies are produced within

the cell. The number of copies varies according to the genotype, however, we set the
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number of virions to 1,000 as a proof of concept. We determine viral load output

from the MoM by focusing on the moments associated with the final cell type, dead

cells. We determine the first and second moment of the dead cells, then apply the

virion shed value for each dead cell, producing the expected total number of virions

released over time.

In the future we can aim to give a general distribution for the viral copies per cell

[33, 94]. When a cell is shed from the epithelium, it is estimated between 50−104 viral

copies are expelled. [88, 66, 33, 94]. Due to this wide range for viral copies shed out of

the system, we can apply a specified distribution for the previously mentioned range.

This distribution could be altered according to new research or other assumptions,

for example, to include more stochasticity, the distribution over the given range could

be uniform.

2.2.6 Stochastic simulation algorithm

Without data for these cellular dynamics, we simulate the stochastic process of an

infection in the cervical epithelium with the Gillespie stochastic simulation algorithm

[36]. As described in Sec. 1.2.2, this algorithm establishes a continuous-time simu-

lation, which tracks the events that occur as time passes. These event-driven simu-

lations are conducted by distinguishing the rates of each event, then assigning each

rate to its respective exponential distribution. Drawing from all the exponential dis-

tributions provides the next time to all specific events. Whichever time is the closest

to the current time means the associated event will occur. New events based off the

event that just occurred are placed in the queue, since one event triggers a future

event. This continues until time runs out or all cell types are equal to 0, excluding
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the dead cells. For the purposes of this project, we set a maximum time of 750 days

to occur for 50,000 simulations.

2.3 Application to structured epithe-

lium dynamics

2.3.1 Three-cell-type system

For the first iteration of this model, we will only focus on the first two layers of

the cervical epithelium, the basal and parabasal cell layers. The biological reason

for focusing on the bottom two layers first is that after menopause, the cells in the

cervix do not mature past the parabasal cell layer. This results in a thinner cervical

epithelium [78]. After an initial basal cell is infected, set as an initial condition, there

are three types of basal cell divisions that can accumulate more infected cells in the

epithelium. An infected basal cell can divide into two more infected basal cells, divide

into an infected basal cell and an infected parabasal cell, or divide into two infected

parabasal cells. These divisions happen with rates of β, γ, and δ respectively. Once

an infected parabasal cell enters the system, it has the potential to divide into two

more infected parabasal cells, or differentiate, which allows the cell to shed from the

epithelium. Each of these processes occur with respective rates of ρ and θ. The

resulting system is therefore fully specified by the number of infected basal cells, b,

the number of infected parabasal cells, p, and the number of infected dead cells shed,

d. The epithelial dynamics between these three types of cells are depicted in Fig. 2.2.

The parameter values are shown in Table 2.1, which are used in the MoM equations
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and simulations.

Figure 2.2: Three-cell-type model schematic: Each state of this system is fully
specified by the number of infected basal cell b, the number of infected parabasal cells p,
and the number of infected dead cells shed d. The general dynamics are shown with arrows
illustrating the probability mass transitions between states. A state change is made when
the infected basal cell count changes, the infected parabasal cell count changes, or the dead
cell count changes in the system.

The master equation derived from Fig. 2.22 tracks three quantities: b, p, and

d. The general probability distribution over all possible states {b, p, d} is defined as

Cb,p,d(t), which evolves in time according to,
2Cell image reprinted from Colposcopy and Treatment of Cervical Precancer, IARC technical

publication No. 45, Walter Prendiville and Rengaswamy Sankaranarayanan, Anatomy of the uterine
cervix and the transformation zone, Page 14, 2017 (2017) [78].
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d

dt
Cb,p,d(t) =(b− 1)βCb−1,p,d + (p+ 1)θCb,p+1,d−1 + ((p− 1)ρ+ bγ)Cb,p−1,d

+ (b+ 1)δCb+1,p−2,d − [bβ + bγ + bδ + pρ+ pθ]Cb,p,d. (2.20)

As explained previously, if we track our counting variables b, p and d up to some

large integer N , we are then dealing with a system of N3 equations which can become

unwieldy when dealing with realistic infection sizes. Thus we move to the method

of moments as a computationally inexpensive alternative. This work focuses on the

first and second moments of all the cell variables. The exact equations are defined

in the Supplemental Materials. The derivations of these moments follow from Eq.

(2.11). Numerical solutions to these equations give enough information to derive the

distribution’s mean and standard deviation for all cell-types at time t. These exact

analytical results can the be compared to the outcome of the simulation process

defined in Sec. 2.2.6 starting from a single infected basal cell. The simulation then

tracks the history of each cell type count over the 750 days.

Process definition Rate [1/days] Reference

β Basal cell to two basal cells division 0.0034 [12, 70, 23]

δ Basal cell to two parabasal cells division 0.0024 [12, 70, 23]

γ Basal cell to one basal cell and one parabasal cell division 0.0252 [12, 70, 23]

ρ Parabasal cell to two parabasal cells division 0.0312 [70, 23]

θ Parabasal cell shed 0.67 [70]

Table 2.1: Three-cell-type system parameters: Parameter values for the processes
occurring on the system are used in both the analytical model and the simulations for the
three-cell-type system. All rates are measured in units of 1/days.
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2.3.2 Five-cell-type system

Cb,p,i,s

b + 1 b b - 1

p + 1
p

p - 1

i + 1 i i - 1

s + 1
s

s - 1

Cb,p,i,s

Cb,p,i,s Cb,p,i,s,d

Parabasal cell to intermediate cell transition 
rate

Intermediate cell to superficial cell transition 
rate

Shed rate

Basal cell division to two basal cells rate

Basal cell division to two parabasal cells rate

Basal cell division to a basal and a parbasal 
cell rate

Parabasal cell division to two parabasal cells 
rate

d + 1 d - 1d 

-

i

Figure 2.3: Five-cell-type model schematic: Similar to the three-cell-type system,
the general dynamics for the five-cell-type system are shown with arrows illustrating the
probability mass transitions between states. A state change is made when any of the infected
cell counts or the dead cell count change in the system. With the additional cell types, we
see the differing dynamics from parabasal cells to intermediate and superficial cells.

The second iteration of this model adds the dynamics of the two upper layers in

the cervical epithelium, the intermediate, i, and superficial, s, cell layers. The general

probability distribution of infected cells for each cell type is changed to Cb,p,i,s,d(t) to

incorporate the extra layers. Similar to Sec. 2.3.1, once an initial basal cell is infected,

infected cells are introduced to other layers through divisions or transitions. Previ-

ously, we also described how infected basal cells can divide into two infected basal cells,

an infected basal cell and parabasal cell, or two infected parabasal cells. Remember,

these divisions occur at rates of β, γ, and δ respectively. Now, the intermediate and
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superficial cells do not result from division dynamics, rather, they populate through

transition dynamics. Therefore, the dynamics of the infected parabasal cells diverge

from the three-cell-type model dynamics. Instead, an infected parabasal cell either

divides into two infected parabasal cells with rate ρ, or transitions into an infected

intermediate cell with rate α. Furthermore, intermediate cells cannot divide, so, the

only event that can occur is for the cell to transition up to an infected superficial

cell with rate σ. Lastly, an infected superficial cell will die and shed any virions with

rate θ [78]. The interactions between subsequent layers are shown in Fig. 2.33. The

parameter values for each process rate are defined in Table 2.2.

The master equation derived from Fig. 2.3 details the flow in and out of each

state. The equation is as follows,

d

dt
Cb,p,i,s,d(t) =(b− 1)βCb−1,p,i,s,d + ((p− 1)ρ+ bγ)Cb,p−1,i,s,d

+ (b+ 1)δCb+1,p−2,i,s,d + (p+ 1)αCb,p+1,i−1,s,d + (i+ 1)σCb,p,i+1,s−1,d

+ (s+ 1)θCb,p,i,s+1,d−1 − (bβ + pρ+ bγ + bδ + pα + iσ + sθ)Cb,p,i,s,d.

(2.21)

Similar to the three-cell-type system, we derive the first and second moments for

each of the five cell types, along with the pairwise interaction terms. All exact MoM

equations for the five-cell-type system are given below. The five-cell-type simulation

follows the same process as described in Sec. 2.3.1, except the i and s states are

also tracked. The exponential distributions for the time to next event considers the

additional processes of parabasal cells moving to the intermediate cell layer, interme-
3Cell image reprinted from Colposcopy and Treatment of Cervical Precancer, IARC technical

publication No. 45, Walter Prendiville and Rengaswamy Sankaranarayanan, Anatomy of the uterine
cervix and the transformation zone, Page 14, 2017 (2017) [78]
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Process definition Rate [1/days] Reference

β Basal cell to two basal cells division 0.0034 [12, 70, 23]

δ Basal cell to two parabasal cells division 0.0024 [12, 70, 23]

γ Basal cell to one basal cell and one parabasal cell division 0.0252 [12, 70, 23]

ρ Parabasal cell to two parabasal cells division 0.0312 [70, 23]

α Parabasal cell differentiating and moving to the intermediate cell layer 0.4 [70]

σ Cell moving from the intermediate cell layer to the superficial cell layer 0.4 [70]

θ Superficial cell shed 0.67 [70]

Table 2.2: Five-cell-type system parameters: Parameter values used in both the
analytical model and the simulations for the five-cell-type system. All rates are measured
in units of 1/days.

diate cells moving to the superficial cell layer. Finally, superficial cells shed out of

the epithelium and add to the cumulative number of dead cells.

2.4 Results

Section 2.3.1 defines the analytical moments and the event-driven simulations for the

three-cell-type system over time. Figure 2.4 shows the results and exactitude of the

MoM equations compared to the simulations. As time goes on, the average number

of infected basal cells grows slowly to 2 by 750 days. This indicates that the basal

cell division rate is not large enough to double the average until after 750 days. The

variance of the basal cells gradually increases over time as well, illustrating that the

longer the infection persists, the more variable the basal cell counts can be. Turning

to the average count of infected parabasal cells, the average jumps from 0, implying

immediate divisions of infected basal cells to infected parabasal cells. The change in

the infected parabasal cell average is not as large as the change in the infected basal
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cell average, but intuitively we attribute this to the rate of shedding being larger than

all other rates in the system. It is noteworthy that the simulated average of infected

parabasal cells is more variable over time, which is a result of the small values for the

average infected parabasal cells. This scale could also have an effect on the variance

of the parabasal cells, which is small relative to the other cell-type variances. Moving

on to the dead cells, there is a steady increase in the average over the time period,

similar to the average basal cells. However, the variance of the dead cells grows at

a fast rate, likely due to the large shed rate and the variability from the average

parabasal cell counts.

With the intermediate and superficial cell layers to consider, the same analyses

conducted for the three-cell-type system are conducted for the five-cell-type system.

Figure 2.5 shows that with two more cell types, the simulations still validate the MoM

results. The figure provides similar insights as Fig. 2.4 for the basal cell average

and variance. On the other hand, the average and variance for the parabasal cells

exhibit larger quantities over time. Turning to the average count of intermediate and

superficial cells, both exhibit a similar trend as the average parabasal cell count. One

major difference is the average count for parabasal and intermediate cells are larger

than the average count for superficial cells. While the magnitude of the variances

differ for the parabasal, intermediate, and superficial cells, each have a slow growing

variance. This slow growth and variability in simulations is a result of the small

averages of each cell type. Sec 2.2.5 compares the dead cell averages in terms of viral

load to highlight the differences between the two systems.

By accurately modeling the mean and variances of each cell type, we have the

ability to understand the distribution of cell type counts over time. Furthermore,
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Figure 2.4: Average and variance evolution of the three-cell-type system: The
averages and variances from the MoM equations for the basal, b, parabasal, p, and dead,
d, cells over 750 days (solid lines) are validated by the simulations (dotted lines). 50,000
simulations were used to compute the mean and variance for each cell type. The initial
conditions for the MoM and simulations set the first and second moments of b equal to 1,
while the other moments are set to 0.

these distributions can encapsulate the likelihood of various disease progressions, for

example viral load output, shown in Section 2.2.5. With the MoM being exact for

all cell types, we assert that this method has the potential to derive probabilities

of extinction, persistent infection indicators and average cumulative virion counts to

inform infectiousness of an individual in population models.
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Figure 2.5: Average and variance evolution of the five-cell-type system: From
the first and second moments of the basal, b, parabasal, p, intermediate, i, superficial, s,
and dead, d, cells over 750 days, we derive the mean and variance (solid lines) for the five-
cell-type system. The initial conditions are the same as the three-cell-type system, where
the first and second moments for the basal cells are set to 1. All other moments are set to
0 at the start. We validate these analytical results with simulations (dotted lines). Similar
to the three-cell-type system, 50,000 simulations were used for this validation.

2.4.1 Extinction probability

From the biological mechanisms of the epithelium, once the infected basal cell value

is equal to 0, the parabasal cells will divide and eventually shed, eradicating the

infection. Therefore, when the infected basal cell count reaches the zero-th column
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of Fig. 2.2 and 2.3, this marks an extinction event. As shown in Sec. 2.2.4, the

probability of the infected basal cell average equaling 0, from our assumed zero-

inflated geometric distribution, is equal to the probability of extinction. Remember

this is not an exact result since we cannot assume a geometric approximation to be

exact for all times. The analytical derivation is validated with simulations in panel

A of Fig. 2.6 for both modeled systems. We note that the differing systems do not

affect the results of the extinction probabilities due to consistent basal cell dynamics,

as shown in panels A and B. From the efficient MoM results, we are able to provide

extinction probabilities for varying time periods. For example, panel A illustrates the

probability of the average basal cells going extinct is over 50% at 750 days. Extending

past the 750 day mark in panel B, the probability of extinction levels out around 70%.

This means, after 6,000 days, there is a 70% chance the infection has cleared out of

the basal layer. While the likelihood of clearing an infection is high, there is still a

chance of persistence, which is discussed in Sec. 2.4.2.

2.4.2 Persistent infections

The dynamics of persistent infections are necessary for understanding the long term

effects of an HPV infection. Therefore, we show the average basal cells without

extinctions in Fig. 2.7 for both the three and five-cell-type system. Simulations

excluding extinction events validate the MoM results for the average number of basal

cells. Comparing the average basal cells in Figs. 2.4 and 2.5, the average basal

cells for non-extinct infections are much larger. Consequently, the larger this average

is over time, the longer the infection could persist past this point. Moreover, these

findings estimate the severity of 30% of HPV infections that will persist over time.
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Figure 2.6: Cumulative probability of extinction of the basal cells for the three
and five-cell-type system: In panel A, 50,000 simulations (dotted lines), over a 750
day time period, validate the probability of extinction derived from the first and second
moments (solid lines) of the basal cells for the three (blue) and five-cell-type (red) system
respectively. To derive the probability of extinction, we assume a zero-inflated geometric
distribution, where we define the probability of extinction in terms of the first two moments.
Panel B exhibits the probability of extinction after 6,000 days. Evaluating the probability
of extinction past 750 days showcases the probability plateauing to 0.7 after 3,000 days.

Persistent infections not only affects the infectiousness of an individual, but also their

risk for cancer. The progression to cancer and infectiousness play vital roles in the

disease spread and mortality rate in population-level models.

2.4.3 Cumulative virions

Whether an infection is transient or persistent, we establish the average cumulative

virions resulting from the epithelial dynamics. By assuming a certain number of

virions shed from each dead cell, we achieve Fig. 2.8. This figure validates the MoM

with simulations after a constant multiplier is applied to the average dead cell count

for the three and five-cell-type system. The average cumulative virion count steadily

grows as time goes on, ending at a little over 35,000 virions expelled at 750 day mark
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Figure 2.7: Average basal cells of persistent infections for the three and five-cell-
type system: The non-extinct average basal cell simulation results (dotted lines) validate
the MoM results (solid lines). The averages grow faster than those that include extinction
events for both the three (blue) and five-cell-type (red) systems.

for the five-cell-type system. The two systems begin to significantly diverge between

150-250 days. Furthermore, the inset plot shows the difference between the three

and five-cell-type system over time (pink solid line). For comparison, a quadratic

fit is also plotted in the inset (black dashed line), showing the difference follows a

quadratic trend for the 750 day period. As time passes, the larger the gap is between

the two systems, exhibiting the important role the extra layers have in harboring

more infected cells. Since the importance of the extra layers depend on a person’s

age [78], our results suggest that different approximations for an individual’s level of

infectiousness over time should be used based on their age to better inform population
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models.
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Figure 2.8: Average cumulative virions shed for the three and five-cell-type
system: The average cumulative virion count from simulations (dotted lines) validate the
MoM results (solid lines). The average cumulative virions shed is defined by 1,000 virions
shed per dead cell. The difference in average cumulative virion count for the three (blue) and
five-cell-type (red) system is highlighted in the inset plot (pink solid line), with a quadratic
fit (black dashed line).

2.5 Discussion

While population level HPV models help inform persistent disease spread, within-host

models have the ability to add individual-level stochasticity and heterogeneity to those

population models. This is especially true since the mechanisms of cell division by

which HPV infections propagate through an epithelium are well known. However,
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other less known factors such as clearance and role of epithelium layers must also be

considered. With the uncertainty in the outcomes of an HPV infection preventing

accurate modeling, it is imperative to leverage the knowledge of cell division dynamics

to infer important infection dynamics.

In this chapter, we have demonstrated how master equations can track the prob-

ability distributions associated with count of infected cells in a cell layer. For each

system, we define a generalized governing master equation for the probability of be-

ing in an arbitrary state. While the solutions from these master equations are exact,

the larger the system, the more computationally expensive it is to solve. To avoid

this, we can instead simply track the statistical moments of the full state distribution

using the method of moments. Rather than tracking a full distribution for every cell

type over time, these moments provide an accurate and efficient way to study the

probabilistic nature of HPV infection progression. Moreover, we can still use the de-

rived moments to compute the probability of extinction, average basal cell count for

persistent infections, and average cumulative virions over time. In doing so, we tested

the effects of adding structure to the epithelium in the form of extra cell layers whose

importance are known to depend on age. We found that while this extra structure

does not affect the probability of establishment (or extinction) of a new infection, it

does affect long-term shedding rates of virions in persistent infections.

Some considerations for future work are incorporating reinfections, and within-

host spatial tracking. For simultaneous infections, it would be important to allow

current infections to reinfect the host stochastically, or introduce another transmission

event to add to the viral load burden. This consideration could result in a change

to the moments of each cell-type distribution, meaning the probability of extinction
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could go down drastically depending on the time of the reinfection event while the

non-extinct average basal cell count could increase. This compounding effect could

spike the average cumulative virions and change the level of infectiousness for the

individual. Finally, incorporating a spatial component to this model could account

for simultaneous infections merging to form a larger infected area. Consequently, this

would account for possible lesion grades and treatments to rid an individual of the

infection.

While this framework informs HPV infection growth, epithelium infection pro-

gressions do not only show up in a cervical epithelium. This model and its outcomes

can be applied to other parts of the body as well. Leveraging this framework for not

only other parts of the body but for other diseases could benefit modelers that strug-

gle with individual-level disease knowledge. The generalisability of master equations

and the method of moments for infection progressions through cell division dynamics

provide a powerful framework that can aid population-level models.

The reasons to model span from understanding population-level disease dynamics

to mitigating outbreaks, but there are large assumptions placed on modeling diseases

that have a number of unknown aspects. Using the information on the within-host

mechanisms of the disease creates an opportunity to build model pipelines. These

pipelines would be composed of mechanistic and stochastic within-host models of

diseases, which outcomes can inform parameters for population-level models. This

informed heterogeneity can alleviate the pressure of calibration or unknown parameter

values in large models by leveraging known mechanisms of disease propagation in

the body. When struggling with the unknown knowledge of disease progression and

transmission, leaning on known biological mechanisms can provide insights to fill our
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gaps in knowledge.
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Chapter 3

Branching Process Models of Dis-

ease Dynamics

3.1 Branching processes of disease spread

Master equations define the transitions between states and track the probability of

being in a state over time, which is conducive for a system that has a homogeneous

structure and minimal discrete states. However, with population disease spread,

the evolution of infected individuals through heterogeneous structures is essential

to capture the effect of disease spread on complex social structures. To allow for

heterogeneity, we initiate a Markov chain on a structure with defined heterogeneity.

This particular stochastic process is known as a branching process, which focuses

on the generational cumulative count for a specified process, along with evaluating

extinction events.

The inception of branching process analysis started in 1874 with Francis Galton

and H.W. Watson considering the issue with family names going extinct over time
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[42, 6]. This process considers an object in the zero-th generation that will create or

‘branch’ to another object or objects in the first generation. As detailed in Sec. 1.2.1,

because the current generation is dependent on the previous generation, branching

processes are Markovian processes.

Now, branching processes can result in extinction outcomes and cumulative counts

in discrete time, which are important aspects to consider for the spread of a disease

[40, 10, 11, 6]. The extinctions and cumulative counts are tracked through observa-

tions of the transmission chain or branch of disease spread. As this chain continues

to grow and accumulate infected individuals, this describes the infection percolating

in the population structure. Percolation defines the macroscopic effect of the infec-

tion spread on a structured population [89]. Moving forward, the focus will be on

percolation on contact networks.

3.2 Percolation on Contact Networks

3.2.1 Network Definitions

The concepts of network science originate from graph theory. Graph theory itself roots

from Leonhard Euler’s 1741 work on the Könisberg bridge problem: a combinatorics

problem of crossing seven bridge only once given the city structure of Könisberg [30].

Outside of city strutures, networks help understand the structure of power grids, the

internet, social connections, and many more [71].

A network is defined as a collection of vertices or nodes that are connected by

edges. Figure 3.1 provides an example of a small random network. A vertex can
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represent an individual or one entity of the network. An edge then represents an

interaction, or relationship between two vertices. When there is an edge between

two vertices, those two vertices are neighbors of each other. The number of neigh-

bors defines the degree of the vertex. In network epidemiology, vertices represent

individuals or objects that could be infected and the edges between them are the

avenues of transmission. This is defined as a contact network. One way to describe a

contact network is by its degree distribution. This distribution defines a probability

distribution for a vertex having a certain degree. We can define a degree distribution

from an existing network, by counting the number vertices with each distinct degree

then dividing by the total number of vertices to compute their frequencies. If the

exact network structure is not given, a general probability distribution can define the

degree distribution, providing a random graph or network [35]. For this thesis, we

govern our contact networks with probability distributions. While any distribution

can describe a contact network, epidemiologists focus on negative binomial distribu-

tions [34]. A negative binomial distribution can be parameterized to define R0, the

average number of secondary infections, and either α or k, a dispersion parameter

defining how homogeneous or heterogeneous the distribution is.

3.2.2 Percolation on Contact Networks

As individuals on a contact network become infected through branching processes,

percolation can occur. Percolation, a concept initially used to describe how molecules

connect together to make macro-molecules, describes a branching process permeating

through a structure, for this work, through a contact network [89]. There are two

types of percolation that can occur on a network. The first being when all vertices
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Figure 3.1: Basic random network: This figure illustrates 10 vertices randomly con-
nected according to a uniform distribution by 20 edges, creating a random network.

have a probability defining their susceptibility. Similar to how a person may come in

contact with a disease but their immune system may or may not fight it off. This is

referred to as site percolation. The second, known as bond percolation, assumes there

is a probability of transmission along the edges of the network. If no assumption

is placed on immunity for the system, which we will see in Chapter 4, then with

probability T , an infected vertex will infect one of their contacts over the course of

the epidemic [73, 62, 72, 59]. While the networks in this paper only impose percolation

on a random network, others have imposed more constraints on the networks they

percolate on [63, 60, 67].

To define the probability of transmission, T , this work, along with others, assume

transmission and recovery follow simple Poisson processes occurring at fixed rates β

and γ respectively [43, 44]. It is assumed a vertex, when infected, is infectious for

some random time τ . Therefore, the probability of the vertex infecting one of its

neighbors during τ is
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T (τ) = 1 − lim
δt→0

(1 − βδt)τ/δt

= (1 − exp−τβ). (3.1)

In a similar manner, the probability of the infectious period being length τ is

given by the cumulative distribution function over τ evaluated for the average rate of

recovery, γ,

F (τ) = 1 − lim
δt→0

(1 − γδt)τ/δt

= (1 − exp−τγ). (3.2)

From this, the probability mass function is defined over τ by taking the derivative as,

f(τ) = γexp−γτ . (3.3)

From Eqs. (3.1) and (3.3), we have the average probability of a vertex infecting

and information on the time of recovery, τ . Thus, total probability of transmission is

T =
∫ ∞

0
T (τ)f(τ)dτ = β

β + γ
. (3.4)

From this, a percolation process is evaluated on through a degree distribution

using probability generating functions.
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Figure 3.2: Contact degree distribution, G0(x), visual representation: For an
arbitrary degree distribution, all probabilities of degree k, pk, can be represented in visual
vertex form. This stub list of vertices indicate the degree and associated probability.

3.3 Probability generating functions

Generating functions are power series that act similar to an array in a programming

script: the constant position of a polynomial holds a value associated with the zero-th

position. The constant term holds a value associated with the first position, the x

term holds value associated with the second position, and this holds true for all other

terms in the power series. Furthermore, when the coefficients of these generating

functions are probabilities, this defines a probability generating function (PGF). At

their foundation, PGFs provide mathematical structure to probability distributions

associated with an arbitrary random counting variable, k. The probability associated

with the count k is the coefficient for the xk term.

For disease spread a contact network degree distribution defines the probability

of a randomly chosen vertex having degree k or k neighbors, denoted as pk [73, 99].

We assume the number of vertices in the contact network is infinite [73]. Therefore,

we can define the PGF for a contact degree distribution as
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G0(x) = p0 + p1x+ +p2x
2 + ...,

G0(x) =
∞∑

k=0
pkx

k. (3.5)

Another way to describe G0 is as the PGF that represents the probability of

choosing a random vertex with degree k, as shown in Fig. 3.2. With this polyno-

mial structure holding all the information on the probability distribution, there are

three operations that provide specific information on the original degree distribution:

derivatives, moments, and powers. First, applying k derivatives G0, then evaluating

at x = 0 defines
1
k!
dkG0

dxk

∣∣∣∣
x=0

= pk. (3.6)

This extracts the kth probability, pk, from the PGF. Evaluating at x = 0 is essential

to this process because for the kth derivative makes the kth value, (k!)pk, the only

constant left of the function.

When evaluating G′
0 at x = 1 instead, the result is,

G′
0(1) =

∑
k

kpk = ⟨k⟩, (3.7)

producing the first moment, or average degree, of the probability distribution. Taking

the derivative multiplies all terms by k, similar to the computation for a weighted

average.

Next up, we can derive the other moments of the probability distribution through

the PGF framework. The nth moment is then given by the nth derivative of G0
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evaluated at x = 1,

[(
x
d

dx

)n

G0(x)
]

x=1
=
∑

k

knpk = ⟨kn⟩. (3.8)

These moments can be combined to compute centered moments like variances,

skewness and other higher moments of the distribution.

Finally, raising a PGF to a power result in,

[G0(x)]2 =
[∑

k

pkx
k
]2

=
∑
jk

pjpkx
j+k. (3.9)

This establishes a PGF for the sum of degrees or neighbors for the vertices generated

by G0. Since G0 is raised to the power of 2, Eq. (3.9) defines the PGF for the

probability of picking 2 vertices with their degrees summing to j + k. In general, if

m vertices are chosen from a network, the probability distribution of the sum of the

degrees of those vertices is generated by [G0(x)]m.

Consequently, all these properties help derive an important distribution related to

G0, its excess degree distribution. The excess degree distribution defines the degrees

of vertices reached when choosing a random edge to follow. To distinguish this from

G0, we denote the PGF for the excess degree distribution as G1. Now, we know,

G1(x) ∝
∑

k

kpkx
k−1 (3.10)

because the excess degree distribution is proportional to the degree k, multiplied by

the original degree distribution. Intuitively, this means the higher the degree of a

vertex, the more likely to chose an edge to their neighbor. With k as a multiplier,

this resembles the derivative formulation, therefore, we assert
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Figure 3.3: Excess degree distribution, G1(x), visual representation: For an excess
degree distribution, all probabilities of degree k, qk, can be represented in visual vertex form,
where an imaginary vertex from G0 is connected to the bottom of the randomly chosen edge.
This stub list of vertices indicate the degree and associated excess degree probability.

G1(x) = 1
⟨k⟩

d

dx
G0(x) =

∑
k

qkx
k. (3.11)

Figure 3.3 illustrates how the excess degree distribution provides the probability

distribution for the number of first neighbors of an arbitrary vertex from the original

degree distribution. To compute the number of second neighbors of the original

degree distribution, we use both the original degree distribution and the excess degree

distribution. Figure 3.4 intuitively depicts how to compose the number of second

neighbors from the other two distributions. For every pk in G0 there is an associated

excess degree distribution, defined by

∑
k

pk[G1(x)]k = G0(G1(x)). (3.12)

We note that when a PGF replaces the counting variable, x, for another PGF,

we are composing PGFs. The composition defined in Eq. (3.4) defines how the sum
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Figure 3.4: Second neighbor degree distribution visual representation: When
evaluating the second neighbor degree distribution of a randomly chosen vertex, it is neces-
sary to start at the original degree distribution. From there, the excess degree distribution
builds on another layer of vertices as seen in this multi-layer stub list through a composition
of functions.

of the excess degrees for each randomly chosen vertex produces the distribution for

number of second neighbors.

Moreover, percolation can occur explicitly on the networks defined by G0(x) via

the transmissability term, T , resulting in a composition of PGFs. Given an infectious

vertex with degree k, we state the probability that the vertex infects ℓ neighbors as,

pℓ|k =
(
k

l

)
T l(1 − T )k−l. (3.13)

This defines a binomial distribution of k independent trials where pℓ|k = 0 if ℓ > k.
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Figure 3.5: Transmission on G0(x) visual representation: To percolate an infection
on the original degree distribution, G0(x) establishes the first layer of probabilities, then
probability of transmitting, T , through certain edges is applied to each edge.

Integrating this probability into G0(x) establishes

G0(x;T ) =
∞∑

l=0

∞∑
k=l

pkpl|kx
l

=
infty∑
k=0

k∑
l=0

pk

(
k

l

)
T l(1 − T )k−lxl

=
∞∑

k=0
pk((1 − T ) + Tx)k, (3.14)

which defines the percolated G0(x) PGF. Consequently, (1 − T ) + Tx represents

a PGF with with probabilities (1 − T ) and T from the previously defined binomial

distribution. This establishes a composition of PGFs, which we illustrate with the

visual representation of the percolated network PGF in Fig. 3.5. From the figure,

we illustrate the binomial choice for each edge of the contact degree distribution. In

the same manner that G0(x;T ) is derived, we can determine G1(x;T ). This PGF

defines the probability distribution of the number of infections caused by a single

node, otherwise known as the secondary case distribution [72].

This framework provides an efficient way to define a degree distribution in a
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mathematical structure. Moreover, the derivations from the PGFs provides useful

information about distribution descriptors, neighbors, and transmission spread. The

subsequent sections show two ways in which degree distribution PGFs, in conjunction

with a generalized counting PGFs, model different outcomes of disease spread.

3.3.1 Generational Spread Analysis

Generational spread analysis fills in a gap in the PGF framework, a time compo-

nent. Noël et al. extend the PGF methodology in their 2009 work to model the sizes

of epidemic generations through tracking temporal case counts, illustrated in Fig.

3.6 [74]. This figure shows the progressions of an infection from one vertex to the

next. A vertex belongs to generation g if it became infected via a neighbor belonging

to generation g − 1. This property assumes an infinite-size random network drawn

from a specific degree distribution, otherwise known as the configuration model [31].

Configuration models assume that each branch of subsequent infections are uncorre-

lated from each other. Therefore, each vertex in each generation can be treated as

independent from all other vertices in its generation.

For each infected vertex in generation g, a piece-wise generating function describes

the generation of cases that vertex will cause over the course of the epidemic [74].

This PGF is defined as

Gg(x;T ) =


G0(x;T ) (g = 0)

G1(x;T ) (g > 0),
(3.15)

where G0(x;T ) informs the degree distribution the of initial infected vertex, or ‘pa-
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Figure 3.6: Generational infections: Over four generations, an infection spreads
through a network. Each vertex’s label corresponds to the epidemic generation in which it
was infected. The initial infected vertex is in generation 0, any vertices they infect consti-
tute generation 1, and so on. This figure is originally from work of Allen et al. [4].

.

tient zero’. G1(x;T ) then defines the secondary cases caused by ‘patient zero’ for all

subsequent generations.

Now, Noël et al. aim to understand the evolution of the cumulative case distri-

butions. We define s as the number of cumulative cases at generation g, and m as

the number of infectious vertices strictly belonging to g. Therefore, s is the sum of

all m values for all generations, including generation g. The probability of s total

infections by the end of g with m new infections during that generation is denoted as
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ψg
sm. Furthermore, we define the associated PGF as

Ψg
0(x, y) =

∑
s,m

ψg
smx

sym (3.16)

over all s and m.

In order to evaluate Ψg
0(x, y), we must revisit the mechanisms of the branching

processes on networks. Each new infectious vertex in generation g − 1, totaling m′,

informs the distribution of new infections, which is generated by Gg−1((1 −T ) +Tx).

Consequently, this is equivalent to defining the probability of infecting m new vertices

in generation g, given the pair (s′,m′) in generation g − 1,

∑
m

P (m|s′,m′)xm = [Gg−1(x;T )]m′
. (3.17)

Stepping back for a moment, we know that being in state (s′,m′) in generation

g − 1 is given by the probability ψg−1
s′,m′ . The state (s′,m′) also produces m new

infections in generation g, meaning the new state is (s′ + m,m). Thus, we redefine

the distribution of s cumulative cases, and m new infections as

Ψg
0(x, y) =

∑
s,m

ψg
smx

sym =
∑
s′,m

ψg
smx

s′(xy)m

=
∑
s′m′

xs′ ∑
m

ψg−1
s′m′P (m|s′,m′)(xy)m

=
∑

s′,m′
ψg−1

s′m′xs′ ∑
m

P (m|s′,m′)(xy)m (3.18)
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where ψg−1
s′m′P (m|s′,m′) is the probability of m new infections occurring in state

(s′,m′). Finally, we use the equivalence in Eq. (3.17) to derive

Ψg
0(x, y) =

∑
s′m′

ψg−1
s′m′xs′ [Gg−1(xy;T )]m′

=Ψg−1
0 (x,Gg−1(xy;T )) (3.19)

defining a recurrence relation for g ≥ 1 for the PGF being in the state (s,m) in

generation g. We assume that ψ0
0 = xy when there is only one initial infectious

individual, which leads to ψ0
sm = δs1δm1 [74].

From Eq. (3.19), we can extract the distribution of cumulative infections, s. This

is achieved by taking the marginal distribution over y and evaluating y = 1 for all m

of Eq. (3.16). Then, by summing over all m we achieve the PGF for the distribution

of cumulative infections at each generation as,

Ψg
0(x, 1) =

∑
s,m

ψg
smx

s =
∑

s

∑
m

ψg
smx

s =
∑

s

pg
sx

s. (3.20)

where pg
s is the probability of having s cumulative case in g. Figure 3.7 showcases

how accurate this framework is in comparison to the stochastic simulations framework

explained in Sec. 1.2.2. An application of this framework will impose interventions

to understand how mitigation tools defines various aspects of these distributions in

Chapter 4.
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Figure 3.7: Time evolution of epidemics on a power-law network: The probability
of having s cumulative cases by and during generation g for generations 3, 4, 6, and 10. This
system modeling the cumulative case count distribution (smooth lines) for a modified power-
law random network with a degree distribution defined by pk = k−2e−k/10. The average
degree of this network is ⟨k⟩ = 1.79, along with its average excess degree of ⟨q⟩ = 3.04.
The distributions are validated by 75,000 simulations performed on 150 random network
realizations with 10,000 vertices. The overall details of these simulations are mentioned in
Chapter 4 and come from the work of Allen et al. This figure is originally from the work of
Allen et al. as well [4].
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Figure 3.8: Finite component size distribution from a randomly chosen edge,
H1(x) visual representation: From the composition of PGFs, we can determine the
distribution of component sizes from a randomly chosen edge. The two PGFs that are
composed together to established this distribution are G1(x) and H1(x). This provides
a self-consistent relationship, since the excess degree distribution is connected to either
another component or nothing.

3.3.2 Giant Component Analysis

Networks are defined as either connected or disconnected, meaning there is either

path from on vertex to all others, or there is not [15]. Meaning a network can be

composed of one component or many separate components. Component sizes can

vary according to the governing degree distribution. Therefore, we can determine the

distribution of finite component sizes and encode this into a PGF. Let the PGF for

the distribution of finite component size when following a randomly chosen edge be

H1(x). Figure 3.8 details how a component (square) from a randomly chosen edge is

defined by the components connected to a vertex in the excess degree distribution.

Figure 3.8 follows the same format as other composition examples, therefore, we define

H1(x) as,
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H1(x) = xq0 + xq1H1(x) + xq2[H1(x)]2 + ...

H1(x) = xG1(H1(x)) (3.21)

No matter what, an edge will lead to a vertex, which will either lead to more aspects

of the component, or end at that vertex. Due to this fact, H1(x) can never have

a constant term, meaning we cannot track components of size 0, hence why an x

multiplier is added to the equation.

Similar to how we derive H1(x), we derive the PGF for the distribution of finite

component size from a randomly chosen vertex, H0(x). Now, the PGF framework

established infinite number of counting variables. While an infinite sized component

could exist, it cannot be directly computed. We emphasize that H0(x) only defines

finite component size and excludes a giant component, which is described as an infinite

component. Figure 3.9 follows the same format at Fig. 3.8, however, we see G0(x)

replaces G1(x). Hence, the equation defining H0(x) is

Figure 3.9: Finite component size distribution from a randomly chosen vertex,
H0(x) visual representation: Similar to the visual for H1(x), we leverage the composition
of PGFs to determine the distribution of finite component sizes from a randomly chosen
vertex. G0(x) composed with H1(x) establishes the distribution of finite component sizes
from a randomly chosen vertex, excluding the giant component.
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H0(x) = xp0 + xp1H1(x) + xp2[H1(x)]2 + ...,

H0(x) = xG0(H1(x)). (3.22)

Remembering how H0(x) defines the distribution of component sizes exclude the

giant component, the sum of the probabilities in H0(x) is,

H0(1) = 1 − S. (3.23)

This equation establishes the probability of randomly choosing a vertex in not the

giant component. Therefore, S is the probability of randomly choosing a vertex in

the giant component. We can alternatively state that S is the fraction of the network

in the giant component because ware assuming an infinite network. Subsequently,

this derivation can also be performed on H1(x), meaning

H1(1) = u, (3.24)

where u is the probability that a randomly chosen edge does not lead to the giant

component. Furthermore, Eq. (3.21) evaluated at x = 1 produces,

H1(1) = (1)G1(H1(1))

u = G1(u), (3.25)

which is another self-consistent equation defining the probability that a randomly
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chosen edge does not lead to the giant component in the excess degree distribution.

In a similar manner, evaluating H0(x) at x = 1 results in

H0(1) = (1)G0(H1(1))

1 − S = G1(u). (3.26)

Consequently, to satisfy this equation,

G1(u) − u = 0, (3.27)

means we are solving for the root of the polynomial, u. When assuming that G0(x)

and G1(x) are equal to each other [34], u can then be directly used to solve for the

proportion of the network in the giant component, S, from Eq. (3.26). This results

in

1 − S = G0(u)

1 − S = G1(u)

S = 1 − u. (3.28)

In a disease modeling context, this framework determines final outbreak sizes for

an infinite population. For an example of the curves generated by Eq. (3.27), Fig.

3.10 provides three PGFs with negative binomial coefficients. The negative binomial

is parameterized by R0, average secondary cases and α, the dispersion parameter.

Each curve has a unique parameter combination, as shown in the legend. We note

that 1 is always a root because G1(1) = 1, but if the curve crosses the x-axis prior,
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Figure 3.10: Solving G1(u) − u for polynomial roots: For a negative binomial distri-
bution parameterized with the mean of the distribution and the dispersion parameter, we
plot inputs of the polynomial versus the polynomial outputs. A polynomial root is defined
as where the polynomial output is equal to 0. For three parameter combinations, we see the
root shrink as the mean of the system increases. This in turn makes the giant component
bigger.

the crossing determines another polynomial root. The sensitivity of this method is

explored in Chapter 5.
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Chapter 4

Temporal and probabilistic com-

parisons of epidemic interventions

Abstract

Forecasting disease spread is a critical tool to help public health officials design and

plan public health interventions. However, the expected future state of an epidemic

is not necessarily well defined as disease spread is inherently stochastic, contact pat-

terns within a population are heterogeneous, and behaviors change. In this work, we

use time-dependent probability generating functions (PGFs) to capture these charac-

teristics by modeling a stochastic branching process of the spread of a disease over

a network of contacts in which public health interventions are introduced over time.

To achieve this, we define a general transmissibility equation to account for varying
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transmission rates (e.g. masking), recovery rates (e.g. treatment), contact patterns

(e.g. social distancing) and percentage of the population immunized (e.g. vaccina-

tion). The resulting framework allows for a temporal and probabilistic analysis of

an intervention’s impact on disease spread, which match continuous-time stochastic

simulations that are much more computationally expensive. To aid policy making, we

then define several metrics over which temporal and probabilistic intervention fore-

casts can be compared: Looking at the expected number of cases and the worst-case

scenario over time, as well as the probability of reaching a critical level of cases and of

not seeing any improvement following an intervention. Given that epidemics do not

always follow their average expected trajectories and that the underlying dynamics

can change over time, our work paves the way for more detailed short-term forecasts

of disease spread and more informed comparison of intervention strategies.

4.1 Introduction

Monitoring the spread of COVID-19 is at the forefront of public health agendas as

new variants emerge. Transmission across the globe has forced countries to mitigate

the spread with their own combination of masking and social distancing [20], re-

strictions on mobility [1, 7], improved ventilation [92], contact tracing [51] and other

local interventions. Even in neighboring regions, the diversity of interventions reflect

differences in local policy, culture, differences in local forecasts, as well as different

goals for interventions [98]. For example, some populations may attempt to minimize

the expected number of COVID-19 transmissions while other may only wish to mini-

mize the probability of overwhelming their healthcare system. Whether or not these

63



different objectives would lead to the same policies is unclear given the underlying

randomness and uncertainty inherent to epidemic forecasting.

There are two important issues to consider when comparing forecasts of epidemic

interventions: Forecasts should be probabilistic and time-dependent as disease spread

is stochastic and heterogeneous [74, 4]. Temporal probabilistic forecasts must then

be summarized by specifying given statistics, as well as a temporal window to tar-

get, chosen to capture the intended goal(s) of the intervention. And, since forecasts

evolve, the relative effectiveness of two policies can itself vary over time. Altogether,

comparing multiple intervention policies is not as simple as comparing the averaged

effective growth rate of the epidemic.

Past work on intervention comparisons has studied how different policies such as

lockdown strategies or physical distancing impact disease trajectory within a popu-

lation [64, 97, 77, 24, 21]. Most of the comparisons in the literature, however, are

based around the average of the stochastic (often simulated) outcomes or present

confidences intervals for derived measures such number of hospitalizations or the ef-

fective reproductive number [64, 24]. In comparison, our philosophy is more similar

to probabilistic forecasting in meteorology, where a cone of uncertainty of storm paths

or expected rainfall are the targets. We argue that new summary statistics, which

directly compare disease outcomes and their probability of occurring, need to be

developed to account for the stochastic nature of disease trajectories.

In this chapter, we use a mathematical framework to track the distribution of

cumulative and active cases in a networked population over the course of epidemic

generations. When compared to simulations, these epidemic generations offer a sur-

prisingly accurate proxy for the actual temporal dynamics of the epidemic [4]. We
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extend this framework in Sec. 5.2 to allow temporal interventions that affect param-

eter values or contact structure from one epidemic generation to the next, thereby

modifying the probabilistic epidemic forecasts over time. In Sec. 4.3, we present spe-

cific network interventions and offer a series of summary statistics chosen to capture

the different possible goals of these interventions.

We demonstrate our approach to a specific case study in Sec. 4.4 where we compare

targeted and random vaccination rollouts. Targeted vaccination is meant to immunize

highly connected individuals (e.g. healthcare workers) that are at higher risk of

receiving and passing the epidemic. However, this strategy comes at a cost and we

assume that the targeted rollout of a vaccine must be slower than the random rollout

of the same vaccine. Using our mathematical model and our summary statistics of

temporal probabilistic forecasts we then ask: How fast must targeted vaccination be

to outperform random vaccination? Do different metrics of intervention performance

lead to the same answer? There are complex competition dynamics occurring between

the epidemics unfolding on a contact network and interventions rolled out to affect

this network (see Fig. 4.1). This work establishes a framework to study this dynamics

and answer the previous questions. Section 4.5 outlines the generality of our approach,

showcasing other types of interventions which can be modeled using our methodology.
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Figure 4.1: Schematic of generations of infection through a network with inter-
ventions. An initial node is infected during generation 0 (shown in deep red). Subsequent
epidemic generations are represented in shades of red, with each node labeled in black by
the generation in which it was infected. The blue shaded nodes were part of an intervention
(e.g., vaccination), hindering the spread of the infection along that branch of the tree if
the intervention preceded a potential transmission. Interventions are also temporal, shown
in shades of blue and labeled in white by the epidemic generation when their intervention
occurred. The branching dynamics of the resulting transmission tree are highly complex as
the two dynamical processes compete, with the disease potentially spreading exponentially
but slowing down as the intervention ramps up.

4.2 Theoretical Analysis

4.2.1 Assumptions

Our framework assumes that the spreading process of the disease being studied fol-

lows undirected percolation dynamics over a contact network and can therefore be
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Generation 0 Generation 1 Generation 2

Day 2 Day 3 Day 4 Day 6 Day 7 Day 8

Figure 4.2: Mapping continuous-time dynamics to branching process genera-
tions. The process in which continuous-time disease spread is mapped to a discrete-time
branching process is shown above. An infectious individual will infect a certain number of
other individuals via a branching process, which is captured by the various transmission
terms in Eq. (4.16). Once those individuals are identified, they are mapped to the next
epidemic generation. For this specific example, we have an initial infectious individual (red
node marked by generation 0), that infects three individuals at different probabilities of
infection. If the transmission occurs in the same generational-time interval, here in the 0-th
interval with probability t0, the new case (bottom red node) becomes infectious at gener-
ation 1. When the transmission occurs during generation 1, the individual is conceptually
mapped back to the start of generation 1 (top red node) and this occurs with probability
w0t1. This probability is the probability of the 0-th generation passing multiplied by the
probability of transmission occurring during the first generational interval. Likewise, there
is a probability of two generations passing before a transmission occurs, with probability
w0w1t2, meaning the individual (middle red node) also mapped back to the start of genera-
tion 1. This mapping allows the analysis of continuous-time epidemic dynamics as a simpler
discrete branching process.
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analyzed as a branching process. Even though the underlying transmission dynam-

ics occur in continuous time, we determine the probability of infection according to

discretized generational time. This is represented in Fig. 4.2, where each solid-line

arrow is a transmission event labeled with the probability of infection. We map these

stochastic transmissions to a discretized epidemic generation. This discretization is

shown in Fig. 4.2 with the vertical dotted lines representing time passing. At each

generation, the branching process of transmissions from each infectious individual

provides the new infectious individuals for the next generation. Even if transmis-

sion occurs in continuous time, the discrete-time mapping places individuals in the

subsequent generation (sometimes underestimating time to transmission, sometimes

overestimating it). The system is then updated and this process continues for the

time-frame set. This assumption that transmission aligns with generational time

makes analytical calculations and tracking of active cases easier even though it intro-

duces small errors given that transmissions are pulled backward and forward in time,

see Fig. 4.2 caption for an example case. This is an approximation of a spread-

ing process [46] but was recently shown to provide accurate temporal forecasts when

compared to continuous-time simulations [4].

In our case studies, we also assume that contacts in the population follows a

geometric distribution. The aim of this assumption is to have a heterogeneous network

of contacts. The geometric distribution is the discrete equivalent of the exponential

distribution, which has been observed in real-world contact patterns [1-2]. With

this distribution, we calculate the average number of secondary cases, R0, to be 3.

Though contact networks are inherently temporal, we here assume a static contact

network except for the removal of connections due to network-based interventions.
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When applying an intervention, specifically a vaccination strategy, we assume that

vaccination offers perfect protection. Likewise, the intricacies of vaccine efficacy (e.g.

waning of immunity or the need for multiple doses) will not be covered in this work

but could be incorporated in the framework. Our goal is instead to provide a general

model of disease spread and showcase how a few specific types of interventions can be

included in temporal, probabilistic, and analytical forecasts. The software associated

with our model is available at Refs. [2, 3].

Forecasts, in our framework, are defined as the time evolution of our branching

process approach and will not be directly validated with data. While the final states

predicted by our general approach have been previously validated with empirical data

[1], data to produce temporal forecasts of interventions are not available. Further vali-

dation would require contact distributions, epidemiological parameters, and incidence

rates within communities before and after interventions. Instead, we rely on simula-

tions for validation.

4.2.2 Noël et al. probability generating func-

tion (PGFs) formalism

PGFs allow us to include inherent heterogeneity in epidemiological forecasting by

calculating the probability distribution associated with specific network transmission

trees. Generating functions offer elegant derivations of many statistical properties

[99, 72].

For epidemiological forecasting purposes, the focus is on the PGF of the network
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degree distribution, defined as

G0(x) =
∞∑

k=0
pkx

k, (4.1)

where the kth coefficient, pk, is the probability of randomly choosing a node with

degree k from the network. The average degree of the network, ⟨k⟩, is found by

differentiating Eq. (4.1) and evaluating at x = 1,

G′
0(1) = ⟨k⟩ =

∞∑
k=0

kpk. (4.2)

This result is used to generate the distribution of potential transmissions, or the

excess degree distribution,

G1(x) = G′
0(x)

G′
0(1) =

∑
k(k + 1)pk+1x

k

⟨k⟩
=

∞∑
k=0

qkx
k. (4.3)

The probability of reaching a node with degree k from a randomly chosen edge is

represented by the coefficients qk ∝ (k + 1)pk+1 due to the fact that a node of degree

k + 1 is k + 1 times more likely to be connected to a random edge than a node of

degree 1. The node of degree k + 1 then has k remaining edges to transmit through,

which corresponds to the derivative and renormalization of the original PGF.

To incorporate the disease spread through the excess degree distribution, qk, it is

necessary to include, pl|k, the probability of ℓ transmissions from a single infectious

node, given that it has excess degree k,

pl|k =
(
k

l

)
T l(1 − T )k−l, (4.4)
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where T is the probability of transmission and is further explained in Sec. 4.2.3.

Therefore, the number of infections caused by “patient zero" is equal to the probability

of having degree k and transmitting the disease to ℓ of those k neighbors. This is

defined as G0(x;T ), given by

G0(x;T ) =
∞∑

l=0

∞∑
k=l

pkpl|kx
l

=
∞∑

k=0

k∑
l=0

pk

(
k

l

)
T l(1 − T )k−lxl

= G0
(
Tx+ (1 − T )

)
. (4.5)

As G1(x) is derived from G0(x), so can G1(x;T ) be derived from G0(x;T ). In a

static network, G1(x;T ) represents the PGF for the probability distribution of the

number of infections caused by a single node, i.e., the secondary case distribution.

Now, PGFs traditionally do not keep track of time as the branching process un-

folds; however, Noël et al. developed a piece-wise generating function that tracks the

branching process via generations [74]. Mathematically, for a static network, this is

given by

Gg(x;T ) =


G0(x;T ) g = 0

G1(x;T ) g > 0,
(4.6)

where G0(x;T ) defines the distribution for the first generation and G1(x;T ) defines

all future generations. In this work we expand on the framework laid out above to

demonstrate the effect that temporal behaviors can have on the branching process.

Following Noël et al. [74], we calculate the cumulative case distribution. To do so,

71



we use a simple generation scheme illustrated in Fig. 4.1: Any transmission from a

node infected in generation g is considered to be in epidemic generation g+1 regardless

of the exact timing of the transmission event. From this, let sg be the number of

cumulative cases at generation g and let mg be the number of infectious nodes strictly

belonging to generation g. Note that in this way, sg = ∑g
g′=0 mg′ . We denote ψg

sm

the probability of having s total infections by the end of the g-th generation with m

becoming infected (and thus being infectious) during that generation. We also denote

Ψg
0(x, y) =

∞∑
s=1

s∑
m=0

ψg
smx

sym (4.7)

the associated PGF. As demonstrated in Ref. [74], Ψg
0(x, y) is derived via a recursive

function for the probability of sg−1 total infections in generation g − 1. Each new

infection, mg−1, in g − 1 has its own possible transmission connections, Gg−1(xy;T ),

incorporating all possible transmission events leading up to generation g. Mathemat-

ically, this is given by

Ψg
0(x, y) =

∞∑
s′=1

s′∑
m′=0

ψg−1
s′m′xs′ [Gg−1(xy;T )]m′

= Ψg−1
0 (x,Gg−1(xy;T )). (4.8)

Successive iterations of Eq. (4.8) from an initial condition (e.g., Ψ0
0(x, y) = xy for a

single patient zero) then allows to compute ψg
sm at the desired generation g.
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4.2.3 Formalism extension: altering transmis-

sion

Given a time point, intervention strategies can be implemented, altering the future

dynamics of the disease spread. From Eq. (4.6), we generalize the piece-wise gener-

ating function to adhere to the intervention strategy being utilized. Given the type

of intervention strategy, there can be multiple generations with an intervention im-

plemented. So, to capture interacting temporal features of the disease spread and

intervention, each epidemic generation is defined by its own PGF,

Gg(x;Tg), (4.9)

as contact patterns change along with a new transmissibility expression, Tg, which

will be derived in the following section. We represent this model in Fig. 4.1, where

the branching process is dynamically slowed by an intervention rollout.

PGFs model a stochastic process which encapsulates the random nature of disease

spread. The probability of a current infectious person causing a new infection, or the

probability of transmission, is captured in T . We will follow Susceptible-Infectious-

Recovered (SIR) dynamics which could depend on the time since infection t′, the

time-dependent transmission rate β(t′), and time-dependent recovery rate γ(t′). One

could then calculate a general probability for transmitting before recovery, but the

exact calculation is often model-dependent. We will follow most models and consider

that transmission and recovery as simple Poisson processes occurring at fixed rate β

and γ respectively. However, transmission occurs only if the contact is not immune,
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which is true with probability (1 −Vg), where Vg is proportion of the population that

has been vaccinated by generation g. In other words, Vg is the cumulative proportion

of the population vaccinated. Assuming infectiousness of a node in generation g lasts

for some random time τ then the probability of the individual transmitting infection

to another individual is

T (τ) = (1 − Vg)[1 − lim
δt→0

(1 − βδt)τ/δt]

= (1 − Vg)(1 − exp−τβ) . (4.10)

When evaluating the probability of a particular τ , the cumulative distribution func-

tion over τ is evaluated, shown by

F (τ) = (1 − lim
δt→0

(1 − γδt)τ/δt)

= (1 − exp−γτ ) (4.11)

The above derivation uses the average rate of recovery, γ. Taking the derivative of

Eq. (4.11) gives the probability mass function over τ ,

f(τ) = γ exp−γτ . (4.12)

We can then compute the total probability of transmission by calculating the average

probability of an individual transmitting before its recovery, given that the individual

recovers at time τ . The average transmissibility for a generation, Tg, is therefore

Tg = (1 − Vg)
∫ ∞

0
T (τ)f(τ)dτ = (1 − Vg) β

β + γ
, (4.13)
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with this derivation following Refs. [44, 43]. The expression for Tg allows us to

interpret the probability of transmission as the probability a transmission occurs first

in a superposition of Poisson processes, transmission and recovery with rates β and

γ respectively.

In our model, the passage of time to the next generation must also be included,

which is determined by the product of the average excess degree, q = G′
1(1), and the

transmission rate yielding qβ [4]. Allen et al. confirms similarities in the mapping

between continuous time and discretized generational time given this rate for pas-

sage of time. Section 3.3 discusses the continuous-time simulations that exhibit the

validation of our generational approach. Treating this as another Poisson process,

and allowing for interventions, we find the probability of a single person causing an

infection leading to the next generation to be

tg = (1 − Vg) β

β + γ + (1 − Vg)qgβ
, (4.14)

where again Vg is the cumulative proportion of the population vaccinated by at g,

and where qg is the generation-dependent average excess degree and is defined at

Eq. (4.21). Similarly, the probability that the next generation occurs before a given

person either transmits the disease or recovers is

wg = (1 − Vg)qgβ

β + γ + (1 − Vg)qgβ
. (4.15)

To encapsulate the probability transmission given Eqs. (4.14) and (4.15) for each

generation, we combine the probability of a single person causing an infection leading

to the next generation with the sum of probabilities that the next generation occurs
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before a particular transmission or recovery event,

Tg = tg + wgtg+1 + wgwg+1tg+2 + ...

= tg +
∞∑

ℓ=g+1

( ℓ−1∏
ℓ′=g

wℓ′

)
· tℓ. (4.16)

This last expression closes our mapping of continuous-time SIR dynamics to a

discrete-time branching process. The same recipe can be used to map other com-

partmental models to branching processes by including additional mechanisms. Al-

ternatively, a SEIR with a fixed latent period of one epidemic generation can be

implemented by setting tg = 0 and wg = 1 to delay transmission. Regardless, once

transmissions dynamics are mapped to a discrete-time (or generational) branching

process, our general framework is agnostic to the details of the transmission mecha-

nisms.

4.3 Interventions

With an understanding of how the transmission process of this framework operates,

we now aim to take individuals out of this process via intervention strategies. It

is important to remember that we assume a node infected in generation g infects

nodes that are mapped to be in generation g + 1. If an intervention strategy is

implemented during a generation, it is assumed it would occur immediately at the

start of that generation. Intervention strategies directly alter the numerical value

of Eq. (4.16), then Eq. (4.8) is recalculated to update the probability of having
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Figure 4.3: Random and targeted rollout comparison and validation. We use a
geometric distribution defined by pk = 0.6k−1(0.4), where k = 1, resulting in R0 = 3. Each
panel details probability distributions of cumulative infections at generations 2, 4, 6, 8 and
10. Panel (a) depicts the comparison between a non-intervened system (dotted lines) and
a random rollout strategy of 0.5% of the population being randomly chosen to be vaccinated
generations 4, 6, 8, and 10 (solid lines). By the end of generation 10, 2.0% of the population
is vaccinated. Panel (b) depicts simulations of the random rollout vaccination strategy,
which validates the modeled generations. Panel (c) depicts the comparison between a
non-intervened system (dotted lines) and a targeted rollout strategy where the first 0.5% of
highest degree individuals were chosen to be vaccinated at generations 4, 6, 8, and 10 (solid
lines). Panel (d) depicts simulations of the targeted rollout vaccination strategy, which
validates the modeled generations.

s cumulative infections and m active cases. The variables qg and Vg that appear

in Eq. (4.16), via tg in Eq. (4.14) and wg in Eq. (4.15), correspond with one of

two types of intervention strategies. Respectively, the two types of strategies are:

1) Uniform or random interventions, where proportions of the population are not
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susceptible to the disease. 2) Network interventions, which pertain to altering the

degree distributions, such as targeted vaccination. When no network interventions

are imposed on the system, qg is kept consistent across all generations, after it is

derived from the original excess degree distribution. Conversely, the value of Vg is

kept at zero for all generations when there is a targeted intervention, since contacts

around targeted vaccination are removed in qg and no contacts can then lead to

vaccinated nodes in this scenario. Here we focus on uniform interventions and network

interventions, along with comparing them.

4.3.1 Uniform or random interventions

In this work, we consider the uniform intervention as a random vaccination strategy.

This intervention strategy is implemented by randomly vaccinating susceptible nodes

in the population with uniform probability [76]. The Vg term of Eq. (4.14) and

Eq. (4.15) represents the probability of a node being vaccinated, along with the

proportion of the population to be vaccinated at generation g. This quantity is

therefore always a fraction between 0 and 1.

When a vaccination intervention is implemented at only one generation, mean-

ing in a single intervention, the vaccinated population Vg changes as a simple step-

function. Realistically, vaccination interventions are implemented over time and over

multiple generations, which we can incorporate into our modeling framework by defin-

ing a rollout strategy. Under a vaccination rollout, the cumulative percentage of the

population to be vaccinated is spread over multiple generations, slowly affecting the

growth of the epidemic spread along each of its active generational branches. For mul-

tiple generations, we can state that the total proportion of the population vaccinated
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over all generations, or cumulative percentage vaccinated, is given by

Vtotal =
∞∑

g=1
Vg, (4.17)

where each generational proportion vaccinated is defined as

Vg =
∞∑

k=0
δg

kpk. (4.18)

When implementing random vaccination, the entire network is uniformly vaccinated,

resulting in

δg
k = Vg, (4.19)

for all k. It is important to note that random vaccination does not alter the general

structure of the degree distribution or the average excess degree due to the condition

set in Eq. (4.19).

Figure 4.3(A) showcases the difference in the probability distributions of cumu-

lative infections on a system that has no intervention implemented (dotted lines),

and one with a random rollout of 0.5% occurring at generations 4, 6, 8, and 10 (solid

lines). Given that the intervention does not occur until generation 4, the distributions

for generation 2 are exactly the same. For generations occurring after generation 4,

the distributions begin to deviate from one another.

Figure 4.3(B) validates the extended PGF formalism for multiple interventions,

with the theoretical distributions shown alongside numerical simulations following an

event-driven, continuous time framework [4]. The analytical distributions show a bit

of an overestimation at generation 10, which will be discussed in Sec. 4.3.3.
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Figure 4.4: Flat distributions at generation 10. Given a geometric distribution
defined by pk = 0.4k−1(0.6), each line represents the probability distribution of cumulative
infections at generation 10. The difference between the distributions is that the percentage
of the population that were chosen to be vaccinated at generations 4, 6, 8, and 10 varies. The
lower percentages per generation lead to flat distributions, whereas the higher percentages
per generation provide distributions that have zero probability of cumulative infections past
a certain point.

4.3.2 Targeted network interventions

To demonstrate a network intervention, in this work we show how a targeted vaccina-

tion strategy is implemented. The goal of targeted vaccination is to focus vaccination

efforts on the group of nodes with the highest degrees in the network, or the indi-

viduals with the most contacts. This strategy results in reducing the impact of the

individuals that have the most potential for creating a superspreading event, for an
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example see [80].

Given a percentage of the population to vaccinate in g, as defined in Eq. (4.18),

we start with degree classes k′ = kmax and vaccinate a fraction δk′ of the degree class

before moving to degree class k′ − 1. To determine the fraction vaccinated for each

degree class, we define

δg
k′ =



1, if ∑∞
k=k′ pk < Vg(

Vg −∑∞
k=k′+1 pk

)
pk′ , if ∑∞

k=k′+1 pk < Vg

and ∑∞
k=k′ pk > Vg

0, otherwise,

where this non-uniform intervention will alter the degree distribution and average

excess degree.

By the independence assumption of the configuration model, each neighbor will

be vaccinated in generation g with probability equal to the probability that following

a random edge leads to a vaccinated node, call this Hg. Thinking in terms of number

of edges we thus compute

Hg =
∑∞

k=0(k + 1)δk+1pk+1∑∞
k=0(k + 1)pk+1

. (4.20)

Therefore, the probability of a node being unvaccinated in g is equal to 1 −Hg.

Now, the truncation of the degree distribution in g alters the average excess degree

qg, along with the coefficients of Eqs. (4.1) and (4.3). To determine the new qg,

we must recompute G′
g(1). Multiplying this by the proportion of nodes that are
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unvaccinated gives an updated qg,

G′
g(1) = (1 −Hg)

[∑∞
k=0 k(k + 1)(1 − δk+1)pk+1∑∞
k=0(k + 1)(1 − δk+1)pk+1

]
= qg, (4.21)

which is then used to derive the new Tg for a given g.

Similar to random vaccination described in Sec. 4.3.1, targeted vaccination can

be implemented via one instance of vaccination, or multiple. Figure 4.3(C) shows

the difference between a non-intervention strategy and a targeted rollout vaccination

scheme of 0.5% at generations 4, 6, 8, and 10. A rollout strategy is conducted in

the same manner for both random and targeted vaccination. Similar to random vac-

cination, the non-intervention leads a lower probability of seeing 100-400 cases than

targeted (or random) vaccination. Does that mean the non-intervention is better?

This question is answered in Fig. 4.4, which showcases how the weaker the interven-

tion, the flatter the cumulative case distribution. These flatter distributions allow for

there to be some chance of infecting more individuals over time. Figure 4.4 also shows

that the stronger intervention, the more probability mass accumulates towards the

smaller cumulative infection counts. This explains why interventions appear to do

worse than no intervention at smaller values of cumulative case count. Even though

this figure utilizes a targeted rollout vaccination strategy the same relationship holds

for random vaccination strategies.
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4.3.3 Validation via simulations

The simulations shown in Figs. 4.3(B) and (D) used to validate the theoretical frame-

work were performed using an event-driven, continuous time approach on 150 distinct

networks of 20,000 nodes with 500 simulations run on each network. This totals to

75,000 simulations per validation.

The analytical distributions of infection under different vaccination strategies cap-

ture the relationships between generations of infection, but tend to overestimate the

number of cumulative infections compared to the continuous time simulations. This

is due to a few factors; primarily, the finite-size effects of simulations on networks

with 20,000 nodes, which support faster computational time but results in a sharper

decrease in the size of epidemic generations than are captured by the branching pro-

cess model, as discussed in Ref. [4]. Nonetheless, the important behavior of the

distributions are captured in relation to one another, and across different vaccina-

tion strategies, allowing for comparison and ranking of the effects between strategies

regardless of slight numerical precision errors.

Another source of discrepancy between the model and continuous time simulations

is the inability of the model to account precisely for already-infected nodes by the time

of an intervention. This quantity is estimated in Eq. (4.16), but may result in slight

differences to the continuous-time simulations under which nodes who are already

infected or recovered and are identified for targeted vaccination are not excluded,

and are just ignored. This problem arises more for targeted vaccination efforts than

random, since nodes in the targeted high degree classes are the same nodes that are

likely to have been infected early in the spreading process. The results observed
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in simulation may experience a reduced disease burden on the population than the

theoretical model which assumes an infinite supply of these high-degree nodes, because

the simulation on a finite network has already burned through its supply of high-

degree nodes, rendering them recovered before the vaccination intervention.

4.3.4 Comparison of interventions

A simple comparison for differing interventions is a direct comparison of their cu-

mulative probability distributions at a specific generation. Beyond this, there are

metrics derived from the cumulative probability distributions that provide valuable

information for decision makers.

Average cases First, we look at the expected number of cases over time, which we

can denote as X g
mean. This corresponds to the typical approach using deterministic

models that track the expected state of epidemics. Mathematically, this is defined by

X g
mean =

∞∑
s=1

s∑
m=0

sψg
sm =

∞∑
s=1

sψg
s , (4.22)

where ψg
s is the probability of s cumulative infections up to generation g.

Best - worst case The second metric looks at the worst case scenario over time as

a measure of the underlying heterogeneity of possible epidemic sizes. This allows us

to quantify what is the largest epidemic that has a realistic probability of occurring

(set by some threshold probability, pt) and therefore to select policies that offer the

“best worst-case scenario” for robust decision making [53]. We derived this metric,

denoted by X g
worst, by determining the corresponding cumulative case value, s′, that
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has probability pt. Mathematically this means,

X g
worst = argmin

s′

{∣∣∣∣∣
∞∑

s=s′
ψg

s − pt

∣∣∣∣∣
}
. (4.23)

Critical level of cases For the third metric, we look at the probability of being at

or above a critical level of cases, c, defined by Pg
flat. This metric is meant to capture

the common goal of flattening the curve to avoid overwhelming the healthcare system

[14]. From the cumulative probability distribution for cases, we derive

Pg
flat =

∞∑
s=c

ψg
s . (4.24)

Minimal effect Finally, we have a metric that measures the probability that a

realization of an epidemic with an intervention is actually worse than a realization

of the same epidemic in the same population without the intervention, Pg
worse. This

summary statistic is meant to capture the fact that some interventions might have

minimal effect on the expected spread of the disease which can easily be overshadowed

by the intrinsic randomness of epidemics. Mathematically we define this as

Pg
worse =

∞∑
s=1

ψ̄g
sχ

g
s, (4.25)

where ψ̄g
s is the probability of s cumulative cases when an intervention is implemented,

and where χg
s = ∑s

i=1 ψ
g
s the probability of having less than or equal to s cumulative

cases when there is no intervention implemented.

All of the metrics above provide varying emphasis on the information from the

probability distributions for cumulative cases.
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4.4 Case study: Random vs targeted vac-

cination

Given multiple vaccination strategies, choosing the best strategy involves comparing

the impacts on the epidemic spreading process given some comparison criteria.

One could compare the random rollout strategy against targeted rollout strategy in

Figs. 4.3(B) and (D). However, given the infinite distributions computed, we cannot

see much of a difference in later generations between the two strategies unless we

display more than 400 cumulative infections. This is also due to the fact that is

showcased in Fig. 4.4, where the distributions could cross over each other past 400

cumulative infections.

When deciding on the best course of action and only considering the probability

distributions for cumulative case counts, our results depict similar outcomes for a ran-

dom and targeted vaccination strategy. With the same percentage of the population

vaccinated, targeted rollout scheme proves slightly more effective, when focusing on

larger cumulative cases in generations 2, 4 and 6. If the goal is to stop the spread of

a disease early on, say by generation 6, a targeted rollout with a high percentage (Vg)

per generation utilized at the given intervention generations needs to be implemented

according to this model. This is only an example of a strategy determined by the

distributions of cumulative cases. Other calculations can be performed on probabil-

ity distributions of cumulative cases, which can inform decision makers on different

courses of action, depending on desired goals in the beginning stages of an epidemic.

In the previous paragraphs, a comparison of distributions provides an overall com-
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parison, however, we are able to calculate other metrics of comparison for differing

vaccination strategies. The metrics defined in Sec. 4.3 appear in Fig. 4.5, which dis-

plays all of the metrics for targeted rollout with six different vaccination percentages

ranging between 0.1 and 1.25%. Thus there are six different cumulative vaccination

strategies represented in the figure. These percentages are applied to generations 4,

6, 8, and 10, hence total proportion vaccinated is cumulative; e.g. in the 0.1% case,

0.4% of the population will be vaccinated at generation 10. The horizontal lines rep-

resent random rollout vaccinations at 3.0% and 5.0%, which were rolled out at the

same generations as the targeted strategy.

Figure 4.5 depicts a decrease in each metrics quantities as the percentage increases

for a targeted rollout. For each metric, we observe that targeted vaccination with a

0.1% at each rollout generation is the only percentage that provides higher cases and

probabilities for all the metrics of both random rollout strategies. All of the metrics

are on varying scales, yet each one follows the decreasing trend as stronger targeted

rollouts are applied. The scales for between generation 5 and 10 are drastically

different as well, showing how a targeted vaccination increase of 0.25% drops the given

summary statistic much more in generation 10 than generation 5. The 0.1% and 0.25%

targeted rollout metrics are larger than the 5.0% random rollouts for almost all the

measures at generation 10, however, the difference in resources between vaccinating

a total of 0.4% or 1.0% is much smaller than vaccinating a total of 15% or 25% of

the population to have a similar effect. The 0.5% and 0.75% targeted rollouts sit in

the region between the two random rollouts for all the measures at generation 5. At

generation 10, all of the metrics have the top three strongest targeted rollouts below

both random vaccination strategies, along with the random vaccination lines moving
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closer together on their given scales. We can even see the random vaccination lines

being virtually the same at generation 10 given the scale of the number of cases. These

calculations allow for decision makers to evaluate what strategy will best achieve their

prioritized goal during an outbreak.

Overall, we find that there are three important factors influencing how fast a

targeted roll-out must be to outperform a faster random rollout. First, the answer

obviously depends on the speed of the random rollout itself. This intuitively makes

sense due to the nature of targeted vaccination focusing on the individuals with the

most connections. Second, it also depends on the desired temporal window: A tar-

geted rollout of 0.75% per generation performed worse than a 5% random rollout per

generation in all metrics at generation 5, but outperformed in all metrics by genera-

tion 10. Third, the preferred metrics of performance also influences the evaluation of

interventions: Compared to a random rollout of 5% per generation, a targeted roll-

out of 0.75% per generation minimizes all the metrics. However, one should always

consider relative differences between random and targeted rollouts to fully inform

decision making.

4.5 Discussion

Once a decision has been made on whether or not to implement an intervention,

the question of which strategy to use arises. Without a comparison of intervention

strategies, decision makers may be lead to choose a scheme that does not mitigate

the greatest concerns of their communities. Given the analytical derivations from this

work, it is apparent that a targeted vaccination strategy has a faster impact on the
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spread of disease than a random vaccination strategy. The choice between a single

instance intervention and a rollout of interventions depends on the resources of the

community under consideration. Some of the vaccination strategies that only inter-

vene in one generation may not be feasible because there is simply not enough time

to vaccinate 0.15% of the population during a generational window, let alone 3.0%

for multiple windows. This fact, along with the difficulty of determining the super-

spreading events in a community, makes targeted vaccination harder to coordinate

than random. The relative costs of different strategies and which strategy makes the

most sense in terms of resources and time is not within the scope of this chapter, but

are important aspects for public health officials to consider.

Although this work does not evaluate all the intricate parts of implementing var-

ious intervention strategies, it successfully captures the stochastic nature of disease

spread and the heterogeneity of contact patterns and human behaviors. Due to its

generational time aspect, this temporal and stochastic model removes some of the

assumptions in other forecasting models, which aim to derive random disease spread,

along with the impediments to the spread, over time. Another advantage to this

analytical model is the transmission expression defined in Sec. 4.2.3 has the flexibility

to accommodate intervention strategies other than uniform or network interventions.

Equations (4.14) and (4.15) can accommodate interventions such as treatment and

transmission based interventions. Values for γ could depend on therapeutics, or a

number of other types of treatments while values for β could depend on masking, ven-

tilation improvements, social distancing, or testing. Altogether, Eq. (4.16) provides a

flexible approximation to account for multiple interventions, and even combinations

of interventions, in probabilistic forecasts. Comparing interventions is a multidimen-

90



sional problems, and therefore so is the design of interventions. Future work should

include testing other intervention strategies, along with combining multiple strategies

as we have seen happen around the world. Public health tools and forecasts need to

be as heterogeneous and complex as the epidemics they aim to control.
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Chapter 5

Sensitivity analysis of stochastic

polynomial roots, and its applica-

tion to epidemic forecasting and

random graphs

Abstract

Probability generating functions (PGFs) help extrapolate useful information from the

network degree distributions they generate. From an arbitrary degree distribution,

PGFS facilitate derivations of the excess degree distribution, distribution of finite

component sizes and giant component size. A giant component, or infinite size com-

ponent that takes up a proportion of a network, are useful in understanding the prop-

agation of a spreading process through a network. This work performs a sensitivity
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analysis with condition numbers of polynomial roots from PGFs to understand giant

component variation. We analyze two distributions generated by PGFs: a negative

binomial distribution, and an Erdös-Rényi random graph. Our intuition is confirmed

that the most sensitive regimes are those that produce the smallest possible giant

component. From this framework, we discuss the implications for other PGF and

branching process sensitivity analyses.

5.1 Introduction

Sensitivity analyses enable scientists to evaluate the bounds and scope of the models

they use. As new methodologies come to light, their parameter spaces must be

explored to understand any peculiarities from perturbed inputs. Global sensitivity

analyses (GSAs) are available to assess models and their parameter spaces for this

exact purpose [84, 100]. From scatter plots to latin hypercube sampling, GSAs can

address the sensitivities for a range of model types. The type of model used in

this chapter is a probability generating function (PGF). PGFs are stochastic models,

which encode probability distribution values as coefficients of a power series. This

power series or polynomial, carries information for the probability distribution, such

as averages and other distribution descriptors [99]. Condition numbers, a variation

of the elementary effects or the Morris method sensitivity analysis, commonly assess

the sensitivity of polynomials [68, 52]. This chapter focuses on a condition estimator

for polynomial roots of PGFs, which help derive the size of a giant component.

First, to understand the inputs of the model, we define a generalized network

in terms of a probability distribution. As mentioned previously, a network defines
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a collection of vertices and edges. Two vertices are connected if there is an edge

between them. A vertex, or node, is said to have degree k when it has k neighbors

or is connected to k other vertices by edges. Moreover, a degree distribution defines

a probability distribution for the degree of a randomly chosen vertex. Consequently,

the degree distribution values are the inputs of the PGF, otherwise known as its

coefficients. These coefficients are subject to perturbations in the sensitivity analysis.

While there are multiple types of outputs for this model, the work focuses on the

size of the giant component. Remember, a network is defined as either connected or

disconnected, meaning all vertices are connected to all others or not. When a network

is disconnected, it is made up of at least two connected components. Deriving the

distribution of component sizes with the help of the original degree distribution, we

describe if a randomly chosen vertex is in a finite component, or the giant component,

which is infinite in size. A particular root value of the polynomial defined by the PGF,

discussed in detail in Sec. 5.2.2, relates to the size of the giant component. Therefore,

the variations in input values will affect this root value and giant component size.

Various spreading processes can occur on networks, for example, disease spread.

The giant component inform scientists on the largest proportion of a population that

could be infected by a disease. The sensitivity of the giant component is unknown

and essential to evaluate, especially for epidemiological purposes. This chapter aims

to evaluate the sensitivity of two distributions. The first being a negative binomial

distribution, which informs epidemiological forecasting through final outbreak sizes.

The second case evaluates an Erdös-Rényi random graph, which establishes the effect

of varying levels of percolation on random graphs. Being the first sensitivity analysis

of a PGF model, this sets the stage for sensitivity analyses for other PGF outcomes
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used in epidemiological and non-epidemiological applications.

5.2 Methods

5.2.1 Assumptions

The assumptions around PGFs include that the degree distribution encoded in a PGF

assumes a network of infinite size. This framework is not temporal. To determine the

giant component or final outbreak size of a network, we define the network encoded

in G0(x), and assume G0(x) = G1(x). This assumption simply makes the polynomial

root and outbreak size sum to 1. For the negative binomial case study in this work,

we assume there is not a binomial choice with a transmissibility term, T , performed

on an underlying contact network [34]. We also assume that for the negative binomial

case, the largest k value is 20. However, for the Erdös-Rényi random graph case, we

assume the largest k value is 10, given the small support of the Poisson distribution.

5.2.2 Probability generating functions

As detailed in Sec 3.3, PGFs are used to encode probability distributions in a compact

way: as the coefficients of a formal power series [99]. This encoding allows for scientists

to compute many properties of a distribution [99]. For an arbitrary network or graph

applied to a PGF, there is a relevant random variable which indicates the probability

that a vertex has degree k, we denote this pk. This degree distribution is generated

by

G0(x) =
∞∑

k=0
pkx

k. (5.1)
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The number of connections of the first neighbor to a randomly chosen vertex is

not governed by G0(x). Thus, the neighboring vertex itself is not randomly chosen

by G0(x). To randomly chosen this neighboring vertex, we define the excess degree

distribution, which describes the probability of following a randomly chosen edge

to a vertex with degree k. We define a different PGF for this distribution, where

individuals with k connections are k times more likely to be chosen by this process.

Therefore, we generate the excess degree distribution with [73]

G1(x) =
∑

k(k + 1)pk+1x
k∑

k(k + 1)pk+1
= 1

⟨k⟩
G′

0(x) =
∞∑

k=0
qkx

k, (5.2)

which is normalized by the average degree, given by

⟨k⟩ =
∞∑

k=0
kpk = G′

0(1). (5.3)

Consequently, we have detailed the PGFs that generate the degree distributions of

a randomly chosen vertex, G0(x) and a randomly chosen edge or the excess degree

distribution, G1(x). Moreover, the analysis for this chapter will focus on the giant

component of a graph, which is derived via the distribution of the size of components

arrived at by following a randomly selected edge, H1(x). Remember, this distribution

excludes the possibility of an edge leading to the giant component. Nevertheless, we

can directly solve for the giant component from the information encoded in H1(x)

[73]. The distribution of component sizes when following a randomly chosen edge is

generated by

H1(x) = xG1(H1(x)). (5.4)

This self-consistent equation is derived by noticing that H1(x) is equal to the proba-
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bility of a following a randomly chosen edge, G1(x), to a component of a given size,

which again is defined by H1(x). Similarly, the PGF describing the distribution of

component sizes for a randomly chosen vertex is given by

H0(x) = xG0(H1(x)). (5.5)

All the distributions laid out above do not include the giant component, or the

component of infinite size. Due to this fact, it is known that H1(1) ̸= 1, compared to

G0(1) and G1(1) which do sum to 1. Furthermore, this leads to H1(1) = u, where u

is the probability of not following an edge to the giant component [73]. Therefore,

Eq. (5.4) can be rewritten as

u = G1(u), (5.6)

when evaluating for x = 1 [73]. In a similar manner, when Eq. (5.5) is evaluated at

x = 1, we derive

1 − S = G0(u),

S = 1 −G0(u). (5.7)

For computational simplicity, it is assumed that G0(x) = G1(x), meaning the degree

distribution for the initial individual is equal to the degree distribution of all other

individuals in the network [34]. Therefore, to calculate the proportion of the graph
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the giant component occupies, S, we solve

S = 1 −G1(u) = 1 − u. (5.8)

The polynomial root, u, and giant component proportion, S, is the outcome for

this sensitivity analysis.

5.2.3 Statistical condition of polynomial roots

The core idea of solving PGFs for giant component analysis is to determine the roots

of Eq. (5.6). When dealing with noisy data, solving Eq. (5.6) is subject to the

statistical condition of the solution. This is a measure of how sensitive the true

solution is when perturbations are applied to the coefficients. Laub and Xia establish

a framework, a statistical condition estimation (SCE), to assess exactly that [52].

The general steps for the variation of the Laub-Xia algorithm for this work goes

as such: (i) we solve for the real roots, x, of the polynomial p(x) between [0, 1]. (ii)

In order to assess sensitivity, we generate a matrix of random values to be added to

each coefficient for z trials. (iii) Following the samples of z trials, we compute the

perturbed roots, x̃, for the perturbed polynomial, p̃(x). (iv) Finally, the condition

number for the root between [0, 1] is given by the ℓ2 norm of the component-wise

division.

The Laub-Xia algorithm leverages the results from linear algebra, one of which

being how the eigenvalues of the companion matrix of polynomial coefficients corre-
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spond to the roots. The companion matrix of a polynomial is defined as



0 0 0 ... p0/pk

1 0 0 ... p1/pk

0 1 0 ... p2/pk

0 0 1 ... p3/pk

... ... ... ... ...


, (5.9)

where each pk value for k ≤ k−1 is normalized by the higher order term coefficient, pk.

From the possible roots, we pare back the results to only include real roots between

[0, 1]. We know there will always be one root in this interval equal to 1 because of the

nature of Eq. 5.6. However, if there is another root in the [0, 1] interval, that is the

root we focus on. Moving onto the second step in the process, z number of samples

are produced from a normal distribution with µ = 0 and σ = 1. This creates a matrix

of z by k perturbations, Z, remembering that k is the length of the polynomial. Each

z perturbation is applied to its respective coefficient. The Laub-Xia algorithm calls

for a δ value to make the perturbations smaller, since it assesses the perturbation

effects as they approach 0. Hence, we let δ =
√

||x||2−16.

Furthermore, for a single trial, once perturbations are applied, the root falling

within [0, 1], x̃, of the perturbed polynomial, p̃(x), is used in the component-wise

division. This division is given by

|x̃ − x|
δ|x|

, (5.10)

which finds the difference between the true root and the perturbed root, then nor-
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Figure 5.1: PGF root value and outbreak sizes: The contour lines of the PGF roots
and outbreak size proportions are shown for average secondary cases,R0 and the dispersion
parameter, α, combinations. From the assumptions of Getz et al., the polynomial root and
the outbreak size plots are the inverse of each other [34]. A more heterogeneous network
is represented by a lower dispersion value, and a more homogeneous network correlates to
larger dispersion values.

malizes by δ and the true root.

5.3 Case Studies

To test the affect of added error on a given degree distribution, we construct a per-

turbed PGF. Remember, the error, δZ, is scaled by the coefficient, qk, given by

G̃1(x) =
∑
k=0

qk(1 + δZ)xk. (5.11)

These coefficients are renormalized after inputting the error to preserve the nature of

the PGF.
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5.3.1 Negative binomial simulations

Negative binomial distributions commonly define distributions of secondary cases in

the public health sector. We model the spread of disease as a random branching pro-

cess [73], where an infected individuals generates a random number of individuals to

infect, given by G0(x). Infection counts can either be tracked or understood through

a giant component analysis, as detailed in Sec. 5.2.2. From the assumptions listed

in Sec. 5.2.1, we define the terms of both G0(x) and G1(x) from a negative binomial

distribution as,

qk = Γ(k + α)
k!Γ(α)

(
R0

R0 + α

)k( α

R0 + α

)α

, (5.12)

where R0 is the average number of secondary cases, and α is the dispersion pa-

rameter. This distribution will then be perturbed according to Eq. (5.11). Before

applying error, we derive the true polynomial root values from Eq. (5.6) and their

respective final outbreak size, as seen in Fig. 5.1 to gauge each system’s expected

outcome.

5.3.2 Erdös-Rényi graph simulations

The above analysis considers transmission on the complete network, or that we use

a percolated network directly, along with a variable dispersion value. To assess a

distribution with a dispersion parameter, our second case focuses on an infinite Erdös-

Rényi (ER) graph with a Poisson degree distribution. To consider percolation on the

graph, we vary the occupation probability or transmission term in a disease dynamics
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context, T . Before applying T , we first define each term in the Poisson distribution

as

qk = λke−λ

k! , (5.13)

where λ is average degree. Similar to Sec. 5.3.1, we define pk = qk. Percolation

is performed on this graph by removing edges from the graph uniformly at random.

Each edge is removed with probability 1−T and remains in the graph with probability

T . As seen in Sec. 3.3, the presence of each edge can then be modeled by a Bernoulli

random variable with a probability generating function,

(1 − T ) + Tx. (5.14)

The resulting degree distribution of the percolated network is gained by compos-

ing the PGF of the un-percolated degree distribution with the PGF for a Bernoulli

random variable,

G1((1 − T ) + Tx). (5.15)

5.4 Results

5.4.1 Negative binomial: small outbreak sensi-

tivity

The simulations described in Section 5.3.1 define perturbed systems on negative bi-

nomial degree distributions. The range of parameter values are [1, 4] for R0 and
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[0.01, 1] for α, allowing for both homogeneous and heterogeneous populations to be

analyzed. For each combination of values in the parameter space, we calculate the

condition number of all perturbed roots simulated. Figure 5.2 illustrates the con-

dition number magnitudes of all perturbed roots. The darkest shades indicate the

largest magnitudes, while the lightest shades correspond to the smallest magnitudes.

For ease of comparison, Fig. 5.3 overlays both the true polynomial roots and

outbreak sizes over the condition numbers displayed in Fig. 5.2. We see the highest

sensitivity following the contours of the largest roots, in the range of 0.925 to 0.950.

This also means the highest sensitivities correlate to the smallest final outbreak pro-

portions or 0.050 to 0.075. This conclusion that small final outbreak sizes are more

sensitivity to noise follows naturally as the giant component could be eliminated from

the system with a level of noise entirely. We see the polynomial root of 0.950 lies on

the edge of the condition number decline. This means once a root value is smaller

than 0.950 and greater than an outbreak size of 0.050, the system is much less sus-

ceptible to output variation from input perturbations. This part of the parameter

space showcases a transition area that is important to be aware of for the confidence

in final outbreak size predictions.

Another observation from Fig. 5.3 is that the parameter values of these large roots

and small outbreaks occur across all R0 values. For R0 values between 1 and 1.25,

the variation in the dispersion parameter does change the sensitivity, which indicates

a larger sensitivity for more homogeneous systems with R0 near 1. However, low

dispersion values for the R0 range of [1.25, 1.5] also show sensitive systems. For larger

values of R0, specifically between 3 and 4, we see a higher magnitude than the center of

the heat map. This indicates that the sensitivity of polynomial roots extends to larger
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Figure 5.2: Negative binomial condition numbers: The heat map of condition num-
bers is shown for average secondary cases, R0, and dispersion parameter, α, combinations.
The darker parts of the map indicate larger condition numbers. We notice the most vari-
able systems to be homogeneous systems with lower R0 values. The white space at the
lowest R0 values are due the support of the distribution being large to simulate and infinite
distribution support.

R0 values. Thus, even with a large average secondary case value, the heterogeneity

of the systems needs to be accounted for to properly assess the effect of noise.

5.4.2 Erdös-Rényi graphs: sensitive thresholds

For the perturbed ER graphs with varying T , as described in Sec. 5.3.2, we specify

a range of T values from [0.15, 0.9]. These probabilities are applied to λ or the mean

degree values, which range from [1, 3]. This changes the epidemic thresholds, as seen

in the top panel of Fig. 5.4. For all T values and the mean degree values, we calculate
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Figure 5.3: Negative binomial condition numbers overlaid with polynomial root
and outbreak size: The heat map of condition numbers and variances are shown in both
panels, however, the polynomial root and outbreak size are plotted on the same axes. The
largest condition numbers, meaning the most sensitive values, correspond to the largest root
values and smallest outbreak sizes. For systems make result in the smallest giant component
or smallest outbreak appear to be most sensitive to perturbations.

the condition number, resulting in the bottom panel of Fig. 5.4. For each system,

Fig. 5.4 illustrates a spike in the condition number at the critical transition when the

giant component emerges. After each peak, the condition number decreases quickly

at first, then the plots show a gradual decrease back to a lower sensitivity.

Similar to Sec. 5.4.1, the largest condition numbers occur at low giant com-

ponent proportions, showcasing the sensitivity around giant component thresholds.

Moreover, as the occupation probability changes, we expect the threshold values to

increase, yet, we also see the condition numbers increase across T . The reason for

the condition numbers being much larger for low occupation probabilities could come

from the more gradual increase in outbreak size from 0, as seen from the line for

T = 0.30 in the top panel of Fig. 5.4. Investigating this variation across condition
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Figure 5.4: Percolated Erdös-Rényi: The condition numbers for ER graphs with
occupation probability in the range of, T = [0.15 − 0.90] are displayed. Top: The outbreak
size versus the average degree of the network λ. Bottom: The condition number for each
system corresponds to each outbreak size. It is clear that the condition number spikes at
and around the critical transition when the giant component emerges.

numbers will be the subject of future work.

5.5 Discussion

Uncertainty on how perturbation effects modeling frameworks inhibit the accuracy of

their outcomes and interpretation. When using PGFs for giant component analysis,

it is necessary to know if the data being observed may yield varied results rather

than one true result. We evaluated this framework for two cases, one specifying an
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Disease Year R0 k Ref.
SARS 2003 1.63 0.16 [56, 54, 79]

Smallpox 1958-1973 3.19 0.37 [56, 57]
Influenza (Baltimore) 2009 1.77 0.94 [95, 32]

COVID-19 2020 2.5 0.1 [55, 27, 90, 93]

Table 5.1: Table of various diseases: This table provides specific cases of negative
binomial parameters, which correlate to particular disease outbreaks.

epidemiological forecasting application, the other for a random graph. Both cases

exhibit heightened sensitivity around the small outbreak or giant component sizes.

For infectious disease modeling that uses negative binomial distributions, there are

many diseases that vary in heterogeneity, as seen in Table 5.1. From these different

regimes, we can comment on their varying sensitivities to error and final outbreak

proportions. For example, SARS may fall near a regime that has heighten sensitivity

to noise. Therefore, with a system that has noise, there may not be a large outbreak

predicted, when it truly could have one. Likewise for the ER graphs, extra analysis

for varying condition values for small occupation probability is needed to further

understand how perturbations affect this system.

In light of these results, this chapter aims future work not only towards the shown

case studies, but also analyze the sensitivity of other branching process applications.

As detailed in Sec. 3.3, there are other outcomes of PGFs that pose venues for

sensitivity analyses like the work presented in this chapter. For example, how large

and on which inputs do perturbations of the contact distribution from Chapter 4

affect the comparison metrics? Does perturbing the system in small but consistent

increments change the metrics more than one large perturbation? These questions

need to be evaluated for understand the scope of multiple PGF modeling tools.

As a general framework for branching process sensitivity evaluation, we recognize
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the difficulty in seeing how random noise affects a probability distribution. However,

regardless of the outcome of a PGF model, an altered probability distribution will

warrant some change in an output. This analysis showcases that the regimes to be

concerned about are those that produce outcomes close to 0. These regimes are

tipping points for extinction and slow persistence. Also, the question of how much

noise changes these sensitive regimes drastically is one to consider. This work hopes to

present a better understanding of how to interpret results from PGFs, which account

for the effects of imperfect data collection. These interpretations the allow modelers

to more accurately convey results to the public.
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Chapter 6

Conclusion

People desire a single ‘correct’ answer, prediction, or outcome from modeling tools.

However, the dynamics of the world are messy and random. Nevertheless stochastic

modeling encapsulates the unexpected trajectories in nature that modelers hope to

capture. Hence, this body of work focuses on two probabilistic tools from the tool

shed: master equations and probability generating functions. Each chapter of this

thesis not only demonstrates expansions in methodology and new interpretations of

these two modeling frameworks, but also evaluates subject specific uncertainties for

other scientists, decision makers, and modelers.

Firstly, Chapter 2 presents a within-host HPV infection progression model, that

leverages master equation moments for faster computations. From moment informa-

tion, we inform uncertainties for temporal probability of extinction, along with tem-

poral persistence and viral load information. With the ability to test multiple tissue

structures, the consideration of an individual’s age changes the viral load progression

outcomes. This framework has the potential to be extended to other cell specific

infections that affect various parts of the body, along with informing population-level

109



model parameters.

Next, Chapter 4 extends a temporal PGF analysis, which defines a temporal

transmission term, affected by interventions on the system. During this process, we

notice the difficulty in comparing the cumulative case count probability distributions

for differing intervention strategies. Consequently, we define four comparison metrics

to aid disease spread mitigation decisions. These comparison metrics showcase the

effectiveness of certain interventions over others, along with making model outcomes

clearer for decision makers.

Finally, Chapter 5 delves into the first sensitivity analysis for a PGF giant compo-

nent analysis. For two cases and their parameter spaces, a negative binomial distribu-

tions and an Erdös-Rényi random graph, a condition number analysis evaluates the

sensitivity of final outbreak or giant component size. The highest sensitivity occurred

at the critical threshold value for each case. From this result, modelers can gauge the

effects of errors on this model outcome. This work also establishes a framework for

sensitivity analyses on other PGF outcomes.

6.1 Methodological assumptions

In the midst of showcasing three models that push the edges of knowledge for the

mathematical modeling of disease dynamics, there is another important common

thread to discuss. In each chapter, the methodological sections began with an As-

sumptions sub-section. This sub-section is inspired from Mitchell et al.’s work on

model cards [65]. Model cards exist in the machine learning side of the modeling tool

shed, detailing extensive information on the model and its creators. This includes the
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details on the training data, performance measures, ethical considerations, intended

use, and much more. While all mathematical models of disease do not take in the

same data, parameters, or give comparable results, clear assumptions on the model

and its intent are essential aspects to convey to readers. As George Box said “All

models are wrong, but some are useful” [18], so it is imperative to detail explicit

assumptions and intentions to distinguish the useful models.

It is the hope of this work to encourage others to state information inspired by

the model card framework and display the information explicitly. For example, a

statement on the modelers and their backgrounds provides insights as to why certain

models choices are made. Other valuable information for readers to be aware of are

the sensitivities of a model, with the results of Chapter 5 being an example of this.

This type of information makes readers aware of the caveats and intentions long before

reading the discussion, and absorbing the methodologies and take-away points. The

range and uses of the tools in the tool shed need to be clear, otherwise someone could

try to hammer a screw into a board.

6.2 Parameter literature review

In the processes of writing Chapter 2, an extensive literature review was conducted

for the cellular division dynamics and HPV viral load output. One of the sources

that informed the cellular dynamics of the model details rate defaults and ranges

for both data-derived and in vivo, cell culture experiment, literature estimates. This

source compared the data-derived and literature estimates, some of the defaults and

ranges were quite different, but were not expected to be identical. For example, the
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data-derived parabasal cell replication rate average was 0.0082, with no range given.

Whereas the literature estimate average given was 0.39, with a range of [0.2, 1] [70].

The question of which parameter choice to use is up to the reader, making it unclear

what the benefits and downsides of each estimate are.

In addition, a reference for the in-vivo experiment is given, leading the reader

to explore a different publication. Upon reading this publication, it was difficult to

understand how the original ranges were derived. The struggle to understand pa-

rameter values through references and reported data showcase areas of improvement.

It is with this experience that I acknowledge an opportunity for modelers and other

scientists to consider making all data from their findings available and interpretable

to readers. Without access to the data informing an estimated parameter value, it

is hard to account for parameter variation. This variation, or lack there of, aids in

accommodating the models we construct to inform unknown outcomes.

6.3 Future multi-scale model

From the frameworks of Chapters 2 and 4, we can define a case study for a multi-scale

model framework. Considering HPV again, we take the information from Chapter

2 to define distributions describing the model outcomes. Those being viral load,

extinction probability, and distribution of dead cells from persistent infection of a

randomly selected infected individual in a population. The viral load correlates to

the rate of transmitting HPV, β in the Chapter 4 model, to a contact in the contact

degree distribution. One way to determine this is using the average value from the

viral load zero-inflated distribution for all β values. The second is to pull a β value
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from the zero-inflated distribution determined by the first and second moment of the

dead cells to accommodate heterogeneity in the probability of infection over time.

Depending on the age of an individual in the population, this would dictate the

cell-type structure moments used. Moving onto the recovery rate, γ, this correlates

directly to the probability of extinction. We can define γ by number of people in

a potential population multiplied by the extinction probability over time. Finally,

if an individual has been has not recovered past a certain time, say the time that

correlates with a probability of extinction of 50%, then the moments for the dead

cells of the persistent infections will impose will be interpreted to viral load for a new

distribution for β. Similarly, the age of an individual will inform the system structure

and respective moments.

After defining the rates of infecting another individual or a recovery, the last

input of the temporal and probabilistic model of Chapter 4 is defining the contact

distribution. From the literature, skewed distributions such as power-law or Weibull

distributions have been used by modelers to define a generalized sexual contact net-

work [41, 25, 28]. With a temporal sexual contact network, we could define the

possibility of re-infection by allowing contact to occur again. Thus, the model can be

run with or without an HPV vaccine implementation. From demographic informa-

tion for a modeled population, the comparison metrics could inform the likelihood of

persistence and cancer risk in a population when evaluating the new case distribution

over time.
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6.4 Final thoughts

While the work of this thesis is far from presenting the perfect methods to uncover un-

certainties in unknown with-in host dynamics, probability distribution comparisons,

or sensitivity analyses for PGFs, it is a start. A start that I am eager to discuss with

anyone interested, as I have been thinking about the body of this work for almost

five years. I thank the reader for taking the time and space to get this far, and leave

you with the visual contributions of this thesis.

Figure 6.1: Visual contributions: This figure is inspired by “The illustrated guide to a
Ph.D.” by Matt Might, which I read when considering a higher education [61].
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Appendix

Three-cell-type moment equations
The moment equations for Sec. 2.3.1 are given by:

d

dt
⟨b⟩ = (β − δ)⟨b⟩

d

dt
⟨p⟩ = (ρ− θ)⟨p⟩ + (2δ + γ)⟨b⟩

d

dt
⟨d⟩ = θ⟨p⟩

d

dt
⟨b2⟩ = 2(β − δ)⟨b2⟩ + (β + δ)⟨b⟩

d

dt
⟨p2⟩ = (θ + ρ)⟨p⟩ + (2ρ− 2θ)⟨p2⟩ + (γ + 4δ)⟨b⟩ + (2γ + 4δ)⟨bp⟩

d

dt
⟨d2⟩ = θ⟨p⟩ + 2θ⟨pd⟩

d

dt
⟨bp⟩ = (β − θ + ρ− δ)⟨bp⟩ + (γ + 2δ)⟨b2⟩ − 2δ⟨b⟩

d

dt
⟨pd⟩ = (ρ− θ)⟨pd⟩ + θ⟨p2⟩ − θ⟨p⟩ + (γ + 2δ)⟨bd⟩

d

dt
⟨bd⟩ = β⟨b⟩ + θ⟨bp⟩ − δ⟨bd⟩.
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Five-cell-type moment equations
The moment equations for Sec. 2.3.2 are given by:

d

dt
⟨b⟩ = (β − δ)⟨b⟩

d

dt
⟨p⟩ = (ρ− α)⟨p⟩ + (γ + 2δ)⟨b⟩
d

dt
⟨i⟩ = α⟨p⟩ − σ⟨i⟩

d

dt
⟨s⟩ = σ⟨i⟩ − θ⟨s⟩

d

dt
⟨d⟩ = θ⟨s⟩

d

dt
⟨b2⟩ = 2(β − δ)⟨b2⟩ + (β + δ)⟨b⟩

d

dt
⟨p2⟩ = (ρ+ α)⟨p⟩ + (2ρ− 2α)⟨p2⟩ + (2γ + 4δ)⟨bp⟩ + (γ + 4δ)⟨b⟩
d

dt
⟨i2⟩ = α⟨p⟩ + 2α⟨pi⟩ − 2σ⟨i2⟩ + σ⟨i⟩

d

dt
⟨s2⟩ = σ⟨i⟩ + 2σ⟨is⟩ − 2θ⟨s2⟩ + θ⟨s⟩

d

dt
⟨d2⟩ = 2θ⟨sd⟩ + θ⟨s⟩

d

dt
⟨bp⟩ = (β + ρ− δ − α)⟨bp⟩ + (γ + 2δ)⟨b2⟩ − 2δ⟨b⟩
d

dt
⟨bi⟩ = (β − δ − σ)⟨bi⟩ + α⟨bp⟩

d

dt
⟨bs⟩ = (β − δ − θ)⟨bs⟩ + σ⟨bi⟩

d

dt
⟨bd⟩ = (β − δ)⟨bd⟩ + θ⟨bs⟩

d

dt
⟨pi⟩ = (ρ− α− σ)⟨pi⟩ + (γ + 2δ)⟨bi⟩ + α⟨p2⟩ − α⟨p⟩

d

dt
⟨ps⟩ = (ρ− θ − α)⟨ps⟩ + (γ + 2δ)⟨bs⟩ + σ⟨pi⟩
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d

dt
⟨pd⟩ = (ρ− α)⟨pd⟩ + (γ + 2δ)⟨bd⟩ + θ⟨ps⟩

d

dt
⟨is⟩ = (−θ − σ)⟨is⟩ + α⟨ps⟩ + σ⟨i2⟩ − σ⟨i⟩

d

dt
⟨id⟩ = θ⟨is⟩ − σ⟨id⟩ + α⟨pd⟩

d

dt
⟨id⟩ = θ⟨is⟩ − σ⟨id⟩ + α⟨pd⟩

d

dt
⟨sd⟩ = θ⟨s2⟩ − θ⟨sd⟩ − θ⟨s⟩ + σ⟨id⟩
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