1-24-2012

Cremations, Dental Amalgams, and You

Calvin Kagan
Alison Krywanczyk
Xingfu Liang
John Malcolm
Molly Rovin

See next page for additional authors

Follow this and additional works at: https://scholarworks.uvm.edu/comphp_gallery

Part of the Community Health and Preventive Medicine Commons, and the Health Services Research Commons

Recommended Citation
Kagan, Calvin; Krywanczyk, Alison; Liang, Xingfu; Malcolm, John; Rovin, Molly; Yoo, Bianca; Zhao, Bailey; Carney, Jan; Hoffman-Contois, Razelle; and Hales, Heidi, "Cremations, Dental Amalgams, and You" (2012). Public Health Projects, 2008-present. 76.
https://scholarworks.uvm.edu/comphp_gallery/76

This Article is brought to you for free and open access by the Public Health Projects, University of Vermont College of Medicine at UVM ScholarWorks. It has been accepted for inclusion in Public Health Projects, 2008-present by an authorized administrator of UVM ScholarWorks. For more information, please contact scholarworks@uvm.edu.
Cremations, Dental Amalgams, and You

Kagan, C1; Krywanczyk, A1; Liang, X1; Malcolm, J1; Rovin, M1; Yoo, B1; Zhao, B1 Carney, J1; Hoffman-Contois, R2; Hales, H3

1University of Vermont College of Medicine Burlington, VT; 2Vermont Department of Health, Burlington, VT; 3 Vermont Department of Environmental Conservation, Waterbury, VT

Introduction

In Vermont, cremation has increasingly become an alternative to interment of an intact body. Many of the bodies being cremated contain dental amalgams, which are commonly used by dentists to repair dental erosion and caries (cavities). They are an economical option for caries repair, and remain popular. Roughly one third of all caries fillings done in 2002 in the U.S. utilized amalgams, a metal that is a known toxicant1. Dental amalgams, may constitute a source of low level, continual exposure for those with these dental devices in situ and may be released to the atmosphere upon cremation.

The goal of this project was to investigate:

1. The status of the scientific opinion on potential health effects that may be associated with having dental amalgams.
2. To help refine State estimates of potential mercury emissions from crematoria in Vermont.

Methods

• A literature review was performed on:
 - Health effects associated with exposure to elemental mercury and mercury in general.
 - Individual exposure to mercury as a result of dental amalgam installation.
 - State of current scientific and medical opinion on the potential health effects of dental amalgams, and recommendations for their use.
 - How to effectively communicate risk to both physicians and patients.
• Surveyed several Vermont crematoria (n=9) to obtain estimates of annual activity and trends.
• Obtained 2008 State of Vermont Ambient Emissions Inventory for Mercury from the ANR, DEC, Air Pollution Control Division. We researched the algorithm used to derive the emissions factor used in a national average.

Results

• The known effects of mercury include neurotoxicity, kidney toxicity, damage to the gastrointestinal tract, and possible termination of pregnancy. There are also acute allergies to mercury.
• It is debated whether chronic mercury toxicity from amalgams plays a role in multiple sclerosis, fibromyalgia, chronic fatigue syndrome, Alzheimer’s Disease, and Parkinson’s Disease2.
• The U.S. EPA has established a chronic Inhalation Reference Concentration (RfC) of 0.3 μg/ml for elemental mercury3. Some estimate this may equal to 114-144 μg/day4. The California Environmental Protection Agency has established a Chronic Reference Exposure Level (REL) of 0.03 μg/g mercury5.
• On average, a person with amalgams is estimated to be exposed to 1-5 μg of mercury vapor per day6. Studies suggest children with amalgams have significantly higher levels of mercury in their urine and hair samples (3.763 μg/g, 3.467 μg/g, P=0.019 for urine, 0.614 μg/g vs. 0.242 μg/g, P=0 for hair)7. There are 2-12 times more mercury in body tissues of individuals with dental amalgams by autopsy8. The brain tissue of individuals with more than 12 amalgams was found to have an average of 300 ng Hg/g significantly exceeding the non-toxic level of 0.02-36 ng Hg/g9.
• Studies in Japan have not found increased mercury in the atmosphere around crematoria10, however studies in New Zealand have found increased levels of mercury in the soil surrounding crematoria11.
• Dental amalgams may constitute a source of low level, continual exposure for those with dental amalgams in situ and may be released to the atmosphere upon cremation.

Discussion

• Studies have identified increased levels of mercury in the tissues of people with dental amalgams.
• It has been difficult to find a definitive method to measure mercury exposure in people with amalgams, and then to be able to compare studies that use different techniques.
• While mercury is a toxicant, it has been difficult for studies to find health effects significantly associated with dental amalgams. As shown, the FDA and the ADA have conflicting positions on the safety of dental amalgams. The total number of cremations performed in VT should be monitored, as this information will be used as an accurate determination of crematoria’s mercury emissions. We also encourage thorough analytical examination of crematoria to quantify the actual amount of mercury they release into the environment.

References

5) Kagan, C; Krywanczyk, A; Liang, X; Malcolm, J; Rovin, M; Yoo, B; Zhao, B Carney, J; Hoffman-Contois, R; Hales, H. “Dental amalgam has been studied and reviewed extensively, and has established a record of safety and effectiveness.” - ADA

Table 1. Estimated total mercury emissions from crematoria in VT in 2008

<table>
<thead>
<tr>
<th>Emission Factor</th>
<th>1.49 g/body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cremation Activity</td>
<td>1,975 per year</td>
</tr>
<tr>
<td>Total Mercury Emissions from Crematories</td>
<td>6.49 g 8</td>
</tr>
</tbody>
</table>

Figure 2 – There was a steadily increasing number of cremations per year in Vermont between 1996 and 2008, with 2008 exceeding the non-toxic level of 0.02 -36 ng Hg/g. The estimate used in the algorithm was higher than the estimate used in the algorithm. The estimate also does not account for where the emitted mercury is distributed, which may underestimate the number of cremations performed in VT, because they use VT death certificates to get their data.

Conclusion

• Current studies of the safety of dental amalgams are limited by insufficient experimental designs and confined sample sizes. With increased understanding of mercury toxicity and improved experimentation techniques, researchers may soon validate that dental amalgams mildly increase the risk of pathology.

• We support the recommendations of the FDA, to not use amalgams in patients with known metal allergies and to discuss the risks and benefits with a dentist prior to amalgam insertion. It is crucial that patients are educated about possible health consequences before amalgam use, and are informed that current research is limited. Patients should also be made aware of alternative dental repair materials.

• The total number of cremations performed in VT should be monitored, as this information will be used as an accurate determination of crematoria’s mercury emissions. We also encourage thorough analytical examination of crematoria to quantify the actual amount of mercury they release into the environment.

Figure 1 – There are at least 9 crematories dispersed through the state of Vermont, which each perform between 300 and 1,500 cremations per year. Eight locations are shown here.