Role of Voltage-Dependent Calcium Channels in Subarachnoid Hemorrhage-Induced Constriction of Intracerebral Arterioles

Matthew Nystoriak
University of Vermont

Follow this and additional works at: http://scholarworks.uvm.edu/graddis

Recommended Citation
Nystoriak, Matthew, "Role of Voltage-Dependent Calcium Channels in Subarachnoid Hemorrhage-Induced Constriction of Intracerebral Arterioles" (2010). Graduate College Dissertations and Theses. Paper 168.
ROLE OF VOLTAGE-DEPENDENT CALCIUM CHANNELS IN SUBARACHNOID HEMORRHAGE-INDUCED CONstriction OF INTRACEREBRAL ARTERIOLES

A Dissertation Presented

by

Matthew A. Nystoriak

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Pharmacology

October, 2010
Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, specializing in Pharmacology.

Dissertation Examination Committee:

George C. Wellman, Ph.D.

Joseph E. Brayden, Ph.D.

Victor May, Ph.D.

Mark T. Nelson, Ph.D.

Margaret A. Vizzard, Ph.D.

Domenico Grasso, Ph.D.

Date: August 30, 2010
ABSTRACT

Subarachnoid hemorrhage (SAH) following cerebral aneurysm rupture is associated with substantial morbidity and mortality. The ability of SAH to induce vasospasm in large diameter pial arteries has been extensively studied, although the contribution of this phenomenon to patient outcome is unclear. Conversely, little is known regarding the impact of SAH on intracerebral (parenchymal) arterioles, which are critical for regulation of cerebral blood flow. To assess the function of parenchymal arterioles following SAH, measurements of diameter, intracellular Ca\(^{2+}\) ([Ca\(^{2+}\)\(_i\)]) and membrane potential were performed in intact arterioles from unoperated (control), sham-operated and SAH model rats. At physiological intravascular pressure, parenchymal arterioles from SAH animals exhibited significantly elevated [Ca\(^{2+}\)\(_i\)] and enhanced constriction compared with arterioles from control and sham-operated animals. Elevated [Ca\(^{2+}\)\(_i\)] and enhanced tone following SAH were observed in the absence of vascular endothelium and were abolished by the L-type voltage-dependent Ca\(^{2+}\) channel (VDCC) inhibitor nimodipine. Molecular assessment of the L-type VDCC Ca\(_V\)1.2 indicated unchanged mRNA and protein expression in arterioles from SAH animals. Increased Ca\(_V\)1.2 activity following SAH may also reflect enhanced pressure-induced membrane potential depolarization of arteriolar smooth muscle. Membrane potential measurements in arteriolar myocytes using intracellular microelectrodes revealed approximately 7 mV depolarization at 40 mmHg in myocytes from SAH animals. Further, when membrane potential was adjusted to similar values, arteriolar [Ca\(^{2+}\)\(_i\)] and tone were similar between groups. These results demonstrate that greater pressure-dependent membrane potential depolarization results in increased activity of Ca\(_V\)1.2 channels, elevated [Ca\(^{2+}\)\(_i\)] and enhanced constriction of parenchymal arterioles from SAH animals. Thus, impaired regulation of parenchymal arteriolar [Ca\(^{2+}\)\(_i\)] and diameter may restrict cerebral blood flow in SAH patients.

Although nimodipine is used clinically to prevent delayed neurological deficits in SAH patients, the use of this drug has been limited by hypotension and treatment options remain inadequate. Therefore, our next objective was to explore strategies to selectively suppress Ca\(_V\)1.2 channels in the cerebral vasculature. To do so, we examined the physiological role of smooth muscle Ca\(_V\)1.2 splice variants containing the alternatively-spliced exon 9* in cerebral artery constriction. Using antisense oligonucleotides, we demonstrate that suppression of exon 9*-containing Ca\(_V\)1.2 splice variants results in substantially reduced cerebral artery constriction to elevated extracellular [K\(^+\)]. In addition, no further reduction in constriction was observed following suppression of all Ca\(_V\)1.2 splice variants, suggesting that exon 9* splice variants are functionally dominant in cerebral artery constriction. In summary, results shown in this dissertation demonstrate that increased Ca\(_V\)1.2 activity following SAH results in enhanced constriction of parenchymal arterioles. Furthermore, evidence is provided supporting the concept that Ca\(_V\)1.2 splice variants with exon 9* are critical for cerebral artery constriction and may provide a novel target for the prevention of delayed ischemic deficits in SAH patients.
CITATIONS

Material from this dissertation has been published in the following form:

Material from this dissertation has been accepted for publication in the following form:

Material from this dissertation has been submitted for publication to American Journal of Physiology, Heart and Circulatory Physiology on August 2, 2010 in the following form:

I believe that the success of one in pursuit of a doctoral degree is determined not only by the effort put forth by the student, but also that put forth by the mentor. With that said, I am extremely fortunate to have worked with my advisor, Dr. George Wellman. From day one, George has been a truly great mentor and the experience that I have had working with him has been invaluable. I would like to thank George for everything, including help with writing manuscripts and proposals, advice with designing and performing experiments, as well as encouraging me to attend scientific meetings and work on my golf swing. In addition, this dissertation is physical proof that a Yankees fan can peacefully and productively coexist with a Red Sox fan.

I also feel very fortunate to have had a dissertation committee consisting of faculty members who are internationally recognized as experts in their respective fields. For their time and effort in helping to guide my work, I would like to thank: Drs. Joseph Brayden, Victor May, Mark Nelson, and Margaret Vizzard. I believe that the willingness of these outstanding scientists to share their expertise is very much reflected in my research.

I must thank everyone working in the Wellman laboratory for all of their help: Drs. Masayo Koide and Kentaro Murakami, Mr. Micah Been-Miller, Mr. Colby Cantu,
Ms. Jaqueline Hubbard, Mr. Kevin O’Connor, Ms. Ashley Ross, and Ms. Sheila Russell. Working alongside you every day in the lab has been a very enjoyable experience. I would also like to express gratitude toward Dr. Natalia Gokina for taking time to share expertise regarding the use of fura-2 to measure intracellular calcium in intact arteries. Members of the Center of Biomedical Research Excellence Program, particularly Thomm Buttolph and Edward Zelazny, were also instrumental in my training and understanding of several techniques.

As an undergraduate at the University of Vermont, I spent time as a work-study student in the department of Pharmacology in Dr. Deborah Damon’s laboratory. Initially, most time was spent washing dishes, but later I began to perform various molecular biology and cell culture techniques. It was during this time that I first became excited by research. I would like to thank Dr. Damon for allowing me to work in her laboratory, as I would not have chosen this career path otherwise.

This dissertation is dedicated to my parents, Barbara and David Nystoriak. From a very early age, my parents taught me the importance of working hard and receiving a high-quality education. Without their constant encouragement, I never would have dreamed of pursuing a career in science. I would also like to thank my friends and family in New York for their love and support.
Finally, I am deeply indebted to my wife and best friend Jessica. On days when experiments failed, she would see my frustration and remind me to bear in mind how good the good days feel. I couldn’t have done this without all of her unwavering love and support.

“The secret to creativity is knowing how to hide your sources” ~Albert Einstein
TABLE OF CONTENTS

CITATIONS ... ii

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES .. ix

LIST OF FIGURES ... x

CHAPTER 1: LITERATURE REVIEW .. 1
 Introduction .. 2
 Part 1: Cerebrovascular physiology .. 3
 General anatomy of the cerebral arterial blood supply .. 3
 Control of cerebral blood flow: cerebrovascular resistance 5
 Cerebral autoregulation and Ca\(^{2+}\)-dependence of vascular tone 6
 Regulation of vascular smooth muscle [Ca\(^{2+}\)]; L-type voltage-dependent Ca\(^{2+}\) channels ... 9
 Regulation of smooth muscle membrane potential ... 17
 Second messenger pathways involved in smooth muscle contraction 24
 Endothelial influences .. 27
 Part 2: Cerebrovascular pathophysiology associated with subarachnoid hemorrhage .. 34
 Introduction .. 34
 Experimental models of SAH .. 35
 Mechanisms of enhanced smooth muscle contraction following SAH 37
 Role of [Ca\(^{2+}\)]; .. 39
 Role of voltage-dependent Ca\(^{2+}\) channels ... 40
 Role of K\(^+\) channels ... 41
 Role of Protein Kinase C ... 45
 Role of Rho/Rho kinase .. 46
 Effect of SAH on the endothelium ... 46
 Impact of SAH on Cerebral Microcirculation ... 48
 Summary ... 49
 Part 3: Hypotheses ... 50
 Figures ... 53

CHAPTER 2: JOURNAL ARTICLE ... 60
 Abstract ... 62
 Introduction .. 64
 Methods ... 66
 Results ... 72
 Discussion ... 78
 Acknowledgements .. 84
References ... 85
Figure Legends .. 89
Figures ... 93

CHAPTER 3: JOURNAL ARTICLE .. 100
Abstract ... 102
Introduction .. 104
Methods ... 107
Results ... 113
Discussion .. 118
Acknowledgements .. 123
References .. 124
Figure Legends .. 127
Figures ... 131

CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS 140

COMPREHENSIVE BIBLIOGRAPHY 147

APPENDIX A: BOOK CHAPTER 182
Abstract ... 184
Introduction .. 185
Materials and Instruments ... 189
Procedures .. 190
Conclusions ... 199
Acknowledgements .. 200
References .. 201
Figure Legends .. 203
Figures ... 206

APPENDIX B: BOOK CHAPTER 211
Summary ... 213
Introduction .. 215
Methods ... 215
Results ... 218
Discussion .. 220
Conclusions ... 222
Acknowledgements .. 223
References .. 224
Figures ... 230

APPENDIX C: JOURNAL ARTICLE 233
Abstract ... 235
Introduction .. 236
Materials and Methods ... 238
Results ... 245
Discussion ... 252
Acknowledgements: ... 257
References .. 257
Figure Legends ... 265
Figures .. 270
LIST OF TABLES

CHAPTER 2: JOURNAL ARTICLE

Table 1: *Fura-2 Calibration Values* ... 99

CHAPTER 3: JOURNAL ARTICLE

Table 1: *Diameter values for K+ concentration-response experiments* 139

APPENDIX C: JOURNAL ARTICLE

Table 1: *Primers for quantitative real-time PCR.* .. 277
Table 2: *Transient BK current and Ca2+ spark characteristics* 278
Table 3: *Arterial diameter measurements* ... 279
LIST OF FIGURES

CHAPTER 1: LITERATURE REVIEW

Figure 1: Cerebral blood supply .. 53
Figure 2: Organization of pial and parenchymal vasculature 54
Figure 3: Regulation of intracellular Ca\(^{2+}\) 55
Figure 4: Role of VDCCs in pressure-induced constriction 56
Figure 5: Voltage-dependence of VDCC open-state probability 57
Figure 6: Alpha 1 pore-forming subunit of Cav1.2 VDCCs 58
Figure 7: Impact of SAH on cerebral artery tone 59

CHAPTER 2: JOURNAL ARTICLE

Figure 1: Elevated Ca\(^{2+}\) and enhanced tone in parenchymal arterioles from SAH animals .. 93
Figure 2: Cav1.2 mRNA and protein expression is unchanged following SAH 94
Figure 3: Elevated arteriolar Ca\(^{2+}\) and enhanced constriction following SAH depend on membrane potential depolarization .. 95
Figure 4: Myocytes of pressurized parenchymal arterioles are depolarized following SAH. ... 96
Figure 5: Elevated [Ca\(^{2+}\)], and enhanced myogenic tone following SAH is independent of endothelial function .. 97
Figure 6: The relationship between intravascular pressure, cytosolic Ca\(^{2+}\) and diameter of parenchymal arterioles vs. pial arteries from control animals .. 98

CHAPTER 3: JOURNAL ARTICLE

Figure 1: Cerebral arteries express exon 9* .. 132
Figure 2: Selective expression of exon 9* in cerebral arteries 133
Figure 3: Cerebral artery myocytes express mixed population of Cav1.2 splice variants .. 134
Figure 4: Selective suppression of Cav1.2 splice variants 135
Figure 5: Representative constriction in response to increasing extracellular K\(^{+}\) ... 136
Figure 6: Time course for exon 9*-antisense effect 137
Figure 7: Exon 9* plays a dominant role in cerebral artery constriction 138
CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS

Figure 1: Similar expression of Cav1.2 splice variants in pial and parenchymal vasculature .. 146

APPENDIX A: BOOK CHAPTER

Figure 1: Arteriograph chamber for intact pressurized cerebral arteries 206
Figure 2: Simultaneous measurement of global [Ca^{2+}]_i and diameter of an intact pressurized cerebral artery ... 207
Figure 3: Freshly isolated native cerebral artery myocytes 208
Figure 4: Ca^{2+} sparks in isolated cerebral artery myocytes 209
Figure 5: Ca^{2+} sparks in intact pressurized cerebral arteries 210

APPENDIX B: BOOK CHAPTER

Figure 1: Elevated global cytosolic Ca^{2+} following SAH 230
Figure 2: Decreased Ca^{2+} spark frequency in cerebral myocytes from SAH animals ... 231
Figure 3: Summary cartoon ... 232

APPENDIX C: JOURNAL ARTICLE

Figure 1: Decreased frequency of transient outward BK currents in cerebral artery myocytes from SAH model rabbits ... 270
Figure 2: Maintained expression and properties of BK channels in cerebral artery myocytes following SAH ... 271
Figure 3: Decreased Ca^{2+} spark frequency, but not amplitude, in cerebral artery myocytes from SAH animals ... 272
Figure 4: Decreased functional Ca^{2+} spark sites in cerebral artery myocytes from SAH animals ... 273
Figure 5: RyR activation properties and SR Ca^{2+} load in cerebral arteries from SAH animals ... 274
Figure 6: Decreased expression of ryanodine receptor-2 (RyR-2) and increased expression of FKBP12.6 in cerebral arteries from SAH animals 275
Figure 7: Inhibitors of Ca^{2+} sparks and BK channels constrict cerebral arteries from control, but not SAH model animals .. 276
CHAPTER 1: LITERATURE REVIEW
Introduction

Maintenance of adequate blood flow to the brain is essential for human life. Insufficient delivery of oxygen and glucose to metabolically active regions of the brain quickly results in neuronal necrosis, neurological impairment and death. Therefore, the function of small diameter cerebral arteries and arterioles, which control blood flow, is highly regulated. Following intracranial aneurysm rupture and subarachnoid hemorrhage (SAH), mechanisms mediating cerebral artery diameter may become compromised, leading to enhanced vasoconstriction and reduced blood flow. Consequently, ischemia leads to further morbidity and mortality in a large number of patients surviving the initial intracranial bleed (Kassell et al., 1985). The complex mechanisms involved in arterial narrowing and reduced blood flow associated with SAH are not well understood, but may involve enhanced contraction of vascular smooth muscle.

The contractile state of smooth muscle is dictated by the concentration of global cytosolic free Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_i\)), representing averaged Ca\(^{2+}\) throughout the cell. In the vasculature, smooth muscle [Ca\(^{2+}\)]\(_i\) is largely determined by membrane potential and the degree of Ca\(^{2+}\) influx via plasmalemmal L-type voltage-dependent Ca\(^{2+}\) channels (VDCCs). The L-type VDCC \(\alpha\)1 pore-forming subunit in vascular smooth muscle is a splice variant of the gene Ca\(_v\)1.2, which also encodes cardiac muscle and neuronal VDCCs. Although the molecular identity of L-type VDCCs involved in cerebral artery constriction is not known, evidence suggests that these channels may be more active following SAH, leading to elevation of smooth muscle [Ca\(^{2+}\)]\(_i\) and enhanced vasoconstriction (Faraci and Heistad, 1998; Wellman, 2006). Given their relevance in
cerebrovascular physiology, understanding the function of L-type VDCCs in cerebral artery myocytes is critical for improvement of therapeutic strategies preventing reduced cerebral blood flow following SAH.

This literature review will provide an overview of the regulation of cerebrovascular tone in both normal conditions and in pathological conditions following SAH. Part one will discuss mechanisms involved in vascular smooth muscle contraction, with a focus on the role of intracellular Ca\(^{2+}\) and L-type VDCCs. Part two will discuss prominent pathways involved in enhanced arterial constriction following SAH. In addition, this section will also review emerging evidence in support of SAH-induced dysfunction of the cerebral microcirculation.

Part 1: Cerebrovascular physiology

General anatomy of the cerebral arterial blood supply

Blood is supplied to the human brain by two vertebral arteries and two internal carotid arteries. The vertebral arteries enter the skull through the foramen magnum and converge to form the basilar artery on the ventral brain stem. The internal carotid arteries enter through the base of the skull and join the basilar artery to form an arterial circle on the base of the brain called the Circle of Willis (Figure 1). The unique anatomic structure of the Circle of Willis functions to provide collateral blood supply to the entire brain in the event of occlusion of any of the arteries contributing to the circle.
Three major pairs of arteries supply blood to the cerebral hemispheres. The anterior cerebral arteries (ACA) arise from the internal carotid arteries at the Circle of Willis and supply the most medial portions of the frontal and parietal lobes. The major branches supplying the majority of the lateral hemispheres are the middle cerebral arteries (MCA). The posterior cerebral arteries extend from the intersection of the posterior communicating and basilar arteries and supply the inferior and medial regions of the temporal and occipital lobes. Each major cerebral artery divides to form a highly interconnected grid of surface or “pial” arteries and arterioles. It has been shown that occlusion of a pial cerebral artery leads to only modest decreases in downstream blood flow due to the reversal of flow in downstream communicating arterioles (Schaffer et al., 2006). Therefore, redundant connections among pial arteries and arterioles may also provide a source of collateral blood flow following arterial occlusion.

Penetrating arterioles arise from pial arteries and arterioles and enter the brain parenchyma. The penetrating arterioles are surrounded by an invagination of the pia mater, called the Virchow-Robin space, which is continuous with the subarachnoid space (Figure 2). Downstream of penetrating arterioles and the Virchow-Robin space are intracerebral or parenchymal arterioles. Whereas an interconnected arterial network exists in pial arteries on the surface of the brain, limited collateral flow exists between penetrating and parenchymal arterioles (Nishimura et al., 2007). Hence, thrombosis in penetrating arterioles results in greatly diminished downstream flow (Nishimura et al., 2007) suggesting that ischemia may be most severe following enhanced constriction or occlusion of these vessels.
Also distinguishing the parenchymal arterioles from pial vessels is a lack extrinsic perivascular innervation (Cipolla et al., 2004; Handa et al., 1990). Consistent with this, parenchymal arterioles do not respond to the neurotransmitters norepinephrine or serotonin, which are potent vasoconstrictors in pial vessels (Cipolla et al., 2004). In addition, parenchymal arterioles are almost completely encased by astrocytic endfeet and are essential for coupling neuronal activity to local blood flow (“functional hyperemia”) (Filosa et al., 2006; Iadecola and Nedergaard, 2007). Thus, parenchymal arterioles operate in a unique environment and are functionally distinct from pial vessels on the brain surface.

Control of cerebral blood flow: cerebrovascular resistance

Blood moves through the circulatory system from regions of high pressure (i.e. aorta) to regions of low pressure (i.e. capillaries) (Silverthorn, 2004). As this pressure gradient (ΔP) increases, blood flow also increases. On the other hand, blood flow is opposed by vascular resistance. Hence, blood flow is directly proportional to ΔP, and inversely proportional to vascular resistance (R):

\[
\text{Flow} \propto \frac{\Delta P}{R}
\]

Resistance is a function of length (L) and radius (r) of the vessel as well as the viscosity (η) of the fluid moving through the vessel. Accordingly, resistance can be expressed by the following equation, known as Poiseuille’s Law:

\[
R = \frac{8L\eta}{\pi r^4}
\]
Because the length of the circulatory system and blood viscosity are essentially constant, this equation may also be expressed as:

\[R \propto \frac{1}{r^4} \]

This equation states that vascular resistance is inversely proportional to radius to the fourth power. In an example, a 20 percent decrease in arterial diameter will cause greater than 50 percent reduction in blood flow. Thus, arterial diameter is a major determinant of vascular resistance and small changes in diameter can have profound effects on blood flow and organ perfusion.

Cerebral autoregulation and Ca\(^{2+}\)-dependence of vascular tone

To maintain a constant level of blood flow to the brain during fluctuations in blood pressure, the cerebral resistance vasculature constricts when intravascular pressure increases and dilates when pressure is reduced. The phenomenon of arterial constriction in response to increases in intravascular pressure, or “myogenic tone” was first described by Bayliss in 1902 (Bayliss, 1902). Constrictions to increases in intravascular pressure were found to be independent of neurogenic, humoral or endothelial influences (Falcone et al., 1991; Knot and Nelson, 1995; McCarron et al., 1989). Thus, myogenic tone is an intrinsic characteristic of vascular smooth muscle within the arterial wall. It is now established that increasing intravascular pressure in the physiological range leads to membrane potential depolarization of vascular smooth muscle, activation of voltage-dependent Ca\(^{2+}\) channels (VDCCs), a rise in \([Ca^{2+}]_i\) and contraction of vascular smooth muscle (Brayden and Wellman, 1989; Harder, 1984; Knot and Nelson, 1998). In the
cerebral circulation, the degree of pressure-dependent constriction varies with diameter and is more prominent in small diameter arteries and arterioles (Thorin-Trescases et al., 1997). In addition, this physiological response to pressure is thought to maintain vessels in a partially constricted state in vivo (Meininger and Davis, 1992), allowing various vasoactive factors to increase or decrease arterial diameter and blood flow depending on the metabolic demands of the brain.

Initiation of Smooth muscle contraction: Vascular smooth muscle contraction is a Ca\(^{2+}\)-dependent process. The first step in excitation-contraction coupling in arterial myocytes is a rise in \([\text{Ca}^{2+}]_i\) and activation of the ubiquitous Ca\(^{2+}\)-binding protein calmodulin (CaM) (Figure 3). Upon binding Ca\(^{2+}\) at two EF hand motifs on the N- and C-termini (Gifford et al., 2007), CaM undergoes a conformational change that allows it to interact with numerous proteins, including myosin light chain kinase (Walsh, 1981). CaM-dependent activation of myosin light chain kinase leads to a subsequent increase in phosphorylation at serine-19 on the 20 kDa regulatory myosin light chain protein (Kamisoyama et al., 1994). This phosphorylation event induces a conformational change in the myosin molecule which enhances myosin ATPase activity, actin binding and cross-bridge cycling (Chacko et al., 1977). Shortening of the contractile filaments results in force generation or increased muscle tension (Hai and Murphy, 1989). An increase in crossbridge cycling and contraction may also result from an increase in the sensitivity of the contractile machinery to intracellular Ca\(^{2+}\). For example, the regulatory proteins caldesmon and calponin tonically inhibit myosin ATPase activity in smooth muscle.
(Horowitz et al., 1996). This inhibition is relieved by phosphorylation and leads to increased smooth muscle contraction and vascular tone independent of increases in $[\text{Ca}^{2+}]_i$ (Horowitz et al., 1996; Mino et al., 1995).

Relaxation of smooth muscle is triggered by a decrease in $[\text{Ca}^{2+}]_i$ and dephosphorylation of myosin light chain at serine-19 by myosin light chain phosphatase (Murphy, 1982). Ca^{2+} ions are extruded from the cytoplasm by the plasmalemmal Ca^{2+} ATPase (PMCA) and Na^+/Ca$^{2+}$ exchanger, and sequestered into the SR by the sarcoplasmic reticulum Ca^{2+}-ATPase (SERCA) (Floyd and Wray, 2007). PMCA and SERCA both use energy from the hydrolysis of ATP to transport Ca^{2+} ions against a chemical gradient. On the other hand, the Na^+/Ca$^{2+}$ exchanger uses the electrochemical gradient for Na^+, which is established by the Na^+/K$^+$ ATPase, to transport a single Ca$^{2+}$ ion out of the cell in exchange for three Na$^+$ ions into the cell (Blaustein and Lederer, 1999). Therefore, arterial myocytes expend energy in the form of ATP hydrolysis in order to maintain cytosolic Ca$^{2+}$ at low concentrations relative to extracellular levels. Previous work using the ratiometric Ca$^{2+}$-sensitive fluorescent dye fura-2 estimates that smooth muscle $[\text{Ca}^{2+}]_i$ of fully dilated middle cerebral arteries is ~50-100 nM (Knot and Nelson, 1998). Further, the Ca$^{2+}$ sensitivity of arterial diameter was found to be 1 μm/nM $[\text{Ca}^{2+}]_i$ with the entire range of arterial diameters associated with a change in arterial wall Ca$^{2+}$ of approximately 250 nM (Knot and Nelson, 1998). Thus, $[\text{Ca}^{2+}]_i$ in vascular smooth muscle is tightly regulated and small changes in the cytosolic concentration of this ionic species can have a major impact on arterial diameter and blood flow.
Regulation of vascular smooth muscle $[Ca^{2+}]_i$: L-type voltage-dependent

Ca^{2+} channels

Calcium ions enter the cytosol of vascular smooth muscle predominantly via voltage-dependent calcium channels (VDCCs) in the plasma membrane and Ca^{2+} release channels in the sarcoplasmic reticulum. Thus, $[Ca^{2+}]_i$ in cerebral artery myocytes is determined by the steady-state balance between Ca^{2+} influx from the extracellular fluid or intracellular stores and Ca^{2+} extrusion from the cytoplasm or SR sequestration. In cerebrovascular smooth muscle, Ca^{2+} influx via VDCCs is the major pathway by which $[Ca^{2+}]_i$ increases for initiation of contraction (Brayden and Wellman, 1989; Knot and Nelson, 1998; Nelson et al., 1990; Nelson et al., 1988). Blocking VDCCs with the selective L-type VDCC antagonist nisoldipine reduces $[Ca^{2+}]_i$ to resting levels and abolishes pressure-induced constrictions (Figure 3), essentially uncoupling the relationship between membrane potential and arterial diameter (Knot and Nelson, 1998). Thus, in cerebral artery myocytes, $[Ca^{2+}]_i$ is largely determined by the activity of dihydropyridine-sensitive L-type VDCCs. Further, many vasoactive factors exert their effects on arterial diameter and cerebral blood flow by directly altering VDCC gating or by changing membrane potential (Nelson et al., 1988; Worley et al., 1991). This section will review the basic structural, electrophysiological and pharmacological properties of VDCCs with a focus on L-type VDCCs encoded by $Ca_v1.2$.

Structure: In 1984, Curtis and Catterall first purified voltage-dependent Ca^{2+} channels from skeletal muscle transverse tubule membranes (Curtis and Catterall, 1984). It was
found that these channels were heterooligomeric complexes comprised of a pore-forming
α_1 subunit in association with accessory β, α_2-δ, and γ subunits (Catterall, 2000; Curtis
and Catterall, 1984). It is now known that the α_1 subunit confers most functional
properties of the channel including voltage sensitivity, Ca^{2+} permeability, sensitivity to
pharmacological activators and inhibitors, and Ca^{2+}-dependent inactivation (Catterall,
2000). Ten distinct α_1 subunits have been described: $\text{Ca}_{\text{V}}1.1$-1.4 (“L-type”), $\text{Ca}_{\text{V}}2.1$-2.2
(“P- or Q-type”), $\text{Ca}_{\text{V}}2.3$ (“R-type”), and $\text{Ca}_{\text{V}}3.1$-3.3 (“T-type”). The α_1 proteins (~2000
amino acids; ~190-240 kDa) consist of four repeat domains (I-IV), each containing six
transmembrane segments (S1-S6) (Tanabe et al., 1987). The S4 transmembrane
segments each contain positively charged arginine and lysine residues and confer voltage
sensitivity to the channel. These segments rotate and move outward in response to
membrane depolarization, inducing a conformational change which opens the pore
(Tanabe et al., 1987; Yamaguchi et al., 1999). In addition to cytoplasmic N- and C-
termini, domains I-IV are connected in tandem by intracellular linker regions. The C-
terminus, which contains sites of interaction for cAMP-dependent protein kinase (PKA)
and A-kinase anchoring protein (AKAP15), is proteolytically cleaved in vivo (De Jongh
et al., 1996; Hulme et al., 2003). Although the functional importance of this post-
translational modification is currently unclear, one report suggests that the cleaved C-
terminal portion may remain associated with the remainder of the α_1 subunit to regulate
channel function by formation of an autoinhibitory complex (Hulme et al., 2006).

Although α_1 subunit expression is sufficient to produce functional VDCCs,
anomalous expression, kinetics and voltage-dependence of Ca^{2+} currents are observed in
the absence of auxiliary subunits. Non-covalent association between the α₁ and cytosolic β subunit appears to be most important in the modulation of VDCC expression and function. The four known β subunits (β₁₋₄) belong to the membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins and consist of two conserved central alpha helix domains flanked by subtype-specific N- and C- termini (Cohen et al., 2005). The guanylate kinase (GK) region of the β interactive domain (BID) is required for high affinity interaction with the alpha interactive domain (Maeda et al.) within the I-II intracellular linker of the α₁ subunit (Pragnell et al., 1994). Coexpression of α₁ and β subunits leads to significantly increased transmembrane currents and causes channel activation and inactivation at more negative membrane potentials (Kamp et al., 1996). It is thought that this modulation of channel function may reflect both increased insertion of the α₁ subunit in the plasma membrane as well as a conformational change in the α₁ subunit upon binding the β subunit (Chien et al., 1995; Kamp et al., 1996). Protein for both β₂ and β₃ has been reported in the vasculature (Hullin et al., 1992; Murakami et al., 2003). Aortic myocytes from mice lacking the β₃ subunit exhibited significantly reduced Ca²⁺ currents (Murakami et al., 2003). It was proposed that residual Ca²⁺ currents after β₃ gene ablation may represent a redundant role for the β₂ subunit in channel trafficking and gating. Altered channel function by β subunits may represent an important means of integration of intracellular signals to alter Ca²⁺ influx. For example, β subunits contain conserved sites for PKA-mediated phosphorylation (Puri et al., 1997). In cardiac muscle, beta-adrenergic receptor activation and PKA-mediated stimulation of L-type Ca²⁺
currents may be partially due to phosphorylation of the β_{2a} subunit at serine 478 and serine 479 (Bunemann et al., 1999).

While the expression profile and functional role of VDCC γ subunits in vascular smooth muscle remain unclear (Sonkusare et al., 2006), the importance of the $\alpha_2\delta$ subunit has recently been evaluated. Four genes encoding $\alpha_2\delta$ subunits have been cloned ($\alpha_2\delta1-4$) (Davies et al., 2007). Each $\alpha_2\delta$ protein (~170 kDa) is the product of a single gene which undergoes proteolytic cleavage and reassociates via a disulfide bond as an extracellular α_2 and transmembrane δ (Takahashi et al., 1987). One recent study found that suppression of membrane bound $\alpha_2\delta$-1 subunits in myocytes from resistance-sized cerebral arteries inhibits membrane insertion of α_1 subunits, decreases CaV1.2 currents and causes prolonged vasodilation (Bannister et al., 2009). Interestingly, it was discovered that a class of drugs used to treat neuropathic pain, the gabapentenoids (i.e. pregabalin), exert their effects through binding VDCC $\alpha_2\delta$-1 and $\alpha_2\delta$-2 subunits (Bian et al., 2006). Hence, $\alpha_2\delta$ subunits may also play an important role in the functionality of neuronal L-type VDCCs in addition to smooth muscle channels.

Physiological and Pharmacological Properties: VDCCs switch between open conducting states to closed nonconducting states. As membrane potential becomes more positive, the amount of time spent in the open state, or open-state probability (P_{open}), increases. In vivo membrane potential of resistance artery myocytes (-55 to -40 mV) (Neild and Keef, 1985) is within the range in which the opening of L-type VDCCs is steeply voltage-dependent (Nelson et al., 1988). For example, at membrane potentials negative to -40
mV, VDCC activation is an exponential function of membrane potential with an approximately e-fold increase in \(P_{\text{open}} \) per 8.5 mV depolarization (Figure 5) (Nelson et al., 1990). At membrane potentials positive to -40 mV, increases in \(P_{\text{open}} \) are opposed by long-term channel inactivation, which is both voltage- and \(\text{Ca}^{2+} \)-dependent. Thus, \(P_{\text{open}} \) can be expressed by (Nelson et al., 1990):

\[
P_{\text{open}} = (P_{\text{act}})(1-P_{\text{inact}})(P_{\text{f}}}\]

where \(P_{\text{act}} \) is \(P_{\text{open}} \) in the absence of inactivation, \(1-P_{\text{inact}} \) is the probability of the channel not being in the inactivated state and \(P_{\text{f}} \) is the probability that the channel is functional.

It has been estimated that each cerebral artery myocyte has approximately 5000 functional channels (Rubart et al., 1996). Each channel has a measured conductance of 3 to 5 pS and can produce currents of 0.1 to 0.3 pA at 2 mM \(\text{Ca}^{2+} \) and physiological membrane potentials (Gollasch et al., 1992; Rubart et al., 1996). It has been shown that a depolarization from -40 mV to -20 mV causes approximately four-fold increase in steady-state \(\text{Ca}^{2+} \) current, which is capable of raising \([\text{Ca}^{2+}]_i\) 1.3 µM/second in the absence of \(\text{Ca}^{2+} \) buffering and sequestration (Rubart et al., 1996). Thus, altering membrane potential can lead to substantial changes in the rate of \(\text{Ca}^{2+} \) influx in arterial smooth muscle.

Since \(\text{Ca}^{2+} \) currents were first recorded in cardiac myocytes (Reuter, 1979), multiple types of \(\text{Ca}^{2+} \) channels have been categorized by physiological as well as pharmacological characteristics (Catterall, 2000). In addition to their high voltage-dependent activation and slow voltage-dependent inactivation, L-type VDCCs can be defined pharmacologically by sensitivity to selective \(\text{Ca}^{2+} \) channel antagonists including
dihydropyridines, phenylalkylamines, and benzothiazepines (Catterall, 2000; Reuter, 1983). Inhibition by dihydropyridine compounds is state-dependent and VDCCs become more sensitive to these compounds as membrane potential is more depolarized (Sanguinetti and Kass, 1984). The binding sites for L-type VDCC antagonists are located on the α_1 subunit and binding locks the channel in the inactive or closed state (Williams and Tremble, 1982). Given the critical role of L-type VDCCs in cardiovascular function, L-type VDCC antagonists are an important therapeutic option in the treatment of a variety of disorders including several types of arrhythmia, hypertension, and angina pectoris.

Several other VDCC subtypes have been reported in the vasculature including a low-voltage activated (T-type; Ca_V3) (Nikitina et al., 2007), ω-agatoxin IVA-sensitive (P/Q; $\text{Ca}_V2.1$) (Hansen et al., 2000), and a nifedipine-resistant high-voltage activated Ca^{2+} channel (Itonaga et al., 2002; Morita et al., 1999). However, as dihydropyridine compounds completely abolish pressure-induced as well as agonist-induced cerebral artery constriction (Gokina et al., 1999; Knot and Nelson, 1998), L-type VDCCs are widely accepted as the major route of Ca^{2+} influx in arterial smooth muscle.

Alternative splicing of mRNA encoding $\text{Ca}_V1.2$: In addition to vascular smooth muscle contraction, $\text{Ca}_V1.2$ channels play a critical role in numerous physiological processes such as cardiac muscle contraction, neurotransmitter release, gene expression and hormone secretion. Transcript scanning of the human $\text{Ca}_V1.2$ gene indicated that 19 of the 55 exons comprising the channel are subject to alternative splicing, suggesting that
structural diversity among tissue-selective splice variants may account for functional
distinctions between cell types (Tang et al., 2004). The 40 identified splice variations at
12 splice loci of CaV1.2 are shown in Figure 6 (Liao et al., 2005).

The essential role of L-type VDCCs in cardiovascular function has been
demonstrated by embryonic fatality in homozygous knockout mice lacking CaV1.2
(Seisenberger et al., 2000) and severe hypotension and death in mice following
conditional smooth muscle-specific ablation of CaV1.2 (Moosmang et al., 2003). The
cardiac muscle form of CaV1.2 was proposed to consist of exons 1a/8a/31 while the
predominant smooth muscle form consists of exons 1c/8/32 with the addition of a 75
nucleotide cassette exon between exons 9 and 10 (termed exon 9*). These tissue-specific
combinatorial splicing patterns may underlie electrophysiological and pharmacological
distinctions between cardiac and smooth muscle channels. For example, dihydropyridine
calcium channel antagonists are potent vasodilators and are routinely used to treat
hypertension and angina pectoris. Although these agents bind with high affinity to
constitutively expressed residues at IIIS5, IIIS6, and IVS6, selective expression of exon 8
within IS6 of smooth muscle channels determines dihydropyridine sensitivity (Welling et
al., 1997). In addition, smooth muscle channels may be functionally specialized in order
to allow activation at physiological membrane potentials. An early study aiming to
determine the role of exon 9* in smooth muscle CaV1.2 found that 9* inclusion resulted
in a hyperpolarized shift in voltage-dependent activation when expressed in HEK293
cells (Liao et al., 2004). The authors of this study proposed that functional specialization
of VDCCs allowing activation at more hyperpolarized membrane potentials may be
required for Ca2+ influx and smooth muscle tension to modest membrane potential depolarization. Further studies have also shown that expression of the N-terminal exon 1c can produce a similar shift in voltage-dependent activation, but this effect is not additive to the effect of exon 9* expression (Cheng et al., 2009). Although exon 1c and exon 9* are within close proximity to the site of interaction between α1 and β subunits (see Figure 6), whether these effects are dependent on β subtype is currently unknown. Regardless, these studies together suggest that alternative splicing may be responsible for generating significant functional diversity among cardiac and smooth muscle L-type VDCCs. Further, alternative splicing patterns may become altered in pathophysiological conditions as a shift in alternative exon expression has been observed in atherosclerosis, Timothy syndrome and hypertension (Tang et al., 2008a; Tiwari et al., 2006; Yarotskyy et al., 2009). For example, cardiomyocytes of hypertrophic hearts from spontaneously hypertensive rats were found to express channels with significantly altered combinations of mutually exclusive exons 21/22 and 31/32 compared with cardiomyocytes isolated from normotensive rats (Tang et al., 2008b). Although splice variants expressed in hearts of hypertensive rats display distinct electrophysiological characteristics when expressed in HEK293 cells, the functional importance of Ca\textsubscript{v}1.2 molecular remodeling in cardiovascular disease is currently unclear.
Regulation of smooth muscle membrane potential

Smooth muscle Potassium channels

As described above, VDCC P_{open} and smooth muscle $[\text{Ca}^{2+}]_i$ is determined by membrane potential. Due to the relatively high permeability of the plasma membrane to K^+ ions and the chemical gradient for K^+, the resting membrane potential is largely determined by the intracellular and extracellular K^+ concentrations. Given that the intracellular concentration of K^+ ($[K^+]_i \approx 140$ mM) is considerably greater than extracellular K^+ ($[K^+]_o \approx 3$ mM), the direction of the chemical driving force for K^+ ions is toward the extracellular fluid. However, efflux of K^+ ions loss of positive charge increases the electrical driving force, which is toward the intracellular fluid. The membrane potential at which the inward and outward driving forces are zero and there is no net movement of K^+ ions is termed the K^+ equilibrium potential (E_K). In arterial smooth muscle, membrane potential is always positive to E_K (Hulme et al.). Thus, increasing the permeability of the plasma membrane to K^+ will result in efflux of K^+ such that membrane potential will hyperpolarize towards E_K. Vascular smooth muscle is equipped with various K^+-selective channels to regulate membrane potential. This section briefly reviews properties of K^+ channels expressed by cerebral artery myocytes: voltage-dependent (K_V), large conductance Ca^{2+}-activated (BK), ATP-sensitive (K_{ATP}), and inwardly-rectifying (K_{IR}) K^+ channels.

Voltage-dependent K^+ channels: Voltage-dependent K^+ (K_V) channel subtypes expressed in cerebral artery myocytes include $K_V1.2$, $K_V1.3$, $K_V1.5$, $K_V2.1$ (Xu et al., 1999). Studies have also suggested expression of $K_V2.2$ in canine cerebral artery myocytes.
(Jahromi et al., 2008a). However, heteromeric channels composed of $\mathrm{K}_V1.2$ and $\mathrm{K}_V1.5$ subunits have been shown to play a predominant role in the regulation of arterial diameter (Albarwani et al., 2003; Plane et al., 2005). K_V channels open in response to membrane depolarization, resulting in K^+ efflux and hyperpolarization. In addition to increasing the open probability of K_V channels, depolarization also increases the electrical driving force for K^+ efflux. Steady-state K_V activity represents a balance between voltage-dependent activation and inactivation, and currents are observed in cerebral artery myocytes at physiological membrane potentials (Nelson and Quayle, 1995). Studies have suggested that tonic K_V channel activity in cerebral artery myocytes may represent an important feedback mechanism in response to pressure-induced depolarization. Consistent with this, application of the non-selective K_V blocker 4-aminopyridine causes robust constriction of pressurized cerebral arteries (Robertson and Nelson, 1994). In addition, a number of vasodilators may function via activation of K_V channels. Endogenous factors resulting in activation of the cyclic adenosine monophosphate→PKA, or cyclic guanosine monophosphate→PKG pathways (see below) may relax vascular smooth muscle at least partially via increased activity of K_V channels (Aiello et al., 1995; Keef et al., 2001).

Large-conductance Ca^{2+}-activated K^+ channels: Activation of large-conductance Ca^{2+}-activated K^+ ($\mathrm{BK}_{\mathrm{Ca}}$) channels occurs in response to micromolar increases in Ca^{2+} as well as membrane potential depolarization (Ledoux et al., 2006). Similar to blocking K_V channels, inhibition of $\mathrm{BK}_{\mathrm{Ca}}$ channels with paxilline or iberiotoxin causes profound
constriction of pressurized cerebral arteries (Knot et al., 1998), suggesting an important feedback role for these channels in the regulation of cerebral artery tone. In smooth muscle, the majority of BK$_{Ca}$ activity occurs in response to transient localized increases in Ca$^{2+}$ release events from clusters of ryanodine receptors (RyR) in the sarcoplasmic reticulum, or “Ca$^{2+}$ sparks” (Wellman et al., 2002). Each spark can elevate local Ca$^{2+}$ to 10-100 μM and activates ~20-100 plasmalemmal BK$_{Ca}$ channels (Perez et al., 2001). Thus, the frequency of transient outward currents via activation of BK$_{Ca}$ channels is directly proportional to Ca$^{2+}$ spark frequency (Benham and Bolton, 1986; Nelson et al., 1995). Studies in toad stomach smooth muscle have shown that Ca$^{2+}$ spark frequency can be modulated by the concentration of SR Ca$^{2+}$ (ZhuGe et al., 1999), which reflects changes in cytosolic Ca$^{2+}$. Thus, Ca$^{2+}$ sparks, activation of BK$_{Ca}$ channels and subsequent hyperpolarization may also represent a feedback mechanism for a rise in cytosolic Ca$^{2+}$ following depolarization and activation of VDCCs. Furthermore, mechanisms which result in increased uptake of Ca$^{2+}$ by the SR (i.e. PKA stimulated phosphorylation of the SERCA regulatory protein phospholamban) (Wellman et al., 2001) may cause relaxation of smooth muscle through increased Ca$^{2+}$ spark frequency and BK$_{Ca}$ activity.

Inwardly Rectifying K$^+$ channels: Inwardly rectifying K$^+$ channels pass K$^+$ ions inward more readily than outward. When membrane potential is negative to E_K, inward conductance of K$^+$ ions via K$_{IR}$ channels occurs. However, membrane potential of cerebral artery myocytes in vivo (-50 mV to -35 mV) is positive to E_K (approximately -85
mV), yet currents through K_{IR} channels at positive potentials is less than expected. This inward rectification is caused by voltage-dependent intracellular block of the channel by polyamines and Mg$^{2+}$ ions (Nichols and Lopatin, 1997). K_{IR} channels display voltage-dependent block by relatively low external concentrations ($K_i \approx 5 \mu\text{M}$) of Ba$^{2+}$ ions. Cerebral artery myocytes express mRNA transcripts for $K_{\text{IR}}2.1$, and K_{IR} currents are absent in cerebral artery myocytes from genetically altered mice lacking this gene (Zaritsky et al., 2000). Patch-clamp electrophysiology experiments have demonstrated K_{IR} currents in cerebral artery myocytes suggesting that these channels function to regulate arterial tone in the cerebral circulation.

Inhibition of K_{IR} channels by positively charged ions and proteins is relieved by modest elevation in extracellular K$^+$ ions (5-20 mM) (Nichols and Lopatin, 1997). Given that membrane potential of cerebral artery myocytes is positive to E_K at physiological intravascular pressures, activation of K_{IR} channels by external K^+ results in K^+ efflux and hyperpolarization toward E_K. These K^+-induced dilations are inhibited by Ba$^{2+}$ (Knot et al., 1996) and are absent in knockout mice lacking $K_{\text{IR}}2.1$ (Sobey and Faraci, 2000; Zaritsky et al., 2000). This mechanism is thought to be important for coupling cerebral blood flow to metabolic demands of the brain (Filosa et al., 2006; Paulson and Newman, 1987). For example, increases in neuronal activity can dilate local parenchymal arterioles via activation of astrocytic BK$_{Ca}$ channels, release of K^+ ions and activation of vascular smooth muscle K_{IR} channels to induce hyperpolarization and relaxation (Filosa et al., 2006). In addition, activation of K_{IR} channels may result following release of K^+ from neurons and glial cells during hypoxia, ischemia and hypoglycemia (Sieber et al., 1993;
Thus, when oxygen and glucose delivery to metabolically active neurons is compromised, K+-induced dilations via activation of K\textsubscript{IR} channels may represent an important mechanism to increase cerebral blood flow to maintain neuronal viability.

ATP-sensitive K+ channels: Adenosine 5'-triphosphate-sensitive K+ channels (K\textsubscript{ATP}) are also expressed in cerebral artery myocytes and are thought to couple metabolic signals to blood flow. These channels open in response to reduced [ATP], P\textsubscript{O\textsubscript{2}}, or pH, and increased P\textsubscript{CO\textsubscript{2}} and prostacyclin, causing hyperpolarization and vasodilation (Faraci and Heistad, 1998; Ko et al., 2008). K\textsubscript{ATP} channels are heteromultimers comprised of pore-forming subunits (typically K\textsubscript{IR} subunits) and sulfonylurea receptor subunits (Babenko et al., 1998). K\textsubscript{ATP} channels are selectively inhibited by sulfonylureas such as glibenclamide (de Weille et al., 1988) and activated by synthetic compounds such as cromakalim and pinacidil (Grover, 1997; Standen et al., 1989). Intraparenchymal injection of cromakalim produces an increase in local cerebral blood flow that is blocked by glibenclamide (Reid et al., 1995), suggesting that K\textsubscript{ATP} channels are present and functional in cerebral vessels. However, application of glibenclamide does not alter myogenic tone in basilar artery (Faraci and Heistad, 1993) or cerebral arterioles (Armstead, 1996) suggesting that tonic K\textsubscript{ATP} channel activity does not oppose pressure-dependent constriction. However, K\textsubscript{ATP} channels are reported to play an important role in vasodilation produced by a number of endogenous compounds including calcitonin gene-related peptide (CGRP) (Kitazono et al., 1993b), prostacyclin (Fredricks et al., 1994),
adenosine (Armstead, 1997), norepinephrine (Kitazono et al., 1993a), and vasoactive intestinal peptide (Faraci and Heistad, 1998; Standen et al., 1989).

Mechanosensitive ion channels:

Chloride channels: Considering intracellular [Cl\(^-\)] of 40-70 mM and extracellular [Cl\(^-\)] of 140 mM, the equilibrium potential for Cl\(^-\) ions is in the range of -30 to -20 mV. Therefore, it was postulated that activation of outward Cl\(^-\) currents may represent a mechanism for depolarization of smooth muscle in response to increased intravascular pressure. Consistent with this hypothesis, Ca\(^{2+}\)-activated Cl\(^-\) channels and volume-regulated Cl\(^-\) channels have been reported in vascular smooth muscle and increasing intravascular pressure results in Cl\(^-\) efflux (Doughty and Langton, 2001). Further, shifting E\(_{Cl}\) from -25 mV to -2 mV augments the myogenic tone response at physiological intravascular pressures (Nelson et al., 1997). Inhibition of Cl\(^-\) channels with indanyloxyacetic acid (IAA-94) and 4,4’-diisothiocyanatostilbene-2,2’-disulfonic acid (DIDS) hyperpolarizes and dilates pressurized (80 mmHg) cerebral arteries (Nelson et al., 1997). It was also shown that the potent inhibitor of Ca\(^{2+}\)-activated Cl\(^-\) channels niflumic acid had no effect on arterial tone suggesting that pressure-induced depolarization of cerebral artery myocytes may be mediated by volume-regulated Cl\(^-\) channels. However, later isolation of a current induced by cell swelling was found to shift with the equilibrium potential for Na\(^+\), rather than E\(_{Cl}\) (Welsh et al., 2000). Further, these swelling-activated currents and pressure-induced depolarizations were blocked by Gd\(^{3+}\) ions, a non-selective cation channel blocker. These findings argued against a role
for Cl⁻ conductance and instead indicated a direct role for non-selective cation channels in pressure-induced depolarization of cerebral artery myocytes.

Non-selective cation channels: The mammalian TRP superfamily of cation channels are grouped into the following major subfamilies: TRPC (canonical), TRPM (melastatin), TRPV (vanilloid), TRPP (polycystin), TRPML (mucolipin) and TRPA (ankyrin) (Clapham, 2003). With a few exceptions, TRP channels permeate both monovalent and divalent cations. Vascular smooth muscle has been reported to express TRPC1, TRPC3, TRPC4, TRPC6, TRPM4, TRPV2 and TRPV4 (Facemire et al., 2004; Inoue et al., 2006). The finding that Gd³⁺ ions blocked swelling-induced currents in vascular smooth muscle led to the hypothesis that mechanosensitive TRP channels may play a major role in depolarization of cerebral artery myocytes to increasing intravascular pressure. Welsh and colleagues were the first to demonstrate that downregulation of TRPC6 channels, which are mechanosensitive and highly expressed in vascular smooth muscle, greatly attenuates cation currents in response to swelling as well as pressure-induced depolarization and constriction in rat cerebral arteries (Welsh et al., 2002).

Recent studies also indicate an important role for TRPM4 channels in pressure-induced depolarization of cerebral artery myocytes. TRPM4 channels permeate monovalent cations and are activated by intracellular Ca²⁺ and membrane stretch (Morita et al., 2007; Owsianik et al., 2006). Cerebral artery myocyte depolarizations in response to increased intravascular pressure are attenuated when TRPM4 channels are suppressed in vitro (Earley et al., 2004). Furthermore, infusion of antisense oligonucleotides into the
cerebral spinal fluid to suppress TRPM4 channels in vivo caused significantly increased cerebral blood flow over a range of mean arterial pressures (Reading and Brayden, 2007) suggesting disruption of autoregulatory function. Considering that suppression of either TRPC6 or TRPM4 channels results in a similar reduction in pressure-induced depolarization suggests that these channels may function in series rather than in parallel. Hence, a current model of pressure-induced depolarization of cerebral artery myocytes proposes that mechanical forces in response to increased pressure leads to Ca^{2+} entry via TRPC6 channels (Brayden et al., 2008). The resulting increase in local Ca^{2+} thereby activates TRPM4 channels leading to Na^{+} influx, depolarization, activation of VDCCs and smooth muscle contraction.

Second messenger pathways involved in smooth muscle contraction

Cerebrovascular tone can also be modulated by the activity of several second messengers. One particularly important signal transduction system in the control of vascular smooth muscle contraction involves the generation of inositol 1,4,5 trisphosphate (IP₃) and diacylglycerol (DAG) following G_q-dependent activation of phospholipase C. Activators of this pathway include intravascular pressure, vasoconstrictors circulating in the blood (i.e. angiotensin II) as well as neurotransmitters (i.e. serotonin) (Gokina et al., 1999; Mattiazi, 1997; Parsons et al., 1996). Pharmacological inhibitors of PLC and PKC reduce pressure-induced constrictions in cerebral artery segments (Osol et al., 1991). Following activation of PLC, an increase in IP₃ signals a release of Ca^{2+} from intracellular stores via IP₃ receptors on the SR (Johns et al., 1987). On the other hand,
diacylglycerol is a potent endogenous activator of protein kinase C (PKC). PKC-mediated contraction of vascular smooth muscle can occur via direct phosphorylation of myosin light chain kinase (Nishikawa et al., 1985), phosphorylation of actin binding proteins (i.e. caldesmon, calponin) (Horowitz et al., 1996; Mino et al., 1995) and decreased myosin light chain phosphatase activity (Masuo et al., 1994). All of these effects increase the sensitivity of the smooth muscle contractile apparatus to Ca$^{2+}$, a process referred to as “Ca$^{2+}$ sensitization”. Thus, an increase in smooth muscle PKC activity results in a greater level of arterial constriction for a given level of cytosolic Ca$^{2+}$. However, it has been shown that cerebral artery constriction in response to the synthetic PKC activator indolactam V is blocked by nisoldipine suggesting that constriction following PKC stimulation requires VDCC-mediated Ca$^{2+}$ influx (Gokina et al., 1999). In addition, PKC activation can also have widespread effects on the activity of smooth muscle ion channels to promote membrane potential depolarization and increased VDCC activity. A number of endogenous vasoconstrictors have been suggested to stimulate smooth muscle VDCC activity via a PKC-dependent mechanism (Gollasch and Nelson, 1997; Keef et al., 2001). For example, PKC activation can directly decrease the activity of both K_{ATP} and K_V channels (Aiello et al., 1996; Quayle et al., 1997) and indirectly decrease BK channel activity via a reduction in Ca$^{2+}$ spark frequency (Bonev et al., 1997). In addition, constriction of cerebral arteries in response to PKC-stimulation is attenuated following suppression of TRPM4 channels (Earley et al., 2007), suggesting that mechanosensitive cation channels may also be a target of PKC. Furthermore, agonist-induced (i.e. phenylephrine, UTP) vasoconstriction may involve activation of
TRPC channels by diacylglycerol in a PKC-independent manner (Inoue et al., 2001; Reading et al., 2005). These effects of PLC/DAG/PKC activation would presumably lead to enhanced depolarization and increased activity of VDCCs. Thus, agonists of G$_q$-coupled receptors lead to enhanced smooth muscle contraction via elevation of cytosolic Ca$^{2+}$ as well as increased Ca$^{2+}$ sensitivity of the contractile machinery.

The small GTPase Rho can also regulate the function of vascular smooth muscle through its downstream effector Rho-kinase. Rho-kinase activation leads to inhibition of myosin light chain phosphatase via phosphorylation at the myosin binding subunit (Kimura et al., 1996). A subsequent increase in myosin light chain phosphorylation levels then enhances smooth muscle contraction and vasoconstriction. Thus, activation of the Rho-kinase pathway reduces the calcium requirement for prolonged contraction. Agonists of G protein coupled receptors such as serotonin, endothelin-1 and angiotensin II may promote Ca$^{2+}$-independent contraction via activation of Rho-kinase (Kawano et al., 2002). Rho and Rho-kinase have now been implicated in several cardiovascular disorders and are attracting interest as potential targets for future therapeutics (Hu and Lee, 2003).

Cyclic nucleotides also play an important role in the regulation of cerebral blood flow. A rise in the cytoplasmic concentration of cyclic guanosine 3’,5’ monophosphate (cGMP) activates cGMP-dependent protein kinase (PKG) and triggers smooth muscle relaxation and vasodilation by several mechanisms. PKG-mediated phosphorylation at specific sites within the VDCC complex may inhibit the channel and reduce Ca$^{2+}$ influx (Jiang et al., 2000). Other potential mechanisms of PKG-induced relaxation of arterial
smooth muscle involve direct activation of BK_{Ca} channels by PKG (Robertson et al., 1993) as well as enhanced uptake of Ca^{2+} into the SR, resulting in increased Ca^{2+} spark frequency and increased BK_{Ca} channel activity (Porter et al., 1998). Evidence suggests that this vasodilatory pathway may also contribute to relaxation in response to G_s stimulation, increased production of cyclic adenosine 3′,5′ monophosphate (cAMP) and activation of cAMP-dependent protein kinase (PKA). Consistent with this, inhibitors of Ca^{2+} sparks such as ryanodine, abolish both PKA and PKG-mediated increases in transient BK_{Ca} channel activity (Porter et al., 1998). Studies have demonstrated that PKA phosphorylates the SERCA regulatory protein phospholamban, leading to increased SR Ca^{2+} uptake and Ca^{2+} spark frequency in myocytes of pressurized cerebral arteries (Wellman et al., 2001). In addition to the effect on BK channel activity, the cAMP-PKA pathway can also increase the activity of K_{ATP} and K_{V} channels (Aiello et al., 1995; Quayle et al., 1994), leading to membrane potential hyperpolarization and decreased VDCC P_{open}.

Endothelial influences

For over one hundred years after their discovery in brain capillaries in 1845, endothelial cells were regarded as the inactive lining of blood vessels and capillary walls. However, the modulation of vascular tone by the release of vasoactive factors from endothelial cells has been under intense investigation. Following is a brief overview of major mechanisms in endothelial modulation of vascular smooth muscle contraction, focusing on major
vasoactive substances released by endothelial cells: Nitric oxide (NO), endothelium-dependent hyperpolarizing factor (EDHF), eicosanoids, and endothelin-1 (ET-1).

Nitric oxide: In 1978, Furchgott observed that acetylcholine, acting on muscarinic receptors, stimulates the release of diffusible substances from the endothelium that cause relaxation of vascular smooth muscle, or “endothelial-derived relaxing factor” (Furchgott and Zawadzki, 1980). Later, Furchgott and Ignarro demonstrated that endothelium-derived relaxing factor was in fact nitric oxide (Furchgott, 1999). In independent studies at the same time, Murad and colleagues found that the potent vasodilator nitroglycerin exerts its effects by releasing nitric oxide, which relaxes vascular smooth muscle and increases blood flow.

Nitric oxide is produced in the conversion of L-arginine to L-citrulline by nitric oxide synthase (NOS) (Fleming and Busse, 1999). Three NOS isoforms have been identified: neuronal (nNOS), endothelial (eNOS) and inducible (iNOS). Under normal conditions, vascular endothelial cells express only eNOS. Increased endothelial Ca$^{2+}$ causes eNOS activation and NO production by Ca$^{2+}$/calmodulin-dependent displacement of the eNOS protein from the inhibitory scaffolding protein caveolin-1 (Michel et al., 1997). eNOS can also be directly activated by the regulatory heat shock protein (HSP90) (Khurana et al., 2000). Studies suggest this mechanism may be important for basal NO production as well as acetylcholine-mediated dilation (Xu et al., 2002a).
Diffusion of NO to smooth muscle results in activation of soluble guanylate cyclase and increased production of cGMP (Murad, 2004). PKG activation causes increased activity of K\(^+\) channels, smooth muscle hyperpolarization, and decreased VDCC activity (Faraci and Sobey, 1999). For example, PKG can increase BK\(_{Ca}\) channel activity directly (Robertson et al., 1993), or indirectly by suppressing synthesis of the BK\(_{Ca}\) inhibitor 20-HETE and increasing Ca\(^{2+}\) spark frequency (Alonso-Galicia et al., 1997). A recent report also suggests that NO-mediated relaxation may occur via reducing the sensitivity of contractile apparatus to Ca\(^{2+}\) (Lehen'kyi et al., 2005).

Release of NO by the endothelium represents an important vasodilator pathway that contributes to modulation of vascular tone both in vitro and in vivo. Inhibition of eNOS with L-NNA results in reduced cerebral blood flow in normal mice, but not in mice lacking the gene for eNOS (Ayata et al., 1996; Ma et al., 1996). These findings suggest that tonic release of NO from the endothelium is a major contributor to cerebrovascular tone and cerebral blood flow.

EDHF: Following the discovery of nitric oxide as an endothelium-derived relaxing factor, another endothelium-dependent vasodilatory mechanism was found which was independent of NOS or cyclooxygenase (COX) (Hoeffner et al., 1989; Vanhoutte, 2004). For example, substances such as UTP and ATP can maximally dilate cerebral arteries following inhibition of NOS and COX (You et al., 1997; You et al., 1999). This vasodilatory process, which may or may not be a diffusible factor, is referred to as endothelium-derived hyperpolarizing factor (EDHF) and is characterized by
endothelium-dependence, hyperpolarization of vascular smooth muscle and activation of endothelial Ca^{2+}-activated K^+ channels (Golding et al., 2002). EDHF-mediated dilation requires an increase in endothelial Ca^{2+} and endothelial hyperpolarization. This hyperpolarization is blocked by application of TRAM-34, an inhibitor of intermediate conductance Ca^{2+}-activated K^+ channels (Marrelli, 2001; Marrelli et al., 2003). In addition, studies also suggest that activity of apamin-sensitive endothelial small conductance Ca^{2+}-activated K^+ (SK_Ca) channels may also contribute to endothelial hyperpolarization involved in EDHF (Burnham et al., 2002; Eichler et al., 2003). Although it is not clear how hyperpolarization of endothelial cells leads to smooth muscle hyperpolarization, this may depend on myoendothelial gap junctions (Griffith et al., 2004; Xu et al., 2002b) or $\text{SK}_\text{Ca}/\text{IKCa}$-mediated K^+ release leading to activation of smooth muscle K_{IR} channels (McNeish et al., 2005).

Whereas NO is important in large diameter vessels, EDHF may play a more prominent role as arterial diameter decreases (You et al., 1999). Dilations in response to ATP in middle cerebral arteries are blocked by the NOS inhibitor nitro-L-arginine methyl ester. However, these dilations in penetrating arterioles are resistant to NOS and COX inhibition, but are completely abolished by the endothelial IKCa inhibitor charybdoxotoxin (Xu et al., 2001). Heterogeneity in EDHF-mediated control of vascular tone may be important for controlling blood flow to metabolically diverse brain regions.

Prostacyclin and other eicosanoids: The term eicosanoid collectively refers to metabolites of arachidonic acid, which is liberated from the phospholipid membrane by
the enzyme phospholipase A2. Arachidonic acid is metabolized by cyclooxygenase (COX), lipoxygenase, epoxygenase, or Ω hydroxylase (Bogatcheva et al., 2005). The COX pathway was the first arachidonic acid metabolism pathway to be discovered. In the cerebrovascular endothelium, COX produces vasodilator products including prostaglandin I2 (prostacyclin), prostaglandin E2 (Moore et al., 1988), and prostaglandin D2 (Smith et al., 1996), and vasoconstrictor products including prostaglandin F2 and thromboxane A2. The effects of the endothelial vasodilatory compound prostacyclin are well established. Upon prostacyclin binding to G-protein coupled receptors, GS stimulates activation of adenylyl cyclase and increased cAMP (Bogatcheva et al., 2005). A subsequent increase in PKA activity then enhances K+ channel activity, resulting in smooth muscle hyperpolarization (Parkington et al., 2004). Vasoconstrictor eicosanoids are thought to be elevated in brain injury (Dewitt et al., 1988; Shohami et al., 1987; Yergey and Heyes, 1990) and may contribute to constriction following ischemia and reperfusion (Cole et al., 1993).

Endothelial epoxygenase catalyzes the metabolism of arachidonic acid to epoxyeicosatrienoic acids (EETs). EETs compounds relax vascular smooth muscle and have been proposed to be one form of EDHF (Fleming and Busse, 2006). One recent study has demonstrated that endothelial-derived 11,12 EET increases the frequency of Ca2+ sparks and spontaneous BKCa currents in cerebral artery myocytes (Earley et al., 2005). This effect was prevented by suppression of TRPV4 channels using antisense oligonucleotides. Thus, 11,12 EETs activate TRPV4 channels and the resulting Ca2+
influx induces Ca\(^{2+}\) release events from the SR. This increase in Ca\(^{2+}\) spark frequency enhances activity in nearby BK\(_{\text{Ca}}\) channels and relaxes vascular smooth muscle.

Endothelin-1: The potent endothelium-derived vasoconstrictor endothelin-1 (ET-1) was first characterized in 1988 by Yanagisawa and colleagues (Yanagisawa et al., 1988). Under normal conditions, endothelin release does not significantly contribute to cerebral blood flow (Koedel et al., 1998). However, ET-1 is increased and may contribute to vascular dysfunction in several pathophysiological states including ischemia and reperfusion (Matsuo et al., 2001; Petrov and Rafols, 2001), hyperoxia (Armstead, 1999), and diabetes (Dumont et al., 2003).

ET\(_{\text{A}}\) and ET\(_{\text{B}}\) receptors are expressed in vascular smooth muscle and endothelial cells, respectively (Arai et al., 1990; Sakurai et al., 1990). Binding of ET-1 to smooth muscle ET\(_{\text{A}}\) receptors causes vasoconstriction by several mechanisms (Faraci, 1989; Patel et al., 1996; Pierre and Davenport, 1999; Sagher et al., 1994; Zhou et al., 2004). ET\(_{\text{A}}\) activation initially elevates [Ca\(^{2+}\)]\(_i\) via a mechanisms involving IP\(_3\) -mediated Ca\(^{2+}\) release from intracellular stores (Zubkov et al., 2004). On the other hand, a sustained Ca\(^{2+}\) increase that follows the initial phase is dependent on extracellular Ca\(^{2+}\) influx (Miyauchi and Masaki, 1999; Zubkov et al., 2004). In addition, it has been shown that ET-1 can activate the Rho/Rho-kinase pathway in rabbit basilar arteries, which may lead to decreased activity of myosin light chain phosphatase (Zubkov et al., 2004). In contrast to activation of ET\(_{\text{A}}\), depolarization and increased VDCC-mediated Ca\(^{2+}\) may also result from ET-1 release via activation of Cl\(^-\) channels (Dai and Zhang, 2004).
receptors on smooth muscle, exposure of cerebral arteries to low concentrations of ET-1 causes vasodilation due to endothelial ET$_B$ receptor activation and NO release (Szok et al., 2001).
Part 2: Cerebrovascular pathophysiology associated with subarachnoid hemorrhage.

Introduction

Subarachnoid hemorrhage (SAH) is defined as the extravasation of blood in the subarachnoid space, or the area between the arachnoid membrane and pia mater (see figure 2). Spontaneous SAH most commonly results from the rupture of an aneurysm, or congenital weakness in arterial tunica media, in a cerebral artery on the brain surface. Although the prevalence of unruptured intracranial aneurysms is controversial, reports estimate rates as high as 6 % of the general population are harboring these vascular abnormalities (McCormick and Nofzinger, 1965; Nakagawa and Hashi, 1994). Intracranial aneurysm rupture occurs in approximately 30,000 individuals in the United States each year (Kassell et al., 1985). Major risk factors for SAH include smoking, hypertension, and alcohol consumption (Teunissen et al., 1996).

The consequences of aneurysm rupture and SAH are devastating, with 30 day mortality rates as high as 50% (Kassell et al., 1985; Teunissen et al., 1996; Weir, 1995). Immediately following rupture, the rapid discharge of blood into the subarachnoid space is followed by an acute rise in intracranial pressure. Increased intracranial pressure above the level of intravascular pressure in the cerebral circulation may result in cessation of blood flow, global cerebral ischemia and death. Of the patients surviving the initial hemorrhage, a significant portion develop delayed cognitive deficits that may lead to further morbidity and mortality (Kassell et al., 1985). For decades, it has been widely
accepted that a blood-induced delayed and sustained constriction of conduit arteries on the brain surface (“cerebral vasospasm”) is the major contributor to death and disability in patients surviving the initial hemorrhage. However, recent evidence suggests that phenomena other than large artery vasospasm contribute to the development of neurological deficits following SAH, including global transient ischemia, blood-brain barrier disruption, activation of inflammatory pathways and vascular remodeling, and dysfunction of the cerebral microcirculation (Ohkuma et al., 2000; Pluta et al., 2009). In addition, pathological events independent of the cerebral vasculature may also contribute to neurological impairment in SAH patients including early brain injury and cortical spreading depression (Pluta et al., 2009). This section will review major concepts regarding mechanisms of enhanced cerebral artery constriction following SAH, focusing on the role of elevated \([\text{Ca}^{2+}]_i\) and enhanced smooth muscle contractility. In addition, emerging evidence supporting a role for small diameter cerebral arteries and arterioles in cerebral ischemia following SAH will also be discussed.

Experimental models of SAH

Experimental models of SAH aim to reproduce the human pathological condition. However, this objective is compromised by the goal to achieve reproducibility and avoid high mortality rates in animals. In addition, certain aspects of human SAH (i.e. spontaneous aneurysm rupture, etc.) are lacking in animal models, which use controlled surgical procedures. Thus, although vasospasm has been reproducibly observed in a variety of animal models, the issue of the most appropriate model for studying the impact
of SAH on the cerebral vasculature has not been completely resolved. Primate and canine SAH models are generally thought to most closely resemble pathology observed in human SAH (Megyesi et al., 2000). However, rodent SAH models are far less expensive and also display many of the pathophysiological properties observed in humans (Lee et al., 2008).

In 1965, Echlin demonstrated that application of clotted autologous blood into the subarachnoid space produces marked spasm of primate basilar and vertebral arteries (Echlin, 1965). Weir et al. reported chronic vasospasm and neurological deficits in these animals over a similar time course to that seen in humans (Weir et al., 1970). In contrast, Simeone and colleagues used small needles to puncture the intracranial internal carotid artery in primates to mimic the rupture of an aneurysm and SAH (Simeone et al., 1968). This method also caused prolonged angiographic vasospasm lasting up to four days.

Today, experimental animal models routinely employed to mimic the rupture of an intracranial aneurysm and SAH are: 1) fresh non-clotted autologous blood injected into the subarachnoid space (injection model) or 2) the internal carotid artery or basilar artery is punctured using an endovascular filament (perforation model) (Kozniewska et al., 2006). The perforation model has been limited by much higher mortality rates than the injection model and results vary depending on the size of the blood clot and location of the perforated vessel (Kozniewska et al., 2006; Lee et al., 2009). On the other hand, procedures using a single intracisternal blood injection are associated with low mortality, yet this model fails to reproducibly exhibit significant changes in the vasculature (Clower et al., 1986; Megyesi et al., 2000). To overcome this, the injection model was first
modified in dogs by Varsos et al. by performing a two successive injections of blood 48 hours apart ("double hemorrhage" model) to increase the severity and reproducibility of vasospasm (Varsos et al., 1983). In a variety of species, the double hemorrhage model has been found to exhibit many of the features of SAH found in humans including vasospasm, behavioral deficits and reduced cortical blood flow (Lee et al., 2009; Vatter et al., 2006). Thus, the double injection SAH model has become widely used to study mechanisms of delayed cerebral vasospasm.

Mechanisms of enhanced smooth muscle contraction following SAH

Blood components: Whole blood consists of erythrocytes, leukocytes, platelets, soluble proteins, glucose, hormones and gases. In the 1970’s, evidence was obtained supporting the hypothesis that the occurrence of vasospasm was correlated with erythrocyte lysis and levels of the blood component oxyhemoglobin in the cerebral spinal fluid (CSF). Purified oxyhemoglobin alone is capable of producing sustained cerebral artery constriction in vitro (Tanishima, 1980; Wellum et al., 1980). Oxyhemoglobin concentrations measured in the CSF of SAH patients are sufficient to produce significant constriction of arteries in vitro and are correlated with development of vasospasm (Kajikawa et al., 1979). Following erythrocyte lysis, oxyhemoglobin is oxidized to methemoglobin and superoxide radical. Superoxide radical combines with water to form hydrogen peroxide, which can react with ferrous iron of methemoglobin to form hydroxyl radical. Subsequent hydroxyl radical-induced lipid peroxidation can lead to functional and morphological changes and has been proposed as an important mechanism in the
pathogenesis of vasospasm (Sakaki et al., 1986). In a primate SAH model, the inhibitor of iron-dependent lipid peroxidation U74006F was shown to greatly attenuate vasospasm (Steinke et al., 1989). However, clinical trials using this agent as well as the antioxidants superoxide dismutase and catalase have failed to significantly benefit SAH patients (Wellum et al., 1982; Zhang et al., 2010). As will be discussed, oxyhemoglobin may also lead to enhanced cerebral artery constriction by interfering with the NO-cGMP signaling pathway as well as inhibition of smooth muscle K+ channel activity.

In addition to erythrocyte lysis products, activated leukocytes and platelets have also been implicated in inflammatory processes contributing to vascular dysfunction following SAH. Activation of leukocytes and platelets following SAH may occur due to the upregulated expression of specific adhesion molecules by endothelial cells or disruption of the endothelial monolayer, exposing leukocytes and platelets to collagen, elastin and basement membrane (Davies and Hagen, 1993; Vane et al., 1990). Studies have shown the presence of platelet microthrombi surrounding vasospastic arteries as well as polymorphonuclear leukocytes in the intima of cerebral arteries following SAH (Minami et al., 1991; Suzuki et al., 1990). Activated platelets and leukocytes are capable of releasing numerous vasoactive substances including thromboxane A2, endothelin-1, 5-HT and ATP (Siminiak et al., 1995). Thus, activation of these blood components following SAH is likely to contribute to enhanced cerebral artery constriction.
Role of $[\text{Ca}^{2+}]_i$

Although vascular smooth muscle contractility is largely determined by the concentration of intracellular Ca^{2+}, the role of elevated $[\text{Ca}^{2+}]_i$ in cerebral artery myocytes leading to enhanced constriction following SAH is controversial. In 1976, Peterson and Leblanc first proposed that vasospasm following subarachnoid hemorrhage was dependent on increased vascular smooth muscle $[\text{Ca}^{2+}]_i$ caused by spasmogens in blood (Peterson and Leblanc, 1976). The authors additionally proposed that increasing the intracellular concentration of cAMP may be effective for reversing vasospasm due to increased uptake of Ca^{2+} into the SR. Later, the development of Ca^{2+}-sensitive fluorescent dyes made it possible to directly measure intracellular Ca^{2+} in vascular smooth muscle in spastic arteries isolated from experimental SAH animals. Bulter et al. used the photoprotein aequorin from the luminescent jellyfish *Aequorea victoria* to measure intracellular Ca^{2+} in vasospastic anterior spinal arteries isolated from a canine double-hemorrhage SAH model (Bulter et al., 1996). It was found that $[\text{Ca}^{2+}]_i$ in vasospastic cerebral arteries was significantly elevated (by ~140 nM) compared to normal arteries. This elevation in $[\text{Ca}^{2+}]_i$ was correlated with a marked increase in myosin light chain phosphorylation. Another study using the ratiometric Ca^{2+}-sensitive fluorescent dye fura-2 also suggested that impaired regulation of smooth muscle $[\text{Ca}^{2+}]_i$ may contribute to vasospasm following SAH (Kim et al., 1996b). Conversely, reports have also suggested contribution of Ca^{2+}-independent contractile pathways (i.e. Rho-kinase mediated inhibition of myosin light chain phosphatase) to the development of vasospasm following SAH (Laher and Zhang,
2001; Nishizawa and Laher, 2005). Thus, the role of increased [Ca2+]\textsubscript{i} in the pathogenesis of cerebral vasospasm remains unclear.

Role of voltage-dependent Ca2+ channels

Inhibitors of VDCCs are used clinically and provide a modest beneficial effect in SAH patients (Treggiari-Venzi et al., 2001). Following SAH, elevated vascular smooth muscle [Ca2+]\textsubscript{i} may result from increased density of VDCCs, a direct alteration of VDCC gating, or indirect increase in channel activity via membrane potential depolarization. Aihara et al. found no change in mRNA expression of Ca\textsubscript{V}1.2 in basilar arteries from a canine SAH model (Aihara et al., 2004). However, whether expression of Ca\textsubscript{V}1.2 is altered in resistance sized cerebral arteries and arterioles following SAH is not known. In addition, no studies to date have measured expression of auxiliary VDCC β subunits, which are critical for membrane insertion of α\textsubscript{1} subunits (Chien et al., 1995), in cerebral arteries from SAH animals. A study by Ishiguro et al. used patch clamp electrophysiology to measure whole cell VDCC currents in cerebral artery myocytes from SAH rabbits (Ishiguro et al., 2005). These experiments found that VDCC currents in cerebral artery myocytes from SAH animals were increased by ~40% and were partially resistant to L-type VDCC inhibitors. The selective R-type VDCC blocker SNX-482 abolished nifedipine-insensitive VDCC currents in myocytes from SAH animals. Consistent with this, small diameter cerebral arteries from SAH animals were found to express mRNA and protein for both Ca\textsubscript{V}1.2 (L-type) and Ca\textsubscript{V}2.3 (R-type), whereas arteries from control animals expressed only Ca\textsubscript{V}1.2. Upregulated expression and function of R-type VDCCs
in cerebral arteries was also demonstrated following incubation for 5 days with the blood component oxyhemoglobin (Link et al., 2008). Thus, although oxyhemoglobin does not appear to directly increase VDCC activity (Kim et al., 1996a), this spasmogen may lead to enhanced membrane Ca\(^{2+}\) currents via upregulation of R-type channels following SAH. Further, vasoactive blood components released into the CSF following SAH, such as norephinephrine, serotonin, and 20-hydroxyecostetraenoic acid (20-HETE), are reported to increase the VDCC activity in vascular smooth muscle and have been implicated in the development of cerebral vasospasm (Gebremedhin et al., 1998; Nelson et al., 1988; Svendgaard et al., 1977; Takeuchi et al., 2006; Worley et al., 1991). Thus, substantial evidence supports the hypothesis that elevated smooth muscle [Ca\(^{2+}\)] following SAH may result from increased VDCC activity.

Role of K\(^+\) channels

Smooth muscle membrane potential depolarization may lead to increased Ca\(^{2+}\) influx in cerebral artery myocytes via increased VDCC \(P_{\text{open}}\). Harder and colleagues were the first to propose that membrane potential depolarization of vascular smooth muscle following SAH may result from decreased K\(^+\) conductance (Harder et al., 1987). In this study, it was shown that vasospasm could be reversed by hyperpolarization induced by application of the K\(^+\) channel opener nicorandil. Since then, others have also reported that vasospastic cerebral artery myocytes from SAH model animals are more depolarized compared with controls (Harder et al., 1987; Waters and Harder, 1985; Zuccarello et al., 1996a) and that dilations in response to synthetic K\(^+\) channel activators are enhanced in
arteries from SAH animals (Sobey et al., 1997; Zuccarello et al., 1996b). It is becoming increasingly clear that components of blood can constrict cerebral arteries via suppression of smooth muscle K+ channel activity.

Kv channels: Quan and Sobey first provided evidence that voltage-dependent K+ channels were suppressed following SAH with the finding that constrictions to the non-selective Kv channel blocker 4-aminopyridine were reduced in basilar arteries from SAH rats compared with controls (Quan and Sobey, 2000). Molecular assessment of Kv channel expression has revealed that mRNA for Kv2.1 and Kv2.2 are downregulated in canine basilar arteries following SAH (Aihara et al., 2004) and is correlated with ~50% decrease in Kv2 currents (Jahromi et al., 2008a). Additionally, studies in our laboratory have also demonstrated that Kv1.5 channels are suppressed in cerebral artery myocytes following SAH by a mechanism involving oxyhemoglobin-induced activation of the tyrosine kinase EGF receptor and channel endocytosis (Ishiguro et al., 2006; Koide et al., 2007). Thus, suppression of Kv channel activity is likely to contribute to membrane potential depolarization and enhanced arterial constriction following SAH.

BK_{Ca} channels: BK channels act as an important feedback mechanism to limit membrane potential depolarization and elevated [Ca²⁺]i in cerebral artery myocytes. Studies have shown that mRNA and protein for BK α and β1 subunits are unchanged following SAH (Aihara et al., 2004). A later study found no significant differences between normal and vasospastic myocytes in BK current density, kinetics, Ca²⁺- or voltage-sensitivity, or
single channel conductance (Jahromi et al., 2008b). However, BK channel activity may be suppressed in vivo following SAH due to increased levels of the endogenous BK channel inhibitor 20-HETE in the CSF (Poloyac et al., 2005; Roman et al., 2006). Further, studies in our laboratory have discovered decreased spontaneous transient BK$_{Ca}$ currents and Ca$^{2+}$ spark frequency in cerebral artery myocytes from SAH model rabbits (Koide, 2009). This decrease in Ca$^{2+}$ spark frequency may be caused by reduced expression of ryanodine receptor type 2 (RyR2) and increased expression of the RyR2 stabilizing protein FKBP12.6 in cerebral arteries from SAH animals (see Appendix C).

In addition, incubation of cerebral arteries in purified oxyhemoglobin also reduces the frequency of Ca$^{2+}$ sparks, leading to decreased outward BK$_{Ca}$ currents, depolarization and enhanced constriction (Jewell et al., 2004). Therefore, although BK$_{Ca}$ channel density and functional properties may be unchanged following SAH, factors regulating the activation of these channels may be altered causing decreased activity of this vasodilator pathway.

K_{IR} channels: Few studies have directly examined the expression and function of smooth muscle K_{IR} channels in the cerebral vasculature following SAH. However, Aihara et al. found a ~350% increase in K_{IR}2.1 protein in vasospastic canine basilar arteries compared with normal arteries (Aihara et al., 2004). Consistent with this, a subsequent study by Weyer et al. found that depolarization and constriction in response to Ba$^{2+}$ in the presence of 4-aminopyridine (K_{V} blocker) and paxilline (BK$_{Ca}$ blocker) were greater in myocytes from vasospastic arteries from SAH animals compared with controls (Weyer et al., 2006).
Further, patch-clamp electrophysiology demonstrated significantly increased K_{IR} currents in canine basilar artery myocytes following SAH (Weyer et al., 2006). The authors of this report proposed that upregulation of K_{IR} channels following SAH may represent a potential compensatory mechanism to counteract sustained arterial constriction. However, unpublished observations from our laboratory found no significant effect of SAH on the magnitude of K_{IR} currents in myocytes from small diameter cerebral arteries arteries in rats and rabbits (Koide and Wellman, unpublished observations). Thus, the impact of SAH on the function and expression of K_{IR} channels in the cerebral vasculature may vary with vessel caliber or species.

K_{ATP} channels: Studies have shown that dilations induced by activators of K_{ATP} channels are enhanced following SAH (Sugai et al., 1999; Zuccarello et al., 1996b), suggesting that these channels remain functional in the cerebral vasculature. However, other reports have demonstrated a decrease in the levels of the endogenous activator of K_{ATP} channels calcitonin gene-related peptide (CGRP) following SAH (Edvinsson et al., 1991; Edvinsson et al., 1994) suggesting that decreased K_{ATP} activity may contribute to cerebral vasospasm in vivo. Implantation of CGRP tablets in the subarachnoid space of SAH model animals was shown to reverse vasospasm (Inoue et al., 1996). However, the use of CGRP in SAH patients did not improve patient outcome in a multi-center single-blind trial (1992). Hypotension was reported as a common limiting side effect in this study, most likely due to activation of K_{ATP} channels in the systemic circulation.
Role of Protein Kinase C

Activation of PKC leads to increased smooth muscle contractility by several Ca$^{2+}$-dependent and Ca$^{2+}$-independent mechanisms (see “second messenger pathways involved in smooth muscle contraction” above). Activation of the PLC/PKC pathway may also contribute to the pathophysiologic regulation of vascular tone following SAH (Matsui et al., 1991; Nishizawa et al., 1996; Nishizawa et al., 1995; Shiota et al., 1996). Levels of diacylglycerol, an endogenous activator of PKC, are elevated in basilar arteries following SAH on days 2, 4, and 7 but is reduced to normal levels on day 14 (Matsui et al., 1991). Several studies suggest significantly increased membrane bound activated PKCα and decreased cytosolic PKCα which is correlated with angiographic vasospasm on days 4 and 7 following SAH (Matsui et al., 1991; Matsui et al., 1993; Nishizawa et al., 1992; Takuwa et al., 1993).

The use of PKC inhibitors to relieve vasospasm has yielded inconsistent results. The PKC inhibitors staurosporine and H-7 reversed vasospasm on day 7 in a canine double hemorrhage SAH model (Matsui et al., 1991). However, application of the PKC inhibitor staurosporine failed to reverse vasospasm in rabbit basilar arteries whereas the K$_{ATP}$ channel opener cromakalim completely relaxed these vessels (Zuccarello et al., 1996b). Thus, it is possible that the contribution of PKC activation leading to enhanced vasoconstriction following SAH varies between species and experimental SAH models.
Role of Rho/Rho kinase

Activation of the small GTPase RhoA and subsequent activation of Rho kinase leads to a decrease in myosin light chain phosphatase activity and sensitization of smooth muscle contractile filaments. Increased mRNA for RhoA and Rho kinase were demonstrated in arteries exhibiting vasospasm from a rat double hemorrhage SAH model (Miyagi et al., 2000). Increased Rho-kinase and myosin light chain phosphorylation were also demonstrated in canine basilar arteries following experimental SAH (Sato et al., 2000). Topical application of the Rho-kinase inhibitor Y-27632 caused a dose-dependent decrease in myosin light chain phosphorylation and dilation in spastic canine basilar arteries on day 7 following hemorrhage (Sato et al., 2000). The partially selective inhibitor of Rho-kinase fasudil is approved for use in SAH patients in Japan and provides slight improvement in clinical outcome (Nakashima et al., 1998; Tachibana et al., 1999).

Effect of SAH on the endothelium

NO: Tonic NO release is an important regulator of cerebrovascular tone. The bioavailability of this potent vasodilator may be reduced following SAH due to the high affinity binding of NO by hemoglobin following erythrocyte lysis (Edwards et al., 1992). Many reports suggest that SAH can also disrupt the NO→cGMP feedback process to cause enhanced cerebral artery constriction. In support of this hypothesis, mRNA encoding eNOS was significantly decreased in vasospastic cerebral arteries from a primate SAH model (Hino et al., 1996). However, the contribution of decreased NO release to enhanced cerebral artery constriction following SAH is controversial, as other
studies have demonstrated normal eNOS expression and activity in basilar arteries from SAH dogs (Kasuya et al., 1995; Kim et al., 1989; Naveri et al., 1994). Some, but not all studies have also indicated diminished vasodilator response to exogenous NO after SAH (Afshar et al., 1995; Nakao et al., 1996; Pluta et al., 2000). This may result from decreased expression or functionality of smooth muscle soluble guanylate cyclase or protein kinase G, or via increased phosphodiesterase activity in vascular smooth muscle, leading to reduced steady-state cGMP levels. In addition, normal basal NO release prior to SAH may also function to inhibit PKC activation (Nishizawa et al., 1996). Therefore, diminished release of NO or decreased cGMP levels may also lead to enhanced PKC-dependent vascular smooth muscle contraction following SAH.

Endothelin-1: In addition to decreased NO release following SAH, other observations suggest that increased endothelial release of the potent vasoconstrictor ET-1 may be a major contributor to vasospasm. Several studies have demonstrated increased ET-1 levels in basilar arteries and CSF following SAH (Hirose et al., 1995; Kobayashi et al., 1991; Kraus et al., 1991). In a study by Itoh et al., mRNA encoding ET\textsubscript{A} receptors was not detected in basilar arteries from control animals but was markedly increased in vessels 3 days following SAH in dogs (Itoh et al., 1994). Activity of endothelin converting enzyme (ECE), which converts preproendothelin-1 to active ET-1, is also increased 3-fold in basilar arteries from SAH model animals (Roux et al., 1995). Further supporting a role for ET-1 in vasospasm, ET\textsubscript{A} receptor antagonists, ECE inhibitors, and antisense oligonucleotides against preproendothelin-1 mRNA substantially attenuate
vasospasm and constriction in response to hemolysate application (Itoh et al., 1994; Matsumura et al., 1991; Onoda et al., 1996). In addition to increasing intracellular Ca\(^{2+}\), increased levels of ET-1 following SAH may also lead to enhanced vascular smooth muscle contraction via activation of PKC (Murray et al., 1992).

Impact of SAH on the cerebral microcirculation

Following angiographic demonstration of SAH-induced arterial narrowing in 1951, extensive clinical research has aimed at preventing enhanced constriction of large diameter conduit cerebral arteries in SAH patients. Overall, clinical trials have been ineffective at reducing angiographic vasospasm. However, one recent trial using a selective ET\(_A\) receptor antagonist, clazosentan, demonstrated a significant dose-dependent reduction in moderate to severe angiographic vasospasm at day 9 following aneurysm rupture (Macdonald et al., 2008). Despite approximately 50% decrease in the occurrence of vasospasm, clazosentan did not significantly reduce the rate of poor clinical outcome based on the modified Rankin scale. On the other hand, clinical use of the VDCC blocker nimodipine produces a modest improvement in clinical outcome in SAH patients (Petruk et al., 1988). However, studies suggest that nimodipine does not significantly influence the incidence of moderate or severe angiographic vasospasm (Petruk et al., 1988). Thus, large artery vasospasm does not always correlate with the occurrence of ischemia-related neurological deficits in SAH patients.

Recently emerging evidence suggests that small diameter cerebral arteries and arterioles, which are critical for autoregulation of cerebral blood flow may be more
constricted following SAH. Takeuchi and colleagues made the observation that cerebral blood flow was significantly reduced at mean arterial blood pressures from 40 to 100 mmHg in SAH model primates (Takeuchi et al., 1991). This finding suggests that SAH may impair cerebral autoregulation such that physiological increases in intravascular pressure lead to greater constriction of resistance arteries and arterioles in the cerebral circulation, thus reducing cortical blood flow. Consistent with this hypothesis, Ishiguro et al. demonstrated enhanced pressure-dependent constriction of small diameter (100-200 µm diameter) cerebral arteries from a rabbit SAH model at physiological intravascular pressures in vitro (Figure 7) (Ishiguro et al., 2002). Decreased cerebral circulation time and regional cerebral blood flow measurements in humans 5 and 7 days after SAH (Ohkuma et al., 2000) also suggests decreased luminal caliber of intracerebral arterioles. Furthermore, Knuckey et al. observed decreased cerebral blood flow in SAH patients which was not secondary to increased intracranial pressure or angiographic vasospasm (Knuckey et al., 1985). Although various histological studies of parenchymal arterioles from SAH model animals have suggested enhanced constriction of these vessels following SAH (Ohkuma et al., 1997; Ohkuma and Suzuki, 1999), the function of isolated parenchymal arterioles following SAH has not been investigated.

Summary

The cerebral circulation is exquisitely regulated by numerous mechanisms to ensure adequate delivery of oxygen and nutrients to the brain. Under normal conditions, cerebral artery diameter is largely controlled by vascular smooth muscle membrane
potential and the activity of voltage-dependent Ca\(^{2+}\) channels, which represent a splice variant of the gene \(\text{CaV}1.2\). Following SAH, factors released into the cerebrospinal fluid exert a profound influence over vascular smooth muscle leading to enhanced contraction and decreased blood flow. Although decades of research has focused on the impact of SAH on large diameter arteries on the brain surface, evidence suggests that small diameter arterioles within the brain parenchyma may be more constricted and reduce local cerebral blood flow.

Part 3: Hypotheses

1. **Increased L-type VDCC activity causes enhanced pressure-dependent constriction of parenchymal arterioles following experimental SAH.**

The overall objective in Chapter 2 of this dissertation was to examine the relationship between intravascular pressure, smooth muscle intracellular Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_i\)), membrane potential and diameter of isolated parenchymal arterioles from unoperated, sham-operated and SAH model rats. A combination of techniques were used to test the hypothesis that increased activity of smooth muscle L-type VDCCs (\(\text{CaV}1.2\)) leads to elevated [Ca\(^{2+}\)]\(_i\) and enhanced pressure-induced constriction of parenchymal arterioles from SAH animals. Therefore, it was also predicted that enhanced constriction of parenchymal arterioles following SAH was primarily the result of elevated [Ca\(^{2+}\)]\(_i\), rather than Ca\(^{2+}\) sensitization of the smooth muscle contractile machinery (i.e. via increased PKC or Rho kinase activation). Examination of the relationship between [Ca\(^{2+}\)]\(_i\) and
constriction revealed that enhanced arteriolar tone was due to increased Ca\(^{2+}\) influx via L-type channels and elevated \([\text{Ca}^{2+}]_i\). We also hypothesized that increased L-type VDCC activity following SAH may result from either increased VDCC expression or membrane potential depolarization. We provide evidence suggesting that L-type VDCC mRNA and protein expression is not altered in parenchymal arterioles from SAH animals. However, parenchymal arteriolar myocytes were significantly depolarized at physiological intravascular pressures. Our data support the hypothesis that membrane potential depolarization causes increased L-type VDCC-mediated Ca\(^{2+}\) influx and enhanced constriction following SAH. We propose enhanced constriction of parenchymal arterioles may contribute to reduced cerebral blood flow and neurological deficits in SAH patients.

2. The smooth muscle selective L-type VDCC splice variant containing exon 9* is dominant in cerebral artery constriction.

Oral administration of voltage-dependent Ca\(^{2+}\) channel antagonists is standard treatment in SAH patients and provides a modest beneficial effect (Treggiari-Venzi et al., 2001). However, these agents can also act on VDCCs in the systemic circulation leading to drastic reductions in vascular resistance and blood pressure. Thus, the use of VDCC antagonists in SAH patients has been greatly limited by hypotension. Therefore, the overall objective in Chapter 3 of this dissertation was to develop a strategy to suppress VDCC activity specifically in the cerebral vasculature. We hypothesized that targeting a population of Ca\(_V\)1.2 splice variants specifically expressed by smooth muscle with
antisense oligonucleotides may provide a means of cerebral artery dilation while avoiding suppression of neuronal channels. In addition, future administration of antisense into the cerebrospinal fluid of SAH model animals should limit effects to the cerebral vasculature.

Previous studies demonstrate that inclusion of the smooth muscle-selective alternatively-spliced exon 9* in Ca\textsubscript{v}1.2 channels causes a shift in voltage-dependent activation towards more negative potentials (Liao et al., 2004). Therefore, inclusion of exon 9* may be important for development of tone at physiological membrane potentials in vascular smooth muscle. This finding led us to hypothesize that exon 9* Ca\textsubscript{v}1.2 splice variants play a critical role in the regulation of cerebral artery diameter. Data presented in Chapter three of this dissertation suggest that suppression of Ca\textsubscript{v}1.2 channels containing exon 9* results in markedly reduced cerebral artery constriction in response to K+-induced membrane depolarization in vitro. Our results suggest that exon 9* containing Ca\textsubscript{v}1.2 channels are functionally dominant in cerebral artery constriction and may provide a novel target for prevention of elevated [Ca2+], and enhanced constriction following SAH.
Schematic representation showing pial cerebral arteries on the brain surface and penetrating and parenchymal arterioles within the cortex. Superficially, the Virchow-Robin space is continuous with the subarachnoid space. Distally, this space transitions into perivascular space separating astrocytic endfeet and vascular smooth muscle of parenchymal arterioles. Modified from Edvinsson and Krause, *Cerebral Blood Flow and Metabolism: Second Edition*. 2002 with permission from Wolters Kluwer.
Figure 3: **Regulation of intracellular Ca\(^{2+}\).**

Major pathways for Ca\(^{2+}\) influx and extrusion are shown. SERCA: sarcoplasmic/endoplasmic reticulum Ca\(^{2+}\) ATPase; PMCA: plasma membrane Ca\(^{2+}\) ATPase; NCX: Na\(^+\)/Ca\(^{2+}\) exchanger; CaM: calmodulin; MLC: myosin light chain; MLCK: myosin light chain kinase.
Elevation of Intravascular pressure results in increased cytosolic Ca2+ and decreased diameter (constriction). This response to increased pressure is abolished by the dihydropyridine L-type VDCC inhibitor nisoldipine or removal of Ca2+ from the bath solution. Modified from Knot HJ and Nelson MT, Regulation of arterial diameter and wall [Ca2+]\textsubscript{i} in cerebral arteries of rat by membrane potential and intravascular pressure. *J. Physiol.*, 1998 with permission.

Figure 4: Role of VDCCs in pressure-induced constriction.

Elevation of Intravascular pressure results in increased cytosolic Ca2+ and decreased diameter (constriction). This response to increased pressure is abolished by the dihydropyridine L-type VDCC inhibitor nisoldipine or removal of Ca2+ from the bath solution. Modified from Knot HJ and Nelson MT, Regulation of arterial diameter and wall [Ca2+]\textsubscript{i} in cerebral arteries of rat by membrane potential and intravascular pressure. *J. Physiol.*, 1998 with permission.
Top- On-cell patch recording from rabbit mesenteric artery myocytes. Traces show single Ca2+ channel openings at -60 and -40 mV from holding potential of -95 mV, using Ba2+ as a charge carrier in the presence of the dihydropyridine L-type VDCC agonist Bay R 5417. Bottom- Steady state \(P_{\text{open}} \) (from single channel openings during 1 second voltage pulses) over physiological range of membrane potentials. Inset shows \(P_{\text{open}} \) over a wider range of voltages. Modified from Nelson MT et al., Calcium channels, potassium channels and voltage dependence of arterial smooth muscle tone. *Am J Physiol.*, 1990 with permission from American Physiological Society.

Figure 5: Voltage-dependence of VDCC open-state probability.
The α_1 subunit consists of four homologous domains (I-IV). Each domain contains six transmembrane segments (S1-S6). The S4 segments of each domain confers voltage-sensitivity to the channel. Exons encoding the α_1 subunit are numbered. Boundaries between exons are denoted by perpendicular lines. Modified from Liao P. et al., Splicing for alternative structures of Ca$_{V}$1.2 calcium channels in cardiac and smooth muscles., *Cardiovasc Res.*, 2005 with permission from Oxford University Press.

Figure 6: Alpha 1 pore-forming subunit of Ca$_{V}$1.2 VDCCs.
Enhanced pressure-induced constriction of small diameter cerebral arteries from SAH model rabbits. Representative diameter traces from arteries isolated from control unoperated (Control, A) and SAH model animals (B). Solid lines represent active constrictions in response to elevated pressure. Dashed lines represent passive diameter obtained in Ca\(^{2+}\)-free physiological saline solution containing the L-type VDCC inhibitor diltiazem. Modified from Ishiguro M. et al., Enhanced myogenic tone in cerebral arteries from a rabbit model of subarachnoid hemorrhage, _Am J Physiol._, 2002 with permission from American Physiological Society.

Figure 7: Impact of SAH on cerebral artery tone.
CHAPTER 2: JOURNAL ARTICLE
Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization.

Matthew A. Nystoriak¹, Swapnil K. Sonkusare¹, Joseph E. Brayden¹, Mark T. Nelson¹, George C. Wellman¹².

Departments of Pharmacology¹ and Surgery, Division of Neurological Surgery², University of Vermont, College of Medicine, Burlington, Vermont.

Running Head: Enhanced parenchymal arteriolar constriction following SAH.

Contact Information: Address for reprint requests and other correspondence: G. C. Wellman, Univ. of Vermont, Dept. of Pharmacology, Given Bldg., 89 Beaumont Ave., Burlington, VT 05405-0068 (e-mail: george.wellman@uvm.edu)
Abstract

Intracerebral (parenchymal) arterioles are morphologically and physiologically unique in comparison to pial arteries and arterioles. The ability of subarachnoid hemorrhage (SAH) to induce vasospasm in large diameter pial arteries has been extensively studied, although the contribution of this phenomenon to patient outcome is controversial. Currently, little is known regarding the impact of SAH on parenchymal arterioles, which are critical for regulation of local and global cerebral blood flow. Here, diameter, smooth muscle intracellular \(\text{Ca}^{2+} \) ([Ca\(_{i}^{2+}\)]) and membrane potential measurements were used to assess the function of intact brain parenchymal arterioles isolated from unoperated (control), sham-operated and SAH model rats. At low intravascular pressure (5 mmHg), membrane potential and [Ca\(_{i}^{2+}\)] were not different in arterioles from control, sham and SAH animals. However, raising intravascular pressure caused significantly greater membrane potential depolarization, elevation in [Ca\(_{i}^{2+}\)] and constriction in SAH arterioles. This SAH-induced increase in [Ca\(_{i}^{2+}\)] and tone occurred in the absence of the vascular endothelium and was abolished by the L-type voltage-dependent calcium channel (VDCC) inhibitor nimodipine. Arteriolar [Ca\(_{i}^{2+}\)] and tone were not different between groups when smooth muscle membrane potential was adjusted to the same value. mRNA and protein levels of the L-type VDCC, Cav1.2, were similar in parenchymal arterioles isolated from control and SAH animals, suggesting SAH did not cause VDCC upregulation. We conclude that enhanced parenchymal arteriolar tone following SAH is driven by smooth muscle membrane potential depolarization, leading to increased L-type VDCC-mediated Ca\(_{i}^{2+}\) influx. We propose that inhibition of VDCCs
by calcium channel antagonists or hyperpolarizing vasodilators may be therapeutic strategies to enhance cortical blood flow in SAH patients.

Keywords: voltage-dependent calcium channels, vascular smooth muscle, cerebral blood flow, endothelium, ion channels
Introduction

Cerebral blood flow is regulated by the diameter of resistance arteries and arterioles both on the surface of the brain and within the brain parenchyma. Parenchymal arterioles, unlike pial arteries and arterioles, lack extrinsic innervation and are encased by astrocytic processes (“endfeet”) (20, 28). The close association of this microvasculature with astrocytic endfeet is essential for functional hyperemia, whereby focal increases in neuronal activity are coupled to vasodilation of nearby arterioles and increased blood flow (7, 18, 28, 42). In addition to their role in neurovascular coupling, parenchymal arterioles also contribute significantly to autoregulation of global cerebral blood flow and account for approximately 40% of total cerebral vascular resistance (16). Thus, parenchymal arterioles are a unique vascular bed, central in the regulation of both local and global cerebral blood flow.

Pial arteries and arterioles constrict to physiological increases in intravascular pressure via a process involving vascular smooth muscle membrane potential depolarization, activation of voltage-dependent Ca2+ channels (VDCCs), and increased global intracellular Ca2+ ([Ca2+]_i) (2, 17, 21, 33, 41). Recent work has established that pressure-dependent constriction, or myogenic tone, is significantly greater in isolated parenchymal arterioles than pial arteries (4). The cellular basis for enhanced pressure-dependent myogenic tone in the parenchymal vasculature is unclear. Further, the relationship between intravascular pressure, membrane potential, [Ca2+]_i, and diameter of isolated parenchymal arterioles is not known.
Dysfunction of the cerebral microcirculation, including parenchymal arterioles, has been implicated in a number of brain pathologies, including vascular dementia, Alzheimer’s disease and the development of delayed neurological deficits associated with cerebral aneurysm rupture and subarachnoid hemorrhage (SAH) (27, 58). A number of studies have suggested that SAH causes enhanced constriction of the microcirculation to limit parenchymal blood flow (35, 44, 51, 52, 58). However, the small size of parenchymal arterioles (maximum lumenal diameter: 30-60 µm) poses a significant technical challenge to directly examine their function (45, 53). Consequently, the impact of SAH on the regulation of parenchymal arteriolar diameter is unknown.

The objective of the present study was to elucidate the relationship between intravascular pressure, [Ca^{2+}]_i, membrane potential and diameter of isolated parenchymal arterioles from unoperated, sham-operated and SAH model rats. In unoperated animals, membrane potential depolarization and elevations in [Ca^{2+}]_i are enhanced at lower intravascular pressures in parenchymal arterioles compared with pial arteries. Our results are consistent with the concept that intravascular pressure constricts parenchymal arterioles through smooth muscle depolarization, activation of VDCCs, and elevation of intracellular calcium. Furthermore, our data indicate that following SAH, intravascular pressure causes greater membrane depolarization, which leads to enhanced vasoconstriction.
Methods

Animals. Sprague Dawley rats (males, 300-350 g, 10-15 weeks; Charles River Laboratories, Saint Constant, Quebec, Canada) were used in this study. All experiments were conducted in accordance with the Guidelines for the Care and Use of Laboratory Animals (NIH Publication 85-23, Revised 1996) and followed protocols approved by the Institutional Animal Use and Care Committee of the University of Vermont.

Rat SAH model. Animals were initially anesthetized by isoflurane (5%) using an induction chamber, then maintained on isoflurane (2-2.5%) anesthesia with the aid of a nose cone. A small (0.5-1.5 cm), longitudinal, midline suboccipital incision was centered over the foramen magnum, and the neck muscles were dissected until dura was visualized. Autologous unheparinized blood (0.5 ml) drawn from the tail artery was injected into the cisterna magna (day 0) using a 25-guage butterfly needle (38). The animal was then positioned on an incline board at a 45° angle with the head down in neutral position for 30 min. Twenty four hours later, a second injection of blood was delivered by repeating the above procedure. Sham-operated animals were treated in a similar manner except: injection of 0.5 ml of saline was substituted for injection of 0.5 ml of unheparinized blood. Buprenorphine (0.01 mg/kg) was given every 12 h (for 36 h, then as needed) as an analgesic. On day 4, animals were euthanized under deep pentobarbital anesthesia by decapitation and parenchymal arterioles (30-60 μm in diameter) were dissected from the middle cerebral artery territory (8) in cold (4°C) MOPS-buffered saline solution of the following composition (in mM): 145 NaCl, 5 KCl,
1 MgSO₄, 2.5 CaCl₂, 1 KH₂PO₄, 0.02 EDTA, 3 3-(N-morpholino)propanesulfonic acid, 2 pyruvate, 5 glucose, 1% bovine serum albumin (pH 7.4).

Measurement of intracellular Ca²⁺ concentration and diameter. Freshly isolated parenchymal arterioles were cannulated on glass micropipettes mounted in a 5 ml myograph chamber (University of Vermont Instrumentation and Model Facility) as described previously (8, 30). Vascular endothelium was removed from some arterioles by passing an air bubble through the lumen following cannulation of one end (55). Following cannulation, arterioles were loaded with the ratiometric Ca²⁺-sensitive dye fura-2 (acetoxymethyl (AM) ester membrane-permeable form) by incubating in MOPS buffered saline solution containing fura-2 AM (5 μM) (Invitrogen, Carlsbad, CA) with pluronic acid (0.1%) (Invitrogen, Carlsbad, CA) at room temperature (~22°C) for 45 minutes. Next, the myograph chamber was mounted on a Nikon TE2000-S inverted fluorescence microscope. To allow for equilibration and de-esterification of fura-2 AM, arterioles were pressurized to 5 mmHg and continuously superfused (37°C, 30 min) with artificial cerebrospinal fluid (aCSF) of the following composition (in mM): 125 NaCl, 3 KCl, 18 NaHCO₃, 1.25 NaH₂PO₄, 1 MgCl₂, 2 CaCl₂, 5 glucose aerated with 5% CO₂, 20% O₂, 75% N₂. Bath pH was closely monitored and maintained at 7.30-7.35 (11).

Following the equilibration period, studies were performed in which intravascular pressure was increased to 10, 20, 40 and 60 mmHg or extracellular K⁺ was increased from 3 mM to 60 mM using aCSF made by isosmotic replacement of NaCl with KCl. Fluorescence ratio was obtained from background corrected ratio of the 510 nm emission.
from arterioles alternately excited at 340 and 380 nm with hardware and software
developed by IonOptix (Milton, MA). \([\text{Ca}^{2+}]_i\) was estimated using the following equation
(19): \([\text{Ca}^{2+}] = K_d \times \beta \times (R - R_{\min})/(R_{\max} - R)\). \(R_{\min}\) and \(R_{\max}\), the ratios of emission
signals under \(\text{Ca}^{2+}\)-free and \(\text{Ca}^{2+}\)-saturated conditions, respectively, were measured from
a separate set of ionomycin-treated arterioles, and \(\beta\) was determined. Calibration values
were not significantly different between arterioles obtained from either healthy or SAH
animals (Table 1) and were pooled for calculations of \([\text{Ca}^{2+}]_i\), using an apparent
dissociation constant \((K_d)\) of 282 nM of fura-2 for \(\text{Ca}^{2+}\) (33). Total fluorescence counts
(photomultiplier signal at \(F_{340} + F_{380}\)) measured immediately following the equilibration
period were not significantly different between endothelium intact (539 ± 66 counts) and
denuded arterioles (532 ± 40 counts), suggesting endothelial loading with fura-2 was
negligible.

Luminal diameter of arterioles was simultaneously recorded with \([\text{Ca}^{2+}]_i\), using a CCD
camera and the edge-detection function of IonOptix software. Constriction is presented
as a decrease in arterial diameter relative to the maximum diameter at a given pressure
obtained at the end of each experiment using \(\text{Ca}^{2+}\)-free aCSF containing nimodipine (300
nM) (30, 59).

Measurement of membrane potential: Arterioles were cannulated as described above
and pressurized to either 5 or 40 mmHg. Smooth muscle membrane potential was
measured by insertion of a sharp glass microelectrode (~100-MΩ resistance) filled with
0.5 M KCl into the vessel wall. The criteria for successful impalement was 1) an abrupt
negative potential deflection upon entry, 2) a stable membrane potential for ≥30 seconds, and 3) an abrupt positive potential deflection upon removal (33, 46). Measurements were made using an electrometer (World Precision Instruments), and recorded via computer using Axotape and Dataq software.

RT-PCR: Total RNA was extracted using RNA STAT-60 total RNA/mRNA isolation reagent (Tel-test, Friendswood, TX) and reverse transcribed to cDNA using SuperScript First-Strand synthesis system (Invitrogen, Carlsbad, CA) (43). Polymerase chain reaction was performed using primers detecting Ca\textsubscript{V}1.2 (Genbank accession No. X55763) [\textit{forward} (5'–CAGCAGGT CCTATGTCAGCA-3'), \textit{reverse} (5’-CCGACAGCAGTGAA TGAAGA-3')], and 18S (Genbank accession No. M11188) [\textit{forward} (5’-AGTCGCCGTGCCTACCAT-3’), \textit{reverse} (5’-GCCTGCTGCCTTCCTTG-3’)]. Amplification was performed with a taq core PCR kit (Qiagen, Valencia, CA) using a thermocycler (Techne, Burlington, NJ). Band intensity in the linear range of amplification (Ca\textsubscript{V}1.2: 29 cycles; 18S rRNA: 30 cycles) was quantified using Quantity One 1-D Analysis software (Bio-Rad, Hercules, CA). Expression levels were normalized to band intensity values for 18S rRNA.

Western blot analysis: Parenchymal arterioles were pooled from two animals per sample (n). Whole parenchymal arteriole lysates were prepared by sonication (20 min, 4°C) in a triton lysis buffer solution containing (in mM): 50 HEPES, 150 NaCl, 1 EGTA, 1.5 MgCl\textsubscript{2}, 1% triton-X, 10% glycerol with protease inhibitors (10 μg/mL of leupeptin, aprotinin, antipain and 10 mM phenylmethylsulfonyl fluoride). Tissue debris and nuclear
fragments were removed by centrifugation at 7000 rpm (10 min, 4°C). The whole cell lysate was obtained as the supernatant and protein concentration was determined by Bradford assay. Molecular weight marker (Invitrogen, Carlsbad, CA) was loaded as a size standard and protein samples (~15 μg total protein) were separated under reducing conditions on a 7.5% polyacrylamide gel (Bio-Rad, Hercules, CA) by electrophoresis. Samples were run at 120 V for 1.5 hours on an 8x10-cm electrophoresis cell (BioRad, Hercules, CA) and electrophoretically transferred to a nitrocellulose membrane at 80 V for 2 hours (4°C). The membranes were washed in tris-buffered saline with 0.1% Tween-20 (TBS-T), and blocked with 10% nonfat dried milk in TBS-T (1 hour, room temperature). Membranes were then incubated with the specific polyclonal antibodies against Cav1.2 (1:200, overnight, 4°C, Alomone, Jerusalem), or monoclonal antibody against GAPDH (1:100,000, 30 min, room temperature, Sigma, St. Louis, MO), prepared in 5% nonfat dried milk in TBS-T. Membranes were then incubated (1 hour; room temperature) with horseradish peroxidase-labeled donkey anti-rabbit IgG (Cav1.2, 1:5000; GAPDH, 1:10,000, GE Healthcare, Waukesha, WI) in TBS-T containing 5% nonfat dried milk. Bands were identified by chemiluminescence and exposed to X-ray films. Densitometry for immunoreactive bands was performed using NIH software (ImageJ) and density was expressed as a percent of GAPDH density for each lane.

Statistical analysis. Values are presented as means ± SEM. One-way analysis of variance followed by Tukey multiple comparison test was used in the comparison of
multiple groups. Student’s t-test was used in the comparison of two groups. Statistical significance was considered at the level of $p < 0.05$ (*) or $p < 0.01$ (**).
Results

Parenchymal arterioles isolated from SAH model animals exhibit elevated cytosolic Ca\(^{2+}\) and enhanced tone at physiological intravascular pressures.

To assess the role of cytosolic Ca\(^{2+}\) in pressure-induced parenchymal arteriolar constriction, simultaneous measurements of [Ca\(^{2+}\)]\(\text{i}\) and diameter were obtained from freshly isolated parenchymal arterioles loaded with the ratiometric Ca\(^{2+}\) indicator fura-2. In response to step-wise increases in intravascular pressure, arterioles from unoperated (control), sham-operated (sham) and SAH animals exhibited graded increases in cytosolic Ca\(^{2+}\) ([Ca\(^{2+}\)]\(\text{i}\)) and active constriction. At low intravascular pressure (5-10 mmHg), similar levels of [Ca\(^{2+}\)]\(\text{i}\) and tone were observed in vessels isolated from all groups. However, as intravascular pressure was increased to physiological levels (i.e. 20 to 60 mmHg) (16, 23), arterioles from SAH animals exhibited markedly enhanced levels of [Ca\(^{2+}\)]\(\text{i}\) and constriction compared with arterioles from control and sham-operated animals (Fig. 1A-E). For example, at 40 mmHg, [Ca\(^{2+}\)]\(\text{i}\) was ~33% higher in arterioles from SAH animals (349 ± 11 nM, n = 5) compared with arterioles isolated from control animals (261 ± 8 nM, n = 6). Corresponding to this SAH-induced increase in [Ca\(^{2+}\)]\(\text{i}\), at 40 mmHg, vessels from SAH animals constricted 29 ± 2 μm (53 ± 4% decrease in diameter, n = 5), compared with a constriction of 14 ± 1 μm in arterioles from control animals (29 ± 2% decrease in diameter, n = 6). Although, [Ca\(^{2+}\)]\(\text{i}\) and tone at a given pressure were greater in arterioles from SAH model animals, the relationship between [Ca\(^{2+}\)]\(\text{i}\) and constriction were remarkably similar between arterioles isolated from control and SAH animals (Fig. 1F). These data suggest that elevated [Ca\(^{2+}\)]\(\text{i}\) is sufficient to account for
enhanced pressure-induced constriction of parenchymal arterioles from SAH model animals.

The role of L-type VDCCs in SAH-induced elevation of \([Ca^{2+}]_i\) and arteriolar tone was examined by applying the dihydropyridine L-type VDCC inhibitor nimodipine (300 nM) prior to increasing intravascular pressure. Pressure-induced increases in \([Ca^{2+}]_i\) and constriction were abolished by nimodipine in control and SAH groups (Fig. 1D,E) indicating that \(Ca^{2+}\) influx in parenchymal myocytes from both control and SAH animals is mediated by L-type VDCCs. These results indicate that elevation of intravascular pressure leads to greater L-type VDCC-mediated \(Ca^{2+}\) influx, increased \([Ca^{2+}]_i\) and enhanced constriction of parenchymal arterioles from SAH animals.

Increased L-type VDCC activity, rather than increased channel expression, mediates enhanced parenchymal arteriolar constriction following SAH.

SAH-induced \(Ca^{2+}\) influx via L-type VDCCs could reflect either an increase in the density of functional channels or a more depolarized membrane potential leading to an increase in the open-state probability \((P_{\text{open}})\) of existing channels. To explore whether upregulation of L-type VDCC expression occurs following SAH, RT-PCR was used to examine \(Ca_V1.2\) mRNA, encoding the predominantly expressed L-type VDCC pore-forming \(\alpha_1\) subunit in vascular smooth muscle (3, 40). Expression of \(Ca_V1.2\) mRNA, normalized to 18S rRNA levels, was similar in parenchymal arterioles isolated from control and SAH animals (Fig. 2A, B). In addition, protein levels of \(Ca_V1.2\), determined
by Western blot, were not different between groups (Fig. 2C, D). These data suggest that upregulation of \(\text{Ca}_{\text{V}}1.2 \) does not contribute to elevated \([\text{Ca}^{2+}]_i\) following SAH.

Based on the above data, we hypothesized that greater smooth muscle membrane potential depolarization, rather than increased VDCC expression, underlie enhanced pressure-induced constriction of parenchymal arterioles following SAH. Thus, at a given membrane potential, similar \([\text{Ca}^{2+}]_i\) and constriction would be predicted for arterioles from control and SAH animals. To test this possibility, \([\text{Ca}^{2+}]_i\) and constriction were measured when extracellular K\(^+\) concentration ([K\(^+\)]\text{o}) was elevated from 3 mM to 60 mM by isosmotic replacement of NaCl with KCl in the bath solution. In pial arteries, membrane potential closely follows the K\(^+\) equilibrium potential (E\(_K\)) at [K\(^+\)]\text{o} greater than 16 mM (25, 33). This also appears to be the case with parenchymal arterioles, as smooth muscle membrane potential in arterioles bathed in 60 mM [K\(^+\)]\text{o} was very close to theoretical E\(_K\) (Control: -22 \pm 1 mV, n = 4; SAH –21 \pm 1 mV, n = 4), predicted by the Nernst equation (-22 mV; assuming intracellular [K\(^+\)] = 140 mM) (Fig. 3A). When smooth muscle membrane potential was “clamped” using 60 mM [K\(^+\)]\text{o}, \([\text{Ca}^{2+}]_i\) was not different in parenchymal arterioles isolated from healthy (393 \pm 18 nM, n = 7) and SAH animals (388 \pm 14 nM, n = 5) (Fig. 3B). Constriction was also similar for control and SAH arterioles in the presence of 60 mM [K\(^+\)]\text{o} (Fig. 3C). Elevations in \([\text{Ca}^{2+}]_i\) and constrictions in response to 60 mM [K\(^+\)]\text{o} were abolished by nimodipine (300 nM) in arterioles from both groups (Fig. 3B,C). These findings suggest that enhanced pressure-induced constrictions following experimental SAH likely reflect differences in smooth muscle membrane potential, rather than increased VDCC expression.
Elevation of intravascular pressure leads to greater smooth muscle membrane potential depolarization following experimental subarachnoid hemorrhage.

To directly assess the impact of SAH on smooth muscle membrane potential, myocytes of intact parenchymal arterioles were impaled from the adventitial surface using intracellular microelectrodes. At low intravascular pressure (5 mmHg), membrane potential was similar in arterioles isolated from control (-58 ± 2 mV, n = 4) and SAH animals (-59 ± 2 mV, n = 4) (Fig. 4A). Raising intravascular pressure from 5 to 40 mmHg resulted in membrane potential depolarization in arterioles from both groups. However, parenchymal arteriolar myocytes from SAH animals were significantly more depolarized at 40 mmHg (-28 ± 1 mV; n = 4) compared with arterioles from control animals (-35 ± 1 mV; n = 5) (Fig. 4B,C). These data suggest that greater pressure-dependent membrane potential depolarization underlies enhanced parenchymal arteriolar tone following SAH.

Endothelial function promotes vasodilation in parenchymal arterioles following SAH.

Membrane potential of arteriolar myocytes can be modulated by the vascular endothelium (17). Previous work has indicated that endothelial SK$_{Ca}$ and IK$_{Ca}$ channel activity promotes smooth muscle membrane potential hyperpolarization and plays an important role in the regulation of parenchymal arteriolar tone and cortical blood flow (5, 14). Thus, to assess endothelial function in parenchymal arterioles following SAH, we examined the effect of NS309, an opener of endothelial small- (SK$_{Ca}$) and intermediate-
conductance (IK$_{Ca}$) Ca$^{2+}$-activated K$^+$ channels (26, 50), on arteriolar [Ca$^{2+}$]$_i$ and diameter. At 40 mmHg intravascular pressure, NS309 (1 μM) caused hyperpolarization in endothelium-intact arterioles from both control (−67 ± 2 mV, n = 5) and SAH animals (−67 ± 2 mV, n = 4) (Fig. 5A). Consistent with membrane potential hyperpolarization, NS309 also caused a significant decrease in [Ca$^{2+}$]$_i$ in arterioles from control (242 ± 7 nM to 141 ± 15 nM; n = 4) and SAH animals (330 ± 11 nM to 151 ± 14 nM; n = 4) and induced >90% vasodilation in both groups (Fig. 5B). These results demonstrate that activation of endothelial SK$_{Ca}$ and IK$_{Ca}$ channels causes a similar marked membrane potential hyperpolarization and vasodilation of arterioles from control and SAH animals.

To examine whether altered endothelial function contributes to elevated [Ca$^{2+}$]$_i$ and enhanced constriction of parenchymal arterioles from SAH animals, [Ca$^{2+}$]$_i$ and diameter were measured in endothelial-denuded vessels. The endothelium was removed from parenchymal arterioles by passing an air bubble through the vessel lumen during the cannulation procedure. Although endothelium-denuded arterioles displayed increased [Ca$^{2+}$]$_i$ and constriction compared to corresponding endothelium-intact vessels in both groups, these parameters remained significantly higher in parenchymal arterioles from SAH animals (Fig. 5C). Application of NS309 was used to confirm absence of endothelial function in denuded vessels. Consistent with expression of SK$_{Ca}$ and IK$_{Ca}$ channels in endothelial cells but not smooth muscle, NS309 had no effect on [Ca$^{2+}$]$_i$ or diameter in denuded arterioles from either control or SAH animals (Fig 5D). These results suggest that SAH-induced elevated [Ca$^{2+}$]$_i$ and enhanced arteriolar tone result
from a direct modulation of smooth muscle membrane potential, rather than decreased endothelial vasodilatory influence.
Discussion

Here, we report that cytosolic Ca\(^{2+}\) is elevated and pressure-dependent constriction is enhanced in parenchymal arterioles from experimental SAH animals. Our data demonstrate elevations in intravascular pressure cause greater membrane potential depolarization following SAH, leading to increased activity of L-type VDCCs and enhanced constriction. The following observations are consistent with these novel findings: 1) Increasing intravascular pressure resulted in significantly greater elevation of [Ca\(^{2+}\)]\(_i\) and enhanced myogenic tone in parenchymal arterioles isolated from SAH model animals. 2) Pressure-induced elevations in [Ca\(^{2+}\)]\(_i\) and myogenic tone were abolished by the L-type VDCC inhibitor nimodipine. 3) Arteriolar [Ca\(^{2+}\)]\(_i\) and constriction were similar in arterioles from control and SAH animals when membrane potential was clamped at E\(_K\) (≈ -22 mV) using 60 mM extracellular [K\(^+\)]. 4) At 40 mmHg, smooth muscle membrane potential was approximately 7 mV more depolarized in arterioles isolated from SAH versus control animals. 5) Ca\(_{V}\)1.2 mRNA and protein expression were not altered by SAH. 6) Differences in [Ca\(^{2+}\)]\(_i\) and tone at 40 mmHg were independent of vascular endothelium. In addition, endothelium-dependent hyperpolarization of smooth muscle using NS309 reduced [Ca\(^{2+}\)]\(_i\) to basal levels and dilated parenchymal arterioles from control and SAH animals.

This work also provides novel information regarding the physiological function of arterioles within the brain parenchyma. Previous studies have found that parenchymal arterioles develop significantly greater pressure-induced myogenic tone compared with middle cerebral arteries (4, 5). To assess the contribution of membrane potential and
to these differences, we compared our data presently obtained for isolated parenchymal arterioles from unoperated rats with data previously reported by Knot and Nelson (33) for rat middle cerebral arteries. At a given level of intravascular pressure, parenchymal arterioles display greater $[\text{Ca}^{2+}]_i$ compared with middle cerebral arteries (Fig. 6A) (i.e. 267 nM versus \sim190 nM, respectively, at 60 mmHg intravascular pressure). However, the relationships between $[\text{Ca}^{2+}]_i$ and constriction are remarkably similar in these vascular beds (Fig. 6B), suggesting that in healthy animals, enhanced pressure-dependent constriction observed in parenchymal arterioles results from a greater elevation in $[\text{Ca}^{2+}]_i$. A comparison of the relationship between intravascular pressure and membrane potential indicates that at a given intravascular pressure, smooth muscle membrane potential is more depolarized in parenchymal arterioles. For example, membrane potential measured in parenchymal myocytes was approximately -35 mV at 40 mmHg; however, this level of membrane potential depolarization was not reached in middle cerebral arteries until intravascular pressure was increased to 80-100 mmHg (33). Thus, the relationship between intravascular pressure and membrane potential appears to be shifted towards lower pressures in parenchymal arterioles, thereby accounting for the similar leftward shift in the pressure versus $[\text{Ca}^{2+}]_i$ relationship (Fig. 6A). This functional distinction may be critical for development of parenchymal arteriolar tone at the lower physiological pressures they experience in vivo.

We also demonstrate that the relationship between intravascular pressure and $[\text{Ca}^{2+}]_i$ is further shifted to the left in parenchymal arterioles following SAH. This effect is correlated with enhanced pressure-induced depolarization at physiological
intravascular pressure in arterioles from SAH animals. Hence, increasing intravascular pressure within the physiological range leads to greater membrane potential depolarization, increased Ca\(^{2+}\) influx via L-type VDCCs, elevated [Ca\(^{2+}\)]\(_i\) and enhanced constriction of parenchymal arterioles following experimental SAH. However, when membrane potential is equalized between SAH and control arterioles using 60 mM [K\(^+\)]\(_o\) or NS309, L-type VDCC-mediated Ca\(^{2+}\) influx and arteriolar [Ca\(^{2+}\)]\(_i\) is similar between groups. Thus, our data imply that increased Ca\(^{2+}\) influx following SAH reflects membrane potential depolarization, rather than increased VDCC density at the plasma membrane. The membrane potentials reported here for parenchymal arteriolar myocytes (± SAH) are within the range in which L-type VDCC current is steeply voltage-dependent (41). At voltages between -60 and -30 mV, VDCC open-state probability is an exponential function of membrane potential and it is estimated that depolarization of 7 mV (-35 mV to -28 mV, Fig. 4C) could more than double VDCC \(P_{open}\) from 0.016 to 0.035 (41). Therefore, the depolarization observed following SAH in this study is consistent with a substantial increase in VDCC activity, leading to a marked increase in Ca\(^{2+}\) entry in parenchymal arteriolar myocytes.

Vascular smooth muscle membrane potential can be modulated by vasoactive factors released by the endothelium. A number of studies suggest that nitric oxide-mediated vasodilation is impaired in large diameter cerebral arteries in experimental models of SAH (6, 17). Similar findings have been reported in basilar arteries of SAH patients (24). However, the contribution of endothelial dysfunction to cerebral artery constriction is controversial and others have reported that endothelium-dependent
relaxation is unchanged following SAH (10, 39). The relative contribution of endothelium-dependent vasodilators to vascular tone may depend on vessel size and the effects of SAH on endothelial function may differ between large and small diameter vessels. Whereas basal NO production seems to control tone in both cerebral arteries and arterioles, the contribution of endothelium-derived hyperpolarizing factor (EDHF) to blood flow regulation may be greater at the level of the microcirculation (57). Previous studies suggest that EDHF-mediated relaxation requires the activity of endothelial SK_{Ca} and IK_{Ca} (13, 60) and these channels are involved in modulating basal tone in parenchymal arterioles, but not in middle cerebral arteries (5). Here, we show that activation of endothelial SK_{Ca} and IK_{Ca} channels with NS309 caused a similar reduction of [Ca^{2+}]_i to basal levels and profound dilation of parenchymal arterioles from both control and SAH animals. Further, endothelial removal did not ablate SAH-induced pressure-induced increases in [Ca^{2+}]_i and myogenic tone. Therefore, reduced endothelial vasodilator influence cannot account for enhanced vasoconstriction of parenchymal arterioles following SAH. These findings are in agreement with previous data for small diameter brainstem arteries (32) and penetrating arterioles (53) and suggest that a direct alteration of smooth muscle membrane potential regulation contributes to dysfunction of cerebral microvessels from SAH animals.

Our results indicate that elevated parenchymal arteriolar [Ca^{2+}]_i and tone following SAH depends on intravascular pressure. At this time, it is unclear how SAH causes enhanced pressure-dependent depolarization in parenchymal arterioles. Activation of mechanosensitive non-selective cation channels belonging to the transient...
receptor potential family (i.e. TRPC6, TRPM4) is reported to contribute to membrane potential depolarization of cerebral artery myocytes to increased pressure (15, 56). Thus, increased expression or activity of these channels following SAH may lead to membrane depolarization and enhanced VDCC activity. On the other hand, SAH-induced depolarization may also result from suppressed hyperpolarizing influence. For example, significant voltage-dependent K$^+$ channel (K$_V$)-mediated current is observed at physiological membrane potentials (47) and activation of these channels represents an important feedback mechanism in response to pressure-induced depolarization. Consistent with this hypothesis, inhibition of K$_V$ channels with 4-aminopyridine causes membrane potential depolarization and vasoconstriction (34, 49). Numerous studies have suggested that substances within blood may lead to membrane potential depolarization of cerebral artery myocytes via suppression of K$^+$ channel activity (17, 22, 48). For example, using pial arteries from a rabbit SAH model, our laboratory has shown that acute exposure of vascular smooth muscle to the blood component oxyhemoglobin can cause internalization of (K$_V$1.5) via a mechanism involving protein tyrosine kinase activation (29, 36). Others have additionally demonstrated that mRNA and protein levels of K$_V$2.2 channels were decreased in basilar arteries from a canine SAH model (31). Hence, further studies are required to determine whether K$_V$ channel suppression contributes to enhanced pressure dependent depolarization of parenchymal arteriolar myocytes in SAH animals.

Enhanced constriction of cerebral arteries and arterioles associated with SAH requires Ca$^{2+}$ influx via VDCCs in vascular smooth muscle (54). Currently, oral
administration of the L-type VDCC inhibitor nimodipine is regarded as standard therapy for patients with SAH and is associated with a modest improvement in clinical outcome (37). The mechanism of the beneficial effects of nimodipine in SAH patients is unclear, however this agent does not significantly reduce large artery, or “angiographic” vasospasm (1). Our results are consistent with speculation that nimodipine treatment may be effective for reversal of enhanced constriction of microvessels within the brain parenchyma, which are beyond the resolution limits of angiography (12). Although further studies are required to examine this possibility, such a mechanism would point to significant role for microcirculatory dysfunction in the development of delayed neurological deficits in SAH patients.

To summarize, we provide evidence that myocytes of parenchymal arterioles are more depolarized at physiological intravascular pressures leading to increased L-type VDCC activity, elevated $[\text{Ca}^{2+}]_i$ and enhanced constriction. Furthermore, we demonstrate that inhibitors of L-type VDCCs (i.e. nimodipine) as well as agents that cause hyperpolarization (i.e. NS309) are effective in reducing $[\text{Ca}^{2+}]_i$ and dilating parenchymal vessels from SAH animals. We propose that therapeutic strategies targeting this enhanced vasoconstriction of the cerebral microcirculation may be beneficial in reducing neurological deficits associated with SAH.
Grants

This work was supported by the Totman Medical Research Trust Fund, the Peter Martin Brain Aneurysm Endowment, National Institutes of Health Grants P20-RR-16435, R01-HL-078983, R01-HL-078983-0551, P01-HL-095488, R01-HL-44455, R01-HL-098243 and R01-HL-58231, and American Heart Association pre-doctoral fellowship award (0815736D).

Acknowledgements

The authors wish to thank Drs. Natalia Gokina and Masayo Koide, and Ms. Jacqueline Hubbard, Mr. Kevin O’Connor, and Ms. Sheila Russell for helpful comments and assistance with this study. We also acknowledge the University of Vermont Neuroscience COBRE Molecular Biology and Microscopy Imaging Center core facilities.
References

60. **Zygmunt PM, and Hogestatt ED.** Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. *Br J Pharmacol* 117: 1600-1606, 1996.
Figure Legends

Figure 1: Elevated cytosolic Ca\(^{2+}\) and enhanced myogenic tone in parenchymal arterioles from SAH animals. A-C: Representative simultaneous \([\text{Ca}^{2+}]_i\) and diameter measurements obtained from intact arterioles isolated from unoperated (control; A), sham-operated (sham; B) and SAH (C) animals. Recordings were obtained during step-wise increases in intravascular pressure and subsequent nimodipine application (300 nM) at 60 mmHg. **D,E.** Summary of \([\text{Ca}^{2+}]_i\) (D) and constriction (E) obtained from unoperated (control; n = 6), sham-operated (sham; n = 6) and SAH (n = 5) animals in the absence and presence of 300 nM nimodipine. Myogenic tone is expressed as a percent decrease from the passive diameter (obtained in Ca\(^{2+}\)-free aCSF with 300 nM nimodipine) of arterioles at a given intravascular pressure. Passive diameters were not statistically different between groups at any intravascular pressure tested. *P<0.05, **P<0.01 vs. control healthy and sham-operated. **F.** Relationship between \([\text{Ca}^{2+}]_i\) and constriction for arterioles isolated from control and SAH animals derived from summary data depicted in panel D and E. Numbers represent intravascular pressure (mmHg). The concentration of Ca\(^{2+}\) causing half-maximal arteriolar constriction, obtained from Boltzmann fit of data (using 60 mM [K\(^+\)]_o as maximum; see figure 3), were similar between groups (Control: 226 ± 26 nM, n = 5-7; SAH: 240 ± 10 nM, n = 5).

Figure 2: Ca\(_V\)1.2 mRNA and protein expression is unchanged following SAH. RT-PCR and Western blotting were used to measure Ca\(_V\)1.2 mRNA and protein,
respectively. **A.** Representative PCR gel showing bands corresponding to Cav1.2 and 18S ribosomal RNA (rRNA). **B.** Summary of RT-PCR data obtained from quantitative analysis of band intensities for arterioles isolated from control (n = 6) and SAH (n = 6) animals. Cav1.2 mRNA is expressed as relative to 18S rRNA. NS: P>0.05 vs. control. **C.** Representative Western blot images for Cav1.2 and GAPDH using whole cell lysates of parenchymal arterioles (each lane represents pooled arterioles from two animals). Cav1.2 immunoreactivity (~200-240 kDa) was observed as a doublet representing the full length and truncated forms of Cav1.2 (9). GAPDH (~36 kDa) was used as an internal standard. **D.** Summary of Western blot data obtained by densitometry using ImageJ software (NIH). Cav1.2 protein levels were normalized to GAPDH and expressed as fold-change compared to corresponding control in each experiment (n = 4). NS: P>0.05 vs. control.

Figure 3: Elevated arteriolar Ca$^{2+}$ and enhanced constriction following SAH depend on membrane potential depolarization. **A.** Summary membrane potential data obtained from isolated pressurized (5 mmHg) parenchymal arterioles bathed in 60 mM extracellular K$^+$ ([K$^+$]$_o$). Membrane potential closely matched the theoretical E_K of -22 mV in arterioles from both control (n = 4) and SAH animals (n = 4). **B,C.** Summary data showing [Ca$^{2+}$]$_i$ (B) and constriction (C; percent decrease in diameter) in control (n = 7) and SAH arterioles (n = 5) exposed to aCSF containing either 3 mM or 60 mM [K$^+$]$_o$. Nimodipine (300 nM) reduced [Ca$^{2+}$]$_i$ to basal levels and dilated arterioles. NS: P>0.05
Figure 4: Myocytes of pressurized parenchymal arterioles are depolarized following SAH. A-B. Representative smooth muscle membrane potential measurements in arterioles isolated from control and SAH animals at 5 mmHg (A) and 40 mmHg (B) intravascular pressure. Scale bars represent 10 seconds. C. Summary of membrane potential measurements obtained at 5 and 40 mmHg. At 40 mmHg, myocytes of arterioles isolated from SAH animals were significantly more depolarized (-28 ± 1 mV, n = 4) compared with myocytes of arterioles isolated from control animals (-35 ± 1 mV, n = 5) **P<0.01 vs. control.

Figure 5: Elevated [Ca$^{2+}$]$_i$ and enhanced myogenic tone following SAH is independent of endothelial function. A. Summary of membrane potential measurements obtained from pressurized (40 mmHg) endothelium-intact parenchymal arterioles in the presence of NS309 (1 µM). B. Summary of [Ca$^{2+}$]$_i$ and dilation resulting from NS309 (1 µM) application for endothelium-intact parenchymal arterioles from control (n = 4) and SAH animals (n = 4). C. Summary of [Ca$^{2+}$]$_i$ and myogenic tone (percent decrease in diameter) obtained from endothelium-denuded arterioles from control (n = 5) and SAH animals (n = 5). Endothelium was removed by passing an air bubble through the vessel lumen for ~30 seconds. **P<0.01 vs. control D. Summary of [Ca$^{2+}$]$_i$ and dilation resulting from NS309 (1 µM) application for endothelium-denuded parenchymal arterioles from control (n = 5) and SAH animals (n = 5). **P<0.01 vs. control.
Figure 6: The relationship between intravascular pressure, cytosolic Ca\(^{2+}\) and diameter of parenchymal arterioles vs. pial arteries from control animals. A. Relationship between intravascular pressure and [Ca\(^{2+}\)]\(_i\) for parenchymal arterioles and middle cerebral arteries (MCA; obtained from results published in Knot et al., 1998) (33). B. Relationship between [Ca\(^{2+}\)]\(_i\) and constriction for parenchymal arterioles and middle cerebral arteries (33). Constriction is expressed as a percentage of maximal constriction obtained in 60 mM [K\(^+\)]\(_o\) (see figure 4).

Table 1: Fura-2 Calibration values. \(R_{\text{min}}\), \(R_{\text{max}}\) and \(\beta\) was determined from a separate set of arterioles (see Methods). No differences were found among control (n = 4) and SAH (n = 4) arterioles. Pooled values (n = 8) shown in table were used for analysis of [Ca\(^{2+}\)]\(_i\) measurements.
Figure 1: Elevated Ca\(^{2+}\) and enhanced tone in parenchymal arterioles from SAH animals.
Figure 2: $Ca\textsubscript{v}1.2$ mRNA and protein expression is unchanged following SAH.
Figure 3: Elevated arteriolar Ca^{2+} and enhanced constriction following SAH depend on membrane potential depolarization.
Figure 4: Myocytes of pressurized parenchymal arterioles are depolarized following SAH.
Figure 5: Elevated $[\text{Ca}^{2+}]_i$ and enhanced myogenic tone following SAH is independent of endothelial function.
Figure 6: The relationship between intravascular pressure, cytosolic Ca2+ and diameter of parenchymal arterioles vs. pial arteries from control animals.
Chapter 2 Table 1: *Fura-2 Calibration Values.*

<table>
<thead>
<tr>
<th></th>
<th>Rmin</th>
<th>Rmax</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n = 4)</td>
<td>0.371 ± 0.008</td>
<td>9.969 ± 0.565</td>
<td>8.031 ± 0.895</td>
</tr>
<tr>
<td>SAH (n = 4)</td>
<td>0.378 ± 0.005</td>
<td>10.064 ± 0.795</td>
<td>7.764 ± .370</td>
</tr>
<tr>
<td>Pooled</td>
<td>0.374 ± 0.004</td>
<td>10.017 ± 0.483</td>
<td>7.898 ± 0.451</td>
</tr>
</tbody>
</table>

Values are means ± SEM.
CHAPTER 3: JOURNAL ARTICLE
Ca,v1.2 splice variant with exon 9* is critical for regulation of cerebral artery diameter.

Matthew A. Nystoriak1, Kentaro Murakami1, Paul L. Penar2, and George C. Wellman1,2.

Departments of Pharmacology1 and Surgery, Division of Neurological Surgery2, University of Vermont, College of Medicine, Burlington, Vermont.

Running Head: Exon 9* Ca,v1.2 Regulates Cerebral Artery Constriction.

Contact Information: Address for reprint requests and other correspondence: G. C. Wellman, Univ. of Vermont, Dept. of Pharmacology, Given Bldg., 89 Beaumont Ave., Burlington, VT 05405-0068 (e-mail: george.wellman@uvm.edu)
Abstract

L-type voltage-dependent Ca\(^{2+}\) channels (VDCCs) are essential for numerous processes in the cardiovascular and nervous systems. Alternative splicing modulates proteomic composition of Ca\(_v1.2\) to generate functional variation between channel isoforms. Here, we describe expression and function of Ca\(_v1.2\) channels containing alternatively spliced exon 9* in cerebral artery myocytes. RT-PCR showed expression of Ca\(_v1.2\) splice variants both containing (α1C\(_{9/9*/10}\)) and lacking (α1C\(_{9/10}\)) exon 9* in intact rabbit and human cerebral arteries. Using laser capture microdissection and RT-PCR, expression of mRNA for both α1C\(_{9/9*/10}\) and α1C\(_{9/10}\) was demonstrated in isolated cerebral artery myocytes. Quantitative real-time PCR revealed significantly greater α1C\(_{9/9*/10}\) expression relative to α1C\(_{9/10}\) in intact rabbit cerebral arteries compared with cardiac tissue and cerebral cortex. To demonstrate a functional role for α1C\(_{9/9*/10}\), smooth muscle of intact cerebral arteries was treated with antisense oligonucleotides targeting α1C\(_{9/9*/10}\) (α1C\(_{9/9*/10}\)-AS) or exon 9 (α1C-AS), expressed in all Ca\(_v1.2\) splice variants, by reversible permeabilization and organ cultured for 1-4 days. Treatment with α1C\(_{9/9*/10}\)-AS reduced maximal constriction induced by elevated extracellular K\(^{+}\) ([K\(^{+}\)]\(_o\)) by approximately 75% compared with α1C\(_{9/9*/10}\)-sense treated arteries. Maximal constriction in response to the Ca\(^{2+}\) ionophore ionomycin and [K\(^{+}\)]\(_o\) EC\(_{50}\) values were not altered by antisense treatment. Decreases in maximal [K\(^{+}\)]\(_o\)-induced constriction were similar between α1C\(_{9/9*/10}\)-AS and α1C-AS groups (22.7 ± 9% and 25.6 ± 4% constriction, respectively). We conclude that although cerebral artery myocytes express both α1C\(_{9/9*/10}\) and α1C\(_{9/10}\) VDCC splice variants, α1C\(_{9/9*/10}\) is functionally dominant in the control of cerebral artery diameter.
Keywords: vascular smooth muscle, calcium channels, cerebral blood flow, splice variant.
Introduction

L-type voltage dependent calcium channels (VDCCs) play a crucial role in the physiological processes of numerous cell types. In the resistance circulation, arterial constriction is dependent on membrane potential depolarization and Ca\(^{2+}\) entry via Ca\(_v\)1.2 channels in vascular smooth muscle (15, 21). An increase in global cytosolic Ca\(^{2+}\) leads to Ca\(^{2+}\)/calmodulin-dependent activation of myosin light chain kinase, myosin light chain phosphorylation, increased actin-myosin interaction, smooth muscle contraction and decreased vessel diameter. This mechanism is essential for proper regulation of organ perfusion and systemic blood pressure.

VDCCs are multimeric protein complexes comprised of an α1 pore-forming subunit associated with β and α\(_2\)δ auxiliary subunits (5, 8, 24). L-type VDCC currents are distinguished by high activation potentials, slow inactivation of barium currents, and selective inhibition by dihydropyridines (DHPs), phenylalkylamines, and benzothiazepines (5). The Ca\(_v\)1.2 gene, CACNA1C consists of 55 exons, 19 of which are subject to extensive alternative splicing with 40 splice variations found at 12 loci (34). cDNA library screening studies have allowed the identification of the cardiac and smooth muscle Ca\(_v\)1.2 isoforms, differing in composition at four alternative splice sites (2, 22, 28, 31). The purported smooth muscle splice combination consists of exons 1/8/+ 9*/32 while the cardiac form consists of exons 1a/8a/- 9*/31. Smooth muscle L-type channels are reported to activate at more hyperpolarized (~15 mV) membrane potentials (14, 30) and display greater DHP sensitivity than analogous channels in the heart (35). A previous study suggests that the presence of exon 8 rather than 8a to form transmembrane
segment 6 of domain I (IS6) in smooth muscle channels contributes to differences in DHP inhibition (36). Other work has shown that the inclusion of the 25 amino acid insertion exon 9* in the intracellular linker region between homologous domains I and II affects channel gating properties resulting in a hyperpolarizing shift in activation potential and current-voltage relationship (26). The electrophysiological alteration imposed by the addition of exon 9* to the channel protein structure suggests that expression of exon 9* may be a critically important mechanism for the fine-tuning of channel function such that smooth muscle VDCCs activate at physiologically relevant membrane potentials. Although such a role for Ca$_{v}$1.2 channels expressing exon 9* would be suitable for proper vascular function, the physiological significance of this splice variant in the regulation of blood vessel diameter has not been directly investigated.

Here, the objective was to determine the role of the exon 9* Ca$_{v}$1.2 splice variant in constriction of resistance size cerebral arteries. Consistent with previous findings by others (3, 13, 26), we provide evidence for exon 9* expression in cerebral arteries and further show a significantly higher ratio of exon 9* mRNA relative to total Ca$_{v}$1.2 mRNA in cerebral arteries compared with cerebral cortex and cardiac tissue. RT-PCR performed on cDNA obtained from myocytes isolated by laser-capture microdissection found expression of both splice variants in cerebral artery smooth muscle. Antisense oligodeoxynucleotides were used to selectively suppress α1C$_{9/9^{*}/10}$ in cerebral artery smooth muscle to examine the functional role for this splice variant in cerebral artery constriction. Our findings indicate that despite heterogeneous mRNA expression of both
αC\textsubscript{9\text*/10} and αC\textsubscript{9/10} isoforms by cerebral artery myocytes, αC\textsubscript{9\text*/10} channels play a dominant role in constriction of these vessels.
Methods

Animals. New Zealand White rabbits (males, 3.0-3.5 kg) were used in this study. All experiments were conducted in accordance with the Guidelines for the Care and Use of Laboratory Animals (NIH Publication 85-23, 1985) and followed protocols approved by the Institutional Animal Use and Care Committee of the University of Vermont. Animals were euthanized under deep pentobarbital anesthesia (150 mg/kg iv) by exsanguination and decapitation. Posterior cerebral and cerebellar arteries were dissected in ice cold physiological saline solution (PSS) of the following composition (in mM): 118.5 NaCl, 4.7 KCl, 24 NaHCO$_3$, 1.18 KH$_2$PO$_4$, 2.25 CaCl$_2$, 1.2 MgCl$_2$, 0.023 EDTA, and 11 glucose, aerated with 5% CO$_2$, 20% O$_2$, 75% N$_2$ (bath pH: 7.4). Cerebral artery myocytes (40-60 cells/sample) were collected from enzymatically dissociated freshly isolated posterior cerebral arteries (23, 37) using a P.A.L.M. Laser Capture Microdissection system (Zeiss, Bernried, Germany). Human cerebral arteries, removed as a necessary part of a required procedure, were obtained from two consenting surgical patients. Patients were not receiving calcium channel blockers or other antihypertensive agents at the time of surgery. The University of Vermont has an approved assurance of compliance on file with the Department of Health and Human Services covering this activity (Assurance identification number: FWA723; IRB identification number 0485).

RT-PCR. Total RNA was extracted using RNA STAT-60 total RNA/mRNA isolation reagent (Tel-test, Friendswood, TX) (4). Total RNA was reverse transcribed to cDNA
using SuperScript First-Strand synthesis system (Invitrogen, Carlsbad, CA). Semi-quantitative PCR was performed using primers detecting the region spanning exons 7-11 of Ca\textsubscript{v}1.2 (Genbank accession No. X55763) (Fig. 1a) of the following sequences:

\textit{forward} \quad (5'-TGCTTTGCACCATGTGTGACG-3'), \quad \textit{reverse} \quad (5'-GAATTTGCTTTGAGATCCGG-3'). Amplification was performed with Taq PCR core kit (Qiagen) using the following protocol: 94° C 3 min, 35 cycles of 94° C 1 min, 55° C 1 min, 72° C 1 min, and final extension at 72° C for 10 min. PCR products were separated by electrophoresis using 2% agarose gel. Quantitative real-time PCR was performed using primers detecting exons 9*-10 \[\alpha_{1C_{9/9/10}} \textit{forward} \quad (5'\text{-}CTTGCATGCCCAGAAGAAAG-3'), \quad \textit{reverse} \quad (5'\text{-}TAGCGGCTGAATTTTCGACTT-3')\], exons 9-10 \[\alpha_{1C_{9/9/10}} \textit{forward} \quad (5'\text{-}CCCGAAACATGAGCATGC-3'), \quad \textit{reverse} \quad (5'\text{-}GCACTTTTCTCTCAGAAACC-3')\] by using a sense primer specific for the boundary of exons 9/10 of Ca\textsubscript{v}1.2 (Fig. 2A), and 18S \[18S \textit{forward} \quad (5'\text{-}AGTCGCCGTGCCTACCAT-3'), \quad \textit{reverse} \quad (5'\text{-}GCCTGCTGCCTTCCTTNG-3')\]. Amplification was performed with SYBR Green JumpStart Taq ReadyMix (Sigma, St. Louis, MO) using a real-time PCR system (Applied Biosystems, Carlsbad, CA). Quantification was performed using standard curves constructed by amplification of serially diluted plasmids containing target genes.

Cerebral artery myocytes samples were screened for cell-specific markers using the following primer sets: smooth muscle myosin heavy chain \[\textit{forward} \quad (5'\text{-}CACCACACATCTACGCCCATC-3'), \quad \textit{reverse} \quad (5'\text{-}TGATGCTGTGTCCTTCTG-3')\], endothelin 1 \[\textit{forward} \quad (5'\text{-}AAAGGCAAGACTGCTCACA-3'), \quad \textit{reverse} \quad (5'-
GCACTCCTTGTCCTCCTGTG-[3’]), fibroblast specific protein 1 [forward (5’-GGGGTGACAAGTTCAAGCTC-3’), reverse (5’-CTGGAAGTCCACCTCGTTGT-3’)], and growth associated protein-43 [forward (5’-AGCCAGGAGGAGCCTAAAC-3’) reverse (5’-TCAGGGCATGTTCTTGGTCAG-3’)]. Nested PCR was performed using primers for exons 7-11 (above) of Ca1.2 for first round amplification (35 cycles) and using the following nested PCR primers for 35 cycles of amplification of 1:100 dilution of first round products: forward (5’-CGTGCTGTACTGGGTCAATG-3’), reverse (5’-CAGCCACGTTTTCAGTGTG-3’).

Immunostaining of isolated cerebral artery myocytes. Dissociated cell suspensions were fixed with 4% formalin and plated on Superfrost Plus microscope slides (Fisher Scientific, Waltham, MA) with a cytocentrifuge. Cells were dried for 10 min and blocked and permeabilized in 3% milk/0.1% Triton X-100 phosphate-buffered saline (PBS) for 20 min. Cells were rinsed with PBS for 30 min and incubated (4°C/overnight) in PBS containing mouse monoclonal antibody raised against rabbit smooth muscle myosin heavy chain 2 (SM-MHC) (1:125 dilution; Abcam, Cambridge, MA) or monoclonal antibody against α-smooth muscle actin conjugated to Cy3 (1:200; Sigma, St. Louis, MO). Cells were then rinsed in PBS, and slides treated with anti-SM-MHC were incubated in anti-mouse IgG conjugated to Cy3 (1:500; Jackson ImmunoResearch Laboratories, West Grove, PA). Images were taken (40x) using a Zeiss LSM 510 Meta confocal microscope.
Use of antisense oligonucleotides. For suppression of α1C9/9*/10, antisense oligonucleotides (Operon Biotechnologies, Huntsville, AL) were designed to target a sequence specific to the coding region of exon 9* of Ca1.2 mRNA transcripts: α1C9/9*/10-AS: 5’-A*A*G*C*CCGCTGGAGTGC*C*T*C*T-3’. To suppress the total population of Ca1.2 channels, antisense oligodeoxynucleotides were designed to target exon 9 which is not alternatively spliced and is expressed in all Ca1.2 transcripts: α1C-AS 5’-C*T*C*T*TCCAGCTGCTGCTTC*T*C*C*C-3’. Control sense oligonucleotides of the following sequences were designed: α1C9/9*/10-sense: 5’-A*G*A*GCGCTCCAGCGG*G*C*T*T-3’ and α1C-sense: 5’-G*G*G*A*GAAGCAGCAGCTGGA*A*G*A*G-3’. The first and last four bases of each oligonucleotide were phosphorothioated to prevent degradation by cellular nucleases (designated by “*”). All oligonucleotides were reconstituted with nuclease-free water at a concentration of 10 mM.

Reversible permeabilization and organ culture of cerebral arteries. The introduction of oligonucleotides into smooth muscle of intact cerebral arteries was achieved by a reversible permeabilization (RP) procedure (9, 25). Arterial segments were first incubated at 4°C for 30 min in the following solution (in mM): 120 KCl, 2 MgCl2, 10 EGTA, 5 NaATP, 20 N-tris-(hydroxymethyl)methyl-2-aminoethanesulfonic acid (pH 6.8). Arteries were then incubated in a similar solution containing oligonucleotide (10 μM) for 90 min at 4°C and then in a solution containing elevated MgCl2 (10 mM). Permeabilization of arteries was reversed by incubating arteries for 30 min at room
temperature in physiological solution containing the following (in mM): 140 NaCl, 5 KCl, 10 MgCl$_2$, 5.6 glucose, 2 3-(N-morpholino)propanesulfonic acid (pH 7.1). Next, [Ca$^{2+}$] was gradually increased in this solution from nominally Ca$^{2+}$-free to 0.01, 0.1, and 1.8 mM over a period of 45 min. Following reversible permeabilization, arterial segments were organ cultured by placing the arteries in serum-free DMEM-F12 culture media (Invitrogen, Carlsbad, CA) and incubating at 37˚C and 5% CO$_2$ for 1 to 4 days (18, 27).

Diameter measurements in isolated arteries. Freshly isolated and cultured cerebral artery segments were cannulated on glass micropipettes mounted in a 5 ml myograph chamber (University of Vermont Instrumentation and Model Facility) as described previously (18, 19, 27). Following cannulation, arteries were pressurized at 20 mmHg and continuously superfused with aerated PSS at 37˚C and pH 7.4 for 30 min to allow equilibration. Arterial diameter was measured with video edge detection equipment and recorded using data acquisition software (Dataq Instruments Inc., Akron, OH). Arteries were exposed to PSS containing elevated [K$^+$], made by isoosmotic replacement of NaCl with KCl. Arterial constriction was expressed using the following equation:

$$\text{% Constriction} = (1 - (D - D_{\text{min}})/(D_{\text{max}} - D_{\text{min}})) \times 100$$

where D_{max} is the maximum diameter obtained in Ca$^{2+}$-free PSS containing diltiazem (100 μM) and forskolin (1 μM) and D_{min} is the minimum diameter obtained with the Ca$^{2+}$ ionophore ionomycin (10 μM) at the end of each experiment. Ionomycin-induced constrictions (table 1) are presented as a percentage of maximum diameter (D_{max}). Arteries not achieving >70 % constriction in
response to ionomycin were not used for analysis. Half-maximal effective concentration (EC$_{50}$) was determined from each [K$^+$]$_o$ concentration-response experiment.

Statistical analysis. Values are presented as means ± SEM. One-way analysis of variance followed by Tukey multiple comparison test was used in the comparison of multiple groups. Student’s t-test was used in the comparison of two groups. Statistical significance was considered at the level of $p < 0.05$ (*) or $p < 0.01$ (**).
Results

Cerebral arteries demonstrate enhanced expression of $\alpha_1C_{9/9*/10}$ compared with brain and heart.

Previous work has shown selective expression of $\alpha_1C_{9/9*/10}$ splice variants by smooth muscle-containing tissues. However, mRNA expression of both α_1c splice variants including ($\alpha_1C_{9/9*/10}$) and excluding ($\alpha_1C_{9/10}$) exon 9* has been reported in aorta (3, 13, 26). Therefore, our first objective was to investigate whether small diameter (100-250 μm) cerebral arteries express mRNA for both $\alpha_1C_{9/9*/10}$ and $\alpha_1C_{9/10}$. To detect expression of $\alpha_1C_{9/9*/10}$, we designed PCR primers to generate products consisting of exons 7-11 of α_1c (Fig. 1A) such that a shift in product size would result if the 75 nucleotide (nt) insertion for exon 9* was expressed. RT-PCR analysis resulted in two distinct bands from rabbit cerebral arteries (Fig. 1B; n=7). Sequence analysis confirmed the lower band of 460 nt represents $\alpha_1C_{9/10}$ while the upper band of 535 nt represents $\alpha_1C_{9/9*/10}$. Human cerebral arteries were also analyzed and found to express both $\alpha_1C_{9/9*/10}$ and $\alpha_1C_{9/10}$ similar to arteries from rabbit (Fig. 1C). In contrast, cardiac tissue (left ventricle; n=8) and brain tissue (cerebral cortex; n=5) were found to express one dominant product corresponding to $\alpha_1C_{9/10}$ (Fig. 1B).

Quantitative real-time PCR was used to evaluate relative expression levels of $\alpha_1C_{9/9*/10}$ in these tissues. We hypothesized the fraction of mRNA for Ca_v1.2 expressing exon 9* is greater in cerebral arteries than cardiac and brain tissue. $\alpha_1C_{9/9*/10}$ and $\alpha_1C_{9/10}$ expression was measured separately by using either a PCR primer specific for exon 9* sequence ($\alpha_1C_{9/9*/10}$-specific) or a primer specific for the boundary of exons 9 and 10.

113
(α1C9/10-specific; Fig. 2A). α1C9/9*/10 and α1C9/10 expression was normalized to 18S ribosomal RNA levels. This approach allows quantification of the α1C9/9*/10:α1C9/10 mRNA ratio, which is representative of α1C9/9*/10 relative to overall Ca1.2 expression considering that α1C9/9*/10 and α1C9/10 are mutually exclusive splice variants. We found that cerebral arteries express significantly higher relative levels of α1C9/9*/10 compared with brain and heart tissues (Fig. 2B; ~fifty-two fold and ~six fold difference, respectively). Together, these results demonstrate mRNA for both α1C9/9*/10 and α1C9/10 splice variants in cerebral arteries and enhanced relative expression of α1C9/9*/10 in cerebral arteries compared with brain and heart.

Isolated cerebral artery myocytes express both α1C9/9*/10 and α1C9/10 splice variants.

We next chose to clarify whether cerebral artery myocytes express mRNA for both splice variants or if α1C9/10 detection was due to the presence of non-smooth muscle cell types within the vascular wall, such as fibroblasts or perivascular neurons, which are reported to express Ca1.2 (10, 13, 17, 32). Live freshly isolated cerebral artery myocytes (~40-60 cells) were collected by laser capture microdissection for RT-PCR analysis (Fig. 3B). These elongated spindle-shaped cells showed strong immunofluorescent staining for SM-MHC or SM-α-actin, markers commonly used to identify smooth muscle (1, 11) (Fig. 3A). RT-PCR was used to examine expression of specific cell markers: smooth muscle myosin heavy chain (SM-MHC; smooth muscle), endothelin-1 (ET-1; endothelium) (38), fibroblast specific protein-1 (FSP-1; fibroblast) (33) and growth associated protein-43 (GAP43; neuron) (39) in mRNA isolated from both intact arteries and isolated myocytes.
The above cell markers all amplified using intact cerebral artery mRNA (Fig. 3C), consistent with the presence of multiple cell types in intact vessels. However, only the smooth muscle marker SM-MHC was expressed in freshly isolated myocytes, confirming purity of our samples. Nested PCR for exons 7-11 of Ca,1.2 demonstrated two bands corresponding to α1C,9/9*/10 and α1C,9/10 in isolated cerebral artery myocytes, similar to the intact tissue (Fig. 3D). These data demonstrate heterogeneous mRNA for both α1C,9/9*/10 and α1C,9/10 in isolated smooth muscle from cerebral arteries.

α1C,9/9*/10 plays critical role in depolarization-induced constriction of cerebral arteries.

High expression levels of α1C,9/9*/10 in cerebral artery myocytes suggest this splice variant may have an important role in vascular function. We therefore tested the hypothesis that α1C,9/9*/10 splice variants are an important regulator of cerebral artery diameter. Two antisense oligonucleotide sequences were designed to examine the functional role of α1C,9/9*/10. First, α1C,9/9*/10-AS targeting a sequence specific for exon 9* was used for selective suppression of the α1C,9/9*/10 variant. Second, α1C-AS targeting a sequence specific for exon 9, which is constitutively expressed in all L-type VDCC splice variants, was used for non-selective suppression of all Ca,1.2 isoforms. Four days following treatment, standard RT-PCR and qPCR demonstrated a significant reduction (43 ± 6.9%) in α1C,9/9*/10 expression following treatment with α1C,9/9*/10-AS compared with α1C,9/9*/10-sense treated arteries (Fig. 4A and B). However, suppression of α1C,9/10 was not observed following treatment with α1C,9/9*/10-AS. In contrast to the effect of α1C,9/9*/10-AS, arteries
treated with α1C-AS exhibited a significant reduction in expression for both α1C_{9/9*/10} and α1C_{9/10} splice variants (Fig. 4A and B).

To examine the effect of suppressing α1C_{9/9*/10} on arterial constriction, luminal diameter measurements were performed while increasing external K⁺ ([K⁺]_o) in the bath solution over a range of concentrations from 6 to 120 mM following a period of 1 to 4 days in organ culture. The relationship between extracellular [K⁺]_o and membrane potential at [K⁺]_o > 16 mM closely follows that which is predicted by the Nernst equation (16, 21).

Step-wise increases in [K⁺]_o caused graded arterial constriction of control freshly-isolated vessels (Fig. 5 and 6). α1C_{9/9*/10}-AS, α1C_{9/9*/10}-sense and RP only groups all responded similarly to freshly isolated vessels following one day in culture (Fig. 6). However, K⁺-induced constrictions, expressed as a percentage of maximum constriction caused by ionomycin (see methods), was significantly reduced in α1C_{9/9*/10}-AS arteries compared with control α1C_{9/9*/10}-sense treated and RP arteries after two days. For example, α1C_{9/9*/10}-AS treated vessels exhibited 52 ± 5.9% constriction in response to 60 mM K⁺ on day 2 compared with 80 ± 2.1% and 75 ± 2.9% constriction in α1C_{9/9*/10}-sense treated and RP vessels, respectively. Further reductions were observed in α1C_{9/9*/10}-AS treated arteries on day 3 (e.g., 26 ± 4.1% in [K⁺]_o = 60 mM) and day 4 (e.g., 23 ± 4.9% in [K⁺]_o = 60 mM) of organ culture (Fig. 6). α1C_{9/9*/10}-sense treated and RP arteries constricted to a similar degree as freshly isolated vessels at all time points tested (Fig. 5 and 6). Mean diameters of arteries exposed to these treatments are shown in Table 1. No significant differences in EC₅₀ values for K⁺ were observed between groups (Table 1).
Diameter values and maximal constriction to ionomycin were similar between groups at all time points tested (Table 1). Fully dilated arterial diameter, obtained in Ca^{2+}-free PSS containing diltiazem and forskolin, was not significantly different between groups (α1C_{99*10}-AS: 201 ± 13 μm, n=17; Sense: 214 ± 16 μm, n=17, RP: 199 ± 13 μm, n=16). Taken together, these data demonstrate an important role for α1C_{99*10} in the regulation of cerebral artery constriction.

α1C_{99*10} is the functionally dominant splice variant in cerebral arterial constriction.

Our data imply that although cerebral artery myocytes express both α1C_{99*10} and α1C_{9/10}, α1C_{99*10} plays a major role in cerebral artery constriction. To examine the role of α1C_{9/10} in cerebral artery constriction, we compared the effect of suppressing α1C_{99*10} to suppressing all Ca_{v}1.2 splice variants (both α1C_{99*10} and α1C_{9/10}) using α1C-AS. Arteries treated with α1C-AS exhibited diminished constriction to 60 mM [K^{+}]_o that was similar to that observed in arteries treated with α1C_{99*10}-AS (Fig. 7; α1C_{99*10}-AS: 23.5 ± 3.6%, n=6; α1C-AS: 25.6 ± 4.3%, n=5) suggesting that suppression of all Ca_{v}1.2 splice variants had no greater effect on constriction to 60 mM [K^{+}]_o than selectively suppressing α1C_{99*10}. These data suggest that the isoform containing exon 9* is the functionally dominant Ca_{v}1.2 splice variant in cerebral artery constriction.
Discussion

Here we demonstrate that cerebral artery myocytes express Ca\textsubscript{v}1.2 splice variants both containing (\(\alpha 1C_{99*/10}\)) and lacking (\(\alpha 1C_{9/10}\)) exon 9* and that \(\alpha 1C_{9/9*/10}\) plays a dominant role in cerebral artery constriction. The following observations are consistent with this novel finding: 1) cerebral arteries have a significantly higher ratio of \(\alpha 1C_{99*/10} : \alpha 1C_{9/10}\) mRNA compared with cerebral cortex or cardiac tissue. 2) RT-PCR performed on cDNA from isolated cerebral artery myocytes confirmed expression of both \(\alpha 1C_{99*/10}\) and \(\alpha 1C_{9/10}\) in smooth muscle. 3) Selective suppression of the \(\alpha 1C_{99*/10}\) splice variant caused a marked reduction in K+-induced arterial constriction. 4) Suppression of all Ca\textsubscript{v}1.2 splice variants caused no further reduction in K+-induced arterial constriction. In addition, we found a similar expression profile of \(\alpha 1C_{99*/10}\) and \(\alpha 1C_{9/10}\) splice variants in cerebral arteries from humans.

This work expands our understanding of the molecular composition of smooth muscle VDCCs responsible for the control of arterial diameter and blood flow. Unlike cardiac myocytes, vascular smooth muscle operates in a state of tonic contraction responding to modest changes in membrane potential caused, for example, by changes in intravascular pressure, neurotransmitter release, circulating catacholamines, and endothelial influences. Thus, L-type VDCCs expressed by vascular smooth muscle respond to small voltage changes at relatively negative membrane potentials compared to more depolarized membrane potentials reached during action potentials in cardiac myocytes or neurons. Recent studies using cell expression systems have found expression of the 25 amino acid insertion exon 9* causes a 9 mV hyperpolarizing shift in
L-type VDCC $V_{0.5, \text{act}}$ (6, 26). This hyperpolarizing shift in the activation of this splice variant would be well-suited to the range of vascular smooth membrane potential *in vivo* (-45 to -35 mV) (29). We now report that exon 9*-containing L-type VDCCs are the dominant Ca$_v$1.2 splice variant contributing to cerebral artery constriction. To our knowledge, this is the first study directly demonstrating a physiological role for a single Ca$_v$1.2 splice variant.

We have observed that whole arterial tissue containing smooth muscle, endothelial, fibroblast and perivascular neural cells expresses both $\alpha 1C_{9/9^*/10}$ and $\alpha 1C_{9/10}$ splice variants. While endothelial cells are known to lack expression of VDCCs (13), Ca$_v$1.2 expression by fibroblasts and neurons is well documented (10, 17, 32). To further explore the composition of Ca$_v$1.2 splice variants in vascular smooth muscle, we performed PCR on mRNA obtained from freshly isolated vascular myocytes using laser capture microdissection. This approach demonstrated mRNA for both $\alpha 1C_{9/9^*/10}$ and $\alpha 1C_{9/10}$ isoforms in a pure population native vascular smooth muscle. Compared to vascular tissue, we found a relatively low level of $\alpha 1C_{9/9^*/10}$ mRNA in heart and cerebral cortex tissue providing additional support that exon 9* is selectively expressed by smooth muscle. It is possible that apparent differences in the stoichiometry of $\alpha 1C_{9/9^*/10}$ and $\alpha 1C_{9/10}$ splice variants may reflect discrepancies in total levels of Ca$_v$1.2 expressed between tissues. However, an earlier study by Graf et al. demonstrated that the ratio of $+9^*:-9^*$ Ca$_v$1.2 is not well correlated with expression levels of total Ca$_v$1.2 (13). For example, it was shown that human cardiac ventricle and aorta express similar levels of total Ca$_v$1.2, although the $+9^*:-9^*$ ratio is greater in aorta. Increased $\alpha 1C_{9/9^*/10}$: $\alpha 1C_{9/10}$
mRNA ratio observed in vascular smooth muscle is therefore unlikely to be due to
differential expression of total Ca\textsubscript{v}1.2 levels compared with brain and heart.

The use of antisense oligonucleotides to specifically suppress 9*-containing
Ca\textsubscript{v}1.2 channels revealed a substantial decrease in K+-induced constriction supporting a
functional role for this splice variant in vascular physiology. In fact, antisense
oligonucleotides targeting a region common to all Ca\textsubscript{v}1.2 splice variants (exon 9) caused
no greater decrease in contractility than suppression of only α1C\textsubscript{9/9\ast/10}. These data
suggest exon 9*-containing Ca\textsubscript{v}1.2 channels play a dominant role in regulating smooth
muscle contraction. It should be noted that this conclusion is based on the assumptions
that both antisense oligonucleotides used in this study suppress translation of their target
with similar efficiency and that functional effects are not due to non-specific suppression
of total Ca\textsubscript{v}1.2 levels. Consistent with these assumptions, we observed a maximal
response using both antisense oligonucleotides at day 4 with no greater suppression
occurring after five days of treatment (data not shown). Further, the EC\textsubscript{50} for [K+]\textsubscript{o} was
not altered by α1C\textsubscript{9/9\ast/10}-AS, consistent with a functional population of Ca\textsubscript{v}1.2 channels
with a uniform V\textsubscript{0.5, act}. Considering the loss of endothelial function following prolonged
organ culture of arteries (20), it is possible that compensatory changes in Ca\textsubscript{v}1.2 splice
variant expression may occur. However, we have found using RT-PCR that the ratio of
α1C\textsubscript{9\ast/10}:α1C\textsubscript{9/10} does not change following up to four days in culture (data not shown).
Future studies are needed to address whether α1C\textsubscript{9\ast/10} also plays a dominant role in
vasoconstriction to endogenous compounds and physiological increases in intravascular
pressure.
The unique location of exon 9* within the structure of the α subunit may also play a role in post-translational regulation of VDCCs in vascular smooth muscle. Interestingly, the site of α/β subunit interaction, known as the alpha interaction domain is found 18 amino acids upstream of exon 9* within the I-II intracellular linker region of the α1c protein. It has previously been shown that functional interaction between the α1 and β subunit is required for correct targeting of the channel to the plasma membrane (12). It remains possible that α1 subunits expressing exon 9* may differentially bind specific Caβ isoforms compared to α1 subunits lacking the insertion, leading to favored trafficking of α1C9/9*/10 to the membrane and a dominant functional role for this splice variant. Further research is needed to elucidate whether the presence of exon 9* alters the binding of β subunit subtypes or splice isoforms. It should be noted that smooth muscle-selective alternatively spliced exons other than exon 9* could be preferentially expressed in 9*-containing channels and may also contribute to functional distinction of vascular smooth muscle VDCCs. For example, it has recently been shown that inclusion of exon 1c in full length cloned Ca1.2 channels can lead to a hyperpolarizing shift in V0.5,act in HEK293 cells, similar to inclusion of exon 9*(7).

In summary, this study suggests that the exon 9*-containing Ca1.2 splice variant controls cerebral artery myocyte Ca2+ influx, arterial diameter and cerebral blood flow. We propose that α1C9/9*/10 may represent a novel target for therapeutics against vascular pathologies associated with increased Ca2+ influx in vascular smooth muscle leading to enhanced arterial constriction. Future genetic or pharmacological strategies targeting smooth muscle-selective Ca1.2 splice variants could provide a valuable means of
modulating vascular tone while avoiding widespread effects on VDCC isoforms in cardiac or nervous systems.
Grants

This work was supported by the Totman Medical Research Trust Fund, the Peter Martin Brain Aneurysm Endowment, National Institutes of Health Grants P20-RR-16435 and R01-HL-078983 and American Heart Association pre-doctoral fellowship award (0815736D).

Acknowledgements

We thank Drs. Joseph Brayden, Masayo Koide, Ping Liao, Victor May, Mark Nelson, Tuck Wah Soong, and Margaret Vizard, and Ms. Kristin Schutz, Marilyn Wadsworth Theresa Wellman, and Mr. Thomm Buttolph, Colby Cantu and Edward Zelazny for helpful comments and assistance on this study. The authors also would like to acknowledge the University of Vermont Neuroscience COBRE molecular biology and Microscopy Imaging Center core facilities.
References

Figure Legends

Figure 1: Cerebral arteries express $\alpha 1C_{9/9^{*}/10}$. A: PCR primer design for the detection of $\alpha 1C_{9/9^{*}/10}$ and $\alpha 1C_{9/10}$. Amplification of transcripts containing exon 9* results in 535 nt product while amplification of transcripts excluding exon 9* results in 460 nt product. B: Representative gel demonstrating two bands corresponding to both $\alpha 1C_{9/9^{*}/10}$ and $\alpha 1C_{9/10}$ present in whole cerebral arteries (n=7) while $\alpha 1C_{9/10}$ band is most prominent in brain (n=5) and heart tissue (n=8). C: Resulting RT-PCR gel using cDNA obtained from whole cerebral arteries from human (n=2) demonstrates presence of two bands corresponding to $\alpha 1C_{9/9^{*}/10}$ and $\alpha 1C_{9/10}$.

Figure 2: Quantitative real-time PCR (qPCR) shows high expression of $\alpha 1C_{9/9^{*}/10}$ in cerebral arteries. A: PCR primer sets for the specific detection of $\alpha 1C_{9/9^{*}/10}$ and $\alpha 1C_{9/10}$. $\alpha 1C_{9/9^{*}/10}$ specific (left) forward primer recognizes sequence specific to exon 9*. $\alpha 1C_{9/10}$ (right) forward primer recognizes sequence of boundary between exons 9 and 10. Sequence analysis of PCR products confirmed specificity of primers for target sequences. B: Summary qPCR data for cerebral arteries, brain (cortex) and heart (left ventricle). The ratio of $\alpha 1C_{9/9^{*}/10}$:$\alpha 1C_{9/10}$ mRNA was significantly greater in cerebral arteries relative to brain and heart (0.289 ± 0.024; n=7 compared to 0.006 ± 0.001; n=4 and 0.050 ± 0.006; n=8, respectively). **p<0.01 vs. brain and heart.
Figure 3: Cerebral artery myocytes express both α1C_{9/9*10} and α1C_{9/10} splice variants.

A: Immunostaining of isolated cerebral artery myocytes. Red: SM-MHC; Green: SM-α-actin (color changed from red to green to distinguish from SM-MHC); Blue: DAPI nuclear stain. Scale bars represent 10 μm. A lack of staining was observed for SM-MHC or SM-α-actin by cells incubated without primary antibody (right panel).

B: Microdissection of isolated cerebral artery myocytes. Live myocytes plated on P.A.L.M. Duplex dish (Ziess) were identified by cell morphology and the surrounding dish membrane was cut (i.). Myocytes were then catapulted (ii.) onto P.A.L.M. Adhesivecap collection tubes (Ziess) for mRNA extraction. Scale bars represent 25 μm.

C: Representative gel showing the presence of cell markers: smooth muscle myosin heavy chain (SM-MHC; smooth muscle), endothelin-1 (ET-1; endothelium), fibroblast specific protein-1 (FSP-1; fibroblast) and growth associated protein-43 (GAP43; neuronal). All markers are amplified using cDNA from whole cerebral arteries. cDNA from cerebral artery myocytes samples collected by laser capture microdissection demonstrate amplification of SM-MHC while other markers were not detected.

D: Results of nested PCR performed on cDNA from isolated cerebral artery myocytes. First round of amplification (35 cycles) was performed using primers for exons 7-11 of Ca_V1.2 (see Fig. 1A). Second round of amplification (35 cycles) was done using nested primers (see methods) and 1:100 dilution of first-round PCR products. Final products represent expression of α1C_{9/9*10} (upper band) and α1C_{9/10} (lower band) (n=5).
Figure 4: Selective suppression of Ca,1.2 splice variants following antisense treatment and organ culture for four days.

A: RT-PCR was performed on cDNA from arteries treated with α1C_{9\%/9*/10}-AS, α1C-AS, and corresponding sense oligonucleotides. Band intensity corresponding to α1C_{9\%/10} was reduced in α1C_{9\%/9*/10}-AS treated artery samples following four days in organ culture compared with sense treated arteries (left, n=4). Lower band, corresponding to α1C_{9/10}, was similar between two groups. RT-PCR gel demonstrating reduction in both α1C_{9\%/9*/10} and α1C_{9/10} band intensity following treatment with α1C-AS and organ culture for 4 days (right, n=4). Total RNA used was similar as shown by endogenous control 18S ribosomal RNA.

B: Quantification of changes in mRNA levels using qPCR in antisense-treated arteries compared with sense treated arteries from same animal. *p<0.05 (α1C_{9\%/9*/10}-AS/S: n=4; α1C-AS/S: n=4).

Figure 5: Representative arterial diameter traces demonstrating important functional role for α1C_{9\%/10} in arterial constriction. All arteries were cannulated, pressurized to 20 mmHg and perfused with PSS for 30 minutes prior to stepwise increases in [K⁺]o. Control freshly isolated and sense treated (day 4) arteries responded to increases in [K⁺]o by graded constriction. α1C_{9\%/10}-AS treated (day 4) arteries exhibited a marked reduction in [K⁺]o-induced constriction. Ionomycin (10 μM) was applied at the end of each experiment.

Figure 6: Time course for α1C_{9\%/10}-AS effect.

Day 1: α1C_{9\%/10}-AS, α1C_{9\%/10}-sense treated (α1C_{9\%/10}-S), and RP arteries exhibit constriction similar to freshly isolated
cerebral arteries (day 0). **Day 2-4:** α1C-AS arteries exhibit significantly reduced arterial constriction in response to increased [K+]\textsubscript{o} with constrictions nearly abolished following four days in organ culture compared with α1C-sense and RP arteries organ cultured for the same period of time. *p<.05, **p<.01. No significant differences were observed in arterial constriction between α1C-sense treated artery groups (days 1-4, n=4-5) and freshly isolated arteries (day 0, n=5). *p<0.05; **p<0.01.

Figure 7: α1C plays a dominant role in cerebral artery constriction. **A:** Representative diameter traces showing response to 60 mM [K+]\textsubscript{o} followed by application of 10 μM ionomycin. **B:** Summary of 60 mM [K+]\textsubscript{o} for antisense-treated arteries. All constrictions were normalized to minimum diameter obtained in ionomycinand maximum diameter obtained in Ca2+-free PSS with diltiazem (100 μM) and forskolin (1 μM). After four days in organ culture following oligonucleotide treatment, arteries treated with α1C-AS exhibited similar response to 60 mM [K+]\textsubscript{o} as arteries treated with α1C-AS. α1C-AS and α1C-AS groups were significantly decreased compared with corresponding sense-treated groups. No significant difference was observed between α1C-AS and α1C-AS groups (*p<0.05; α1C-sense, n=4; α1C-AS, n=6; α1C-sense, n=5; α1C-AS, n=5).

Table 1: Diameter values are shown for α1C-AS, α1C-S, and RP arteries in PSS (6 mM [K+]\textsubscript{o}), 80 mM [K+]\textsubscript{o}, and 120 mM [K+]\textsubscript{o} containing 10 μM ionomycin (ionomycin group) for all time points tested. Also shown is ionomycin constriction,
expressed as % decrease from maximum diameter and EC$_{50}$ values calculated from [K$^{+}$]$_{o}$ concentration-response curves. *p<0.05, **p<0.05 vs. $\alpha 1C_{99/910}$-sense and RP groups.
Figure 1: Cerebral arteries express exon 9*.
Figure 2: Selective expression of exon 9* in cerebral arteries.
Figure 3: Cerebral artery myocytes express mixed population of Ca\textsubscript{v}1.2 splice variants.
Figure 4: Selective suppression of CaV1.2 splice variants.
Figure 5: Representative constriction in response to increasing extracellular K^+.
Figure 6: Time course for exon 9*-antisense effect.
Figure 7: Exon 9* plays a dominant role in cerebral artery constriction.
Table 1: Diameter values for K^+ concentration-response experiments.

<table>
<thead>
<tr>
<th></th>
<th>RP</th>
<th>α1C<sub>99/10*-Sense</sub></th>
<th>α1C<sub>99/10*-AS</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter (μm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 mM [K<sup>+</sup>]<sub>o</sub></td>
<td>170 ± 27.8</td>
<td>186 ± 18.7</td>
<td>182 ± 21.8</td>
</tr>
<tr>
<td>80 mM [K<sup>+</sup>]<sub>o</sub></td>
<td>62 ± 16.1</td>
<td>66 ± 9.2</td>
<td>63 ± 7.6</td>
</tr>
<tr>
<td>Ionomycin</td>
<td>37 ± 13.1</td>
<td>37 ± 7.5</td>
<td>29 ± 2.6</td>
</tr>
<tr>
<td>Ionomycin-induced Constriction (% of maximum diameter)</td>
<td>81 ± 4.</td>
<td>80 ± 3.1</td>
<td>85 ± 2.7</td>
</tr>
<tr>
<td>[K<sup>+</sup>]<sub>o</sub> EC<sub>50</sub></td>
<td>35 ± 3.5</td>
<td>4 ± 1.2</td>
<td>34 ± 2.3</td>
</tr>
<tr>
<td>Day 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 mM [K<sup>+</sup>]<sub>o</sub></td>
<td>194 ± 28.2</td>
<td>217 ± 34.7</td>
<td>165 ± 25.5</td>
</tr>
<tr>
<td>80 mM [K<sup>+</sup>]<sub>o</sub></td>
<td>85 ± 11.7</td>
<td>87 ± 23.0</td>
<td>87 ± 12.5</td>
</tr>
<tr>
<td>Ionomycin</td>
<td>53 ± 9.7</td>
<td>49 ± 16.4</td>
<td>31 ± 5.6</td>
</tr>
<tr>
<td>Ionomycin-induced Constriction (% of maximum diameter)</td>
<td>72 ± 5.2</td>
<td>80 ± 3.7</td>
<td>83 ± 2.7</td>
</tr>
<tr>
<td>[K<sup>+</sup>]<sub>o</sub> EC<sub>50</sub></td>
<td>32 ± 7.4</td>
<td>31 ± 1.3</td>
<td>33 ± 2.0</td>
</tr>
<tr>
<td>Day 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 mM [K<sup>+</sup>]<sub>o</sub></td>
<td>201 ± 20.4</td>
<td>216 ± 50.7</td>
<td>194 ± 13.0</td>
</tr>
<tr>
<td>80 mM [K<sup>+</sup>]<sub>o</sub></td>
<td>81 ± 10.3</td>
<td>89 ± 14.3</td>
<td>149 ± 13.0**</td>
</tr>
<tr>
<td>Ionomycin</td>
<td>42 ± 11.4</td>
<td>51 ± 15.5</td>
<td>45 ± 8.9</td>
</tr>
<tr>
<td>Ionomycin-induced Constriction (% of maximum diameter)</td>
<td>80 ± 4.1</td>
<td>86 ± 3.4</td>
<td>81 ± 3.4</td>
</tr>
<tr>
<td>[K<sup>+</sup>]<sub>o</sub> EC<sub>50</sub></td>
<td>31 ± 3.0</td>
<td>30 ± 2.1</td>
<td>32 ± 3.0</td>
</tr>
<tr>
<td>Day 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 mM [K<sup>+</sup>]<sub>o</sub></td>
<td>230 ± 25.5</td>
<td>205 ± 42.0</td>
<td>188 ± 4.6</td>
</tr>
<tr>
<td>80 mM [K<sup>+</sup>]<sub>o</sub></td>
<td>78 ± 12.1</td>
<td>89 ± 14.3</td>
<td>155 ± 20.3**</td>
</tr>
<tr>
<td>Ionomycin</td>
<td>37 ± 12.7</td>
<td>51 ± 15.5</td>
<td>50 ± 15.3</td>
</tr>
<tr>
<td>Ionomycin-induced Constriction (% of maximum diameter)</td>
<td>85 ± 4.9</td>
<td>75 ± 6.9</td>
<td>73 ± 3.0</td>
</tr>
<tr>
<td>[K<sup>+</sup>]<sub>o</sub> EC<sub>50</sub></td>
<td>33 ± 2.3</td>
<td>31 ± 2.3</td>
<td>30 ± 2.8</td>
</tr>
</tbody>
</table>

* ^{p< 0.05 vs. sense and RP groups.}
CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS
In Chapter one of this dissertation, it is demonstrated that constriction of parenchymal arterioles are markedly enhanced following SAH at physiological intravascular pressures. Evidence is provided suggesting that enhanced constriction results from greater pressure-dependent depolarization of parenchymal arteriolar myocytes, increased activity of L-type VDCCs and elevated \([\text{Ca}^{2+}]_i\). One major aim of future work will address the mechanisms by which SAH causes membrane potential depolarization of parenchymal arteriolar myocytes. As discussed in Chapter 2, this may result from increased activity of ion channels involved in pressure-dependent depolarization (i.e. transient receptor potential channels) or decreased activity of negative feedback pathways controlling vascular tone (i.e. \(\text{K}^+\) efflux). Importantly, whether altered parenchymal arteriolar function results from exposure to spasmogens within blood, or vasoactive substances released from the brain parenchyma following SAH should also be addressed. For example, studies have demonstrated that intracisternally injected biotinylated oxyhemoglobin is capable of penetrating to deeper layers of the cortex of the rat (Turner et al., 1998) suggesting that parenchymal arterioles may be exposed to this spasmogen following erythrocyte lysis in SAH patients. Oxyhemoglobin has been shown to cause membrane potential depolarization of cerebral artery myocytes via reduction of \(\text{Ca}^{2+}\) spark frequency (Jewell et al., 2004; Koide, 2009) and suppression of \(\text{K}_V\) channel currents (Ishiguro et al., 2006; Koide et al., 2007). In addition, purified oxyhemoglobin was shown to induce expression of R-type VDCCs (\(\text{Ca}_{V2.3}\)) in rabbit pial cerebral artery myocytes (Link et al., 2008). Although we did not test whether \(\text{Ca}_{V2.3}\) is expressed in parenchymal arteriolar myocytes following SAH, our data demonstrating similar \([\text{Ca}^{2+}]_i\)
and tone in the presence of the L-type VDCC inhibitor nimodipine argue against a significant contribution of R-type channels in parenchymal vessels from SAH animals. These differing results may reflect variation between species or vascular beds with respect to environment and functional regulation.

Previous studies suggest that parenchymal arterioles contribute significantly to cerebrovascular resistance and autoregulation of cerebral blood flow (Faraci and Heistad, 1990; Harper et al., 1984). The relative contributions of large diameter vasospasm and enhanced constriction of parenchymal vessels to ischemia-related deficits in SAH patients remains unclear. It is plausible that in the absence of microcirculatory dysfunction, constriction of large diameter surface vessels following SAH may cause little reduction in regional perfusion due to compensatory redistribution of blood flow in downstream vessels (Schaffer et al., 2006). Conversely, a significant reduction in cortical blood flow and focal neuronal infarction may follow SAH-induced constriction of parenchymal arterioles, which display little communication with parallel arterioles and represent a bottleneck in blood supply to the cortex (Nishimura et al., 2007). Hence, enhanced pressure-dependent constriction of parenchymal arterioles may severely limit downstream blood flow and lead to significant neuronal damage after SAH.

In addition to their function in regulating global cerebral blood flow, parenchymal arterioles are also an essential component of the neurovascular unit which functions to couple blood flow with local neuronal activity and metabolic demands. Under normal physiological conditions, an increase in local neuronal activity signals release of vasodilatory substances from the astrocytic endfeet to cause vasodilation and increased
local blood flow (Iadecola and Nedergaard, 2007). This process is critical for sufficient delivery of oxygen and nutrients to active regions of the brain. Given the impact of blood on the function of arterioles deep within the cortex of SAH model animals shown in this study, future work should address the impact of SAH on neurovascular coupling mechanisms. Brain slice experiments have suggested that the magnitude and polarity of diameter change to increases in neuronal activity are dependent on the level of vascular tone (Blanco et al., 2008). For example, arterioles displaying greater myogenic tone exhibit more pronounced dilations in response to electrical field stimulation (neuronal activation). Thus, enhanced arteriolar tone following SAH may be localized to less active brain regions in vivo if functional hyperemic phenomena remain unaltered. However, studies in our laboratory have found a fundamental change in the neurovascular response in brain slices from SAH model rats. Whereas electrical field stimulation activates neurons and evokes parenchymal arteriolar dilation in brain slices from control animals, similar stimulation causes constriction in brain slices from SAH animals (Koide and Wellman, unpublished observations). These findings indicate that SAH causes a remarkable shift in the polarity of vascular response from dilation to constriction following increased neuronal activity. Therefore, impairment of mechanisms coupling neuronal activity with localized increases in blood flow may act in concert with enhanced pressure-dependent constriction to severely limit local cerebral blood flow following SAH. These findings suggest that neuronal infarction may be more severe in active brain regions in SAH patients.
Enhanced parenchymal arteriolar constriction following SAH requires extracellular Ca\(^{2+}\) entry via smooth muscle L-type VDCCs. Antagonists of L-type VDCCs are standard therapy for prevention of cerebral vasospasm and neurological deficits in SAH patients. Although nimodipine treatment has been indicated to reduce the severity of ischemic deficits (Tomassoni et al., 2008; Treggiari-Venzi et al., 2001), these positive effects do not depend on reversal or prevention of angiographic vasospasm (Petruk et al., 1988). Alternatively, consistent with our data is the hypothesis that nimodipine may increase blood flow to ischemic brain regions by preferential dilation of small diameter resistance arteries and arterioles. However, systemic nimodipine administration also inhibits smooth muscle VDCCs in the peripheral vasculature and use of this agent in SAH patients has been limited by hypotension (Treggiari-Venzi et al., 2001). Therefore, it is clear that future efforts should focus on improving strategies to suppress L-type VDCC activity in both pial and parenchymal myocytes, while avoiding effects on systemic targets.

L-type channels in the vasculature represent a mixed population of splice variations of the gene Ca\(_{\text{V}}\)1.2 (Cheng et al., 2009). In Chapter three of this dissertation, data is shown supporting an essential role for Ca\(_{\text{V}}\)1.2 containing the alternatively-spliced, smooth muscle-selective exon 9\(^\ast\) (\(\alpha1C_{9/9*/10}\)) in cerebral artery constriction. In this study, antisense oligonucleotides and organ culture were used to specifically reduce the expression of exon 9\(^\ast\) channels in myocytes of small diameter pial arteries. Following suppression of this splice variant, we observed dramatically reduced cerebral artery constriction to K\(^+\)-induced depolarization in vitro. We conclude that \(\alpha1C_{9/9*/10}\) is the
major route of Ca2+ entry required for cerebral artery constriction resulting from membrane depolarization. Future experiments will aim to transfer this strategy of suppressing cerebrovascular VDCCs into the live animal. Information gained from this work will not only test the feasibility of reducing VDCC expression in vivo, but may also lead to new information regarding the function of VDCC splice variants in the control of cerebral blood flow. Preliminary RT-PCR experiments have revealed similar expression profile of α1C\textsubscript{9/9*/10} and α1C\textsubscript{9/10} splice variants in rat pial and parenchymal arterioles (Figure 1). Therefore, we hypothesize that suppression of α1C\textsubscript{9/9*/10} channels in the cerebral vasculature will lead to significantly increased cerebral blood flow.

In summary, it is clear that long-term exposure of tissues within the central nervous system to whole blood causes a myriad of changes in multiple cell types. While some of these effects may be beneficial, most are detrimental to neuronal viability. As whole blood is a complex mixture of vasoactive substances, delayed neurological deficits in patients surviving aneurysm rupture caused by enhanced cerebral artery constriction are likely to result from a complex combination of factors. In this dissertation, data is presented in support of increased Ca2+ influx via L-type VDCCs as a major cause of enhanced constriction of parenchymal arterioles following SAH. In addition, smooth muscle-selective L-type VDCC splice variants may represent a novel target for the prevention of delayed neurological deficits in SAH patients.
Figure 1: Similar expression of Ca\textsubscript{v}1.2 splice variants in pial and parenchymal vasculature.

RT-PCR gel demonstrating expression of Ca\textsubscript{v}1.2 splice variants containing and lacking exon 9* ((+)*Ca\textsubscript{v}1.2 and (-)*Ca\textsubscript{v}1.2, respectively). Similar expression of both splice variants was observed in both pial and parenchymal arterioles from rat. Conversely, rat brain expressed only (-) 9*Ca\textsubscript{v}1.2 splice variants.
COMPREHENSIVE BIBLIOGRAPHY

Ca$^{2+}$ Channel, and It is functionally important in renal afferent arterioles. Circ Res 87, 896-902.

following subarachnoid hemorrhage: time for a new world of thought. Neurol Res 31, 151-158.

SK Ca\(^{2+}\) -activated K\(^{+}\) channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). Biochim Biophys Acta 1665, 1-5.

APPENDIX A: BOOK CHAPTER
Assessment of Intracellular Calcium in Cerebral Artery Myocytes.

Matthew A. Nystoriak¹, Masayo Koide¹, George C. Wellman¹,²

Departments of Pharmacology¹ and Surgery, Division of Neurosurgery², University of Vermont, College of Medicine, Burlington, VT.

Contact Information: G. C. Wellman, Univ. of Vermont, Dept. of Pharmacology, Given Bldg., 89 Beaumont Ave., Burlington, VT 05405-0068 (e-mail: george.wellman@uvm.edu).
Abstract

Vascular tone and consequently, cerebral blood flow, are regulated by the concentration of global cytosolic Ca$^{2+}$ (global [Ca$^{2+}]_i$) in vascular smooth muscle. Global [Ca$^{2+}]_i$, is, in part, regulated by discrete Ca$^{2+}$ release events from the sarcoplasmic reticulum (Ca$^{2+}$ sparks) which activate plasma membrane large conductance Ca$^{2+}$-activated K$^+$ channels to cause membrane potential hyperpolarization, decreased global [Ca$^{2+}]_i$, and vasodilation. We have previously observed decreased Ca$^{2+}$ spark frequency and elevated global [Ca$^{2+}]_i$ in cerebral artery myocytes using a rabbit model of subarachnoid hemorrhage. Here, we describe and discuss laboratory methods and procedures using the fluorescent Ca$^{2+}$ indicator dyes fura-2 and fluo-4 to assess global and local Ca$^{2+}$ signaling in cerebral arteries and isolated vascular myocytes.

Keywords: Fura-2, Fluo-4, Ca$^{2+}$ sparks, vascular smooth muscle, subarachnoid hemorrhage.
1. Introduction

The cerebral circulation delivers constant blood flow to the brain over a broad range of physiological blood pressures. To achieve this remarkable phenomenon, cerebral arteries must actively constrict to elevations in blood pressure and dilate when blood pressure drops. In cerebral resistance arteries and arterioles, the constriction (myogenic tone) response to graded increases in intravascular pressure is dependent on membrane potential depolarization, enhanced Ca\(^{2+}\) influx via L-type voltage-dependent Ca\(^{2+}\) channels (VDCCs) and elevated global cytosolic Ca\(^{2+}\) (global [Ca\(^{2+}\)]\(_i\)) [1-2]. Global [Ca\(^{2+}\)]\(_i\) represents average Ca\(^{2+}\) levels throughout the cytoplasm and mediates contraction of smooth muscle via Ca\(^{2+}\)/calmodulin-dependent activation of myosin light chain kinase, myosin light chain phosphorylation and actin-myosin interaction [3]. Thus, global [Ca\(^{2+}\)]\(_i\) directly regulates the contractile state of vascular smooth muscle and therefore dictates cerebral vascular tone and blood flow.

The discovery of spatially localized, transient calcium release events (“Ca\(^{2+}\) sparks”) has altered the view that an elevation of global [Ca\(^{2+}\)]\(_i\) is the only effective mode of calcium signaling in smooth muscle [4-6]. Calcium sparks result from the opening of a cluster of ryanodine receptors in the sarcoplasmic reticulum (SR) membrane, causing a highly restricted (1% of the cell volume) and large (µM) increase in local Ca\(^{2+}\) with little direct effect on global [Ca\(^{2+}\)]\(_i\) [5, 7]. In vascular smooth muscle, Ca\(^{2+}\) sparks are functionally coupled to nearby large conductance Ca\(^{2+}\)-activated K\(^+\) (BK) channels located on the plasma membrane [6, 8]. Elevation of intracellular Ca\(^{2+}\) causes a shift in the voltage-
dependence of BK channel activation to more negative membrane potentials effectively leading to increased channel open probability [9]. Increased Ca2+ spark activity therefore leads to enhanced BK channel activity, membrane potential hyperpolarization, decreased global [Ca2+]	extsubscript{i}, and smooth muscle relaxation. Ca2+ spark activity is increased by vasodilators such as nitric oxide and forskolin and by elevations in cytosolic and SR calcium [10-11]. Thus, Ca2+ sparks act as an important negative feedback mechanism to oppose vasoconstriction by promoting a reduction in VDCC activity and a decrease in global [Ca2+].

Considering the pivotal role that vascular smooth muscle Ca2+ plays in the regulation of cerebral blood flow, precise measurement of local and global Ca2+ signaling in these cells is essential for understanding pathologies characterized by abnormal vascular tone, such as aneurysmal subarachnoid hemorrhage (SAH). With respect to SAH-induced “classical” or “angiographic” vasospasm, observed in large diameter conduit arteries on the brain surface, the role of elevated global [Ca2+]	extsubscript{i} is unclear and controversial [12]. However, recent evidence suggests that enhanced constriction of much smaller “resistance” arteries and arterioles (< 200 μm in diameter) following SAH is associated with increased global [Ca2+]	extsubscript{i} and enhanced VDCC activity [13]. Further, Ca2+ spark activity is decreased in cerebral arteries by the blood component oxyhemoglobin [14] and Ca2+ spark frequency is reduced in cerebral artery myocytes isolated from SAH model animals [13, 15]. In this chapter, we discuss the properties of two fluorescent Ca2+ indicator dyes, fura-2 and fluo-4, that enable the measurement of global [Ca2+]	extsubscript{i} and Ca2+
sparks, respectively, in cerebral artery myocytes. Further, we provide details of specific protocols used in our laboratory to assess global and local signaling in the cerebral vasculature.
2.1 The use of fura-2 to measure global $[Ca^{2+}]_i$ in cerebral artery smooth muscle.

The most popular technique for quantifying intracellular free Ca^{2+} is by monitoring the fluorescence of Ca^{2+}-sensitive indicator dyes [16]. The dual-wavelength ratiometric indicator fura-2 is currently the most widely used indicator for measurement of global $[Ca^{2+}]_i$ in isolated cerebral artery myocytes and intact pressurized vessels. Fura-2 shows 1:1 Ca^{2+} binding stoichiometry and undergoes a significant shift in excitation spectra depending on whether or not Ca^{2+} is bound ($\lambda_{\text{bound}} = 340$ nm; $\lambda_{\text{free}} = 380$ nm) while emission spectra (510 nm) is independent of Ca^{2+} binding to the dye [17]. Changes in fluorescence ratios are therefore independent of intensity, eliminating potentially confounding factors such as differential dye loading, photobleaching or time-dependent expulsion of the dye by the cell. As a result, fura-2 is preferred over single-wavelength intensity-modulating indicators for quantification of absolute intracellular Ca^{2+} concentrations. In this section, we describe techniques used for measuring global $[Ca^{2+}]_i$ in intact pressurized cerebral arteries using fura-2.
2.2 Materials and Instruments

- 5 ml myograph chamber (Fig. 1A) (Living Systems Instrumentation)
- Fine-tipped forceps (Fine Science Tools)
- Cell-permeant fura-2 AM (Invitrogen)
- Calcium and diameter recording system (e.g. IonOptix Inc.)
 - Hyperswitch light source
 - Xenon arc lamp
 - IonWizard-Core and Analysis Soft Edge software
 - Fluorescence system interface
 - Myocam-S digital CCD video camera
 - Photomultiplier tube (PMT) sub-system
 - Dichroic mirror
 - Photon-to-voltage converter
- Inverted fluorescence microscope
- 20X/0.50 NA objective lens
- Peristaltic pump (Ismatec Inc.)
- PS-200 pressure servo controller with peristaltic pump (Living Systems Instrumentation)
- Dark room/red light
2.3 Procedures

Tissue preparation and dye loading:

Cerebral arteries and arterioles (50-200 μm in diameter) are dissected from the brain and kept in ice cold artificial cerebral spinal fluid (aCSF) of the following composition (in mM): 125 NaCl, 3 KCl, 18 NaHCO₃, 1.25 NaH₂PO₄, 1 MgCl₂, 2 CaCl₂, 5 glucose aerated with 5% CO₂, 20% O₂, 75% N₂ (pH, 7.30-7.35). Freshly isolated cerebral artery segments are cannulated on glass micropipettes mounted in a 5 ml myograph chamber (Fig. 1) [18]. Following cannulation, blood vessels are incubated with previously aerated aCSF containing fura-2 AM (acetoxymethyl ester membrane-permeable form; 5 μM; Invitrogen, Carlsbad, CA) and pluronic acid (0.1%; Invitrogen, Carlsbad, CA) at room temperature (~22˚C) for 45 minutes in the dark. The myograph chamber is then mounted on an inverted fluorescence microscope and arteries are pressurized and continuously superfused with aCSF (37˚C, 30 min) to allow equilibration and deesterification of fura-2.

It has previously been demonstrated that Ca²⁺ can be selectively measured in vascular smooth muscle or endothelium by loading fura-2 from the extraluminal or luminal side of the vessel, respectively [19]. However, the specific loading time and dye concentration described above may need to be slightly adjusted based on the specific tissue studied to enable sufficient permeation of dye into smooth muscle while avoiding loading of the dye into the endothelium. To examine whether dye loading is smooth muscle-specific, studies can be performed on arteries in which the endothelium is physically removed by
luminal passage of an air bubble [2]. Endothelial removal can be confirmed by lack of response to endothelium-specific pharmacological agents (e.g. acetylcholine, bradykinin, NS309) [20-21].

Data acquisition and estimation of intracellular Ca\(^{2+}\):

First, an aperture located adjacent to the dichroic mirror is adjusted so that the blood vessel completely fills the rectangular field of view in the data acquisition software. This minimizes the contribution of extraneous light to the fluorescence signal. The dichroic mirror reflects fluorescence emission to the photomultiplier tube (PMT) while the use of a red filter in the microscope condenser allows the vessel image to be transmitted to the CCD camera. Thus, the image collected by the CCD camera for diameter measurement represents the same field from which fluorescence is detected by the PMT.

Following equilibration, fluorescence ratio \((F_{340}:F_{380})\) is obtained from background-corrected 510 nm emission from arteries alternately excited at 340 and 380 nm (Fig. 2) using software developed by IonOptix (Milton, MA). Arterial wall \([\text{Ca}^{2+}]\) is estimated using the following equation [17] \([\text{Ca}^{2+}] = K_d \times \beta \times (R - R_{\text{min}})/(R_{\text{max}} - R)\).

\(R_{\text{min}}\) and \(R_{\text{max}}\) values represent the ratios of emission signal under \(\text{Ca}^{2+}\)-free and \(\text{Ca}^{2+}\)-saturated conditions, respectively. To obtain these values, arteries are first loaded with fura-2 and equilibrated as described above. Arteries are then perfused (10 min, 37°C) with a baseline solution containing the following (in mM): 5 NaCl, 140 KCl, 5 HEPES, 1 MgCl\(_2\) (pH 7.4). Next, to obtain \(R_{\text{min}}\), arteries are perfused (30 min) with baseline
solution that includes EGTA (5 mM), ionomycin (10 μM) and nigericin (5 μM). Recording at the end of this period allows determination of \(R_{\text{min}} \). EGTA is then washed from the bath by perfusion of baseline solution for 15 min. To obtain \(R_{\text{max}} \), arteries are then perfused (15 min) with baseline solution containing CaCl\(_2\) (10 mM), ionomycin (10 μM) and nigericin (5 μM) for 10 min. The ratio of calcium-free over calcium-bound fluorescence intensities at \(F_{380} \) (β) is determined from these values. In our studies, we have used an apparent dissociation constant (\(K_d \)) of 282 nM of fura-2 for Ca\(^{2+}\) determined by Knot and Nelson using rat cerebral arteries [2].

Measurement of arterial diameter

Luminal diameter is simultaneously recorded throughout the entire experiment using a CCD camera and the length-calibrated video edge detection function of IonOptix software (Fig. 1D and 2). Constriction is analyzed as the decrease in arterial diameter relative to the passive diameter using the following equation [22]:

\[
\%\text{constriction} = \frac{DP - DA}{DP} \times 100
\]

where DP is the passive (fully-dilated) diameter of the artery in Ca\(^{2+}\)-free aCSF containing a VDCC blocker (e.g. 100 μM diltiazem or 300 nM nifedipine) and a second vasodilator such as forskolin (1 μM) and DA is the active diameter of the artery in response to the stimulus in aCSF. Percent dilation can be obtained using the following formula [22]:
\[\% \text{Dilation} = \frac{DV - DA}{DP - DA} \times 100 \]

where DV is the arterial diameter in the presence of vasodilator, DA is the active arterial diameter before application of vasodilator, and DP is the passive arterial diameter.

Variations in measurement of global \([Ca^{2+}]_i\)

Most investigators obtain ratiometric measurements of fura-2 in isolated arterial segments or dissociated cerebral artery myocytes by collecting emitted photons using a photomultiplier tube (PMT). Fluorescence detection may also be achieved using electron multiplying CCD or intensified CCD cameras along with quantitative ratio imaging software for analysis and estimation of intracellular Ca\(^{2+}\) [2]. However, high sensitivity cameras required for these measurements are expensive and do not offer significant spatial information when used with wide-field microscopy. In cases where an investigator wishes to measure fura-2 fluorescence in a specific layer of the vascular wall (smooth muscle or endothelium), fluorescent imaging over photometric methods may be advantageous.
3.1 The use of fluo-4 to measure Ca$^{2+}$ sparks in cerebral artery myocytes.

Single-wavelength Ca$^{2+}$ indicators such as fluo-4, or its analogue fluo-3, have become widely used for imaging of fast, small volume Ca$^{2+}$ signaling events such as Ca$^{2+}$ sparks [23]. One advantage of fluo-4 over ratiometric indicators (e.g. fura-2) in the measurement sub-cellular Ca$^{2+}$ signaling events is superior signal-to-noise ratio. Fluo-4 is excited at 488 nm and exhibits increased fluorescence intensity (>100 fold) upon binding Ca$^{2+}$ without a shift in absorption or emission spectra [24]. Moreover, fluo-4 has a lower affinity for Ca$^{2+}$ than fura-2 ($K_d \approx 400$ nM compared with $K_d \approx 282$ nM for fura-2) and fast binding and unbinding kinetics, making it suitable for tracking rapid Ca$^{2+}$ signaling events [24]. Ca$^{2+}$ sparks can be measured using a number of imaging approaches including single photon and multiphoton confocal microscopy, total internal reflection fluorescence (TIRF) microscopy, and wide-field microscopy using low-noise CCD cameras [23].

Previously, the temporal resolution of laser-scanning confocal microscope systems sufficient to measure Ca$^{2+}$ sparks could only be achieved using line-scan mode, as opposed to two-dimensional (2-D) x-y image scanning [5]. However, the interpretation of images obtained using line-scanning is complicated by uncertainties in the position of the scan line with regard to the center of the Ca$^{2+}$ release event resulting in a loss of spatial information such as accurate determination of Ca$^{2+}$ spark area. Another disadvantage of this method is the inability to measure the total number of active spark
sites within a cell. Currently, a number of laser-scanning confocal microscope systems with sufficient 2-D sampling frequency (>30 Hz) are available. The following section provides a detailed description of protocols that we have used to measure Ca2+ sparks in cerebral artery myocytes using fluo-4 and two-dimensional (2-D) laser-scanning confocal microscopy.

3.2 Materials and Instruments

- Cell chamber with glass coverslip bottom
- Cell-permeant fluo-4 AM (Invitrogen)
- Laser scanning confocal system (e.g. Oz, Noran Instruments)
- Inverted fluorescence microscope (Nikon Diaphot)
- 60X/1.2 NA water-immersion objective lens
- Krypton/argon laser (480 nm is used to excite fluo-4)
- Dark room

3.3 Procedures

Isolation of cerebral artery myocytes:

Cerebral arteries are enzymatically dissociated to obtain individual smooth muscle cells (Fig. 3) [25]. After dissection, cerebral arteries are incubated in a glutamate-containing isolation solution (GIS) of the following composition (in mM): 55 NaCl, 5.6 KCl, 80 L-glutamic acid (mono-sodium salt), 2.0 MgCl\textsubscript{2}, 2 CaCl\textsubscript{2}, 10 HEPES, 10 glucose (pH 7.3;
37 °C; 30 min) using a 1 ml vial placed in a water bath. Arteries are then transferred to a
Ca^{2+}-free GIS containing papein (0.3 mg/mL) and 1,4-dithioerythriol (0.7 mg/mL; 37°C;
17 min) using a fire-polished Pasteur pipette. Next, arteries are incubated in GIS
containing collagenase type F (0.7 mg/mL), collagenase type H (0.3 mg/mL) and 100 µM
CaCl_2 (37 °C; 20 min). Finally, arteries are incubated in GIS containing 2 mM CaCl_2 on
ice (3x; 10 min) and gently triturated into individual cerebral artery myocytes using a
small bore fire-polished Pasteur pipette. Cerebral artery myocytes can easily be
identified by characteristic spindle-shaped morphology (Fig. 3). The cells are kept on ice
and used within six hours of isolation.

Dye loading:

Isolated myocytes are loaded with fluo-4 by mixing equal volumes (e.g. 250 µl) of cell
suspension and HEPES buffered physiological saline solution (HEPES-PSS) of the
following composition (in mM): 134 NaCl, 6 KCl, 1 MgCl_2, 1.8 CaCl_2, 10 glucose, 10
HEPES (pH 7.4) containing fluo-4 AM (20 µM) and pluronic acid (0.072%). The cell
suspension containing a final concentration of 10 µM fluo-4 and 0.036% pluronic acid is
placed in the recording chamber to allow cells to attach to the glass coverslip on the
bottom of the chamber during the 30 minute loading/deesterification period at room
temperature. Cells are then washed three times with HEPES-PSS.
Ca2+ spark measurement:
Initially, cells are located using bright field illumination. Once a myocyte has been centered in the scan field, images of emitted light (wavelengths >500 nm) are acquired at a frequency of 58 Hz (every ~ 17 msec, 256 pixels x 256 pixels), and magnified (2X) by acquisition software (68 µm for 256 pixels). Images are usually acquired for a period of 10-20 seconds and saved for future analysis (Fig. 4). Laser exposure can lead to cell damage which typically causes the cells to become much brighter in appearance and abolish Ca2+ spark activity. Excessive laser exposure can also lead to photo-bleaching of the indicator dye. Thus, it is recommended to combine the lowest laser intensity that provides good cell visualization with relatively short (10-20 seconds) periods of laser exposure.

Measurement of Ca2+ sparks can also be performed in intact pressurized cerebral arteries (Fig. 5) [11, 14, 26]. After dissection, intact arteries are loaded with fluo-4 AM (10 µM at room temperature for 1 hr, with 0.036% pluronic acid) followed by brief washes with aCSF (see section 2.3). Arteries are then cannulated, pressurized (see section 2.3) and Ca2+ sparks imaged using 2-D laser-scanning confocal microscopy as described above for isolated myocytes. Measurement of Ca2+ sparks in the intact tissue provides the ability to simultaneously examine events in multiple cells under more physiological conditions (i.e. at physiological intravascular pressures). However, due to the presence of connective tissue and multiple cell layers, the signal-to-noise ratio is decreased in images.
from intact tissue compared to isolated cells. Thus, imaging performed on isolated cells is preferred for detailed analysis of the spatio-temporal properties of Ca$^{2+}$ sparks.

Analysis of Ca$^{2+}$ sparks:

A variety of custom-written software packages provide the ability to detect and analyze Ca$^{2+}$ sparks. Ca$^{2+}$ sparks are typically assessed using 2.1 μm X 2.1 μm analysis areas (centered over the Ca$^{2+}$ spark-induced peak in fluorescence intensity) and defined as fractional fluorescence changes (F/F_0) greater than 1.3 [5, 25]. Background fluorescence intensity (F_0) is determined within analysis areas by averaging the first 30 consecutive images without Ca$^{2+}$ spark activity (for example, see Fig. 4B). Frequency is the most commonly used parameter to describe Ca$^{2+}$ spark activity. In isolated myocytes, Ca$^{2+}$ spark frequency, expressed in Hz, represents the total number of events occurring in a cell divided by the sampling period (in seconds). In cerebral artery myocytes, Ca$^{2+}$ spark frequency is increased by vasodilators acting via increased cyclic AMP-dependent protein kinase, cyclic GMP-dependent protein kinase and/or increased levels of cytosolic or SR Ca$^{2+}$ [6, 10-11]. Conversely, enhanced cerebral artery constriction following subarachnoid hemorrhage is associated with a reduction in Ca$^{2+}$ spark frequency in cerebral artery myocytes [13, 15]. Ca$^{2+}$ spark amplitude is frequently expressed as the maximum fractional fluorescence (F/F_0) increase (Fig 5C). Using Ca$^{2+}$ spark-induced large conductance Ca$^{2+}$-activated K$^+$ (BK) channel activity as a biological Ca$^{2+}$ indicator, Perez et al. have estimated that local increases in Ca$^{2+}$ during a Ca$^{2+}$ spark are in the range of 4-30 μM [7]. Although Ca$^{2+}$ concentrations can be estimated using non-
ratiometric Ca^{2+} indicator dyes such as fluo-4, using the equation:
\[[\text{Ca}^{2+}] = \frac{\text{Kd} \cdot F}{(\text{F}_{\text{max}} - F)} \] [23], given the Kd of fluo-4 is \(\approx 0.4 \) \(\mu \text{M} \), this approach may underestimate local Ca^{2+} concentrations attained during Ca^{2+} sparks. Other frequently reported spatio-temporal characteristics of Ca^{2+} sparks include spark size or area (defined as the area measured at 50% peak amplitude), rise time (measured from 10-90% rise in signal), decay time constants and half-time to decay [27].

4.1 Conclusions

In this chapter, we provide a description of procedures used to assess both global and local Ca^{2+} signaling in cerebral artery myocytes using the Ca^{2+}-sensitive fluorescent dyes fura-2 and fluo-4. The ratiometric Ca^{2+} sensitive dye fura-2 is considered the indicator of choice for measurement of global cytosolic Ca^{2+}, or averaged Ca^{2+} levels throughout the cytoplasm. On the other hand, transient Ca^{2+} release events from the SR (Ca^{2+} sparks) require the use of single-wavelength Ca^{2+} indicators such as fluo-4. A thorough knowledge of these Ca^{2+} signaling processes is imperative for understanding mechanisms contributing to cerebral vascular pathologies such as subarachnoid hemorrhage.
Acknowledgements

This work was supported by the Totman Medical Research Trust Fund, the Peter Martin Brain Aneurysm Endowment, the NIH (NIHLBI, R01 HL078983, HL078983-05S1 and NCRR, P20 RR16435) and the American Heart Association (0725837T, 0815736D). The authors wish to thank to Dr. Adrian Bonev for his helpful comments and suggestions. The authors would also like to acknowledge the University of Vermont Neuroscience COBRE imaging core facilities.
5. References

Figure Legends

Figure 1: Arteriograph chamber for intact pressurized cerebral arteries. A. Overhead view of 5 mL arteriograph chamber used for cannulation of cerebral artery segments. B. Glass micropipettes are pulled from capillary tubes and mounted in an arteriograph chamber. C. Image of a rat posterior cerebral artery (~150 μm diameter) cannulated on glass micropipettes. Suture thread is used to tie each end of the artery segment onto the micropipettes. D. Image of rat parenchymal arteriole (~60 μm diameter). Video edge detection (black horizontal lines) is used for measurement of arterial diameter.

Figure 2: Simultaneous measurement of global [Ca$^{2+}$]$_i$ and diameter of an intact pressurized cerebral artery. Fluorescence intensity (photomultiplier tube counts) at 340 nm and 380 nm excitation (F340 and F380, respectively), F340/F380 ratio, calculated free [Ca$^{2+}$]$_i$ and arterial diameter from a pressurized rabbit cerebellar artery. Smooth muscle membrane potential depolarization induced by elevating extracellular K$^+$ from 3 mM to 60 mM caused an increased in F340/F380 ratio (i.e. increased free [Ca$^{2+}$]$_i$) and vasoconstriction. The response to 60 mM K$^+$ was reversed by application of the VDCC blocker nifedipine (1 μM).

Figure 3: Freshly isolated native cerebral artery myocytes. A. Cerebral arteries were enzymatically dissociated to obtain isolated vascular smooth muscle cells. Image shows
individual smooth muscle cells using differential interference contrast microscopy (40X).

B. Vascular smooth muscle can be identified by spindle-shaped cell morphology as well as immunostaining of smooth muscle alpha actin and smooth muscle myosin heavy chain. Scale bars represent 10 μm. From Nystoriak et al., *Am. J. Physiol.*, 2009 [28] with permission.

Figure 4: Ca^{2+} sparks in isolated cerebral artery myocytes. A. Original images of a Ca^{2+} spark recorded every 17 msec from an isolated cerebral artery myocyte. White scale bar represents 10 μm. Red arrow indicates a Ca^{2+} spark. B. F₀ image obtained by averaging 30 consecutive images without a Ca^{2+} spark. Trace represents time course of fractional fluorescence changes (F/F₀) during the Ca^{2+} spark shown in panel A using the analysis area (2.1 μm x 2.1 μm) depicted as a red square in the F₀ image. Gray bar represents time elapsed during the images shown in panel A. C. Pseudo-colored images of the same Ca^{2+} spark depicted in panels A and B. Each pixel is converted to pseudo-color shown in the color bar to the right of the images. White scale bar represents 10 μm.

Figure 5: Ca^{2+} sparks in intact pressurized cerebral arteries. Ca^{2+} sparks were recorded in 56 μm x 53 μm areas of intact pressurized mouse cerebral arteries in the absence (A) and presence (B) of forskolin (10 μM), an activator of adenylyl cyclase. During a 10 second recording period, a total of 13 Ca^{2+} sparks were observed in the image depicted in panel A, and a total of 38 Ca^{2+} sparks were observed in the image depicted in panel B. White boxes represent sites where Ca^{2+} sparks occurred. Three
representative F/F₀ records (a-c) corresponding to three Ca²⁺ sparks sites (a-c) from each artery are displayed below their corresponding artery image. Horizontal scale bars represent a time of 1 second, and vertical scale bars represent a fractional fluorescence (F/F₀) change of 0.5. From Wellman et al., *Am. J. Physiol. Cell Physiol.*, 2001 [11] with permission.
Figure 1: Arteriograph chamber for intact pressurized cerebral arteries.
Figure 2: Simultaneous measurement of global \([Ca^{2+}]_i\) and diameter of an intact pressurized cerebral artery.
Figure 3: Freshly isolated native cerebral artery myocytes.
Figure 4: Ca$^{2+}$ sparks in isolated cerebral artery myocytes.
Figure 5: Ca^{2+} sparks in intact pressurized cerebral arteries.
APPENDIX B: BOOK CHAPTER
Impact of subarachnoid hemorrhage on local and global calcium signaling in cerebral artery myocytes

Masayo Koide*, Matthew A. Nystoriak*, Joseph E. Brayden and George C. Wellman

Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont, USA

Correspondence:

George C. Wellman, Ph.D.
University of Vermont
Department of Pharmacology
Given Building
89 Beaumont Avenue
Burlington, VT USA 05405-0068
george.wellman@uvm.edu
Tel: 802-656-3470
Fax: 802-656-4523

* M. Koide and M. Nystoriak contributed equally to this work.
Summary

Background: Ca\(^{2+}\) signaling mechanisms are crucial for proper regulation of vascular smooth muscle contractility and vessel diameter. In cerebral artery myocytes, a rise in global cytosolic Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_{i}\)) causes contraction while an increase in local Ca\(^{2+}\) release events from the sarcoplasmic reticulum (Ca\(^{2+}\) sparks) leads to increased activity of large-conductance Ca\(^{2+}\)-activated (BK) K\(^+\) channels, hyperpolarization and relaxation. Here, we examined the impact of SAH on Ca\(^{2+}\) spark activity and [Ca\(^{2+}\)]\(_{i}\) in cerebral artery myocytes following SAH.

Methods: A rabbit double injection SAH model was used in this study. Five days after the initial intracisternal injection of whole blood, small diameter cerebral arteries were dissected from the brain for study. For simultaneous measurement of arterial wall [Ca\(^{2+}\)]\(_{i}\) and diameter, vessels were cannulated and loaded with the ratiometric Ca\(^{2+}\) indicator fura-2. For measurement of Ca\(^{2+}\) sparks, individual myocytes were enzymatically isolated from cerebral arteries and loaded with the Ca\(^{2+}\) indicator fluo-4. Sparks were visualized using laser scanning confocal microscopy.

Results: Arterial wall [Ca\(^{2+}\)]\(_{i}\) was significantly elevated and greater levels of myogenic tone developed in arteries isolated from SAH animals compared with arteries isolated from healthy animals. The L-type voltage-dependent Ca\(^{2+}\) channel (VDCC) blocker nifedipine attenuated increases in [Ca\(^{2+}\)]\(_{i}\) and tone in both groups suggesting increased VDCC activity following SAH. Membrane potential measurement using intracellular microelectrodes revealed significant depolarization of vascular smooth muscle following
SAH. Further, myocytes from SAH animals exhibited significantly reduced Ca$^{2+}$ spark frequency (~50%).

Conclusions: Our findings suggest decreased Ca$^{2+}$ spark frequency leads to reduced BK channel activity in cerebral artery myocytes following SAH. This results in membrane potential depolarization, increased VDCC activity, elevated $[\text{Ca}^{2+}]_i$ and decreased vessel diameter. We propose this mechanism of enhanced cerebral artery myocyte contractility may contribute to decreased cerebral blood flow and development of neurological deficits in SAH patients.

Key words: Ca$^{2+}$ channels, K$^+$ channels, Ca$^{2+}$ sparks, vascular smooth muscle, vasospasm
Introduction

Intracellular Ca\(^{2+}\) is a ubiquitous second messenger, playing critical roles in a wide array of physiological processes including muscle contraction (2). In the cerebral vasculature, average intracellular Ca\(^{2+}\) concentration or global cytosolic Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_i\)) dictates smooth muscle contraction (and arterial diameter) via regulation of myosin light chain kinase activity (4). Thus, an elevation in global cytosolic Ca\(^{2+}\) leads to enhanced vasoconstriction and potentially a decrease in cerebral blood flow (12). Paradoxically, localized intracellular Ca\(^{2+}\) release events, termed Ca\(^{2+}\) sparks, promote a decrease in [Ca\(^{2+}\)]\(_i\) and relaxation of cerebral artery myocytes (15, 27). Ca\(^{2+}\) sparks are generated by the coordinated opening of ryanodine receptors (RyRs) located on the sarcoplasmic reticulum of smooth muscle cells and activate plasmamemmal large conductance Ca\(^{2+}\)-activated K\(^+\) (BK) channels leading to membrane potential hyperpolarization, decreased activity of voltage-dependent Ca\(^{2+}\) channels (VDCCs), decreased [Ca\(^{2+}\)]\(_i\), and vasodilation. Currently, the impact of subarachnoid hemorrhage on local and/or global Ca\(^{2+}\) signals in myocytes from small diameter cerebral arteries is unclear (24).

Methods

SAH model:

A rabbit double-injection model of SAH was used in this study. Briefly, anesthetized New Zealand white rabbits (males, 3.0-3.5 kg) received an intracisternal injection of autologous arterial blood (2.5 ml) using a previously described surgical procedure (8, 9). Forty-eight hours after the initial injection, the procedure was repeated with animals
receiving a second injection of 2.5 ml of arterial blood. Five days after the initial surgery, rabbits were euthanized and posterior cerebral and cerebellar arteries (100-200 μm diameter) were dissected for in vitro studies. All protocols were conducted in accordance with the guidelines for the care and use of laboratory animals (NIH publication 85-23, 1985) and followed protocols approved by the Institutional Animal Use and Care Committee of the University of Vermont, USA.

Simultaneous measurement of global cytosolic Ca\(^{2+}\) and arterial diameter:

Intact cerebral arteries were cannulated on glass micropipettes mounted in a Living Systems Inc. (Burlington, VT) arteriograph chamber. Arteries were loaded, in the dark, with the ratiometric Ca\(^{2+}\) indicator fura-2-AM (5 μM) in a MOPS solution containing pluronic acid (0.05%) for 45 minutes at room temperature. The MOPS loading solution had the following composition (in mM): 145 NaCl, 5 KCl, 1 MgSO\(_4\), 2.5 CaCl\(_2\), 1 KH\(_2\)PO\(_4\), 0.02 EDTA, 3 3-(N-morpholino)propanesulfonic acid (MOPS), 2 pyruvate, 5 glucose, 1% bovine serum albumin (pH 7.4). Arteries were then continuously superfused with aerated artificial cerebral spinal fluid (aCSF) at 37° C for the remainder of the experiment. The composition of the aCSF was (in mM): 125 NaCl, 3 KCl, 18 NaHCO\(_3\), 1.25 NaH\(_2\)PO\(_4\), 1 MgCl\(_2\), 2 CaCl\(_2\), 5 glucose aerated with 5% CO\(_2\), 20% O\(_2\), 75% N\(_2\) (pH 7.35). Ratio images of the arterial wall were obtained from background corrected images of the 510 nm emission from arteries alternately excited at 340 and 380 nm using software developed by IonOptix Inc. (Milton, MA). Arterial wall [Ca\(^{2+}\)] is calculated using the following equation (3): [Ca\(^{2+}\)] = K\(_d\) x β x (R-R\(_{\text{min}}\))/(R\(_{\text{max}}\)-R). An apparent K\(_d\) of
282 nM of fura-2 for Ca$^{2+}$ was used (12). Arterial constriction was expressed as a percent decrease from the maximal (fully dilated) diameter obtained at the end of each experiment in Ca$^{2+}$-free aCSF containing the vasodilators nifedipine (1 μM) and forskolin (1 μM). In some studies intracellular microelectrodes were used to measure smooth muscle membrane potential in intact pressurized arteries, as described previously (25).

Measurement of Ca$^{2+}$ sparks in isolated cerebral artery myocytes:

Individual smooth muscle cells were enzymatically isolated from posterior cerebral and cerebellar artery segments (26). Isolated myocytes were then loaded with fluo-4-AM (10 μM) for 60 minutes (21°C) in a HEPES-buffered physiological saline solution (PSS) containing pluronic acid (0.05%). The HEPES-PSS had the following composition (in mM): 135 NaCl, 5.4 KCl, 1.8 CaCl$_2$, 1 MgCl$_2$, 10 HEPES, 10 glucose (pH 7.4 with NaOH). Myocyte images were acquired with a Noran Oz laser scanning confocal microscope (19). Fluo-4 was excited using the 488 nm line of a krypton/argon laser and the light emitted by this dye (520 nm) was separated from the excitation light and collected. Images were acquired at a frequency of ≈ 60 Hz for a period of 20 seconds. Ca$^{2+}$ sparks are detected and analyzed using custom software (written by Dr. Adrian Bonev, University of Vermont, using IDL 5.0.2; Research Systems Inc., Boulder, CO). Baseline fluorescence (F_o) was determined by averaging 10 images without Ca$^{2+}$ spark activity. Fractional fluorescence increases (F/F_o) are determined in areas (2.1 μm \times 2.1 μm) where Ca$^{2+}$ sparks were observed. Ca$^{2+}$ sparks are defined as local fractional fluorescence increases greater than 1.3. All measurements were recorded at room temperature.
Results

Elevated global cytosolic Ca$^{2+}$ and enhanced myogenic tone in small diameter cerebral arteries following SAH:

The relationship between intravascular pressure, arterial Ca$^{2+}$ and myogenic tone was examined in small diameter (150-200 μm) cerebral arteries isolated from healthy control and SAH model rabbits. Arterial wall Ca$^{2+}$ and constriction increased as intravascular pressure was elevated within the range (60-100 mmHg) typically experienced by these arteries in vivo. Arteries from SAH animals exhibited significant elevations in both arterial wall Ca$^{2+}$ and constriction compared to similar arteries from control animals (Figure 1A). For example, at 100 mmHg, arterial wall Ca$^{2+}$ was ~26% higher in arteries isolated from SAH animals (231 ± 17 nM, n = 4) compared with arteries isolated from healthy (184 ± 12 nM, n = 4). The level of constriction (myogenic tone) at 100 mmHg was ~1.5 fold higher in arteries isolated from SAH animals (39 ± 3 % decrease in diameter, n = 4) compared with arteries isolated from healthy animals (27 ± 2 % decrease in diameter, n = 4). In the presence of the L-type VDCC blocker nifedipine (1 μM), arterial Ca$^{2+}$ was greatly reduced in arteries from both SAH (141 ± 15 nM) and control (118 ± 7 nM) rabbits. Nifedipine (1 μM) also reduced pressure-induced constrictions by 92 ± 1 % and 93 ± 1 % in arteries from SAH and control animals, respectively. These data suggest that increased VDCC activity underlies enhanced pressure-induced constriction observed in small diameter cerebral arteries from SAH.

Increased VDCC activity could reflect either increased L-type VDCC expression or enhanced VDCC activation due to smooth muscle membrane potential depolarization.
following SAH. Quantitative real-time PCR was used to assess L-type VDCC expression encoded by the gene Cav1.2 (17). Using this approach, no significant difference in Cav1.2 mRNA levels was detected in cerebral artery homogenates from control and SAH animals (Figure 1B). Next, we used intracellular microelectrodes to directly measure vascular smooth muscle membrane potential from intact pressurized cerebral arteries. At 80 mmHg, smooth muscle membrane potential was significantly depolarized by approximately 8 mV in arteries isolated from SAH animals compared with arteries from control animals (Figure 1C). These findings suggest that membrane potential depolarization of vascular smooth muscle leads to increased VDCC activity, elevated global cytosolic Ca$^{2+}$ and enhanced constriction of small diameter cerebral arteries following SAH.

Ca$^{2+}$ spark frequency is decreased in cerebral artery myocytes from SAH animals:

A decrease in Ca$^{2+}$ spark frequency and associated BK activity promotes membrane potential depolarization, elevated global cytosolic Ca$^{2+}$, and vasoconstriction (15, 27). To explore whether decreased Ca$^{2+}$ spark frequency may contribute to enhanced cerebral artery constriction, Ca$^{2+}$ sparks were measured in isolated cerebral artery myocytes using laser scanning confocal microscopy and the Ca$^{2+}$ indicator dye fluo-4. As illustrated in figure 2, Ca$^{2+}$ sparks were observed in cerebral artery myocytes obtained from both control and SAH animals. However, Ca$^{2+}$ spark frequency was markedly decreased (by approximately 50%) in myocytes isolated from SAH animals. Consistent with the observed decrease in Ca$^{2+}$ spark frequency, the frequency of transient BK currents
detected using patch clamp electrophysiology was also reduced by approximately 50% in freshly isolated cerebral artery myocytes from SAH animals (Koide and Wellman, unpublished observations). These data suggest that a decrease in the frequency of Ca$^{2+}$ sparks and their associated BK channel currents may contribute to enhanced constriction of small diameter cerebral arteries following SAH.

Discussion

Aneurysmal SAH is associated with high rates of morbidity and mortality (1). It has been a long-held belief that delayed and sustained large diameter (conduit) cerebral artery vasospasm (“angiographic vasospasm”) is a major contributor to SAH-induced death and disability. However, there is a growing appreciation that a host of other factors are also likely involved in the pathological consequences associated with cerebral aneurysm rupture (5, 20). Here, we provide evidence that SAH enhances the dynamic constriction of small diameter pial arteries in response to physiological increases in intravascular pressure, an effect that could have a pronounced influence to decrease cerebral blood flow. Our findings indicate that this augmented constriction is associated with enhanced smooth muscle contraction due to membrane potential depolarization, enhanced voltage-dependent Ca$^{2+}$ channel activity and elevated global cytosolic calcium. Further, our recent findings suggest a decrease in the frequency of Ca$^{2+}$ sparks and associated BK channel activity may contribute to enhanced cerebral artery constriction and elevated global cytosolic Ca$^{2+}$ (figure 3).
The cerebral circulation maintains a constant level of blood flow to the brain despite physiological fluctuations in cerebral perfusion pressure (14). To achieve stable cerebral blood flow in the face of changes in blood pressure, cerebral arteries must constrict in response to increased intravascular pressure and dilate when intravascular pressure is reduced. In pial arteries from healthy animals, physiological increases in intravascular pressure lead to smooth muscle membrane potential depolarization, an increase in the activity of L-type CaV1.2 channels (encoded by the gene CACNA1C), and increased global cytosolic Ca^{2+} (12, 17). The open-state probability of CaV1.2 is steeply voltage-dependent (16); thus, small changes in membrane potential can have a profound impact on smooth muscle Ca^{2+}. Our present results suggest membrane potential depolarization and enhanced L-type VDCC activity in small diameter arteries is likely to contribute to SAH-induced impairment in the autoregulation of cerebral blood flow reported by others (18, 23). Our evidence also suggests enhanced activity of L-type VDCCs play a large part in the SAH-induced elevation in global cytosolic Ca^{2+}. However, in the presence of the L-type VDCC blocker nifedipine, global Ca^{2+} remained elevated (by approximately 20%) in arteries from SAH animals. This nifedipine-resistant increase in global Ca^{2+} in cerebral arteries from SAH animals may reflect the emergence of R-type VDCC channels (9), or the possible upregulation of additional Ca^{2+} entry pathways.

Our present findings suggest decreased Ca^{2+} spark and associated BK channel activity contribute to SAH-induced membrane potential depolarization and enhanced VDCC activity in cerebral artery myocytes. Harder and colleagues (6) were the first to report that the membrane potential of cerebral artery myocytes is depolarized following SAH.
and a number of subsequent studies have provided further evidence for decreased voltage-dependent \(K^+ (K_V) \) channel activity in pial arteries following SAH (7, 10, 11, 13, 21, 22, 24). Interestingly, BK channel activity and expression have been reported to be unchanged in basilar artery myocytes obtained from a canine SAH model (11). Our current work demonstrates that decreased BK channel activity following SAH results from a decrease in local \(Ca^{2+} \) signaling from the SR to the plasma membrane (i.e. decreased \(Ca^{2+} \) spark activity), rather than a direct effect on BK channel properties or expression.

Conclusions

In this study, we examined global and local \(Ca^{2+} \) signaling in cerebral artery myocytes following SAH. As for global \(Ca^{2+} \), we observed a significant increase in averaged cytosolic \(Ca^{2+} \) and constriction in cerebral arteries from SAH animals at physiological intravascular pressures. Regarding local \(Ca^{2+} \) signaling, we report a decrease in the frequency of \(Ca^{2+} \) sparks and associated transient outward BK currents, which likely contribute to membrane potential depolarization, increased VDCC activity and enhanced cerebral constriction artery following SAH. These data suggest that increased global \(Ca^{2+} \) and impaired local \(Ca^{2+} \) signaling may contribute to decreased cerebral blood flow and the development of neurological deficits frequently observed following aneurysmal SAH.
Acknowledgements

This work was supported by the Totman Medical Research Trust Fund, the Peter Martin Brain Aneurysm Endowment, the NIH (NIHLBI, R01 HL078983 and NCRR, P20 RR16435) and the American Heart Association (0725837T, 0815736D). The authors wish to thank to Ms. Sheila Russell for her assistance with this study. The authors would also like to acknowledge the University of Vermont Neuroscience COBRE molecular biology and imaging core facilities.
References

Figure Legends:

Figure 1: Elevated global cytosolic Ca^{2+} following SAH: A. Summary data from simultaneous measurement of arterial wall Ca^{2+} (using fura-2) and diameter. Arterial wall Ca^{2+} and tone were significantly increased at intravascular pressures between 60 and 100 mmHg in arteries isolated from SAH animals compared with controls. B. Summary data using quantitative real-time PCR. Total RNA was collected from posterior cerebral arteries. Ca_{V}1.2 expression was not altered following SAH. NS: not statistically significant. C. Summary data from membrane potential measurement using intracellular microelectrodes. Vascular smooth muscle membrane potential in arteries from SAH animals was significantly depolarized following SAH. * P<0.05.

Figure 2: Decreased Ca^{2+} spark frequency in cerebral myocytes from SAH animals: Imaging of Ca^{2+} sparks in cerebral artery myocytes loaded with the fluorescent Ca^{2+} indicator fluo-4. Fluorescent images were detected using laser scanning confocal microscopy with Ca^{2+} sparks defined as a fractional fluorescent increase of greater than 30% within 2.1 μm by 2.1 μm analysis areas. Large size images represent an average of 30 images in gray scale without Ca^{2+} spark activity. White crosses depict where individual Ca^{2+} sparks occurred during the 20 sec recordings. Scale bars represent 10 μm. Smaller images illustrate the time course of Ca^{2+} sparks in control and SAH myocytes. Images were obtained every 19 msec.
Figure 3: **Summary cartoon:** In control cerebral artery myocytes, local Ca$^{2+}$ release events from the sarcoplasmic reticulum (Ca$^{2+}$ sparks) activate large conductance Ca$^{2+}$ activated (BK) K$^+$ channels, causing membrane potential hyperpolarization, decreased voltage-dependent Ca$^{2+}$ channel (VDCC) activity and decreased global cytosolic Ca$^{2+}$. Following SAH, the frequency of Ca$^{2+}$ sparks and therefore BK channel activity is decreased, promoting membrane potential depolarization, increased VDCC activity and increased global cytosolic Ca$^{2+}$ levels.
Figure 1: Elevated global cytosolic Ca^{2+} following SAH.
Decreased Ca$^{2+}$ spark frequency in cerebral myocytes from SAH animals.
Figure 3: Summary cartoon.
APPENDIX C: JOURNAL ARTICLE

My contribution to the following journal article comprises acquisition and analysis of arterial $[ext{Ca}^{2+}]_i$ data and caffeine-induced Ca^{2+}-transient data shown in figure 5.
Reduced Ca2+ spark activity following subarachnoid hemorrhage disables BK channel control of cerebral artery tone

Masayo Koide, Matthew A. Nystoriak, Gayathri Krishnamoorthy, Kevin P. O’Connor, Adrian D. Bonev, Mark T. Nelson, and George C. Wellman

Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont, USA

Correspondence:
George C. Wellman, Ph.D.
University of Vermont
Department of Pharmacology
89 Beaumont Avenue
Burlington, VT USA 05405-0068
e-mail: george.wellman@uvm.edu
Tel: 802-656-3470
Fax: 802-656-4523

Running title: SAH decreases Ca2+ spark and BK channel activity

This work was supported by the Totman Medical Research Trust Fund, the Peter Martin Brain Aneurysm Endowment, the NIH (R01 HL078983, R01 HL078983-05S1, R01 HL44455, R37 DK053832, R01 DK065947, R01 HL098243, R01 HL44455, R01 HL077378, NCRR P20 RR16435 and P01 HL095488) and the American Heart Association (0725837T, 0725841T, 0815736D).
Abstract

Intracellular Ca\(^{2+}\) release events ("Ca\(^{2+}\) sparks") and transient activation of large-conductance Ca\(^{2+}\)-activated potassium (BK) channels represent an important vasodilator pathway in the cerebral vasculature. Considering the frequent occurrence of cerebral artery constriction following subarachnoid hemorrhage (SAH), our objective was to determine if Ca\(^{2+}\) spark and BK channel activity were reduced in cerebral artery myocytes from SAH model rabbits. Using laser scanning confocal microscopy, we observed ≈50 % reduction in Ca\(^{2+}\) spark activity, reflecting a decrease in the number of functional Ca\(^{2+}\) spark discharge sites. Patch clamp electrophysiology demonstrated a similar reduction in Ca\(^{2+}\) spark-induced transient BK currents, but no change in BK channel density or single channel properties. Consistent with a reduction in active Ca\(^{2+}\) spark sites, quantitative real-time PCR and western blotting revealed decreased expression of ryanodine receptor type 2 (RyR-2) and increased expression of the RyR-2 stabilizing protein, FKBP12.6, in cerebral arteries from SAH animals. Further, inhibitors of Ca\(^{2+}\) sparks (ryanodine) or BK channels (paxilline) constricted arteries from control, but not SAH animals. This work demonstrates that an SAH-induced decrease in sub-cellular Ca\(^{2+}\) signaling events disables BK channel activity leading to cerebral artery constriction. This phenomenon may contribute to decreased cerebral blood flow and the high rate of poor outcome following aneurysmal SAH. **Key Words:** cerebral aneurysm, FKBP12.6, potassium channels, ryanodine receptors, vascular smooth muscle, vasospasm.
Introduction

Cerebral aneurysm rupture and the ensuing subarachnoid hemorrhage (SAH) has an enormous impact on individuals and society, with 30-day mortality rates approaching 50% and the majority of survivors left with moderate to severe disability (Hop et al 1997). For decades, “angiographically-defined” cerebral vasospasm of conduit arteries (> 1 mm in diameter) has been thought to be the major contributor to death and disability in SAH patients surviving the initial intracranial bleed. However, recent evidence indicates that factors other than large artery vasospasm contribute to SAH-induced pathologies (Macdonald et al 2007). Additional factors contributing to the deleterious consequences of aneurysmal SAH may include global transient ischemia, early brain injury, disruption of the blood-brain barrier, and activation of inflammatory pathways (Ostrowski et al 2006; Prunell et al 2005). It is now appreciated that SAH may also impact small diameter arteries and arterioles, i.e. those involved in the autoregulation of cerebral blood flow (Hattingen et al 2008; Ishiguro et al 2002; Ohkuma et al 2000).

In resistance arteries from healthy animals, vasoconstrictor stimuli such as physiological increases in intravascular pressure lead to smooth muscle membrane potential depolarization, increased voltage-dependent Ca\(^{2+}\) channel (VDCC) activity, and elevated global cytosolic calcium (Knot and Nelson 1998). Global cytosolic Ca\(^{2+}\) represents averaged Ca\(^{2+}\) levels throughout the cytoplasm and is a key regulator of smooth muscle contraction. One important dynamic negative feedback mechanism to limit vasoconstriction is the activation of large-conductance Ca\(^{2+}\)- and voltage-sensitive potassium (BK) channels by Ca\(^{2+}\) sparks. Ca\(^{2+}\) sparks are localized Ca\(^{2+}\) release events
occurring through ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) abutting the plasma membrane. Ca$^{2+}$ sparks oppose the contractile actions of global cytosolic Ca$^{2+}$ by promoting smooth muscle relaxation via activation of plasmalemmal BK channels leading to membrane potential hyperpolarization and decreased Ca$^{2+}$ influx through VDCCs (Nelson et al 1995; Wellman and Nelson 2003). In the vasculature, functional BK channels are composed of pore-forming α_1 subunits, encoded by the gene KCNMA1 and regulatory β_1 subunits, encoded by the gene KCNMB1 (Tanaka et al 1997). Loss-of and gain-of function polymorphisms of KCNMA1 and KCNMB1 have been linked to asthma and blood pressure regulation in humans (Kelley-Hedgepeth et al 2009; Tomas et al 2008). Further, decreased KCNMB1 expression causes reduced BK channel Ca$^{2+}$ and voltage sensitivity, and is linked to enhanced vasoconstriction, hypertension and diabetes (Amberg and Santana 2003; Brenner et al 2000; Dong et al 2008). These vascular pathologies have all been associated with a decrease in BK channel activity in response to Ca$^{2+}$ sparks, rather than a reduction in Ca$^{2+}$ spark activity.

Decreased BK channel activity following SAH could lead to vasoconstriction and compromise cerebral autoregulation. However, BK channel properties and expression appear to be unaffected in basilar arteries obtained from a canine SAH model (Jahromi et al 2008b). In the present study, we demonstrate that decreased BK channel activity does contribute to enhanced pressure-dependent constriction of resistance-sized cerebral arteries from SAH model rabbits. However, rather than reduced BK channel activity resulting from decreased KCNMA1 or KCNMB1 expression, we provide evidence that impaired BK channel activity results from a decrease in sub-cellular Ca$^{2+}$
signaling from the SR to BK channels, i.e. reduced Ca2+ spark frequency. To our knowledge, these findings represent the first demonstration of a vascular pathology due to a decrease in Ca2+ spark activity. This SAH-induced reduction in Ca2+ spark frequency reflects a decrease in the number of functional Ca2+ spark discharge sites caused by a decrease in the expression of SR RyR-2 Ca2+-release channels and an increase in the expression of the RyR-2 stabilizing protein, FKBP12.6. This novel pathway of decreased vascular BK channel activity may contribute to impaired autoregulation, reduced cerebral blood flow and the development of neurological deficits frequently observed in patients following aneurysmal SAH.

Materials and Methods

Rabbit SAH model

New Zealand White rabbits (males, 3.0-3.5 kg; Charles River Laboratories) were used for a double injection SAH model using surgical procedures described previously (Ishiguro *et al* 2002; Ishiguro *et al* 2005). Briefly, under isoflurane anesthesia, a small midline suboccipital incision was centered over the foramen magnum and neck muscles dissected until dura was visualized. Unheparinized autologous blood (2.5 ml) was then injected into the subarachnoid space via the cisterna magna. The animal was then positioned on an incline board at a 45 degree angle with the head down in neutral position for 30 minutes. To minimize increases in intracranial pressure, a similar volume of cerebral spinal fluid was removed prior to the injection of blood. Forty-eight hours later, the
above procedures were repeated. Buprenophine (0.01 mg/kg) was given every 12 hours for 36 hours after each surgery as an analgesic. Five days after the initial surgery, rabbits were euthanized by exsanguination under deep pentobarbital anesthesia (i.v.; 60 mg/kg), and posterior cerebral and cerebellar arteries (100-250 μm diameter) were dissected for in vitro studies in cold (4°C), oxygenated (20 % O₂ / 5 % CO₂ / 75 % N₂) physiological saline solution (PSS) of the following composition (in mmol/L): 118.5 NaCl, 4.7 KCl, 24 NaHCO₃, 1.18 KH₂PO₄, 2.5 CaCl₂, 1.2 MgCl₂, 0.023 EDTA, 11 glucose. Age-matched animals that did not undergo surgical procedures were used as controls. All protocols were conducted in accordance with the guidelines for the care and use of laboratory animals [National Institutes of Health (NIH) publication No. 85-23] and followed protocols approved by the Institutional Animal Care and Use Committee of the University of Vermont.

Electrophysiology

Transient BK currents: Arteries were enzymatically dissociated to obtain individual smooth muscle cells as described previously (Ishiguro et al 2005). Transient BK currents were measured using the perforated whole-cell patch-clamp technique at room temperature (Wellman et al 2002). The composition of the HEPES-PSS bath solution was (in mmol/L): 134 NaCl, 6 KCl, 1 MgCl₂, 1.8 CaCl₂, 10 glucose and 10 HEPES (pH 7.4). Patch pipettes (8-10 MΩ) were filled with an internal solution that contained (in mmol/L) 110 K⁺ aspartate, 30 KCl, 10 NaCl, 1 MgCl₂, 10 HEPES, 0.05 EGTA and 0.2 amphotericin B (pH 7.2). Transient outward currents were recorded over a range of
holding potentials from -40 mV to 0 mV (~5 min at each membrane potential). Recordings were analyzed with the Mini Analysis 6.0.3 program (Synaptosoft Inc.), to determine transient BK current amplitude, frequency, rise time (30-70 %) and decay time (90-10 %). The threshold for current peak detection was set at two and half times the single channel amplitude of BK channel (e.g. 5.0 pA at -40 mV) (Perez et al 2001).

Single channel BK current recordings: BK single channel currents were recorded in excised inside-out membrane patches at room temperature (Perez et al 2001). The bath and pipette solution contained (in mmol/L): 140 KCl, 1 MgCl$_2$, 5 EGTA, 1.9 CaCl$_2$ and 10 HEPES (pH 7.2), with a calculated free Ca$^{2+}$ concentration of 100 nmol/L (WinMax C software, http://www.stanford.edu/~cpatton/maxc.html). When CaCl$_2$ was omitted from the bath solution (“zero” Ca$^{2+}$), free Ca$^{2+}$ concentration was calculated to be < 1 nmol/L. The number of channels per patch was determined at +80 mV in 100 nmol/L free Ca$^{2+}$. Ca$^{2+}$- and voltage-sensitivity of BK channels were determined from Boltzman fit of data.

Whole-cell voltage-dependent K$^+$ current recordings: Whole cell K$^+$ currents were measured using the conventional whole cell configuration of the patch-clamp technique (Koide et al 2007). The composition of bath solution was the same as the 6 mmol/L K$^+$ HEPES-PSS described above. The internal solution contained (in mmol/L): 87 K$^+$ aspartate, 20 KCl, 1 CaCl$_2$, 1 MgCl$_2$, 10 HEPES, 10 EGTA and 25 KOH (pH 7.2). From a holding potential of -70 mV, outward K$^+$ currents were elicited by a series of 500 msec depolarizing voltage steps followed by a step to -40 mV for 300 msec. Voltage steps were made at 10 mV increments to +50 mV at intervals of 10 sec from a holding
potential of -70 mV. All electrophysiological studies were performed using Axopatch 200B, pCLAMP 9.2 and Clampfit 9.2 software (Axon Instruments Inc.).

Ca^{2+} spark measurements

Freshly isolated cerebral artery myocytes were incubated with the fluorescent Ca^{2+} indicator fluo-4 AM (10 µmol/L; Ex 488 nm, Em 520 nm; Invitrogen) and 0.036 % pluronic acid for 30 min at room temperature followed by a brief wash with HEPES-PSS. Ca^{2+} sparks were detected as previously described using a Noran Oz laser scanning confocal system coupled to an inverted Nikon TMD microscope equipped with a 60X water-immersion lens (N.A.1.2) (Perez *et al* 2001). Images were acquired at a frequency of 58.3 Hz (approximately every 17.2 msec) for 20 sec at room temperature. Fractional fluorescent changes (F/F₀) were analyzed in 2.1 μm x 2.1 μm analysis areas using custom software (SparkAn, written by Dr. Adrian Bonev), and F/F₀ changes > 1.3 defined as Ca^{2+} sparks. F₀ was obtained by averaging 30 images containing no Ca^{2+} events.

RNA isolation and quantitative real-time RT-PCR

Total RNA was extracted from posterior cerebral arteries (100-250 µm in diameter, ~1 mg wet weight) using RNA STAT-60 (Tel-Test Inc.) and cDNA was synthesized by SuperScript™ First-Strand Synthesis System (Invitrogen). The primer sets were designed using Primer-BLAST (NIH) for a unique region of targeted mRNA sequence and are detailed in the online supplementary information (Table 1). Expression of mRNA was quantified by real-time PCR using SYBR Green JumpStart Taq ReadyMix
and a real-time PCR system (Applied Biosystems). Quantification was performed using standard curves constructed by amplification of serially diluted plasmids containing target genes, and the threshold cycle value for each sample used to calculate the initial quantity of cDNA template. The results of quantitative real-time PCR were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression.

Western blotting

Freshly isolated cerebral arteries were homogenized in buffer containing (in mmol/L): 100 NaCl, 20 Tris-HCl (pH 7.4), 1 EDTA, 1 EGTA, 5 dithiothreitol, 1 phenylmethylsulfonyl fluoride, 0.1 leupeptin and 1 % Triton-X using glass microgrinders. After sonication for 10 min on iced water, tissue debris was removed by centrifugation (8000 x g, 5 min). The protein concentration of lysate was measured by modified Bradford assay (Coomassie Plus; Pierce) using bovine serum albumin as a standard. The lysate (20 µg of protein) was mixed with 5X loading buffer (625 mmol/L Tris-HCl; pH 6.8), 20 % SDS and 25 % glycerol), and incubated at 37 °C for 15 min. Proteins were separated using 4-20 % acrylamide gradient gels, and electrophoretically transferred to a nitrocellulose membrane. After blocking the membrane with 5 % non-fat milk (1 hr at RT), the membrane was incubated with primary antibody at 4 °C over night. Following incubation with appropriate secondary antibody for 1 hr at RT, signals were detected by chemiluminescence for RYR-2 or by an Odyssey® infrared imaging system (LI-COR® Biosciences) for FKBP12.6 and α-smooth muscle actin. Bands depicting each protein were analyzed using Image J software (NIH). Antibodies were used as follows:
anti-RyR2 mouse monoclonal antibody (clone C3-33, 1:200; ABR), anti-FKB12.6 goat polyclonal antibody (1:200, SantaCruz), anti-α smooth muscle actin mouse monoclonal antibody (1:100,000, Sigma), peroxydase conjugated sheep anti-mouse IgG (1:5,000, GE Healthcare), IRdye700® conjugated donkey anti-goat IgG and IRdye800® conjugated goat anti-mouse IgG (1:10,000, Rockland).

Diameter measurements in isolated arteries

Freshly isolated arteries from control and SAH rabbits were cannulated in a 5 ml myograph chamber (Living Systems Instrumentation, Inc.) and perfused with PSS (pH 7.4) aerated with 20 % O₂ / 5 % CO₂ / 75 % N₂ at 37°C, as previously described (Ishiguro et al 2002). Arterial diameter was measured with video edge detection equipment and recorded using data acquisition software (Dataq Instruments Inc.). Arteries were discarded if an initial constriction representing less than a 50 % decrease in diameter was observed when arteries were exposed to elevated extracellular K⁺ (60 mmol/L). Arterial constrictions to paxilline and ryanodine are expressed as a percent decrease in diameter from the basal level of pressure-induced myogenic tone at an intravascular pressure of 80 mmHg. Vasodilation to cumulative additions of acetylcholine (ACh) and sodium nitroprusside (SNP) are expressed as percent dilation of pressure-induced (myogenic) tone. Fully-dilated (passive) diameter was determined at the end of each experiment by exposing arteries to Ca²⁺-free PSS containing diltiazem (100 μmol/L) and forskolin (1 μmol/L).
Measurement of cytosolic Ca\(^{2+}\) in pressurized cerebral arteries

Freshly isolated cerebral arteries were cannulated and loaded with the ratiometric Ca\(^{2+}\)-sensitive fluorescent dye, fura-2 AM (5 \(\mu\)mol/L; Invitrogen), with 0.1 \% pluronic acid for 45 min at room temperature. To allow for equilibration and deesterification of fura-2 AM, arteries were superfused with PSS at 37°C for 30 min. Following the equilibration period, fluorescent ratio (R) was obtained from background corrected 510 nm emission from arterioles alternately excited at 340 and 380 nm using software developed by IonOptix Inc. Cytosolic Ca\(^{2+}\) concentration was estimated using the following equation (Gryniewicz et al 1985):

\[
[Ca^{2+}] = K_d \times \beta \times \frac{(R-R_{\text{min}})}{(R_{\text{max}}-R)}
\]

Calibration values were not significantly different between arteries from control and SAH animals and were pooled. \(R_{\text{min}} (0.46 \pm 0.02)\) and \(R_{\text{max}} (10.80 \pm 0.66)\) represent the ratios of emission signal under Ca\(^{2+}\)-free and Ca\(^{2+}\)-saturated conditions, respectively and were obtained from separate sets of arteries in the presence of ionomycin (10 \(\mu\)mol/L) and nigericin (5 \(\mu\)mol/L). The ratio of Ca\(^{2+}\)-free over Ca\(^{2+}\)-bound fluorescence intensities at \(F_{380}\), \(\beta (11.5 \pm 0.70)\), was obtained from \(R_{\text{min}}\) and \(R_{\text{max}}\) measurements. An apparent dissociation constant \((K_d)\) of 282 nM of fura-2 for Ca\(^{2+}\) was used (Knot and Nelson 1998).

Statistical Analysis

Data are expressed as mean ± SEM, and analyzed by Student’s unpaired \(t\)-test or One-way ANOVA followed by Tukey multiple comparison test. Statistical significance was considered at the level of \(p < 0.05\) (*) or \(p < 0.01\) (**).
Results

Transient BK channel currents are decreased following SAH.
At physiological membrane potentials (e.g. -40 mV), micromolar increases in cytosolic Ca$^{2+}$ are required to induce significant BK channel activation (Perez et al 2001). In cerebral artery myocytes, sub-cellular Ca$^{2+}$ signaling events (Ca$^{2+}$ sparks) lead to localized elevations of Ca$^{2+}$ sufficient to cause the transient activation of nearby BK channels. Ca$^{2+}$ spark-induced transient BK currents were recorded using the perforated patch whole-cell configuration of the patch clamp technique (Figure 1). At -40 mV, transient BK current frequency, but not amplitude, was decreased by approximately 60 % in cerebral artery myocytes freshly isolated from SAH model rabbits. Membrane potential depolarization increased the frequency and amplitude of transient BK currents to a similar extent in myocytes from both control and SAH animals, i.e. frequency was about 60 % lower at all voltages in cells from the SAH group. Temporal characteristics of these events (rise time and decay time) were similar between groups, as was cell size as indexed by cell capacitance (online supplementary information, Table 2). These data demonstrate a dramatic decrease in the frequency of Ca$^{2+}$ spark-induced BK channel activity following experimental SAH.

Maintained expression and properties of BK channels in cerebral artery myocytes following SAH.
The apparent SAH-induced decrease in transient BK current frequency could conceivably reflect a fundamental change in the voltage or Ca$^{2+}$ sensitivity, or expression of the BK
channel following SAH. To address this issue, single BK channel currents were measured in excised “inside-out” membrane patches. BK channel open-state probability (P₀) and voltage-dependence with 100 nmol/L intracellular free Ca²⁺ were not altered following SAH and a similar right-ward shift in voltage-dependent activation was observed in BK channels from both groups exposed to intracellular solution containing < 1 nmol/L free Ca²⁺ (Figure 2A, B). Single channel slope conductance was similar for channels from control (231.7 ± 3.6 pS, n = 9) and SAH (231.6 ± 3.5 pS, n = 9) animals, consistent with previous reports for BK channels (Perez et al 2001). Further, the density of functional BK channels detected in membrane patches was not different between groups (Figure 2C). To view the ensemble behavior of BK channels across the membrane of the entire cell, voltage-dependent K⁺ currents were measured during depolarizing voltage steps using conventional whole-cell patch-clamp electrophysiology. Here, [Ca²⁺]ᵢ was maintained below 25 nmol/L by cell dialysis with 10 mmol/L of the Ca²⁺ chelator, EGTA, included in the intracellular (pipette) solution. Ca²⁺ spark or RyR activation of BK currents does not occur using this approach and the amplitude of conventional whole-cell BK currents reflects plasma membrane BK channel density and their open-state probability at the applied voltage and [Ca²⁺]ᵢ. Steady-state outward currents sensitive to the BK channel blocker paxilline (1 μmol/L, 10 min) were similar in myocytes from control and SAH animals (Figure 2D). To confirm that expression of BK channel pore-forming α-subunits and regulatory β1-subunits are maintained in our SAH model, quantitative real-time PCR was performed on RNA extracted from intact cerebral arteries. BK channel α and β1 subunit mRNA, expressed as a ratio to glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) mRNA, were not significantly different between control and SAH animals (Figure 2E, n = 6 for each group). These data suggest that the SAH-induced decrease in the frequency of transient BK currents is not due to a decrease in the number or functionality of BK channels.

Ca\(^{2+}\) spark frequency is decreased in SAH model animals.

BK channel properties and expression appear unaltered in smooth muscle cells from cerebral arteries of SAH animals. We therefore explored the possibility that the lower transient BK current frequency reflects a fundamental decrease in Ca\(^{2+}\) spark activity. Ca\(^{2+}\) sparks were optically measured in freshly isolated cerebral artery myocytes from control and SAH rabbits using laser scanning confocal microscopy and the fluorescent Ca\(^{2+}\) indicator, fluo-4. Ca\(^{2+}\) sparks were observed in cells from both control and SAH animals (Figure 3A, also see movies included within the online supplementary data). However, as with the frequency of transient BK currents, whole cell Ca\(^{2+}\) spark frequency was dramatically lower (≈50 %) in myocytes isolated from SAH animals (SAH: 0.38 ± 0.04 Hz; Control: 0.76 ± 0.05 Hz, Figure 3B). Although frequency was decreased, Ca\(^{2+}\) spark amplitude, expressed as a fractional change in fluorescence intensity (F/F\(_0\)), was similar in myocytes isolated from control and SAH animals (Figure 3C). Other spatio-temporal characteristics such as rise-time, duration, size, and decay were similar for Ca\(^{2+}\) sparks recorded from myocytes of control and SAH animals (online supplementary information, Table 2).
A reduction in functional Ca\(^{2+}\) spark sites underlies decreased Ca\(^{2+}\) spark frequency in SAH model animals.

In smooth muscle, Ca\(^{2+}\) sparks tend to occur repeatedly within a limited number of distinct areas, or spark sites (Janiak *et al* 2001; Pucovsky and Bolton 2006). The SAH-induced decrease in Ca\(^{2+}\) spark frequency could reflect either a reduction in the number of functional spark sites or a decrease in the frequency of events occurring at all spark sites throughout the cell. Spark sites were defined as regions where one or more Ca\(^{2+}\) sparks were observed during a 20 second imaging period (Figure 4A-C). Two or more Ca\(^{2+}\) sparks were considered to originate from the same spark site if these events exhibited greater than 50 % overlap of their spatial spread (determined at 50 % peak amplitude). In 45 cerebral artery myocytes from five control animals, a total of 1,082 Ca\(^{2+}\) sparks were observed with an average of 7.9 ± 0.6 spark sites per cell. However, in myocytes from SAH animals, the number of active spark sites was decreased by approximately 43 % to 4.5 ± 0.4 (n = 594 sparks in 48 cells from 6 animals, Figure 4D). Although the number of functional spark sites was decreased, Ca\(^{2+}\) spark frequency at individual sites was similar in cells isolated from control and SAH animals (Figure 4E). Further, the correlation between the number of functional spark sites and whole cell Ca\(^{2+}\) spark frequency was similar between groups (Figure 4F). These data suggest SAH-induced decreased Ca\(^{2+}\) spark frequency reflects a reduction in the number of functional spark sites.
RyR-2 expression is decreased and FKBPI2.6 expression is increased in cerebral arteries from SAH animals.

It is conceivable that the SAH-induced decrease in functional spark sites could reflect either an increase in the activation threshold of RyRs or decreased SR Ca$^{2+}$ load. To assess RyR activity, Ca$^{2+}$ sparks were examined in the presence of a relatively low concentration (10 μmol/L) of the RyR activator, caffeine. Caffeine lowers the luminal Ca$^{2+}$ threshold for RyR activation (Kong et al 2008) and at micromolar concentrations causes an increase in both Ca$^{2+}$ spark frequency and the number of active spark sites in smooth muscle (Janiak et al 2001; Wellman et al 2001). In absolute terms, the number of active Ca$^{2+}$ spark sites and whole-cell Ca$^{2+}$ spark frequency in the presence of caffeine (10 μmol/L) remained decreased in myocytes isolated from SAH animals (Figure 5A-C; control n = 7 cells from 3 animals, SAH n = 14 cells from 3 animals). However, on a relative basis, i.e. when expressed as a percent of basal activity, treatment with caffeine (10 μmol/L) increased the number of active spark sites by approximately 50 % in cerebral artery myocytes from both control and SAH animals. Corresponding to the increase in the number of active spark sites, caffeine (10 μmol/L) also caused a similar percent increase in whole cell Ca$^{2+}$ spark frequency in cerebral artery myocytes from both groups. SR Ca$^{2+}$ content was also examined in cerebral arteries isolated from control and SAH animals using the ratiometric fluorescent Ca$^{2+}$-sensitive dye, fura-2. Decreased SR Ca$^{2+}$ content has been reported to decrease whole cell Ca$^{2+}$ spark frequency and reduce the amplitude of individual Ca$^{2+}$ sparks (ZhuGe et al 1999). Rapid application of high concentrations (millimolar) of caffeine leads to a significant release of Ca$^{2+}$ from the SR

through activation of RyRs. The relative amplitude of these caffeine-induced global Ca2+ transients has been used as an index of SR Ca2+ content (Santana et al 1997; Wellman et al 2001). The amplitudes of caffeine-induced global Ca2+ transients were not significantly different in cerebral arteries from control and SAH model animals (Figure 5D). Further, quantitative real-time PCR demonstrated that mRNA levels of the SR Ca2+-binding proteins calsequestrin-2 and calreticulin and the smooth muscle sarco/endoplasmic reticulum Ca2+-ATPase, SERCA-2 were not significantly different in arteries from control and SAH animals (Figure 5E; n = 6 for each group). These data suggest RyR activation properties and SR Ca2+ load in myocytes from SAH animals are unaltered, and that increasing RyR activity does not restore the number of functional spark sites to control levels.

The RyR-2 subtype is the dominantly expressed RyR isoform in arterial smooth muscle, and is thought to underlie Ca2+ spark activity in these cells (Ji et al 2004). RyR-2 activity is modulated by the FK506-binding protein, FKBP12.6, that stabilizes RyR-2 channels in the closed state (Zalk et al 2007). Conditional overexpression of FKBP12.6 has been reported to decrease Ca2+ spark frequency in cardiac myocytes (Gellen et al 2008). Thus, decreased expression of RyR-2 or increased expression of FKBP12.6 may contribute to a reduction in Ca2+ spark activity following SAH. To examine whether RyR-2 expression was decreased following SAH, quantitative real-time RT-PCR was performed on RNA extracted from intact cerebral arteries (Figure 6A). When normalized to GAPDH, RyR-2 expression was decreased by approximately 65 % in cerebral arteries from SAH animals compared to controls (n = 6 for each group). Protein levels of RyR-2,
detected by western blot, were also decreased by approximately 50 % in cerebral artery homogenates from SAH rabbits (Figure 6B, C; n = 4 for each group). Interestingly, we also observed that FKBP12.6 mRNA expression was increased two-fold (n = 5) and protein levels were over four-fold greater (n = 4) in cerebral artery homogenate from SAH compared to control animals (Figure 6). These data are consistent with decreased RyR-2 expression and increased FKBP12.6 expression contributing to a reduction in functional spark sites and decreased Ca\(^{2+}\) spark frequency in myocytes from SAH animals.

Decreased RyR and BK channel activity contribute to enhanced cerebral artery constriction following SAH.

At physiological intravascular pressures (e.g. 80 mmHg), constriction was greater in cerebral arteries isolated from SAH (34.7 ± 2.7 % decrease in diameter, n = 9) compared to control (18.5 ± 2.6 % decrease in diameter, n = 9) animals. To examine whether SAH-induced decreased Ca\(^{2+}\) spark and transient BK current activity contribute to enhanced cerebral artery constriction, arterial diameter measurements were made in the presence and absence of paxilline, a blocker of BK channels and ryanodine, a blocker of RyRs (Figure 7A-C and online supplementary information, Table 3). At an intravascular pressure of 80 mmHg, paxilline (1 μmol/L) caused a robust constriction in arteries from control animals, decreasing diameter from 94.6 ± 10.2 μm to 78.4 ± 8.4 μm, or by 17.1 % (Figure 7B). Thus, with arteries from control animals, BK channel block mimicked SAH to enhance constriction. In contrast, paxilline did not significantly constrict arteries from
SAH animals (diameter prior to paxilline: 96.6 ± 8.1 µm; diameter in the presence of paxilline 95.5 ± 8.6 µm), consistent with SAH causing a decrease in Ca\(^{2+}\) spark-induced BK channel activity. In a similar manner, the inhibitor of Ca\(^{2+}\) sparks, ryanodine (10 µmol/L), caused a significantly greater constriction in arteries from control compared to SAH animals (Figure 7C). Also consistent with SAH-induced decreased BK channel activity and enhanced vasoconstriction, global cytosolic Ca\(^{2+}\), measured using fura-2, was elevated in cerebral arteries from SAH animals (F\(_{340}/F_{380}\): 1.18 ± 0.04; estimated Ca\(^{2+}\): 222 ± 12 nM, n = 4) compared to control animals (F\(_{340}/F_{380}\): 1.00 ± 0.07; estimated Ca\(^{2+}\): 175 ± 12 nM, n = 4). In contrast to the SAH-induced disruption of the Ca\(^{2+}\) spark/BK channel dilator pathway, dilations to the endothelial-dependent agonist, acetylcholine, and the endothelial-independent dilator, sodium nitroprusside, were similar in arteries from control and SAH animals (Figure 7D, E). These data are consistent with decreased Ca\(^{2+}\) spark-induced BK channel activity contributing to enhanced constriction of cerebral arteries from SAH animals.

Discussion

Here, we provide evidence that a reduction in subcellular Ca\(^{2+}\) release events (i.e. Ca\(^{2+}\) sparks) underlies decreased BK channel activity and enhanced cerebral artery constriction following SAH. The following observations support this concept: 1) cell-wide Ca\(^{2+}\) spark frequency is decreased in cerebral artery myocytes from SAH animals, reflecting a decrease in active Ca\(^{2+}\) spark discharge sites; 2) mRNA and protein levels of RyR-2, the SR Ca\(^{2+}\) release channel responsible for Ca\(^{2+}\) sparks in smooth muscle, is reduced in
cerebral artery myocytes following SAH; 3) mRNA and protein levels of the RyR-2 stabilizing protein, FKBP12.6, is increased in cerebral arteries from SAH animals; 4) the frequency of Ca^{2+} spark-induced transient BK currents is decreased in cerebral artery myocytes from SAH animals, with no change in BK channel properties, whole-cell BK currents or BK subunit expression; 5) constriction caused by inhibitors of Ca^{2+} sparks (ryanodine) or BK channels (paxilline) is decreased in cerebral arteries from SAH animals. Together, these data suggest that SAH-induced decreased Ca^{2+} spark frequency and the resulting decrease in transient BK channel activity promotes membrane potential depolarization, enhanced Ca^{2+} influx via VDCCs and cerebral artery constriction.

To our knowledge, these findings represent the first demonstration of a vascular pathology due to a decrease in Ca^{2+} spark frequency. Although altered frequency of Ca^{2+} spark-induced transient BK currents has been reported in other cardiovascular diseases such as hypertension and hypovolemic shock, these phenomena have been attributed to altered BK channel function/expression. Enhanced constriction associated with hypertension and diabetes has been linked to decreased expression of the BK channel β_{1} subunit (Amberg and Santana 2003; Brenner et al. 2000; Dong et al. 2008) while an acute upregulation of BK channel β_{1} subunit contributes to vasodilation and the drop in peripheral resistance associated with hemorrhagic shock (Zhao et al. 2007). In the above pathologies, Ca^{2+} spark activity was unaltered. In marked contrast, we observed a parallel decrease in the frequency of Ca^{2+} sparks and Ca^{2+} spark-induced transient BK currents following SAH. Notably, experimental SAH did not directly alter BK channel properties or expression. Our observed lack of direct effect of SAH on BK channels in
pial arteries obtained from SAH model rabbits is consistent with observations using basilar artery myocytes obtained from a dog SAH model (Jahromi et al 2008b).

We found that the overall decrease in Ca\(^{2+}\) spark frequency in myocytes from SAH animals reflected a decrease in the number of functional spark sites. Both the number of functional spark sites and whole cell Ca\(^{2+}\) spark frequency were reduced by approximately 50 % in myocytes following SAH. Although the RyR activator, caffeine (10 μmol/L), caused proportionately the same increase in the number of functional spark sites and Ca\(^{2+}\) spark frequency in myocytes from control and SAH animals, both parameters remained approximately 50 % lower in SAH animals. Spark sites within arterial myocytes are comprised of a variable number of RyRs, and functional spark sites require the activity of a critical number of RyRs for Ca\(^{2+}\)-induced Ca\(^{2+}\) release and Ca\(^{2+}\) sparks to occur (Janiak et al 2001; Pucovsky and Bolton 2006). Using quantitative real-time PCR and western blot, we observed a significant reduction in mRNA and protein levels of RyR-2 in cerebral arteries following SAH. A decrease in RyR-2 expression has been previously reported in cardiac myocytes following heart failure (Go et al 1995) and in vascular smooth muscle undergoing phenotypic changes during cell culture (Berra-Romani et al 2008). It is conceivable that the SAH-induced decreased RyR-2 expression caused some, but not all, spark sites to no longer have the threshold number of RyRs required for Ca\(^{2+}\) spark initiation.

In addition to decreased RyR-2 expression, increases in the relative expression of proteins that reduce RyR-2 activity may also contribute to the observed decrease in the number of functional Ca\(^{2+}\) spark sites. For example, we observed increased mRNA and
protein levels of the RyR-2 regulatory protein, FKBP12.6. Binding of FKBP12.6 stabilizes RyR-2 in the closed state (Zalk et al 2007). Ablation of the gene encoding FKBP12.6 has been reported to increase Ca\(^{2+}\) spark frequency in smooth muscle (Ji et al 2004) and conversely, conditional overexpression of FKBP12.6 has been linked to decreased Ca\(^{2+}\) spark frequency in cardiac myocytes (Gellen et al 2008). Our current data suggest that increased FKBP12.6 expression acting in concert with decreased RyR-2 expression underlie the decrease in active Ca\(^{2+}\) sparks in cerebral artery myocytes from SAH model animals. Based on the present study, the relative contribution of decreased RyR-2 expression versus increased FKBP12.6 expression to the observed SAH-induced reduction in Ca\(^{2+}\) spark activity is unclear.

Decreased SR Ca\(^{2+}\) content has also been linked to decreased Ca\(^{2+}\) spark frequency and amplitude in smooth muscle (ZhuGe et al 1999), thus, reduced SR Ca\(^{2+}\) could potentially contribute to decreased Ca\(^{2+}\) spark frequency following SAH. However, our data argue against this possibility. First, we observed no difference in the amplitude of global Ca\(^{2+}\) transients induced by rapid application of a high concentration (10 mmol/L) of caffeine following SAH. Secondly, we observed a reduction in the number of functional Ca\(^{2+}\) spark sites, rather than a uniform reduction in Ca\(^{2+}\) spark frequency, and Ca\(^{2+}\) spark amplitude was similar in myocytes from control and SAH animals. Further, mRNA levels of SR-Ca\(^{2+}\)-ATPase (SERCA-2) and the SR Ca\(^{2+}\) binding proteins, calsequestrin-2 and calreticulin, were similar in cerebral arteries from control and SAH animals. It is possible that additional factors such as RyR-2 phosphorylation
(Zalk et al 2007) could contribute to a reduction in functional Ca\(^{2+}\) spark sites in cerebral artery myocytes following SAH.

The present work may help to explain the impact of SAH leading to enhanced constriction of small diameter cerebral arteries and decreased cerebral blood flow. We have previously reported an increase in VDCC current density, in part due to the emergence of R-type VDCCs encoded by the gene Ca\(_{\text{V}}\)2.3, in cerebral artery myocytes from SAH model rabbits (Ishiguro et al 2005). Membrane potential depolarization caused by a decrease in Ca\(^{2+}\) spark-induced transient BK currents would be predicted to cause an increase in the open-state probability of VDCCs and combined with enhanced VDCC expression would increase global cytosolic Ca\(^{2+}\) leading to enhanced contraction of cerebral artery myocytes. Additional mechanisms such as decreased voltage-dependent potassium (K\(_{\text{V}}\)) channel expression (Jahromi et al 2008a) and activity (Ishiguro et al 2006; Koide et al 2007; Quan and Sobey 2000) and increased protein kinase C activity (Nishizawa et al 2000) are also likely to contribute to enhanced cerebral artery constriction following SAH.

In conclusion, we report that the frequency of Ca\(^{2+}\) sparks and associated transient BK currents were significantly decreased in cerebral artery myocytes following SAH, contributing to enhanced vasoconstriction. Our findings suggest this SAH-induced decrease in Ca\(^{2+}\) spark frequency results from a reduction in RyR-2 expression and increased FKBP12.6 expression leading to a decrease in the number of functional spark sites within these myocytes. This mechanism may contribute to a reduction in cerebral blood flow and the development of neurological deficits experienced by patients.
following cerebral aneurysm rupture. Further, this mechanism of decreased vascular BK channel activity may also contribute to other types of brain pathologies, including traumatic brain injury.

Acknowledgements:

The authors wish to thank Ms. Sheila Russell for her assistance and acknowledge the University of Vermont Neuroscience COBRE molecular biology and imaging core facilities.

Disclosures/Conflict of Interest: The authors declare no conflict of interest.

Supplementary information is available at the *Journal of Cerebral Blood Flow and Metabolism* website.

References

Ishiguro M, Wellman TL, Honda A, Russell SR, Tranmer BI, Wellman GC (2005) Emergence of a R-type Ca\(^{2+}\) channel (Ca\(_V\) 2.3) contributes to cerebral artery constriction after subarachnoid hemorrhage. *Circ Res* 96:419-26

Kong H, Jones PP, Koop A, Zhang L, Duff HJ, Chen SR (2008) Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor. *Biochem J* 414:441-52

Figure Legends

Figure 1: Decreased frequency of transient outward BK currents in cerebral artery myocytes from SAH model rabbits. (A) Representative traces of transient BK currents in cerebral artery myocytes from control and SAH rabbits. Holding potential was changed in 10 mV increments every ~5 min. (B) Expanded traces are from the region denoted by black bars in panel A. (C) Average traces were obtained from all events at -40 mV shown in panel A (control: 52 events, SAH: 18 events). (D, E) Summarized data of transient BK current frequency and amplitude, respectively. Control: n = 9 cells from 6 animals; SAH: n = 8 from 6 animals. * p < 0.05, ** p < 0.01

Figure 2: Maintained expression and properties of BK channels in cerebral artery myocytes following SAH. (A) Representative BK single channel recordings from inside-out membrane patches in the presence of 10^{-7} mol/L free Ca$^{2+}$. Closed state (C) and individual channel open states (O1-O5) are included in each record. (B) Ca$^{2+}$- and voltage-sensitivity of BK channels in control (n = 6-16 patches from 4 animals) and SAH myocytes (n = 12-19 patches from 4 animals). Free Ca$^{2+}$ concentration calculated for the “Zero” Ca$^{2+}$ solution was < 1 nmol/L. Open-state probability curves were obtained from Boltzmann fit of data. (C) BK channel densities shown as channel number per patch at +80 mV in control (n = 25) and SAH cerebral myocytes (n = 27). NS: p > 0.05. (D) Current-voltage relationship of paxilline-sensitive currents in myocytes from control (open circles, n = 5) and SAH rabbits (closed circles, n = 6). (E) Summary of
quantitative real-time PCR for α and β subunits of the BK channel, normalized to GAPDH.

Figure 3: Decreased Ca\(^{2+}\) spark frequency, but not amplitude, in cerebral artery myocytes from SAH animals. (A) Representative Ca\(^{2+}\) spark images and fractional fluorescent traces from cerebral artery myocytes isolated from control and SAH rabbits. Gray scale images are an average of 30 images without Ca\(^{2+}\) spark activity (F\(_0\) image). Red crosses depict where individual Ca\(^{2+}\) sparks occurred during the 20 second recordings. Pseudo-color images illustrate Ca\(^{2+}\) sparks in control and SAH myocytes. Fractional fluorescent (F/F\(_0\)) records are from 2.1 μm x 2.1 μm analysis areas (white boxes in first enlarged images) centered over Ca\(^{2+}\) sparks. White bars represent 10 μm. (B, C) Summarized data of whole cell frequency and amplitude, respectively, of Ca\(^{2+}\) sparks in cerebral artery myocytes (control: n = 45 cells from 5 animals, SAH: n = 48 cells from 6 animals). ** p < 0.01

Figure 4: Decreased functional Ca\(^{2+}\) spark sites in cerebral artery myocytes from SAH animals. (A) Gray scale images are an average of 30 images without Ca\(^{2+}\) spark activity (F\(_0\) image) with red crosses depicting the location of individual Ca\(^{2+}\) sparks during 20 sec recordings. White boxes on pseudo-color images depict distinct spark sites within each cell. (B) Numbered images depict individual spark sites within each cell. (C) Corresponding fractional fluorescent (F/F\(_0\)) traces from spark sites shown in panel B. Arrows indicate Ca\(^{2+}\) sparks accounted to each site. (D) Summarized data of the number
of spark sites observed in each cell. (E) Average Ca^{2+} spark frequency in individual spark sites. (F) Relationship between the number of spark sites in individual cells and whole cell Ca^{2+} spark frequency. Solid lines with symbol color (control: gray, SAH: black) represent linear regression analysis of data. Data was obtained from 1082 sparks from 355 spark sites in 45 cells from 5 control animals and 594 sparks from 217 spark sites in 48 cells from 6 SAH animals. ** p < 0.01

Figure 5: RyR activation properties and SR Ca^{2+} load in cerebral arteries from SAH animals. (A-C): The RyR activator, caffeine (10 µmol/L), did not restore the number of functional spark sites or whole cell Ca^{2+} spark frequency in cerebral artery myocytes from SAH animals to control levels. (A) Average of 30 consecutive images without Ca^{2+} spark activity, with white crosses depicting the location of Ca^{2+} sparks observed during 20 sec recordings in the absence and presence (+Caffeine) of caffeine. White bars represent 10 µm. (B, C) Summary of the effect of caffeine on the number of functional spark sites per cell (B) and whole cell Ca^{2+} spark frequency (C). Control: n = 7 cells from 3 animals, SAH: n = 14 cells from 3 animals. * p<0.05, ** p<0.01 control vs SAH. (D) Estimated Ca^{2+} content in sarcoplasmic reticulum (SR) of cerebral arteries from control and SAH animals. The amplitude of global cytosolic Ca^{2+} transients induced by rapid application of a high concentration of caffeine (10 mmol/L) was not significantly different between groups (control: n = 4, SAH: n = 3). (E) Summarized data of quantitative real-time PCR for smooth muscle sarco-endoplasmic reticulum Ca^{2+}-
ATPase (SERCA-2), calsequestrin-2, and calreticulin expressed as a ratio to GAPDH (n = 6 for each group). ** p < 0.01

Figure 6: Decreased expression of ryanodine receptor-2 (RyR-2) and increased expression of FKBP12.6 in cerebral arteries from SAH animals. (A) Summarized quantitative real-time PCR data for RyR-2 (n = 6) and FKBP12.6 (n = 5). ** p < 0.01 (B) Immunoreactive bands corresponding to RyR-2, FKBP12.6 and α-smooth muscle actin in cerebral arteries detected by western blot. (C) Summarized RyR-2 and FKBP12.6 protein levels expressed as a ratio to α-smooth muscle actin (n = 4 for each groups). * p < 0.05

Figure 7: Inhibitors of Ca\(^{2+}\) sparks and BK channels constrict cerebral arteries from control, but not SAH model animals. (A) Diameter recordings of pressurized (80 mmHg) cerebral arteries from control (left) and SAH (right) animals treated with the BK channel blocker paxilline (1 µmol/L). Maximum dilation was obtained using a combination of diltiazem (100 µM) and forskolin (1µM) in Ca\(^{2+}\)-free physiological saline solution. (B, C) Summarized data of constriction caused by paxilline (B, n = 5) or ryanodine (C, n = 4), expressed as a percent decrease in diameter, of pressurized arteries isolated from control and SAH animals. (D) Vasodilation to cumulative additions of acetylcholine (ACh) are expressed as percent dilation of pressure-induced (myogenic) tone. Data expressed as mean ± SEM; n = 7 control, n = 5 SAH. (E) Vasodilation to cumulative additions of sodium nitroprusside (SNP) are expressed as percent dilation of
pressure-induced (myogenic) tone. Data are expressed as mean ± SEM; n = 4 control, n = 4 SAH.
Figure 1: Decreased frequency of transient outward BK currents in cerebral artery myocytes from SAH model rabbits.
Figure 2: Maintained expression and properties of BK channels in cerebral artery myocytes following SAH.
Figure 3: Decreased Ca$^{2+}$ spark frequency, but not amplitude, in cerebral artery myocytes from SAH animals.
Figure 4: Decreased functional Ca\(^{2+}\) spark sites in cerebral artery myocytes from SAH animals.
Figure 5: RyR activation properties and SR Ca$^{2+}$ load in cerebral arteries from SAH animals.
Figure 6: Decreased expression of ryanodine receptor-2 (RyR-2) and increased expression of FKBP12.6 in cerebral arteries from SAH animals.
Figure 7: Inhibitors of Ca\(^{2+}\) sparks and BK channels constrict cerebral arteries from control, but not SAH model animals.
Table 1: Primers for quantitative real time PCR

<table>
<thead>
<tr>
<th>Target (rabbit)</th>
<th>Forward primer (5' → 3')</th>
<th>Reverse primer (5' → 3')</th>
<th>GeneBank accession number</th>
<th>Amplification region</th>
</tr>
</thead>
<tbody>
<tr>
<td>RyR-2</td>
<td>CCCAAGAATGATCTGGAGGA</td>
<td>GCAGAATGGCTTGCTGTGA</td>
<td>NM001082757</td>
<td>4301-4521</td>
</tr>
<tr>
<td>FKBP12.6</td>
<td>GGAGACGGGAGGACGTTT</td>
<td>CTCCGTATGCCACATCAGG</td>
<td>NM001082145</td>
<td>31-253</td>
</tr>
<tr>
<td>Calsequestrin-2</td>
<td>TTGCTAACTCACACGCTGG</td>
<td>AAATTACCTCCCACCCCAAG</td>
<td>NM001101691</td>
<td>1704-2022</td>
</tr>
<tr>
<td>Calreticulin</td>
<td>AGTACTCGCAGGCAGCTAAG</td>
<td>CACGTCCTGGCTGCAAATTGC</td>
<td>NM001082235</td>
<td>953-1100</td>
</tr>
<tr>
<td>SERCA-2</td>
<td>ACACCTGAGCTTGCCAGAC</td>
<td>CTTTGGAAGGCTGCTCCG</td>
<td>NM001089320</td>
<td>1084-1302</td>
</tr>
<tr>
<td>BK channel α subunit</td>
<td>CAAGAAGAGTTCCCTCCGTGC</td>
<td>CATATCAAAGGCCGTCTCC</td>
<td>NM001082070</td>
<td>3520-3635</td>
</tr>
<tr>
<td>BK channel β1 subunit</td>
<td>CTGTGTCGGCTGACCTG</td>
<td>GCTCTGACCTTCTCACCATTG</td>
<td>NM001082225</td>
<td>600-821</td>
</tr>
<tr>
<td>GAPDH</td>
<td>AGTATGATTCCACCCAGG</td>
<td>TGGATTCCACCACGTACTCG</td>
<td>NM001082253</td>
<td>211-363</td>
</tr>
</tbody>
</table>
Table 2: Transient BK current and Ca2+ spark characteristics

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>SAH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient BK currents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At -40 mV</td>
<td>9 cells (6 animals)</td>
<td>8 cells (6 animals)</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>0.29 ± 0.06</td>
<td>0.12 ± 0.04</td>
</tr>
<tr>
<td>Amplitude (pA)</td>
<td>10.8 ± 1.2</td>
<td>7.6 ± 1.4</td>
</tr>
<tr>
<td>Rise time (msec)</td>
<td>16.1 ± 0.9</td>
<td>21.1 ± 5.5</td>
</tr>
<tr>
<td>Decay time (msec)</td>
<td>31.2 ± 3.1</td>
<td>34.6 ± 10.0</td>
</tr>
<tr>
<td>Cell capacitance (pF)</td>
<td>10.8 ± 0.7</td>
<td>10.0 ± 0.7</td>
</tr>
<tr>
<td>Series resistance (MO)</td>
<td>30.6 ± 4.6</td>
<td>34.2 ± 3.5</td>
</tr>
<tr>
<td>Ca2+ sparks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole cell</td>
<td>45 cells (5 animals)</td>
<td>48 cells (6 animals)</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>0.76 ± 0.05</td>
<td>0.38 ± 0.03</td>
</tr>
<tr>
<td>Amplitude (pA)</td>
<td>1.63 ± 0.03</td>
<td>1.69 ± 0.04</td>
</tr>
<tr>
<td>Rise time (msec)</td>
<td>30.3 ± 0.9</td>
<td>29.1 ± 0.8</td>
</tr>
<tr>
<td>Decay time (msec)</td>
<td>39.3 ± 2.3</td>
<td>41.8 ± 2.3</td>
</tr>
<tr>
<td>Duration (msec)</td>
<td>56.5 ± 2.6</td>
<td>61.0 ± 2.5</td>
</tr>
<tr>
<td>Spacial area (µm2)</td>
<td>14.6 ± 0.7</td>
<td>13.0 ± 0.7</td>
</tr>
<tr>
<td>Number of spark sites</td>
<td>7.9 ± 0.6</td>
<td>4.5 ± 0.4</td>
</tr>
<tr>
<td>Individual spark sites</td>
<td>355 sites in 45 cells (5 animals)</td>
<td>217 sites in 48 cells (6 animals)</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>0.095 ± 0.006</td>
<td>0.084 ± 0.006</td>
</tr>
</tbody>
</table>

Ca2+ sparks - Caffeine (10 µmol/L) treatment -

<table>
<thead>
<tr>
<th></th>
<th>Before treatment</th>
<th>After caffeine-treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole cell</td>
<td>7 cells (3 animals)</td>
<td>14 cells (3 animals)</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>0.78 ± 0.16</td>
<td>0.38 ± 0.08</td>
</tr>
<tr>
<td>Amplitude (pA)</td>
<td>1.71 ± 0.09</td>
<td>1.77 ± 0.06</td>
</tr>
<tr>
<td>Rise time (msec)</td>
<td>35.4 ± 2.6</td>
<td>30.7 ± 1.4</td>
</tr>
<tr>
<td>Decay time (msec)</td>
<td>36.0 ± 4.9</td>
<td>35.8 ± 3.4</td>
</tr>
<tr>
<td>Duration (msec)</td>
<td>54.1 ± 6.9</td>
<td>53.2 ± 3.3</td>
</tr>
<tr>
<td>Spacial area (µm2)</td>
<td>9.4 ± 0.7</td>
<td>11.0 ± 0.9</td>
</tr>
<tr>
<td>Number of spark sites</td>
<td>6.7 ± 0.7</td>
<td>3.8 ± 0.7</td>
</tr>
<tr>
<td>Individual spark sites</td>
<td>47 sites in 7 cells (3 animals)</td>
<td>53 sites in 14 cells (3 animals)</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>0.11 ± 0.02</td>
<td>0.10 ± 0.02</td>
</tr>
</tbody>
</table>

Individual spark sites

<table>
<thead>
<tr>
<th></th>
<th>70 sites in 7 cells (3 animals)</th>
<th>77 sites in 14 cells (3 animals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (Hz)</td>
<td>0.14 ± 0.02</td>
<td>0.11 ± 0.01</td>
</tr>
</tbody>
</table>

* P < 0.05, ** P < 0.01 vs control
<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>SAH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paxilline treatment (at 80 mm Hg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before paxilline</td>
<td>$94.6 \pm 10.2 \mu m$</td>
<td>$96.6 \pm 8.1 \mu m$ **</td>
</tr>
<tr>
<td>In the presence of paxilline</td>
<td>$78.4 \pm 8.4 \mu m$</td>
<td>$95.5 \pm 8.6 \mu m$ NS</td>
</tr>
<tr>
<td>Decrease in diameter by paxilline</td>
<td>$16.2 \pm 2.3 \mu m$</td>
<td>$1.2 \pm 1.1 \mu m$</td>
</tr>
<tr>
<td>Passive diameter</td>
<td>$114.0 \pm 12.1 \mu m$</td>
<td>$163.3 \pm 12.7 \mu m$</td>
</tr>
<tr>
<td>Ryanodine treatment (at 80 mm Hg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before ryanodine</td>
<td>$139.5 \pm 7.8 \mu m$</td>
<td>$158.8 \pm 14.6 \mu m$ NS</td>
</tr>
<tr>
<td>In the presence of ryanodine</td>
<td>$125.0 \pm 6.4 \mu m$</td>
<td>$152.3 \pm 15.6 \mu m$ NS</td>
</tr>
<tr>
<td>Decrease in diameter by ryanodine</td>
<td>$14.5 \pm 1.5 \mu m$</td>
<td>$6.5 \pm 1.2 \mu m$</td>
</tr>
<tr>
<td>Passive diameter</td>
<td>$177.0 \pm 11.6 \mu m$</td>
<td>$216.5 \pm 15.3 \mu m$</td>
</tr>
<tr>
<td>60 mM K (at 20 mmHg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% decrease in diameter</td>
<td>62.2 ± 3.7 NS</td>
<td>64.7 ± 4.7 SAH vs Control</td>
</tr>
<tr>
<td>Acetylcholine-induced vasodilation</td>
<td>$n = 7$</td>
<td>$n = 9$</td>
</tr>
<tr>
<td>EC$_{50}$</td>
<td>5.3×10^{-7} M</td>
<td>3.5×10^{-7} M</td>
</tr>
<tr>
<td>SNP-induced vasodilation</td>
<td>$n = 4$</td>
<td>$n = 4$</td>
</tr>
<tr>
<td>EC$_{50}$</td>
<td>1.3×10^{-6} M</td>
<td>3.1×10^{-6} M</td>
</tr>
</tbody>
</table>

P < 0.01, NS: not significant.