Date of Award


Document Type


Degree Name

Master of Science (MS)


Natural Resources

First Advisor

Anthony W. D'Amato


Global environmental change represents one of the greatest challenges facing forest resource managers today. The uncertainty and variability of potential future impacts related to shifting climatic and disturbance regimes on forest systems has led resource managers to seek out alternative management approaches to sustain the long-term delivery of forest ecosystem services. To this end, forest managers have begun incorporating adaptation strategies into resource planning and are increasingly utilizing the outcomes of forest landscape simulation and climate envelope models to guide decisions regarding potential strategies to employ. These tools can be used alongside traditional methods to assist managers in understanding the potential long-term effects of management and climate on future forest composition and productivity.

This study used a spatially explicit forest landscape simulation model, Landis-II, to examine and evaluate a range of long-term effects of current and alternative forest management under three projected climate scenarios within a 50,000-hectare forested landscape in southeastern Vermont, USA. Multiple scenarios were examined within this mixed ownership landscape, allowing for an evaluation of the influence of management and climate on future forest conditions in the region. These simulations indicate that land-use legacies and the inertia associated with long-term forest successional trajectories are projected to be an important driver of future forest composition and biomass conditions for the next 100 years. Nevertheless, climate is projected to have a greater influence on species composition and aboveground biomass over the next two centuries, with forests containing a greater abundance of species from more southerly regions and lower levels of aboveground biomass, resulting in shifts in the future provisioning of ecosystem services.

Key words: Vermont, USA; climate change; forests; LANDIS-II; forest adaptation; forest management; above ground biomass; landscape inertia; land use recovery; forest composition



Number of Pages

118 p.