Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)



First Advisor

Anthony D. Morielli


The voltage-gated potassium channel Kv1.2 impacts membrane potential and therefore excitability of neurons. Expression of Kv1.2 at the plasma membrane (PM) is critical for channel function, and altering Kv1.2 at the PM is one way to affect membrane excitability. Such is the case in the cerebellum, a portion of the brain with dense Kv1.2 expression, where modulation of Kv1.2 at the PM can impact electrical activity of neurons and ultimately cerebellum-dependent learning. Modulation of Kv1.2 at the PM can occur through endocytic trafficking of the channel; however mechanisms behind this process in the brain remain to be defined.

The goal of this dissertation was to identify and characterize modalities endogenous to the brain that influence the presence of Kv1.2 at the neuronal plasma membrane. Mass spectrometry (MS) was used to first identify interacting proteins and post-translational modifications (PTM) of Kv1.2 from cerebellar tissue, and the roles of these interactions and modifications on Kv1.2 function were evaluated in two studies:

The first study investigated Trim32, a protein enzyme that catalyzes ubiquitylation, a PTM involved in protein degradation, but also in non-degradative events such as endocytic trafficking. Trim32 was demonstrated to associate and localize with Kv1.2 in cerebellar neurons by MS, immunoblotting (IB), and immunofluorescence (IF), and also demonstrated the ability to ubiquitylate Kv1.2 in vitro through purified recombinant proteins. Utilizing cultured cells through a combination of mutagenesis, biochemistry, and quantitative MS, a working model of Kv1.2 modulation was developed in which Trim32 influences Kv1.2 surface expression by two mechanisms that both involve cross-talk of ubiquitylation and phosphorylation sites of Kv1.2.

The second study investigated WNK1, a chloride-sensitive kinase which regulates cellular homeostasis. Using MS, IB, and IF, WNK1 was demonstrated to associate and localize with Kv1.2 in the cerebellum, and a combination of mutagenesis and pharmacology in both wild-type and WNK1-knockout cultured cells produced a working model whereby WNK1 modulates surface Kv1.2. Activation of the downstream target SPAK kinase, also identified by MS to associate with Kv1.2 in the brain, by WNK1 was additionally found to influence the manner of WNK1 modulation of Kv1.2.

In addition to providing new models of Kv1.2 modulation in the brain, these studies propose novel biological roles for Trim32 and WNK1 that may ultimately impact neuronal excitability.



Number of Pages

220 p.