Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)


Materials Science

First Advisor

Wu, Junru


Sonoporation, enhanced by ultrasound contrast agents has been explored as a promising non-viral technique to achieve gene transfection and targeting drug delivery in recent years. However, the short lifespan of traditional ultrasound contrast agents like Optison® microbubbles under moderate intensity ultrasound exposure limits their application. Liposomes, as drug carriers consisting of curved spherical closed phospholipid bilayer shells, have the following characteristics: 1) The ability to encapsulate and carry hydrophilic or hydrophobic molecules. 2) The biocompatibility with cell membranes. 3) The nanometer size and the relative ease of adding special ligands to their surface to target a specific disease site. 4) The stability in the blood stream. 5) Targeted ultrasound irradiation can induce rupture of liposomes letting the drug encapsulated in them leak out to achieve controlled release of the therapeutic agents at a certain concentration and a delivery rate. In this thesis, several liposome synthesis methods are presented. Liposomes synthesized in our laboratory were characterized acoustically and optically. Anti rabbit IgG conjugated with Alexafluor 647 was delivered into Jurkat cells in a suspension containing liposomes by 10 % duty cycle ultrasound tonebursts of 2.2 MHz (the in situ spatially averged and temporally averaged intensity, ISATA = 80W/cm2) with an efficiency of 13 %. It has been experimentally shown that liposomes may be an alternative stable agent to Optison® to cause sonoporation. Furthermore, a type of nanometer-sized liposome (<300nm) was synthesized to explore the feasibility of ultrasound-triggered release from drug encapsulated lipsomes. It has been demonstrated encapsulated fluorescence materials (FITC) can be released from liposomes with an average diameter of 210 nm when exposed to high intensity focused ultrasound (HIFU) at 1.142MHz (ISPTA= 900 W/cm2). Rupture of relatively large liposomes (>100nm) and porelike defects in the membrane of small liposomes due to the excitation of HIFU were the main causes of the content release. The great enhancement of HIFU-mediated release in the nanometer-sized liposomes may prove useful for clinical applications. The presence of fine particles in Martian and lunar soil poses a significant threat to NASA’s viable long-term exploration and habitation of either the moon or Mars. It has been experimentally shown that the acoustic levitating radiation force produced by a 13.8 kHz 128 dB sound-level standing wave between a 3 cm-aperture acoustic tweeter and a reflector separated by 9 cm is strong enough to overcome the van der Waals adhesive force between the dust-particles and the reflector-surface. The majority of fine particles (> 2μm diameter) on a reflector surface can be dislodged and removed by a technique combining acoustic levitation and airflow methods. This dust removal technique may be used in space-stations or other enclosures for habitation.