Date of Award


Document Type


Degree Name

Master of Science (MS)


Mechanical Engineering

First Advisor

Douglas G. Fletcher


The pyrolysis mechanics of Phenolic Impregnated Carbon Ablators (PICA) makes it a valued material for use in thermal protection systems for spacecraft atmospheric re-entry. The present study of the interaction of pyrolysis gases and char with plasma gases in the boundary layer over PICA and its substrate, FiberForm, extends previous work on this topic that has been done in the UVM 30 kW Inductively Coupled Plasma (ICP) Torch Facility. Exposure of these material samples separately to argon, nitrogen, oxygen, air, and carbon dioxide plasmas, and combinations of said test gases provides insight into the evolution of the pyrolysis gases as they react with the different environments. Measurements done to date include time-resolved absolute emission spectroscopy, location-based temperature response, flow characterization of temperature, enthalpy, and enthalpy flux, and more recently, spatially resolved and high-resolution emission spectroscopy, all of which provide measure of the characteristics of the pyrolysis chemistry and material response. Flow characterization tests construct an general knowledge of the test condition temperature, composition, and enthalpy. Tests with relatively inert argon plasmas established a baseline for the pyrolysis gases that leave the material. Key pyrolysis species such as CN Violet bands, NH, OH and Hydrogen Alpha (Hα) lines were seen with relative repeatability in temporal, spectral, and intensity values. Tests with incremental addition, and static mixtures, of reactive plasmas provided a preliminary image of how the gases interacted with atmospheric flows and other pyrolysis gases. Evidence of a temporal relationship between NH and Hα relating to nitrogen addition is seen, as well as a similar relationship between OH and Hα in oxygen based environments. Temperature analysis highlighted the reaction of the material to various flow conditions and displayed the in depth material response to argon and air/argon plasmas. The development of spatial emission analysis has been started with the hope of better resolving the previously seen pyrolysis behavior in time and space.



Number of Pages

134 p.