Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)


Computer Science

First Advisor

Joshua C. Bongard


Creating systems that can operate autonomously in complex environments is a challenge for contemporary engineering techniques. Automatic design methods offer a promising alternative, but so far they have not been able to produce agents that outperform manual designs. One such method is evolutionary robotics. It has been shown to be a robust and versatile tool for designing robots to perform simple tasks, but more challenging tasks at present remain out of reach of the method.

In this thesis I discuss and attack some problems underlying the scalability issues associated with the method. I present a new technique for evolving modular networks. I show that the performance of modularity-biased evolution depends heavily on the morphology of the robot’s body and present a new method for co-evolving morphology and modular control.

To be able to reason about the new technique I develop reformulation framework: a general way to describe and reason about metaoptimization approaches. Within this framework I describe a new heuristic for developing metaoptimization approaches that is based on the technique for co-evolving morphology and modularity. I validate the framework by applying it to a practical task of zero-g autonomous assembly of structures with a fleet of small robots.

Although this work focuses on the evolutionary robotics, methods and approaches developed within it can be applied to optimization problems in any domain.



Number of Pages

200 p.