Date of Completion


Document Type

Honors College Thesis


Mechanical Engineering

Thesis Type

Honors College, College of Arts and Science Honors

First Advisor

Dr. Ting Tan

Second Advisor

Dr. Yves Dubief


Wind Turbine, Bamboo, CFD, SimScale, Computational Fluid Dynamics, Tip Speed Ratio, VAWT, Vertical Axis, Power Coefficient Curve


A small scale vertical axis wind turbine with bamboo blades was built at the University of Vermont in 2014. Prior to 2016, the efficiency of the wind turbine was not fully quantified. Thus, it was desirable to estimate the efficiency using computational fluid dynamic models. Thus, a SolidWorks file of the geometry was created and imported into SimScale, a cloud based CFD software, for anal ysis. Steady-state, quasi 2D simulations of the geometry were simulated with a constant unidirectional wind flow to mimic wind tunnel testing conditions. Simultaneously, a UVM Senior Design team was completing a physical wind tunnel test of the bamboo wind turbine. From the simulations the VAWT was found to have a range of efficiencies from 0-0.55% at TSR’s of 0.06-0.11, while from the wind tunnel test the efficiencies were in the 0-0.13% range for TSR’s of 0-0.125. Though the simulations calculate a slightly higher efficiency of the wind turbine than physically obtained data, they provide a good estimate. Because the wind turbine’s efficiency is < 1%, future work will be done with CFD to test altered geometries for the bamboo VAWT to improve its’ performance.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.