University of Vermont Transportation Research Center

Document Type


Publication Date



Well-designed winter maintenance routes result in snow and ice control service that is both more effective, because roads are cleared more rapidly, and more cost efficient, because deadheading, route overlap and other inefficiencies are reduced or eliminated. There are an increasing number of computerized tools to facilitate the routing process, but these tools are not yet widely used by winter maintenance practitioners. The purpose of this report is to provide practitioners with an overview of computerized route optimization processes and concrete recommendations about how to ensure that route improvement efforts produce actionable results. Recommendations are synthesized from nine recent and ongoing snowplow routing projects using a variety of computerized routing tools. Project descriptions, based on interviews with project personnel, focus on project goals, optimization software features used, and lessons learned. Multiple route optimization projects report route length reductions on the order of 5% to 10%, with reductions as high as 50% reported in one case. These snowplow route optimization projects show that route optimization is a powerful tool for improving routing efficiency but that it does not replace the need for expert judgment in the route design process. Successful route optimization projects rely on close cooperation between experienced winter maintenance professionals and the individuals conducting the route optimization as well as a highly accurate, snowplow-routing specific representation of the road network. Successful projects also include time to review and revise new routes to identify potential problem spots prior to implementation.