Document Type
Article
Publication Date
1-1-2014
Abstract
Summary: Shading and mechanical stress (MS) modulate plant architecture by inducing different developmental pathways. Shading results in increased stem elongation, often reducing whole-plant mechanical stability, while MS inhibits elongation, with a concomitant increase in stability. Here, we examined how these organ-level responses are related to patterns and processes at the cellular level by exposing Impatiens capensis to shading and MS. Shading led to the production of narrower cells along the vertical axis. By contrast, MS led to the production of fewer, smaller and broader cells. These responses to treatments were largely in line with genetic differences found among plants from open and closed canopy sites. Shading- and MS-induced plastic responses in cellular characteristics were negatively correlated: genotypes that were more responsive to shading were less responsive to MS and vice versa. This negative correlation, however, did not scale to mechanical and architectural traits. Our data show how environmental conditions elicit distinctly different associations between characteristics at the cellular level, plant morphology and biomechanics. The evolution of optimal response to different environmental cues may be limited by negative correlations of stress-induced responses at the cellular level. © 2013 New Phytologist Trust.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Rights Information
© 2010 The Authors
Recommended Citation
Huber H, de Brouwer J, von Wettberg EJ, During HJ, Anten NP. More cells, bigger cells or simply reorganization? Alternative mechanisms leading to changed internode architecture under contrasting stress regimes. New Phytologist. 2014 Jan;201(1):193-204.
DOI
10.1111/nph.12474
Link to Article at Publisher Website
Included in
Community Health Commons, Human Ecology Commons, Nature and Society Relations Commons, Place and Environment Commons, Sustainability Commons