Document Type

Article

Publication Date

2-1-2017

Abstract

We propose and develop a Lexicocalorimeter: an online, interactive instrument for measuring the "caloric content" of social media and other large-scale texts. We do so by constructing extensive yet improvable tables of food and activity related phrases, and respectively assigning them with sourced estimates of caloric intake and expenditure. We show that for Twitter, our naive measures of "caloric input", "caloric output", and the ratio of these measures are all strong correlates with health and well-being measures for the contiguous United States. Our caloric balance measure in many cases outperforms both its constituent quantities; is tunable to specific health and well-being measures such as diabetes rates; has the capability of providing a real-time signal reflecting a population's health; and has the potential to be used alongside traditional survey data in the development of public policy and collective self-awareness. Because our Lexicocalorimeter is a linear superposition of principled phrase scores, we also show we can move beyond correlations to explore what people talk about in collective detail, and assist in the understanding and explanation of how population-scale conditions vary, a capacity unavailable to black-box type methods.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Rights Information

© 2017 Alajajian et al.

DOI

10.1371/journal.pone.0168893

Link to Article at Publisher Website

COinS