Document Type
Article
Publication Date
12-1-2017
Abstract
Using Instagram data from 166 individuals, we applied machine learning tools to successfully identify markers of depression. Statistical features were computationally extracted from 43,950 participant Instagram photos, using color analysis, metadata components, and algorithmic face detection. Resulting models outperformed general practitioners’ average unassisted diagnostic success rate for depression. These results held even when the analysis was restricted to posts made before depressed individuals were first diagnosed. Human ratings of photo attributes (happy, sad, etc.) were weaker predictors of depression, and were uncorrelated with computationally-generated features. These results suggest new avenues for early screening and detection of mental illness.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Rights Information
© 2017, The Author(s).
Recommended Citation
Reece AG, Danforth CM. Instagram photos reveal predictive markers of depression. EPJ Data Science. 2017 Dec;6(1):1-2.
DOI
10.1140/epjds/s13688-017-0110-z
Comments
Erratum to: Instagram photos reveal predictive markers of depression (EPJ Data Science, (2017), 6, 1, (15), 10.1140/epjds/s13688-017-0110-z)