Date of Award
2020
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Natural Resources
First Advisor
Brian Voigt
Abstract
Climate change has motivated governments around the world to ratify aggressive greenhouse gas emissions reduction targets. Meeting these targets will require improved energy efficiency, behavior changes, and energy system decarbonization. Many climate change and energy policy targets imply the deployment of large amounts of low carbon, renewable energy resources like wind turbines and solar photovoltaic (PV) panels but do not specify how these resources will be sited on the landscape. The relationships between weather conditions, terrain, land cover, existing electric grid infrastructure, and electricity consumers will govern how these wind and solar PV infrastructure configurations develop and how quickly they will be implemented.
This dissertation develops methods for modeling policy goal-compliant wind and solar PV infrastructure configurations and their land use requirements, extends these methods to explicitly account for the resulting land use/land cover change patterns, and concludes with a macro-scale discussion of energy system geographies and their co-evolution with the societies that rely upon them in a decarbonized electric grid future. Chapters 2 and 3 each feature a case study of Vermont and its ambitious energy and emissions-related goals. We find that Vermont can meet many of these goals with less than 1% of its land area occupied by wind and solar PV infrastructure using a wide variety of infrastructure ratios and siting strategies. Chapter 4 views energy systems through the proposed ‘energyshed’ lens. We define energysheds as the geographic area over which energy is produced, refined, transported, stored, distributed, and consumed. We argue that energy system decarbonization offers opportunities to democratize and decentralize energy systems physically and administratively and that the spatial relationships between energy system infrastructure, ownership, and energy consumers will dictate the trajectory of the electric grid decarbonization process.
Language
en
Number of Pages
164 p.
Recommended Citation
Thomas, Austin Wesley, "Electric Grid Decarbonization Pathways: Landscape Impacts, Policy Interactions, and the Need for Cooperation" (2020). Graduate College Dissertations and Theses. 1245.
https://scholarworks.uvm.edu/graddis/1245