Date of Award
2016
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Electrical Engineering
First Advisor
Walter J. Warhue
Abstract
This research will investigate the problem on the propagation of electromagnetic wave through a specific nanomaterial. The nanomaterial analyzed is a material consisting of a field of Pt nanorods. This field of Pt nanorods are deposited on a substrate which consists of a RuO2 nano structure. When the nanorod is exposed to an electron beam emitted by a TEM (Transmission electron microscopy). A wave disturbance has been observed. A video taken within the chamber shows a wave with a speed in the scale of um/s (Á?10Á?^(-6) m/s), which is 14 orders of magnitude lower than speed of light in free space (approximate 3ÁÁ?10Á?^8 m/s ). A physical and mathematical model is developed to explain this phenomenon. Due to the process of fabrication, the geometry of the decorated Pt nanorod field is assumed to be approximately periodic. The nanomaterials possess properties similar to a photonic crystal. Pt, as a noble metal, shows dispersive behaviours that is different from those ones of a perfect or good conductors. A FDTD algorithm is implemented to calculate the band diagram of the nanomaterials. To explore the dispersive properties of the Pt nanorod field, the FDTD algorithm is corrected with a Drude Model. The analysis of the corrected band diagram illustrates that the group velocity of the wave packet propagating through the nanomaterial can be positive, negative or zero. The possible zero-group velocity is therefore used to explain the extremely low velocity of wave (wave envelope) detected in the TEM.
Language
en
Number of Pages
81 p.
Recommended Citation
Fan, Taian, "Zero-Group-Velocity Propagation Of Electromagnetic Wave Through Nanomaterial" (2016). Graduate College Dissertations and Theses. 549.
https://scholarworks.uvm.edu/graddis/549